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ON THE FUNDAMENTAL THEOREM OF AVERAGING*

J. A. SANDERS

Abstract. In this paper we present a simplified proof of the validity of first and second order averaging in
the general case; the periodic case follows as a corollary.

Introduction. Although the fundamental theorem of averaging has been around for
a while (Bogoliubov and Mitropolsky (1961)), and several proofs have been given
besides the original (Besjes (1969) and Eckhaus (1975)), none of these proofs can be
considered as very dear. Also, it has always been necessary to separate the general case
from the periodic one, in order not to lose accuracy in this special, but very important,
case.

In this paper we aim to give a unified approach, based mainly on Eckhaus’ local
averaging method, and to derive the second order approximation theory, which seems
never to have been done (Van der Burgh (1974)). As a corollary we obtain an improved
estimate for the first order approximation under an additional differentiability condi-
tion on the vectorfield. Since the method of proof lies between Besjes’ and Eckhaus’, we
give rather explicit estimates in the lemmas, in order not to burden the reader with
references to proofs with slightly different results and notation. Finally, in 4, we give
the original proof of Bogoliubov and Mitropolsky in our notation, so the reader can
easily compare the two methods.

1. On the concept of local average. In this section we shall give some definitions
and lemmas found in Eckhaus (1975) with a different notation.

DEIINITION 1. ConSider a function f: R R p-o n. The local average fT of f is
defined by

fr( t,x) ---(x is a dummy in this definition, p might be zero).
Remark. If f is periodic in t, with period T, then fr equals the usual average f0

where

f(x)- (t,x)dt.

DEFiri:ior 2. Consider the differential equation

Yc:ef(t,x), xDCi.
Suppose f is continuous in and x on D, and uniformly bounded (with constant
M), and uniformly Lipschitz with respect to x (with constant h,i.e., f(x)-f(y)ll <-
? x -y for all x,y D). Furthermore, suppose that its average

f(x)-lim forfT-, - ( t,x) dt

exists uniformly. Then we call f a KBM-vectorfield.
Remark. In the sequel we will assume that f is always a KBM-vectorfield with

bound M and Lipschitz constant ,. We will not repeat these conditions in the lemmas.
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Remark. In the sequel we shall take T such that eT=o(1), where e is a small
parameter to be introduced. We do not exclude the case T--O(1).

Outline of the proof of Theorem 1. We consider the initial value problem

2=ef(t,x),
We want to compare its solution to that of the averaged system

2=ef(z), z(O)=tieDCDCR ".

In several earlier proofs this has been done, either directly or indirectly, by studying the
locally averaged equation

j=efr(t,y ) y(O) f.
First we want to show that x and y are approximate. We can write x as

x()-+fot(,,x(,))
and y as

y(t)-li+efotf.(,y()) d.
We are therefore led to consider the function

,(t)--fotf(’,x(’r))d’.
In Lemma 1, we show that q,(t) qr(t) + O(T), and in Lemma 2 that

()=fo’(,())+o().

At that point, we can write x as

x(t)-+f0’(,x())d+ o(r).

This is close enough to the expression for y to estimate the difference between x and y
by standard methods on a time inteal of length in Lemma 3. To show that z is an
appromation to y, we first show in Lemma 4 that

(t x)=(x)+O( ()
where

i(e)- sup sup e [f(t,x)-f(x)]d.
xGD tG[O,L/e]

One might wonder what the e does in an expression only involving fT and f0, but it
This means that we can writeenters via the time scale 7.

y(t)_,+efotfO(y())dr+O (eS(e)t)eT

and this is close enough to the formula for z to give a standard estimate in Lemma 5.
The proof of the theorem then consists of applying the triangle inequality and picking
the right T.

LEMMA 1. Let rh be a Lipschitz-continuous map from to n. Then (t)=qT(t) +
O(T).
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Proof.

I,(t)-,(t)l---

where )t is the Lipschitz constant of ,.
LEMMA 2. Let x be a solution of

2=ef(t,x),
and define

Then, on O<_et<_L,

where

Proof.

xDCRn,

l,-y (o,x(o))aoa-o(r).

Since [[( t, x )l <_M for O<_et<_L and x

R-y [f(o+,,x(o+,))--f(o+,,x(o))] d,do

and

LEMMA 3. Let x be the solution of
=f(t,x),

and let y be the solution of
=efr(t,Y),

Then x(t)=y(t)+ O(eT) on O<_et<_L.

x(O)=,

y(0) =.
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Proof.

According to Lemmas and 2, we know that

0

or

Since

x(t)--li+efotfT(r,x()) d+ O(eT).

y(t)-li+efotfr(,y()) dr,

it is readily seen, since fr inherits the Lipschitz continuity from f, that

x(t)=y(t)+O(eT).
Remark. In case f is periodic, this proves the fundamental theorem of averaging,

sincefr=f then.
LEMMA 4. The local average and the average off are related by the estimate

fr(t x)=fO(x)+O((e))eT O<_et<_L,

where

Proof.

sup sup
xD t[O,L/e)

foTIfT(t,x)--fO(x)--- f(r+t,x)-f(x)]dr

Since for a o(t),

1 o(=l fr+’[ f(,,x)-f(x)] d,+ [ f(,,x)-f x)] drT 0

[f(r x.-_.x.., dr <

this gives the desired result. []

LEMMA 5. Let y be the solution of
fi=efr(t,y), y(0) =,

2=ef(z), z(O) =j.
and let z be the solution of

Then

y(t)--z(t)+O eT
onO<_et<_L.

Proof. This follows from Lemma 4 and Gronwall’s inequality.
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2. First order averaging. We are now able to formulate and "prove" (there is not
much work left) the classical averaging theorem.

THEOREM (fundamental theorem of averaging). Consider the solution x of
&=ef(t,x), x(0):j, xDCRn.

and z, which is a solution of
2:ef(z), z(0)--, zDCDCgn.

(We assumef to be a KBM-vectorfield, as defined in 1.) Supposef is Lipschitz continuous
on D and let L be such that z(t) DO for all such that 0 <_ et <_ L, where L is independent
of e. Suppose furthermore that the boundaries ofD and DO have Os(1)-distance (i.e., O(1),
but not o(1)). Then

X(1)--z(t)-[-O(il(8) ).
where

sup sup 8 [ f(’r,x) --f x)] dr
x@D t[O,L/e)

f(x)- lim forfT-o - (t,xl dt.

Iff is periodic in t, then

x(t):z(t)+O(8).
Proof. The periodic case follows from Lemma 3.
In the general case we combine Lemma 3 and Lemma 5 to obtain

z(t) -z(t) + o( T) + o eT

If we let

e,2T2---l(e),
we get

This choice of T is in accordance with the requirement that eT be o(1) (unless, of
course, 8(8) is not o(1), in which case the result is worthless anyway).

The reader should check that the requirement z(t)Do has been used implicitly in
the proof of the lemmas. To do everything right, one could use continuous induction on
t. Since the distance of the boundaries is Os(1 ) and the approximation is o(1), this
should give no difficulties. 73

Remark. If f is a finite sum of periodic functions with different periods, one can
still obtain O(8)-accuracy, due to the linearity of the argument leading to the estimates.
in Eckhaus’ proof (1975) this argument may not work, since use is made of xr, and it is
not clear how to generalize this to more periods. As we showed, the use of xr is not
necessary.

3. Second order averaging. We shall now turn to higher order approximations. In
the periodic case, this is a well-established theory with many applications, but we do
not know of any results in this direction in the general case. This might be due to a lack
of practical importance, but, on the other hand, that argument never stopped a
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mathematician. From the higher order argument it does follow, however, that the first
order approximation is better than we expected. We shall prove it to have O(81(e))-ac-
curacy, under an additional differentiability hypothesis. We shall follow closely the
structure of the periodic theory, so all our results are the best possible in that special
case. In this section we will make the following assumption: f is a KBM-vectorfield
with a uniformly Lipschitz continuous first derivative (in x).

LEMMA 6. Let x be the solution of
2=ef(t,x), x(0) j.

Let w be defined by

where

x( ) w( ) + 6,( e)u’( t, w( )),

,()u,(t,w)- [y(,w)-y(w)]d.

(Clearly, u is uniformly bounded on 0 <_ et <_ L.)
Then

w()-+’(w(,)),
+eil(e)fot[Vf(,,w(,))u’(,,w(,))-- Vu’(,,w(,))f(w())] dr

+o() o0.

Proof. This is a standard computation. We use the fact that

du u dw
dt (t,w(t))-+ u "dr

w(t) (t) ,()u’( t, w(t))

=+ (,())- [y(,w())- w())]

v(,w())d

+,()’[vi(,,w(,llul(,,w()) vu’(,,w(,l)i(w(,))] d,+O().

LMMA 7. Let w be as in Lemma 6 and let v be the solution of
=fO(v)+,()f (t,v)

where

Then

Proof. See Lemma 3.

f’(t,v)= vf(t,v)u’(t,v)-- Vu’(t,v)f(v).

w( ) v( ) + O( 8,( e)( eT+ 8,( e))).
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LEMMA 8. Suppose f andf (as defined in Lemma 7) are KBM-vectorfields. Let u be
the solution of

ft= ef( u) + e6,( e)f lo(u), u(O)

(where f o is the average off ). Then if

sup sup
xD t[O,L/e)

we have

l)(t)--U()t-O( eT

Proof. See Lemma 5. K]

THEOREM 2 (second order approximation). Under the hypotheses of Theorem 1,
together with those ofLemma 6, we have

wkere u is tke solution of
ft--ef(u)+e81(e)f’(u), u(O)=l,

andf(u)--limT_.-for[Vf(t,u)u(t,u) Vu(t,u)f(u)]dt.
Proof. See Theorem 1.
THEOREM 3 (improved first order). Under the hypotheses of Theorem 2, we find

x(t) =z(t)+
where z is the solution of

Since

we have

Proof. Evidently,

2=ef(z), z(O) =.

u(t)--z(t)+O(8l) on O<_et<_L.

X(t)-’U(t)nt-O(l()) on O<_et<_L,

the desired estimate. K]

4. Alternative estimate Ior the Iundamental theorem. We have by now seen two
different approaches to first order averaging: direct estimation of the differential
equations ([}2) and using a transformation (3), the latter method giving better esti-
mates but requiring differentiability of the vectorfield. In this section, we shall translate
the original version of the proof of Bojoliubov and Mitropolsky into our notation. The
original proof is more concerned with continuity than with asympotic estimates, but the
translation is straightforward, well known and not published. The only change made
here is that we allow for a bounded domain; this introduces minor technical difficulties.

The idea of the proof is rather simple: if the transformation function u is not
differentiable (because the vectorfield is not), we approximate it, using convolution, by

might beThe inherent difficulty is that the gradient of ua differentiable function u,.
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rather large, in terms of the order of approximation. All this results in a new proof of
Theorem 1, except that the accuracy in the periodic case is only O(N), instead of O(e).

DEFINITION 3. Let DCD be such that dist(OD, OD)>/>0. Let +:DR be a
continuous function. Then we define +," DO R as

(x)- fz’*Cx-y)+Cy)dy,
where

(x)-
0,

with A. such that f(x)dx 1.
LEMlVIA 9.

Proof. Straightforward computation.
LEMMA 10. If t D-+R is uniformly bounded and Lipschitz continuous, i.e., q,(x)-

t(y)ll <_Xllx-yll for all x,yD, then

uniformly on D.
Proof. Let xD. Then

q"(x)+,(x)l- lip(x)-- S(I)’(x-y)l(y)dy[
[+(x)S(’(x--y ) dy- S(x-y)+(y)dy

f,.,(x-y)(+(x)-q,(y))dy
<- fl+"(x-y)lXl Ix-Yl dy<-X.

LEMMA 11. Suppose f is Lipschitz continuous with respect to x. Let x be the solution

of
--ef(t,x), x(O)--.

Let w be defined by

x( ) w( ) + ,()u’( t, w( ))

where

,(e)u,(t,w)-eSot[f(,w)-f(w)] d.
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Then

Proof.

w( ) x( ) t, w( ))

d,+

+ o(.)+ o

So we let/- l(g) and we obtain the desired estimate. E]

Using Lemma 11 and Gronwall’s lemma, we obtain a second proof of Theorem 1,
except that the estimate is not very sharp in the periodic case.

Remark. If one looks over the proof of Lemma 11, one gets the distinct feeling that
there must be sharper estimates. One could for instance apply the averaging theory to
the function gu(t,x)=f(t,x)-f(t,x). The difficulty here is that, while g, is itself O(/),
its Lipschitz constant can only be shown to be O(1), and it is also not clear that the
&function belonging to g is smaller than 81, even if this might seem intuitively
acceptable. One of the problems here is that 2 O(e) and not O(e/).

5. Concluding remarks. We do not present here a general theory of higher order
approximations; suffice it to say that the proof technique presented here can be easily
used, once the complications of the formal analysis are understood. If f0 happens to
be zero, then one can easily extend the result on the time scale O<_el(e)t<_L dividing
of course the accuracy by 81. If f0 has an attracting stationary point, solutions starting
well inside the attraction domain can be approximated on [0, ) without loss of
accuracy. If f0 has a hyperbolic point, then solutions on the stable manifold of the
corresponding orbit solution of f can be also approximated by solutions on the stable
manifold of f0 with validity on [0, ).

To avoid notational difficulties, a multi-index notation for the small parameters should be used to
analyze the formal problem.
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ANALYSIS OF BOUNDARY VALUE PROBLEMS
ON INFINITE INTERVALS*

PETER A. MARKOWICH’
Abstract. In this paper boundary value problems of ordinary differential equations on infinite intervals

are analysed. There is a theory for problems of this kind which requires the fundamental matrix of the system
of differential equations to have certain decay properties near infinity. The aim of this paper is to establish a

theory which holds under weaker assumptions. The analysis for linear problems is done by determining the
fundamental matrix of the system of differential equations asymptotically. For inhomogeneous problems a
suitable particular solution having a "nice" asymptotic behaviour is chosen and so global existence and
uniqueness theorems are established in the linear case. The asymptotic behaviour of this solution follows
immediately. Nonlinear problems are treated by using perturbation techniques meaning linearization near

infinity and by using the methods for the linear case. Moreover, some problems from fluid dynamics and
thermodynamics are dealt with and they illustrate the power of the asymptotic methods used.

Key words, nonlinear boundary value problems, singular points, boundedness, asymptotic properties,
asymptotic expansions

1. Introduction. This paper is concerned with the analysis of boundary value
problems on infinite intervals posed as follows"

(1.1) y’--t’f(t,y), l_<t<, aN0,

(1.2) y C([1, o ])" y C([1, ]) and lim y(t) -y() is finite,

(1.3) b(y(1),y())-O,

wherey is an n-vector, f and b are nonlinear mappings.
If f does not depend on explicitly then aR such that a>-1 can be assumed

instead of a N0.

Equation (1. l) has a singularity of the second kind at t- of rank a + 1, since we
assume that f is continuous in (z,y(c)). The goal is to establish existetce and
uniqueness theorems for very generalf and b, to gain information on the behaviour of y
for large and--in the linear inhomogeneous case-- to investigate the dependence of y
on the boundary data and the inhomogeneity.

Problems of this kind frequently occur in fluid dynamics when similarity solutions
of the stationary Navier-Stokes equations for certain flow-constellations are sought
(see for example McLeod (1969), Markowich (1982a), Lentini and Keller (1980b),
Cohen, Fokas and Lagerstrtm (1978)).

For application in other areas of physics see Lentini (1978).
Much analytical work has been done on singular boundary value problems of the

second kind. De Hoog and Weiss (19803,b) investigated the case where
()f/)y)(,y()) has no eigenvalue on the imaginary axis by linearizing f around y()
and evaluating at t- , so getting the constant coefficient problem

Received by the editors November 14, 1980, and in revised form November 30, 1981. This work was
sponsored by the U.S. Army under contract DAAG29-80-C-0041. This material is based upon work sup-
ported by the National Science Foundation under grant MCS-7927062.

Department of Mathematics, University of Texas, Austin, Texas 78712.
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and by employing perturbation techniques which are based on estimates derived for a
certain particular solution of linear inhomogeneous problems. They established unique-
ness and existence theorems. Lentini and Keller (1980a) extended this approach, ne-
glecting the assumption on the eigenvalues, but they required that the projection of
fy(t,y()) onto the direct sum of invariant subspaces of f(c,y()) which correspond
to an imaginary eigenvalue converge, at least as -(+-l)r-, where r is the largest
dimension of these subspaces and e>0. It turns out that this assumption is crucial and
the perturbation approach breaks down if fy(c,y(c)) has eigenvalues with real part
zero and if the convergence requirement is neglected. However, many physical prob-
lems do not fulfill this covergence requirement in the presence of imaginary eigenvalues
(see for example Cohen, Fokas and LagerstriSm (1978) and Schlichting (1951)) and
therefore a more general approach is necessary.

In this paper asymptotic series are used in order to determine asymptotically
fundamental solution matrices of linear systems of the form:

(1.5) y’--tA(t)y,
The basic assumption is that A is analytic in [8, c] for some 8_> 1, so that

A _1
d’(1.6) A(t)-XAit-i where i-i! lim .A-

i=0 x-O+ dx’ x

Then a fundamental matrix (t) of (1.5) can be calculated as an asymptotic (formal)
log-exponential series from the coefficients A by a recursive algorithm (see Coddington
and Levinson (1955) and Wasow (1965)).

Assumption (1.6) can be weakened so that only a finite but large enough number
of these derivatives exist.

Equation (1.1) is treated by linearization around y(c) obtaining the variable
coefficient problem

(1.7) z’- tfy( t,y(c))z

and again by employing perturbation techniques.
The advantage of the formal-series approach is twofold. Firstly, no restrictions

(except (1.6)) have to be made on the. convergence behaviour of fy(t,y(c)); secondly,
the asymptotic behaviour of the (basic) solutions is obtained directly. The asymptotic
behaviour is crucial for the determination of appropriate numerical procedures for
Problems (1.1), (1.2), (1.3) (See Lentini and Keller (1980a), Markowich (1980), (1982b)
and de Hoog and Weiss (1980b).)

Recently Jepson (1981) and Markowich (1982b) used the asymptotic expansions of
the fundamental matrix q,(t) in order to set up finite (asymptotic) boundary conditions
for the numerical solution of (1.1), ( 1.2), ( 1.3).

This paper is organized as follows. In {}2 some remarks are made on linear
inhomogeneous constant coefficient problems (see Lentini and Keller (1980a)), in {}3 we
admit variable coefficient matrices and in 4 we get to nonlinear problems of the form
(1.1), (1.2), (1.3). Section 5 is concerned with physical problems which illustrate the
power of the used asymptotic methods.

2. Linear problems with constant coefficients. We consider problems of the form

(2.1) y’-tAy=tf(t), l_<t< c, aR,

(2.2) y C([1, c ]),
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(2.3) By(1) +Boy()-,
where the n n matrix A 4: 0.

First we transform A to its Jordan canonical form J

(2.4) A -EJE -1

and substitute

(2.4a) u--E-ly,
so we get the new problem

(2.5) u’--tVu=tE-lf(t),
(2.6) u C([1, o]),

Without loss of generality we can assume that J has the block diagonal form

(2.8) J=diag(J+,J,J-),
where the real parts of the eigenvalues of J+ are positive, the real parts of the
eigenvalues of j0 are equal to zero and the real parts of the eigenvalues of J- are
negative. This structure can always be obtained by reordering the columns of E. Let the
dimensions of these three matrices be r+, r0 and r_ respectively.

The diagonal projections D+, Do, D_ are obtained by taking the main-diagonal of
J and by replacing every eigenvalue with positive, zero or negative real part, respec-
tively, by and all others by zero so that

(2.9) I=D+ +Do+D_
holds.

Furthermore let DO be the projection onto the direct sum of eigenspaces of J
associated with zero eigenvalues, which is obtained by replacing by zero every (diago-
nal) element of DO which is not associated with the first column of a Jordan block of J
belonging to a zero eigenvalue.

Let the number of nonzero columns of DO which equals the geometric multiplicity
of the eigenvalue zero be ?0- The general solution of the homogeneous problem (2.5),
(2.6) is

t+ )(2 10) Uh(t)--dp(t)(o+D_)l--exp J (o+D )I IC"a+l

In order to solve the inhomogeneous problem (2.5) we look for a particular solution
Up C([1, oe]).

De Hoog and Weiss (1980a,b) and Lentini and Keller (1980a) suggested the
following choice"

(2.11)

Up(t)-(Hf )(t)-q)(t) foD+dp-l(s)E-f(s)s"ds
+ ,(t) foDoq-l(s )E-f(s )s" ds

+dp(t) tD_d-l(s)E-f(s)s’ds
with i [ 1, o).
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We denote the three terms on the right-hand side of (2.11) by up+-H+f, Upo-Hof
up_- H_f, respectively. De Hoog and Weiss (1980a) showed that up+ and up_ are in
C([1, oe]) if D_E-f and D+E-lf are in C([1, oe]) and that J(D+ nt-O_)up()
--(O+ +O_)E-lf(oe) holds.

Lentini and Keller (1980a) showed that

[lUpo( t)ll-- O(t-) if IlnoE-lfl[ O(/-’ct+
where e>0 and r is the maximal dimension of the invariant subspaces of J associated
with eigenvalues on the imaginary axis. Therefore the operator H operates on the space
of all functions f, which fulfill

(2.12) f C([1, ]) and DoE-’f(t )-Fo(t)t-("+)r-
with Fo Cb( 1, o)), where Cb( 1, oe)) is the space of functions which are continuous on
[1, oe) and bounded as oe.

Inserting the general solution of (2.5), (2.6) into (2.7) we get

(2 13) (BlE+BoE)o+BiEexp( J ).+1 D_ --[B1Eup(1)-k-BoEup(O)].
Therefore we conclude the following"

THEOREM 2.1. The problem (2.1), (2.2), (2.3) has a unique solution y for all f which
fulfill (2.12) and R;+r- if and only if

(2 14) rank[(B,E+BE)o+B, exp
J )a+l

D_ -?0+r_,

where B and Bo are (?o + r_ ) n matrices
In this case y depends continuously (in the norm ylltl,o maxtt,olll y(t)ll)

on the data , (D+ +D_)E-f and F0. This follows directly from estimates given in the
papers cited above. We see that (2.2) is an additional boundary condition at t-o of
the rank r/ + (r0- ?o).

Now we investigate the decay properties of Up on the dependence of the decay
properties of f.

THEOREM 2.2. Ifffulfills (2.12) then the following estimates holdfor t>_8"

(2.15) II(H+f)(t)ll cnst.llD/E- fllt,,  ,
(2.16) II(H0f )(t)[I--< const, max IIs( + l)r+eDoE-lf(s
with e> O.

For arbitrary y >_0

(2.17) II(n_f )(t)ll<_const. t-" max I[sD_E-f(s)l[,
where all constants are independent off and .

The first two estimates have been proven by Lentini and Keller (1980a). The third
estimate follows from

IlUp_(t)ll<const. max (exp( x
i= l(1)k

max E-’:(, )11,

ta+l)fotexp( a+X s"+l) (t sa+ ) i-- lsa--Y ds

where -X is the largest real part of eigenvalues of J with X>O and k is the maximal
dimension of the associated Jordan-blocks.
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By applying l’H6pital’s theorem to

gi(t)--
ftexp ( -e,+Xis’+)(t+ s,+)i-s-Vds

t+)t-vexp ea +

it is easy to conclude that limt_ gi(t)- const.
In particular Theorem 2.2 tells us that inhomogeneities which converge to zero

algebraically produce particular solutions which converge algebraically with exponent
increased by (a + 1)r.

Now we want to investigate exponentially decreasing inhomogeneities.
If f D_q,-(s)E-f(s)sds exists we can substitute H_ by

_
which is defined by

(2.18) (I_f )(t)--q(t) fD_q,-(s)E-f(s)sds.
Now we prove the following theorem.

THEOREM 2.3. Let J- consist of Jordan blocks belonging to the same eigenvalue -X
and let k be the dimension of the largest of these blocks. Furthermore, let D_E-lf(t)-
taexp(-(o/a+ 1)t+)F_(t) with F_ Cb([ o0)), tiER and o>0. Then for t>_.

(2.19) ]](H_f )(t)[l<_const. t, exp( 60 ta+l )llF_llt,tl
/f ReX- o>0,

(2.20) [l(H-f)(t)ll-<cnst" exp(- 0

a+ t’+ t(’+ ’)k+a In t[[r_ [[l,tl

if ReX 0 and fl >- k(a + 1). The factor In only appears if fl -k(a + 1).

(2.21) ]l(I-f )(t)][<cnst’exp( x+

/f ReX-0-0 and fl<-k(a+ 1).

I1()11 ( a+l ) tallF_(2.22) _f_(t).._< const, exp,-
if ReX

The proofs are analogous to Theorem 2.2.
Theorem 2.3 implies that exponentially decaying inhomogeneities produce particu-

lar solutions which converge with the same exponential factor; however, the algebraic
factor may change and a logarithmic factor may appear. If

_
exists then it cuts off

the terms of the particular solution which are already included in q(t)D_.
Assume now that J- consists of more than one Jordan block with different

eigenvalues and that D_E-f(t) has the form as in Theorem 2.3. Then H_ and IYt_ may
be used in order to gain a particular solution which decays as fast as possible according
to the different cases of Theorem 2.3. Doing this, D_ has to be split up into the
projections onto the direct sums of the invariant subspaces associated with different
eigenvalues with negative real part and H_ and

_
have to be applied to the resulting

subsystems, respectively. We call the resulting operator H. Its composition depends on
the decay properties of f and on J-.



PETER A. MARKOWICH

(3.4)

so that

3. Linear variable coefficient problems. Now we analyse

(3.1) y’-tA(t)y--tf(t), aNo,

(3.2) y C([1, ]),
(3.3) Bly(1 ) +Boy() -.
The n n matrix A(t) fulfills

A C([1, ]),
A is analytic in 8, c] for some i_>

(3.6a) A(t)- , Ait-i
i--O

where

for sufficiently large,

(3.6b) Ai--. lia+Ax dx x

Let Jo be the Jordan canonical form of Ao obtained by the transformation

(3.7) Ao- EJoE-1
and let the J/’s be defined by

(3.8) A,-
The matrices J are the coefficients of the series

(3.9) J(t)-E-A(t)E , Ji t-i for t .
i=0

We set

(3.10) Jo-diag(J-,Jo,J-), dim(Jo+)-r+, dim(Jo)-ro, dim(Jo-)-r_,
where Jo+, Jo, Jo- have only eigenvalues with positive, zero and negative real parts,
respectively.

Again we substitute

u--E-ly(3.11)
and get the problem

(3.12)
(3.13)

u’ tJ( )u- t’E-lf( ), l_<t<,

u C([1, c]).
For the following we need the definition of an asymptotic series. A function P(t) is said
to be represented asymptotically by a formal series (in the Poincar sense)

(3.14) P(t) Pi t-i, t- ,
i--0

[ m ](3.15) " P(t)- Pit-i 0 for t and m_>0.
i=0
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Therefore,
m

(3.16) P(t)- Pit-i+O(t-m-) for t- and m_>0
i=0

holds. To get more information on asymptotic series see Wasow (1965).
Coddington and Levinson (1955) and Wasow (1965) prove an asymptotic repre-

sentation of the fundamental matrix of the homogeneous system (3.12) which we state
in the following theorem.

THEOREM 3.1. Under the given assumptions on J(t) there is a fundamental matrix
which has the form

(t)--P(t)tDeQ(t)

where Q( ) is a diagonal matrix:

ta+l
Q(t)-diag(J) a+ +Qi

t+ --(l/p) ta.+ --(2/p)

p(a+ 1)- +Q2 p(a+ 1)-2
t2/P

+ +Q,(+1)-2 2-- Qp(a+ 1)- tl /p

with some p N, D & a constant matrix in Jordan canonicalform and

where

P(t)-Pl(t)P2(t),

P(t)I+ Pli t-i,
i--1

t--O

and

i--O

To every Jordan block ofD correspond equal (diagonal) entries of Q(t). Therefore z and
e Q(t) commute. Moreover, the block structure of D & a subdivision of that blocking of Jo
which is obtained by gathering all Jordan blocks of Jo belonging to the same eigenvalue.
Also P2(t) has a block structure which is identical to the above mentioned blocking ofJo.

In the case of distinct eigenvalues ofA(), p-- holds, D is diagonal and P()--I.
The proof of this asymptotic expansion for (t) given by Wasow (1965) is con-

structive and therefore contains an algorithm for the calculation of P,D and Q. We
present an outline of the construction of q(t) since it will be needed for setting up
particular solutions. We assume that J0 has the different eigenvalues )1,""" ,)k and the
block diagonal form

(3.17) Jo--diag(Joi), ,Jo(k)), dim(Jo(i))--ri;
Jo;) has the only eigenvalue )i. Then the following algorithm results.

Step 1. Substitute

u-P,(t)
u(l)

u(k)
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and determine

P(t) I+ Pt, t-i,
i--1

such that the resulting system (with

with

(3.19)

Step 2. We substitute

(3.20)

and get

(3.)

j(i)( ) ,jo(i) t_ E 4(i)t-j"
j=l

ta+l
u(i)--v(i)exp ki +

(C)i)--ta(J(i)(t)--kiIri)1)(i) for i--l(1)k.

The leading matrices of the systems (3.21) are now J0{)--X/r; having the only eigen-
value 0.

Step 3. We apply so-called shearing transformations

(3.22) V(i S(i)( )w(i), i-- l(1)k,
where

(3.23) Si)(t)-diag(1,t-g,,t-g,, ",t-(r’-l)gi),
with &-->0 (and rational) to the systems (3.21). The gi’S are chosen such that the leading
matrices of the resulting systems, which have w) as dependent variables, have more
than one different eigenvalue or, if not possible for a certain i, such that the rank of
this new th system is smaller than a / or that this system splits up into separate
subsystems.

Wasow (1965) showed that it is always possible to achieve one of these simplifi-
cations. In order to get systems where only integral powers of the independent variable
occur we substitute

(3.24) xi=p)/(g,--)t’/P, for i-l(1)k,
where p is the smallest integer so that giPi is an integer. Then we get systems of the
form

(3.25)
where

(3.26)

(3.27)

w(i)( x ) xhi ’C{i)( xi )w(i)( x ), i- l(1)k

hi-(a+ 1-gi)Pi- 1,

qi)(Xi) E g(i)xT j"
j=O

U(1)

U(k)

as dependent variable) splits up into k separate subsystems of the form

u{i)-- laJ(i)( )u(i),
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Step 4a. If C0) has only 0 as eigenvalue then we have reduced the rank of the
system or it splits up into separate subsystems of lower order. Applying more shearing
transformations to (3.25) we end up with a system whose leading matrix has either
more than one different eigenvalue or has rank equal to 0. In the second case we have a
system with a singularity of the first kind for which the fundamental matrix q,(g)(t) has
the form

(3.28) i)(t)-Pi)(t)t’i’, Pi)(t)-- , pj(i)t-J
j=0

and D;) is a constant matrix in Jordan canonical form (see Wasow (1965)).
Step 4b. Now we assume that C0;) has at least two different eigenvalues. Then we

transform C0i) to its Jordan canonical form 0i),

(3.29) C0 "-"(i)’’0

and substitute
(3.30) w)(X ) E(i)z(i)( x ),
getting a system whose leading matrix is (0(i), which means, in Jordan form,

(3.31) Zi)(Xi)--xhiic(i)(Xi)Z(i)(Xi), (i)(0()- 0(i).

Step 5. We apply the transformation given in Step to the system (3.31) in order
to get separate subsystems of lower order whose leading matrices have the different
eigenvalues /()j. By the means of Step 2 we normalize these systems so that their
leading matrices have only the eigenvalue 0. These transformations split off the factors

(3.32) exp (i)j -i for i- l(1)k.

Resubstituting (3.24) and using (3.26) we notice that the argument in (3.32) is of order
t+ l-g;, that means of order lower than + which is the order of the argument of the
first exponential factor because if g---0 the system remained unchanged.

Applying another set of shearing transformations as in Step 3 we arrive at Step 4a
or Step 4b.

Step 6. A finite chain of all the described transformations in Step to Step 5 result
in a set of one-dimensional systems and systems with a singularity of the first kind.
Setting p__p-m, where/3 is the smallest common multiple of all the p’s used in the
sequence of shearing transformations and rn is the number of these transformations
which split the system into a set of systems described above, we get the formula for the
fundamental matrix q(t) given in Theorem 3.1 by taking into account (3.28). Moreover
we get

(3.33) P:z(t) 1-[ S,(t)Ete3(t)(t) P4(t), P3(,)(t) -I+ , P3(J)t-j/p
l--1 j--1

and the St(t ) are composed of submatrices Stj)(t ) defined in (3.23). The Et’s are
nonsingular and Pa(t) is derived by solving the systems with singularities of the first
kind using (3.28).

We define
m

(3.34) P3( t)- l’I St(t)EtP3(t)(t).
1=1

An estimate of Pfl(t) can be obtained as follows.
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Let D be the projection onto the direct sum of invariant subspaces associated with
the eigenvalue hi of Jo. Then
(3.35) [IPfl(t)Dill<const.
holds. The sum in the exponent of is derived by estimating Si-l(t) and by taking into
account the block structures of the E-1 and P3})(t). Pi! and gi! are as in (3.23) and
represent that sequence of shearings starting off from the th ri-dimensional subsystem
and giving the largest exponent in (3.35).

For this sequence we calculate the ranks of the corresponding sequence of subsys-
tems as in (3.26)

(3.36)

ho+l-a+ 1,

hil + =pil(hio + 1-gil),

him -- --Pim( h i,m-- + gim )"
By assumption him -- 0 holds and so we get

(3.37a) a+ >gil + gi__Z + +

and therefore the estimate

gim

Pil ’" ,Pi,m-

(3.37b) IIPf ’( ) D,II< const, ’-’+ ’
holds.

The basic solutions i with if(t) 1( ),--., 1( )) fulfill

(3.38) Ilqgi(t)ll<Pi(t)eq’(t)tdi(lnt)ji, PiC([1, ]).
Eigenvalues of J0 with positive real part produce exponentially increasing basic solu-
tions; eigenvalues with negative real part produce exponentially decreasing basic solu-
tions. Imaginary eigenvalues of J0 can produce exponentially and algebraically increas-
ing and decreasing, constant and oscillating and logarithmically increasing solutions.
The asymptotic behaviour of a particular basic .solution can be deterned by
knowing D and Po,...,P, where m is sufficiently large. Therefore the solution of the
homogeneous problem (3.12), (3.13) is

(3.39) Uh(t)--(t)(o+D_), Cn,
where D_ is as in 2 and the diagonal projection 0 sorts out the solution columns of
(t) which are in C([ 1, ]) and which are produced by eigenvalues with zero real part.
We define ?0 as the number of nonzero columns of D0.

Now we construct a particular solution up-Hfof the problem

(3.40) up tJ(t)up+tE-’f(t) l<t<, fC([1 ])
(3.41) upC([1,]).

We substitute

(3.42) Up(t) Pl( )vp( ),
v,,+(t)

v,,(t)- V,,o(t)
v,,_(t)
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and define

00 u’(t)--Pl(t)tp(t)’ u’-(t)--Pl(t)p_(t)0 0
We get the separated problems

V,o + t"PC(t)E-f(t),Veo -t(diag(J0+ +J+(t),Jo+J(t),J +J-(t)))
Vl)-v_

where J+(t), J(t), J-(t) have an asymptotic power series expansion in - without a
constant term. We define the block components vp/, vo_, as in de Hoog and Weiss
(1980a,b), as solutions of the operator equations

(3.44a) v/ a+Jgv/ +t+ (P;E-f ) +
(3.448) vp_ i21_j Vl + 121_ ( P{E-f )_,
where (P{E-lf)+ and (P{E-f)_ are the first r+ and the last r_ components
respectively of PE-fand +,

_
are the operators defined similar to (2.11):

S; .+,)(3.44c) (+g+)(t)- exp ,+1
-s ) sg+

(So-(3.44d) (I_g_)(t)- ’exp a+1 (t -s ) s

for g C([ 1, c]).
From (3.44) we derive

(3.45a) vp+-(I-t+J+)-’I+(P?lE-lf)+ e C([6, ]),

(3.458) v_ (I- t_J-)-’ I?I_ (P?E-f )_ C([ t, ])
with t sufficiently large. The proof of the invertibility of (I-H+,_J+’-) is given in de
Hoog and Weiss (1980a,b). Again we get

(3.46)
(a) Vl+()--(Jg)-’(E-f())+, (b) vp_(c)--(J-)-(E-f())_,

because J+() 0 and J-() O.
Now we assume that for some e >0,

(3.47) DoP{l(t)E-f(t)-Fo(t)t
holds, where ? is the largest algebraic multiplicity of the eigenvalues of J0 with real part
zero. So ? is defined differently to r in 2.

The system

(3.48) v’ -t"(Jo+J(t))VpPo

is composed of separate systems, each of them associated with one imaginary eigen-
value of Jo and is the maximal dimension of these subsystems.

We take one of these (inhomogeneous) subsystems

(3.49) V’l)o,o tJ(i)( )Vlo, ,, + t( p;l( )E-f( ))o,i),
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where f(i)(t)"-(P-(t)E-f(t))o<,, consists of the corresponding components of the
inhomogeneity P-i(t)E-f(t). The leading matrix of J(i)(t) has the only eigenvalue i
with Re,i--0.

Now we apply the transformations

+
(3.50) l)Po(o a +--exp .i S(i)(t)Wpo,o, xi_c(i)tl/pi

(3.51) Wpo(i)(xi)- E(i)Zpo(i)(xi)
as defined in (3.20), (3.23), (3.24) and (3.30) and get

(3.52) ZtPo(i)( Xi ) xhi i(i)( Xi )ZPo(i)( Xi ) .qt_ xhi i(i)( Xi ),

where

(3.53)

( Xi )
pg (( Xi )P) ( ki (Xi) p(t+l)) (( Xi ) pi)(,)(x;)-- E(S(7 exp a+l c(i) f(O c(i)

From (3.37b), (3.47) we derive:

(3.54) I[,(,)(x,)ll<_const.x:, P,-ZP,(+’-g,)lJFollt,,o.
If the leading matrix of the system (3.52) has at least one eigenvalue different from zero
then the separating transformation

Zpo<o-- P3(i)( xi "}Z (1)
Po,o’ P3(i)() I,

can be applied. Those resulting subsystems, whose leading matrices have eigenvalues
with real part different from zero can now be solved by the means of (3.44), (3.45)
because the new inhomogeneity has the form

(3.55) ,,(xi)-Pl)(xi)(o(xi)C([1, o]).
For all other subsystems this sequence of substitutions is repeated as long as we arrive
at systems whose leading matrices have eigenvalues with real part different from zero or
one-dimensional systems or we arrive at systems with a singularity of rank zero. In the
second and third cases only eigenvalues with real part zero have been split off, therefore
the inhomogeneities do not contain exponentially increasing or decreasing factors (see
(3.53)). For every system

(3.56a) z’ xhC(x )z + xhgo(x )
that occurs in this sequence of transformations we get

(3.56b) go( x )[1-< const, x-g- ;(h +’)llF0 Iltl ,oo ],
where g>0 is such that after resubstitution to as independent variable x(t)-g_< const,
holds. (3.56b) follows from (3.37a) and (3.47).

A particular solution for one-dimensional systems can be found easily, so we just
have to treat systems with a singularity of the first kind.

We want to solve

!B+!6(x) zp+lgo(x) 6(x)-(x) 7’(3.57) Zp x x x

(3.58) Zp(x)--Zp(x)x-e(lnx)j, ZpCb([1 o0)), jNo,

where B is a constant matrix in Jordan form, B C([ 1, oo]) and go fulfills (3.56).
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Let

(3.59) B-diag(Bl,.--,Bq), Bi- i-l(1)q,

and let D; be the projection onto the invariant subspace associated with bi.
Then we define

Gzp+ Ggo, G-G + + Gq,Zp(3.60)
and

(3.61)
x Dis--Igo(s)ds

(Gigo)(X)- ox fx Dis-n-tg(s)ds’

bi<- e,

bi> --e.

It is easily checked that for x>_8

(3.62) II(Ggo)(X)ll<_const.(lnx)Jmax( max Ilgo()ll,x max
s[x,] s[,,xl

holds wherej-maxi(dim(B)). Therefore we get from (3.60)

(3.63) zp- (l- GJ)-lGgo,
zp fulfills (3.58). If go(x)-O(x-(lnxy) then the right-hand side of (3.62) has an
additional factor (ln x)i.

After having perform,ed all necessary resubstitution we get a solution Vpo(t) fulfill-
ing Vpo() -O. Defining D0o as the projection onto the columns of q(t) which tend to a
nonzero limit as o0 we get the following theorem.

TrI,ORM 3.2. The problem (3.1), (3.2), (3.3) under the assumptions (3.4), (3.5) has a
unique solution y for allf C([1, m]) fulfilling (3.47) andfor all R+- ifand only if

rank[BEq(1)(/o+D_) +BoE/oo Po + r_

where B and B are (o+ r_) n matrices. This solution y depends continuously on
(D+ +D_)E-P{Ifand Fo which is defined in (3.47).

The proof is complete if the continuity statement is proven.
THEOREN 3.3. Iff C([1, oe]) and (3.47) holds then the following estimates hold for

>_i"

(3.64) II(H+f )(t)[1_< const, liD
For arbitrary 7 >- O, e >_ 0

(3.65) II(n_f )(t)ll<_const.t- max IIs o_P;’( )E-’f(s)ll for7>O.
s[,t]

(3.66)

l[(Hof )(t)li<_const.(lnt)Jmax( max [Ise+(a+l)YOoP;l(s)E-lf(s)ll,
s[8,tl

maxll
where Jo maxi,(dim(Di)) and Di are .the Jordan blocks of the matrix D in Theorem 3.1

for which the corresponding polynomials qi,(t) fulfill Reqi,(t)=O. All constants are inde-
pendent of ( andf.
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Proof. From (3.45) we conclude

(3.67a) vp+(t)- , ((I2I+J+)’I2I+(p?lE-f )+)(t),
i--0

(3.67b) Vp_(t)- , ((I2I_J-)’I2I_(P(E-lf )_)(t)
i=0

for 6 sufficiently large.
H+ (resp. H_) fulfill the estimates (2.15) (resp. (2.17)) and therefore we get:

(3.68a)

(3.68b)

IIv +(t)ll const. max 2
s_[t,o] i=0

IIl)p (t)l[_<const. t-’ max I[sD_pcl(s)E-’f(s)[I E
s[8,t] i=0

if 6 is so large that J+llt,ol1/2 and J-llt,ol1/2. The estimates (3.64), (3.65) follow
by using (3.39) and (3.66) follows from the derivation of Vpo and from (3.62), (3.63).

Theorem 3.3 implies that an inhomogeneityf fulfilling

(3.69) f(t)-t-(+)z-(lnt)tF(t), FCb([1 x)),
produces a particular solution Hf for which the estimate

(3.70)
holds.
Now we take inhomogeneities of the form

(3.71) f(t)-ep(t)t(lnt)tF(t), FCb([1,
wheref fulfills (3.47). p(t) is a polynomial in I/p.

We can construct a particular solution Hf=H+f+Hof+H_f fulfilling

(3.72a)

(3.72b)
where k is the maximal algebraic multiplicity of the eigenvalues of J0 with negative real
part andj_ is the maximal dimension of Jordan blocks in DD_. The construction of H
is similar to the construction of H.

Now we assume that the matrix A(t) of the system (3.1) and F(’)-A(1/) fulfill

(3.73a) FC(+’)t-+l 0, 6_> 1,

(3.73b) A C([1, oe])

instead of (3.5), where/-= max(f,/) is defined for the Jordan form of A(o). Therefore,

(3.74) A(t)=Ao+t-lA +... +t-(+)tA(a+,)[-l-(t), (t)--Y(t)t-(a+l);-l-#

holds, where A e C([ l, )), fl_> 0.
The system (3.1) can now be written as"

(3.75) y’--t’(Ao +"" + -(’+’)(+,);)y+t ((t)y(t)+f(t)).
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The homogeneous problem (3.75) has the general solution

(3.76) Yh-ECk(o+D_)l+E,.,yh, Cn

where Eq is the fundamental matrix of the unperturbed problem

E
i=0

Now let

(3.77) l[,(t)(o+D_)ll=p(t)taeqt)(lnt)m’-)=p(t)oh(t), pC([1, ]).

H is composed so that inhomogeneities which decay as -+ )--aoh(t) produce fast
decaying particular solutions with regard to (3.69)-(3.72).

From (3.76) we get the equation

(3.78) ( Z-E,)y-E,(o+D_)
for which we take as basic Banach-space

(3.79)

If o(t) we set A,, C([, ]).
We get the estimate

if is sufficiently large. Therefore (I-EH)- exists as an operator on A.,, and, for
C,
As particular solution yp of (3.43) we set

(3.82) ye- EH3Ayp+EH2f
The inhomogeneity f fulfills

(3.83) Ilf(t)ll--o(tYe(t)) ando,(t)-t(+)f+Y(lnt)max(j’J-)e6(t)0
and / is composed so that (ff.f)(t) decays as fast as possible with regard to

(3.69)-(3.72). Then

(3.84)

H is corn.posed to make particular solutions belonging to inhomogeneities which decay
as -("+ )t-l-aop(t) decrease as fast__as.possible. As basic space we now take Ao,,n and
conclude the invertibility of (I-EHaA) on Ao,,.n, with sufficiently large and get

(3.85)

Obviously,

(3.86) y(t) =yh(t) +yp(t) C([ 8, ])
holds. By substituting H, which is defined by (3.70) for H in (3.76), it is easily shown
that the solution manifold Yh (with the parameters (/50 +D_))is unique in C([, ]),
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because Ao, C C([8, ]) and because the solution space is ?0 + r_ dimensional. There-
fore y defined in (3.86) is unique in C([IS, ]) (as manifold).

In order to get the solution in C([ 1, z]) we solve the "regular" problem:

(3.87) y’=tA(t)y+tf(t),
(3.88) Y() =Yh( ) +Yp( ).
From (3.76) and (3.81) we get, using the expansion

(I-a)-’-
i--O

the followin estimates which hold for

(3.89) I[(t)-E(t)(o+D_)ll<-const. t-’-a(lnt)max;’;-oh(t)
and

(3.90) [l(dp(f ))(t)--E(2f )(t)ll<_const. t-l-O(lnt)max(j’J-)op(t).
Theorem 3.2 remains valid if Eq(1)(/0+D_) is substituted by po(1) (where po has
been continued to 1, ]).

Moreover it is important to consider problems where the matrix J(t) defined in
(3.74) decays exponentially

(3.91) .(t)=(t)tVeqO, fCb([1, )), q(t)--.
Using the same methods as in the case of algebraic decay we get:

(3.92) []/(t)-E(t)(o+D_)ll<--const. tr+(’+l);(lnt)max(j’J-)oh(t)e q(t),

(3.93) II(/p(f ))(t)-E(lf )(t)ll<-const. tv+(a+);(lnt)max(j’J-)op(t)e q(t).

Only the construction of the "particular" solutions has to be changed in order to get
these estimates.

The author conjectures that it is possible to change ? to r defined in {}2 so that all
statements made should hold with r instead of

4. Nonlinear problems. We consider problems of the form

(4.1) y’=t’f(t,y), l_<t<,

(4.2) y @ C([1, o ]),
(4.3) b(y(1),y())--0.
We define for a@R, x,[R:
(4.4)

(4.5)
and assume that

(4.6) f,fy Clip(C(1 ,y()))
for some x >0 sufficiently large.

From (4.2) and (4.1) we conclude that

(4.7) f(oc,y()) -0.

a No,

S(a) (y@Rnllly-all<_x},

C(;,a)-- ((t,y)R"+lt>-[,yS(a))
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(4.7) is a (nonlinear) system of equations from which y(o) can be calculated as a
solution manifold y(o)=y(/), lSCR, n<_n, if the problem (4.1), (4.2), (4.3)
admits a solution. The dimension of this manifold--n--is determined a priori if we
require for a solution pointy that

(4.8) rank( fy(O ,y )) n n
(4.9) rank(fy(,y))<-n-n foryx(y), x>0.

Then there is a x >0 and a nl-dimensional manifold yo(/) which fulfills the equation

(4.10) f(,y(l))=--O forlSCRn’,

(4.11) y(l)x,(y).
From (4.8) we conclude that n equals the geometrical multiplicity of the eigenvalue
zero of the matrixfy(,y ).

However, as practical examples point out, the assumption that fy(,y) does not
decrease its rank iny is too strong and therefore we regard n as a priori unknown but
obviously the solution of the equation (4. l) determines n for a given problem.

Now we define

(4.12) A(t,/) =fy(t,y(#))
and require that A fulfills (3.4), (3.5) so that

(4.13) A(t,l)- ai(l)t -i for t_>8.
i-0

We transform A0(/ ) to its Jordan canonical form J0(/)

(4.14) A0(#) E(/)Jo()E-l()
and introduce z as new dependent variable

(4.15) E(l)z=y-y(l )
getting

(4.16) z’ tJ( t, t )z + tg( z, t, l ),
(4.17) z()-0.
Here

(4.18) J( t,/ ) E-’(/)A( t,/)E( )
and

(4.19) g( z, t, I ) E-’(l )f( t,E(l )Z +y(l)) -J( t, )z

hold. The perturbation g fulfills the estimates

(4.20) Ilzl12),
(4.21) / IIz=lt)lIz,-z=ll
where Ci() depend on the Lipschitz-constants of f,fy on Cx(1,y()).

We restrict/ to subsets c S which are defined as follows.
1) The projections onto the direct sums of invariant subspaces of J0(/), which

belong to eigenvalues with positive, zero and negative real part are constant for .
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Moreover, the projections onto the invariant subspaces of J0(/z) are constant for
therefore r+ ,ro,r_,? are defined for J0(/x) as in the last chapters and are independent
of

2) y(/), E(/), E-I() are continuous for/.
Let q,(t,/) be the fundamental matrix of the (homogeneous) Problem (4.16).
3) The same columns i(t,) of the matrix ,h(t,/) fulfill

(4.22) Ilqi(t,t)II<_Ci(l)t-(a+l);-*’(O(lnt)j’ el(/z) >0
for all . Therefore there is a projection matrix/0 independent of/ in so that

(4.23) [[q,(t,la)()o+D_)[l<_C(tz)t-(+);-*’((lnt)j for

holds. Let P0 be the number of l’s in the main diagonal of/)0-
We requiref to fulfill

(4.24) IIf(t,y(l))ll<_C(tz)t-=+1;-2, ee(/z)>0 for

For/z , C fixed we set

(4.25) (q(Z,lZ))(t)--(t,t)()o+D_)l+(Hg(z,. ,/z))(t),
where H is as in (3.70) (with E-l) and regard q(.,/z) as an operator on the Banach
space

(4.26) (A*’a- (zJz(t)-Z(t)t-(+l)Z-*(lnt)J’ Z-Cb([8’ 00))), II ll,-Ilzllt,,  ),
8_>1, O<e--min(el,eg. ).

Every fixed point z of q(o,/z) establishes a solution for all Cn. At first q maps A,,,
on A,,, for sufficiently large because of (4.20), (4.23), (4.24), (3.69), (3.70).

Now we take a sufficiently large sphere S,(ta) in A,,, with center q,(-,/)(/0+D_)
and radius p and prove the contraction property of on S,(8)

Iltl ( 2’1, ) l/( 22,
(4.27)

_< const.(/)- p8-*(In 8 )2Jl[z z211,
for Zl,Z2 S,(o) because (4.21), (3.69) and (3.70) hold.

Moreover, if z S,(O) then

(4.28)
IIq(z,/)- q,(., #)(/5o + D_)I[,-IlHg(z,"

_< (const.(/z) + p 8-*(ln 8
Therefore q(z,/)S(ta) if 8 is sufficiently large and from (4.27), (4.28) we conclude
that q(’,) has a unique fixed point zS(ta)cA for 8 sufficiently large. The
construction of H i,mplies that (/0+ D-)P(’,lz)-z(8)’---So()eO’)(;bo + D_)l. There-
fore, for fixed/ S, we have constructed a 0/ r_dimensional solution manifold in A,
for 8 sufficiently large but fixed whenever (DO +D_) varies in a compact set KC Co+r-
In order to get more information on the asymptotic behavior of the solution we now
treat the important case"

(4.29) f(t,y(la))=_O for t_>6, #,
and

(4.30) l[4,(t,t)(lo+D_)ll-p(t,t)eqt’)ta)(lnt), p C([1, ])
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where

holds.
We define

(4.32)
and set

q(t,lZ)-c for t-c and

o( t, I ) eq(t’’)t(")(ln t)j

and therefore the fixed point equation

(4.43) y-Hy2

of(4.42) y-0, q-2..(y)-0, f=
oy

(4.33) (/(z,lx))(t)-q(t,)(lo+D_)li+(g(z," ,))(t), C".
/is constructed according to 3 (with E-I) so that inhomogenejties f which decay as
o(t,) produce a particular solution fff which decays as t(+)o(t,)(lnt)m(o’-).
We regard as an operator on the Banach space

(4.34) (Ao,- {ulu-o(t,)U, UC([, ))) I[uilo- !1UII, ).
The construction mapping theorem, employed as in the case of algebraic decay, assures
the existence of a (locally) unique fixed point z in Ao,.

From (4.33) we conclude

(4.35t [[z(t)-,(t,)(o+D_)[lC()t(+l)’o2(t,,)(lnt),
wherej-max(jo,j_).

It is easy to check that +(.,
+ D_)( in A 0,. The uniqueness of the fixed point assures that

(4.36) fig(z," ) A,,
for every fixed point z of +(" ,) in A,. Therefore

(4.37)

(gg(z,.
holds. Because Hg and Hg are particular solutions for fixed z A,, we get

 4.38 
Choosing

(4.39) =+y(z)
assures that every fixed point of +(z,) is also a fixed point of (z,) (with different
to ) and vice versa.

In general our perturbation approach does not give us all C([, ]) solutions of the
problem (4.1), (4.2), (4.3); it only gives us all solutions, wch decay at least as fast as
t-+ 1);- where e>0. This is illustrated by the problem

(4.40) y,=y2
(4.411 y C([, ])
which has the solution manifoldy- -1/(t + c), c> - andy0. Our approach gives
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results. In A,, the only solution of (4.43) is y=0, which is the only solution of (4.40)
decaying faster than -1.

If fy(t,yo(t)) is not analytic at t--o but if it fulfills a relation of the form (3.74)
then q_(t,l)(D_ +/0) (resp. q(g(___z 1, .,/))) defined in 4 have to be used instead of
E(t)q(t,l)(Do+ D_) (resp. E(#)Hg(z,- ,/)). The results do not change.

The following theorem follows immediately.
THEOREM 4.1. Let f,fy fulfill a uniform Lipschitz condition in y on [1, o]. Then the

problem (4.1), (4.2), (4;3) where (4.13) holds asymptotically has a solution y=--y(’,( )o+
D_),tx)--E(l)z(. ,(DO + D_),/) +yo(#) for every root (()o + D-),tx) of the equation

b( E(/ )z(1 ,(/0 +D_),/) +yo(/),yo(/)) -0
where (,/x)ECnX and b:RnR+r-+n. Here z(t,(o+D_),l) denote the con-
tinuated fixed points of (. ,l) with Cn. On the other hand, if the boundary value
problem (4.1), (4.2), (4;3) has a solution y, so that y-y(o)A, for some e>0, then there
is a lRnl and a (Do+D_), C so that z := E-l(tx)(y-yo) has the asymptotic
expansion (4.35).

5. Case studies. In this section problems from fluid dynamics and thermody-
namics described by boundary value problems on infinite intervals are analysed. These
problems are represented by a nonautonomous system of nonlinear differential equa-
tions. An autonomous problem, namely von Karman’s swirling flow problem, has been
investigated by Markowich (1982a). The following equation represents a model for
viscous flow past a solid at low Reynolds number:

(5.1) u"+ku’+auu’+(u’)2-O, 8x<c a>O
x

The parameters and variables are described by Cohen, Fokas and Lagerstr6m (1978).
The transformation

yl-u, Y2-U’, y-(yl,y2)
takes (5.1), (5.2) into

y’-- k
fl 2 =f(x,y)

-y2--aylY2-- y’

(5.5) (a)
(5.6)
We get Yo =Yo(U)-(:) and calculate

[1,01y(8)--0, (b) [1, 0] y(o) U,

(5.7) fy(x,yo(U))-

y C([i, o1).

0
0 -aU
Ao(U)

+- 0 -k

A

Ao(U) has the distinct’eigenvalues 0 and -aU and we get

0 -aU
0 1]
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The transformation (4.15) with - U results in the system

(5.9) z
0 -aU x

0
Jo(U) J,(U)

(5.10) z(c)--0.
The homogeneous problem z’-(Jo(U)+-}J(U))zh has a fundamental matrix q,(x, U)
of the form

0(5.11) +(x, U)-P(x, U)
0 e -’wx

where

(5.12) P(x, U)-I+O(x-1 )
holds. This follows from Theorem 3.1 and from the algorithm for the calculation of the
coefficients. Moreover,

_0 0](5.13) /o--0, D_
0

holds and the fixed point equation

(5.14) z(t)-P(t, U) e_VXx_li
+(g(z, U))(t), tR

results.
g(z, U) fulfills

(5.15) Ilg(z, u)l -<const.(U). Ilzll =
because f(x,y(U)) 0 holds.

Section 4 assures the existence of solutions z(-, , U) A,g {u[ u(x)
x--’lnxU(x), U Cb([ , m))} and from (4.35) we conclude:

(5.16) z(x,li, U)-P(x, U) e_VXx_li
2--< c(g)x1-2e-2aUx(lnx

This estimate can be improved, so that its right-hand side is of the order x-2ke -2aUx.
Resubstituting we get

-1 -aUxx k -2aUxx-2k(5.17) u(x,,U)-U--(l+O(x ))e +O(e ), xc.

Since UR+ is given (5.5a) has to be used in order to determineR and the problem
is well posed concerning the number of conditions as x-i and x- m.

The second problem is a similarity equation for a combined forced and free
convection flow over a horizontal plate (see Schneider (1979))

(a) 2f" +ff" + kxg=O,
(5.18) (b) 2g’+fg=O,

(5.19) (a) f(0)=f’(0)=0, g(0)= 1, (b) f’()= 1,
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The variables and the parameter k are explained in Schneider (1979). For simplicity we
have set the Prandtl number to 1. Because of (5.19b) we substitute

(5.20) f(x)-x+h(x)

and get the new problem

(a)
(5.21) (b)
(5.22) (a)

2h’"+(x+h)h"+kxg-O,
2g’+(x+h)g-O,

h(0)-0, h’(0)--1, g(0)-l, (b) h’(oe)-O, g()-O.

Substituting

(5.23) y h y:z h Y3 h Ya g Y ( Y Y2 Y3 Y4 ) r

we get the system

(5.24) y’--x -- l+--x Y3--Y4- 1+-- Y4x

-xf(x,y), O_<x< o,

0 0 0
(5.25) (a) 0 0 0

0 0 0 [1]y(O)- -1 0 0 0 0

We only admit solutions fulfilling h(o)R, therefore we require that

(5.26) y U C([0, o ])
holds. From (5.23), (5.24) we conclude

(5.27) y=y(ho)-(h,O,O,O), h-h()R.
We calculate"

(5.28) f(x,yo(h))

0 0 0 0
0 0 0 0

k
0 o - -o o o -Ao

0 0
0 0

0 0 n___
2

0 0

A,(h)

and

(5.29) ( 2)E=E(h)-diag 1,1,1,--
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The substitution E(ho)z =y-Yo(ho) gives the system

0 0 0 0
0 0 0 0

z’-x o o

o o o

+1

-0
0 0

0 0

0 0
0

h__ 0
2

0 0 0
2

Jo has the eigenvalues hi=0 with algebraic and geometric multiplicity 2 and , _
1/2

with algebraic multiplicity 2 and geometric multiplicity 1. Because f(x,yo(ho))=O
holds we get

(5.3 la) IIg( z,ho )ll -< C(ho ) Ilzll
We have to set up the fundamental matrix (x, ho) of the system

(5 31b) Zh--x(Jo+ 1jl(h ))zh zh (’(1)z2’ (3’ z4’)h ZhX

Because of the simple structure of Jo +J/x we do not have to apply the algorithm of
3; we can proceed in the following way.

The last equation of (5.31) is

hoo ) z4).(5.32) Zh(4)’-X 2 2 X

It can be integrated at once giving

(5.33) Z(h4)--e-X2/4--hx/2c, cR.

Setting c-- we have to find a particular solution of

(3)’ ho ) zh3 +,.z(4(5.34) Zh --X
2 2 X

We take

(5.35)

Integrating

(5.36)
we find

Z2)’ Z 3)

(5.37)
Analogously, we integrate

(5.38)
and get

Z(h2)-- e-X2/4--hoX/2xO(1).

(5.39) Z(h1) e-X2/4-hx/20(1).
The fourth column of q(x,ho) can be chosen as (Z(hl),Z(h),Z(h3),Z(h4))T. In order to get the
third column we set c =0 in (5.33) and proceed as we did.
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Finally, we get the following fundamental matrix

(5.40) rk(x,h)-

x e-X2/4-h=x/20(x -2)

0 e-x2/4-hx/20(x -1 )

0 0 e -x2/4-hx/2 e

0 0 0

which we can write as in Theorem 3.1

(5.41)

e-X2/4--hx/20(1)
e-X/4-hX/2xO(1)

-xZ/4--hx/2 x 2 1-- --e-X2/4--hx/2

where

q( x,h ) P( x,h)xeQfx’h)

(5.42)
0 010 0 0 0 +lozl,_,)P(x,ho)- 0 0 x

0 0 0 0

(5.43) D- diag(1, x, 1, x 2 ),

(5.44) Q(x,ho)-diag(1, 1,e-X/4-hx/2x,e-X/4-hx/2x)
hold.

Similarily to the first example, we conclude that there are solutions z(x,l,2,ho )
in A,, which is now the space of all functions in C([8, oe]) which decay at least as
x-4-lnx, e >0 because ?= 2 and a- holds. Moreover,

(5.45) z(x,til,lih)-P(x,h

0
0

oo) xe-X2/4--hoox/2Xl
-x2/4--hx/2x2e X2

-[- O( x4e-X2/2--hoox )

(5.46)

(5.47)

f(x) x+h +O(1)e x2/4-hx/2xnt-O x4e

2 x:Z/4_hx/2 O(X )g(x ) e- 2-t- 4e-X2/2-hx

where the O(1) in (5.46) depends linearly on l and 2"
The constants (ho,,2)R have to be determined from the three initial condi-

tions (5.25a).
The third problem to be analysed is the well-known Falkner-Skan equation (see,

for example, Schlichting (1951))

(5.48) f"’+f"+(1-f’)=O,
(5.49) f’(oe) 1.

We do not pose any initial condition because we look for a solution manifold.

with h, l, R follows because the exponential factor e-x/2-hx does not appear
in the fundamental matrix.

So we get the asymptotic expansions
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and get the system

Because of (5.49) we substitute

f(x)-x+g(x), y-g, Y2-g’, Y3-g",

y-(yl,y2,Y3)r

(5.52) y’-x

Moreover, we require

so that

(5.54)
holds. We calculate

YlY3 F2Y2 +Y22
X X

yC([, 1)

y()-- (g,0,0)r

0 0 O] [0fy(x,Yo(go))- 0 0 0 +- 0
0 0 -1

x 0

.lo
The linearized system is therefore

Zth--X(J+LJl(g))(5.56)

Because Jo has the eigenvalue 0 with algebraic multiplicity 2 we apply the theory
developed in 3.

At first we split up the system (5.56) by the transformation

(5.57) Zh--P(x,g)u, U--(U,,U2,U3) r, P(x,g)I+ ’ ei(g)x-;
i=1

to get subsystems whose leading matrices have the only eigenvalue 0 and -1, respec-
tively. (5.57) gives a system of the form

(5.58) u’-xB(x,g)u, B(x,go)Jo+
i--1

From Wasow (1965) we conclude that

(5.59) el- 0 0 Pi2 Bi- bi3 bi4 0

Pi3 Pi3 0 0 0 bi5
holds and that the recursion

i--I

(5.60) JoP; P;Jo- E (P,B,-,-4-,P,)- (i-- 2)P;_2,

s--O

i>0

with the last term absent for i<2 and Jk--0 for k> holds.



36 PETER A. MARKOWICH

From the investigation of the perturbed system we know that only the coefficients
Bo, B, B_, B3 and B4 influence the asymptotic behaviour of the fundamental matrix
because (a + 1)=4 for our example. (5.59) and (5.60) give

(5.61)

0

B-- 0
0

0

B3-- 0

0

10 0
0 -go

0
-2go
0

0
0

-2go

0 0
B2- 0 2

0 0 0]
B4- 0 -2+2g 0

0 0 b45
We do not have to know b45 explicitly because it does not influence the behaviour of
the solution of

(5.62) u;-x -1
go 2

_
+... u3-X X 2

From {}3 we get

(5.63)
-X2/2 -2

u3 =P3(x,g)e gxx

Moreover, we get

(5.64)

U2 0 0 X 0

P3( X, go )"" l +P31( go )X -1 +P32( go )X-2"+

0 +...-2+2g u22 "7 0 -2g +7 0

because the leading term which comes from B0 vanishes. Therefore the coefficient of
x -3 does not influence the behaviour of u, u2. It is sufficient to solve

0 " 0 2 - 0 -2go /2

We get directly by integration

(5.66) fi2--x2exp( 2g----)x and fil--X30(1).

Finally, we conclude

(5.67)
p(x,goo)": + E Pi(go)x-’

i--1

2-2gooxf=x+go +P(x,goo)e x2/2-gooxli+O(e )

with R (because we look for real solutions) and because there is no column of the
fundamental matrix of (5.56) which contains the factor e -x2-:gox.
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COCURRENT FLOW IN A BUBBLE-COLUMN
REACTOR AT HIGH PICLET NUMBERS*

J. J. SHEPHERD"
Abstract. We consider a nonlinear system of equations that models the action of a bubble-column

reactor, and which becomes a singular perturbation problem in the limit of infinitely large P6clet numbers.
For such parameter regimes, we establish existence and uniqueness results for this problem, and indicate
methods by which successively closer approximations to its solution may be obtained.

1. Introduction. Over a number of years, various models have been developed that
attempt to describe the action of a bubble-column reactor, in which the chemical
reaction desired is induced by allowing bubbles of a reactive gas (or mixture of gases)
to rise vertically through a column of the appropriate liquid. The mathematical analysis
of such a system is complicated, reflecting the complex behaviour observed experimen-
tally.

Earlier models of such a reactor treated the reaction between the gas and liquid
phases as analogous to that occurring in a reactor involving contact between like
phases. While the equations developed on this basis to model this situation were linear
and readily solved, they ignored several effects that prove to be of significance. Most
important of these is that removal of material from a gas bubble alters the size of this
bubble appreciably, and hence its rate of rise in the liquid column. If we couple this
with the effects of the pressure gradient in a tall column, we see that the residence time
of bubbles in the region of greatest concentration of unreacted liquid phase reactant
(i.e., near the entrance to the column) may be appreciably increased, with a marked
effect on the concentration profiles of quantities along the column.

Thus, as pointed out by Deckwer [3], these effects must be included in any
equations attempting to model such a reactor. In particular, the rise velocity of bubbles
may not be regarded as constant, but becomes, in fact, one of the unknown quantities
of the system to be determined. In the light of these considerations, Deckwer has
proposed a system of equations describing steady-state concentrations in gas and liquid
phases, as well as the bubble velocity, along the axis of the column. For the simplest
case of a single gas reacting with and being absorbed by a simple liquid, and with the
flow of gas bubbles and liquid being in the same axial direction (termed cocurrent flow),
his equations modelling the situation may be written in dimensionless form as follows:

(.)

(.3)
on 0<z< 1, where

(1.4)
and

u’(z) -1 u+oxoF(x,y),

z +

ei_,y"-y’-- Dy + oLfl(z)(1 + a)- 1F(x,y)

fl(z)= +a(1-z),

F(x,y)-(1 +a)l-fl(z)-y-x.
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(1.6)
(1.7)
(1.8)
(1.9)
and

(1.10)

Boundary conditions at the ends z 0, of the column are given as

u(O)- 1,

ex’(O)-x(O)=-l,
eLy’(O) -y(O):0,

x’(1) :0

y’(1) =0.

In the above, as already noted, z is a length variable measured along the axis of the
column and scaled with respect to the length of that column, x(z) is the reduced mole
fraction of the gas component of reactant in the gas phase (i.e., the mole fraction
normalized with respect to its value x0 at z-0, the entrance of the column), while y(z)
and u(z) represent the dimensionless concentration of gas in the liquid phase and the
superficial gas velocity along the column, respectively, e and eL are the reciprocals of
the gas and liquid phase P6clet numbers, while oo and oL are the gas and liquid phase
Stanton numbers respectively./ is a constant of proportionality for the rate of absorp-
tion of the gas in liquid, while D is the Damkibhler number, which measures the rate of
gas uptake in reaction relative to the total liquid convection rate. The constant a

determines the (linear) pressure field through the relationship (1.4)--in most cases,
large values of ct signify tall bubble columns.

We will term the full b0undary-value problem (1.1)-(1.10) Problem A. Obviously,
the occurrence of the eight parameters e, eL, oG, oL, a,,X0 and D in this problem
leads to an almost infinite number of possibilities when one considers the question of
solutions of this system. Moreover, the literature available (see [3], [6] for example) on
this system gives little scope for deciding on a regime of parameter values that is most
commonly encountered in practice. While we appreciate that the parameter ranges
(such as they are), indicated there, are relevant only to the numerical and experimental
investigations of the writers concerned, they may be used as an indication for values to
be adopted in a rigorous analysis of Problem A. On the basis of these results, we find
that, typically (though not always), e<< 1. Such values might arise when the bubble
entrance velocity is very high. Moreover, difficulties reported by Deckwer [3] in the
numerical treatment of Problem A at high P6clet numbers leads us also to consider the
case eL<< 1. Apart from these assumptions, we regard all other parameters as positive
order one quantities, while the physics of the situation lead to the restrictions 0<x0< 1,
/z>_ and D_>0 (D--0 corresponding to pure physical absorption).

Motivated by the above discussion, we propose, in this paper, to analyze Problem
A by asymptotic methods in the limit as e, eL--) 0. We make no assumptions about the
relative rates of convergence to zero of e and e., but maintain their independence (on
the basis of typical parameter values used in Shioya, Dang and Dunn [5], e.-- ef
might be feasible). Clearly, under this limiting process, Problem A is a singular per-
turbation problem, since the reduced problem obtained by formally setting e-eL-0 is
a first order initial-value problem and cannot satisfy two-point boundary conditions.
Thus we anticipate the appearance of boundary layers; and since, on physical grounds,
u(z)>0, the form of Problem A indicates that such layers will occur in a neighbour-
hood of z-1. On the basis of this, we expect the solution U(z), X(z) Y(z) of the
problem

(1.11) U’(z)-txfl(z)-’U+%xor(X, Y),
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(1.12)

(1.13)
(1.14)

U(z)X’(z)=o(1-xoX)F(X, Y),

Y’(z)- --DY--OLfl(z)(1 +a)-IF(x, Y),
V(0) 1, X(0)= 1, Y(0)=0,

to suitably approximate the solution of Problem A as e, eL--, 0 for all z in [0, 1] except
a neighbourhood of z 1. What is more, the Neumann-type boundary conditions (1.9),
(1.10) at z-- lead us to expect that, in fact, U, X, Y above approximate the solution to
Problem A throughout all of [0, 1]. This will in fact turn out to be the case (i.e., the
boundary layers at z are of higher order).

The problem (1.11)-(1.14) may be simplified somewhat. We may eliminate F( X, Y)
between (1.11) and (1.12), and by integrating and applying the boundary conditions
(1.14), obtain the basic relationship

(l-x0)(1 +a)(1.15) U(z)- (1-xoX)fl(z )
while the differential equation (1.12) becomes

(1.16) S’(z)-o(1-xoS)Z(1-Xo)-(1 -t-a)-(z)F( S, Y).
We will term the problem (1.15), (1.16), (1.13) together with the last two of the

boundary conditions (1.14) Problem B. In the sections that follow, we will consider the
questions of existence of solutions to Problems A and B, and the relationship between
these solutions when ea, eL--, 0. Our basic tool will the contraction mapping theorem [5,
p. 26], which has the advantage of.giving an iteration scheme with rapid convergence, at
the price of sometimes indelicate estimates on the solutions involved.

2. Existence for Problem A. We here examine the existence-uniqueness question
for Problem A by relating it to that for Problem B. Systems resembling Problem A have
been dealt with by Chang [1] and later by Kelley [4] in considerable generality. While
Chang’s techniques might be adaptable to the case at hand, we will find it advanta-
geous to adopt a more direct method of analysis, that exploits the accessibility of the
structure of the equations of Problem A. Moreover, it gives us tighter estimates on the
solutions considered, as well as keeping separate the distinct rates of convergence to
zero of e and eL.

We begin by supposing that Problem B has a solution (U(z), X(z), Y(z)), where
U, X, Y are suitably continuously differentiable on [0, 1], and where U(z) is positive
there. Since Problem B is independent of e and eL, these properties will hold as
e,eL0. If we let (u,x,y) be the (proposed) solution of Problem A, we may change
the dependent variables in Problem A to (’(z), /(z), ’( z )), defined by

(2.1) (u,x,y)--(U+},X+,l, Y+),
and on the basis of the arguments of the previous section, seek solutions (},,/, ’) that
are small in some sense as e, eL- 0. By substituting and linearizing, we may now write
Problem A in terms of (}, , ’) as

(2.2) ’- aft( z )- 1=pr/q- q’,

(2.3) earf’ arf + bill-k- c,-+- dl-- O( eG) q- Q( n, ),
(2.4) eLf"-- ’ + b2f+ c2n O(eL).
with boundary conditions

(2.5) (0) =0,
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(2.6) eaf(O)-,l(O)=O(ea),
(2.7) eL"(0) ’(0)= O(eL),
(2.8) ,/’(1) O(1),
(2.9) "(1) O(1),

where the order symbols are uniform in z as ea, eL 0.
In the above, we have, explicitly,

(2.10) al(g ) U(z)+k-O(eG)
while p(z),q(z),bl(z),b2(z),c(z),c2(z) and dl(Z ) are all functions that are continuous
on [0, 1] and O(1) there as ea, eL 0. Q(,/, ’) is a term that is quadratic in and ’, with
coefficients that are O(1) as e, eL 0.

Consider now the above system for (, /, ’). We may construct an associated linear
system by replacing a,(z) by 5i(z)=U(z)++O(e) and (,,/,’) by (,,() in the
right-hand sides of (2.2)-(2.4). By regarding this as a map from functions (, , ’) into
functions (, ,/, ’), we may view the solution of the original system (when it exists) as a
fixed point of this map. A standard framework within which to apply fixed point
theorems would be provided by converting this (linear) system to a system of integral
equations. Unfortunately, while this may prove possible for given e,eL>0, the be-
haviour of such systems as eL, e-0 is not well understood--at least to the degree
desired here. The work of Chang [1] and others assumes that eo-eL, while boundary
conditions of the type arising here are not considered.

To exploit some of these ideas, but to avoid the difficulties, we adopt the proce-
dure below. We introduce functions A(z),B(z), C(z),D(z), continuously differentiable
on [0, ], such that

(2.11) -A + Be-x’ f e- a Be-x’

and

(2.12) -C+DeTM, ’-e-DeTM,

where X and X2 are defined by

(2.13) Xl(Z ) E lflal(S)ds,
Uz

Xz( Z) e- (1

respectively. Clearly, A,B, C and D also depend on e and eL.
The forms assumed for ,/and " are motivated by the observation that, for (or )

small, a l(z) (or 51(z))>0 on [0, 1], so that the second-order differential operators for /
and " on the left-hand sides of (2.3) and (2.4) are of a form standard to the singular
perturbation literature. Boundary-value problems involving such operators have been
extensively studied and the forms of solutions to such problems are well known,
consisting of an "outer" solution and a "boundary layer correction" that is appreciable
only near z- (in this case). The forms assumed for f and " are a little different, and
their adoption implies the compatibility conditions

(2.14) A’+B’e-x’-O,

(2.15) C’+D’e-x-O.
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By substituting for /and " from (2.11), (2.12) into the equations (2.2), (2.3), (2.4),
and applying the conditions (2.14), (2.15), we obtain a first-order system for Ii,A,B, C
and D as below:

(2.16)
(2.17)
(2.18)
(2.19)
(2.20)

l’-- a(z )- ’l-pA qC=pBe-x’ + qDe-x=

A’- b,a- A a- ’d, a- ’c,C- a- [( b + a’ )Be-X’ + c,De-X=-
C’ b2C- c2A c2Be-x’ + b2DeTM r2

B’ +a-’(b, +a’)B-a-’eX’[-b,A-c,C-d,l-c,De-X=+ r,],
D’ + b2D- eX=[-c2A c2Be-x’ b2C+ r2],

where rl(z ), r2(z ) are the right-hand sides from (2.3) and (2.4) respectively. Note that
for - o(1) as eo, eL0, al(z)>0 on [0, 1] when U(z)>0 there.

Consider now the equations (2.16)-(2.18). From (2.6) we obtain

(2.21) A(O)-O(eo)+O(1)B(O)e-x’’),

while, from (2.7),

(2.22) C(O) O( eL) + O(1)D(O)e-x().
We may now introduce a fundamental matrix, , corresponding to the linear

differential operator on the left-hand sides of (2.16)-(2.18) and we obtain, on integrat-
ing and noting (2.21), (2.22),

(2.23)

A d O(ea) + O(1)B(O)e-x’()

C O(eL) + O(1)D(O)e-x:()

+dp fzd#- (b +a’l)/a cl/a
"o C2 b2

e-x’ ]De-X2 [ o ]t+ -r/a ds
-rE

where we have chosen (0)= I, the 3 3 identity.
From the boundary conditions at z 1, we obtain

(2.24) B(1) O(ea), D(1) O(e),
so that, on integrating the two equations (2.19) and (2.20), we obtain

fl l( C+dli+c De-X2-r}eX’ds(2.25) B(z)--O(eG)+ a-ly; b,a+c,

and

(2.26) D(z)-O(eL)+ye y;{c2A +cBe-X’+baC+dli-r}eds,

where "1’ and e are integrating factors, with

-exp (b +a)/ads ,-exp bds

We note at this point that, under the assumptions about U, X, and Y, the solutions
of Problem B, "1’, and the entries of and - are all functions that are continuous
on [0, 1] and O(1) there as ea, e O.
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Thus, the full boundary-value problem (2.2)-(2.9) for (,,/, ’) has been converted
to the equivalent system of integral equations (2.23), (2.25), (2.26) for the five functions
(,A,B, C and D. Clearly, solution of these will give the solution (, /, ’) to the original
problem by means of (2.11) and (2.12). Note that the above conversion tacitly assumes
that a(z)vaO on [0, 1]--this is essential.

Consider now the properties of these integral equations. For each e,eL>0, their
right-hand sides constitute a mapping, T, from the set of continuous 5-tuplets
(,A, B, C, D) into itself. We introduce a norm on this set, defined by

(2.27) [](,A,B,C,D)I[=max([[I[,[[AI[,[[B[[,[[C[I,[[D[I }
where [I, AII, C are the usual supremum norms for functions continuous on [0, ],
while

max [D(z)e-X(Z[.(2.28) IIB[I max IB(z)e-X’(Z)[, I[DII-z[0,1z@[0,1]

In terms of the norm (2.27), the ball

(2.29) [[(,A,B, C,D)l[<_mmax{ea,eL}
is a complete metric space, for given positive m, ea and eL.

We consider the action of T on such a ball. Clearly, T is bounded on such a ball in

terms of the norm (2.27). Moreover, on any such ball, provided U(z)>0 on [0, 1],
al(z)>0 there for ea, eL small enough, so that the exponentials in (2.25), (2.26) and the
structure of r, r2 allow us to verify that these components of T are contractive in terms

of (2.27), with contraction parameters O(max{ea, e}) as ea, eL0. While (2.23) is only
bounded in terms of (2.27), successive iteration of T reveals that, for ea, e small
enough, T2 is contractive in terms of this norm, with contraction parameter
O(max{a,e}) as a,0.

Similar arguments also show that T2 maps a ball (2.29) into itself, for some m>0
and e, eL small enough.

We thus arrive at our first basic result.
LEMMA 1. Let Problem B have a solution (U, X, ) that is twice continuously differen-

tiable on [0, 1] andfor which U(z)>0 there. Then, for e, eL sufficiently small, there is an

m>0 (which is independent of e,e) such that the map T has a unique fixed point

(,A, B, C, D) in the ball (2.29).
Proof. By the arguments above, T is a contraction on such a ball, and maps it into

itself, so application of the contraction mapping theorem [5, p. 26] yields the existence
of a unique fixed point of T in this ball. This then implies that T has such a fixed

point, that coincides with that of T2. [--1

We may now use Lemma to obtain our first main theorem.
THEOREM 1. Let Problem B have a solution (U, X, Y) that satisfies the hypotheses of

Lemma 1. Then, for e,eL sufficiently small, Problem A has a unique solution ( u,x,y) that

satisfies the estimates

(2.30)

and

(2.31)

(2.32)

(u- U,x-X,y- Y)=O(max(e,ei})

u’- U’=O(max{e,eL}),

x’-X’-O(exp{-e,l fz’U(s)ds} )+O(max(ea,eL}),
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(2.33) y’- Y’--O(exp(-e-(1--z)))+O(max{ea,e})
as ea, e- O, uniformly with respect to z on [0, ].

Proof. The conclusions of Lemma imply the existence of a unique solution
(,/,’) to the problem (2.2)-(2.9), and the estimates (2.30)-(2.33) follow directly from
the integral equations for (,A,B, C,D) and the defining relations (2.11) and (2.12).

3. Existence for Problem B. We now turn to the question of the existence of
solutions (U,X, Y) of Problem B that satisfy the requirements of Theorem 1. Clearly,
since Problem B is an initial-value problem, the standard method of successive ap-
proximations will yield the existence of a unique solution in a suitably small neighbour-
hood of x=0. However, whether or not this .solution may be continued throughout all
of [0, 1], maintaining the desired properties is a question not so easily answered. We are
thus interested in demonstrating the existence of such a solution. First, however, we
establish two basic properties of such solutions as do exist.

LEMMA 2. The solution (U, X, Y) of Problem B, when it exists and is bounded on
[0, 11, is unique on [0, 1 ].

Proof. We may regard Problem B as a problem for X and Y--once they are
determined, U is uniquely determined via (1.15). The right-hand sides of the equations
(1.13), (1.!6) are clearly Lipschitzian in X, Y for bounded X, Y and thus, uniqueness
follows by a standard argument. []

LEMMA 3. Let (U, X, Y) be a solution of Problem B that is continuously differentiable
on [0, and such that X(z)<x for all z [0, ]. Then U, X, Y are all positive there, with
the exception of Y(O)= O.

Proof. Suppose (U,X, Y) is such a solution, and X has a zero at z0 in 0<z0_< 1.
Since X(0)-- 1, there is a first zero, which we may take as z0, and which is such that

X(zo)=O,(3,1)
so that, from (1.16),

(3.2)
However, from (1.13),

Y(zo)<-o.

(3.3) Y(z)-e-z olx-lfl(s)eX(s)ds,

where o=D+o-l; and since X(z)>_O on [0,z0],
(3.4) Y(z0)>0,
which contradicts the above. Thus, X(z) never vanishes on [0, 1], and consequently,
neither does Y(z). We may then deduce that U(z) is nonvanishing on [0, 1] from (1.15).

We now return to the question of the existence of a solution to Problem B.
Standard results (see for example, [2, Chap. 2, 1]), tell us that this problem has a
solution in some neighbourhood of z=0. Moreover, there exists an interval [0,z0] say,
in which, by the above results,

(3.5) O<_X(z)<x’, 0<_ Y(z)<k,
for some positive constant k. Applying these bounds to the equations (1.13), (1.16), we
see that, on [0,z0], we have

(3.6) X’(z)<oa(1 Xo)- (Ix- 1-xoX)Y,
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(3.7)
for any D_>0, while

(3.8)
The above inequalities then give

r’(z)<ox

x(0) Y(O) :0.

which allow us to choose z0> provided we choose k>OLX- 1. Thus, our solution of
Problem B extends throughout all of [0, 1]; moreover, (3.5) holds there. Thus by
combining these and the results of Lemmas 2 and 3, we have our main result for this
section:

THEOREM 2. Problem B has a unique solution (U, X, Y) that is twice continuously
differentiable on [0, ], and which satisfies the bounds

(3.11)
(3.12)
and

(3.13)

o<x(z)<x,
Y(z)>0,

there, for all considered values of the parameters a, .oL, G, I, xo and D.
Remarks. Theorem 2 now establishes the results of Theorem l, and in particular,

the equivalence of Problems A and B as ev, eL 0. Moreover, we see that, in the limit as

eo, eL--*0, the solution (u,x,y) of Problem A also satisfies the bounds (3.11)-(3.13).

4. Discussion. The findings of this paper should be regarded from a number of
viewpoints, and with different aims in mind. Firstly, we may view the results of
Theorems and 2 as basic existence-uniqueness theory for a nonlinear singular per-
turbation problem that has physical significance and some peculiarities of its own. In
particular, the incorporation of the equation for u, the bubble velocity, as well as the
two distinct parameters eG and eL, plus the Neumann type boundary conditions at z
all serve to distinguish this problem from the second-order systems considered in [1]
and [4]. While the techniques used by these (and other) investigators may have proved
adaptable to the case at hand, it seemed more straightforward to exploit the structure
of Problem A and to use the constructive method of 2 to obtain the estimates of
Theorem l, that are sharper than those of [1] or [4]. The generalization of this method
to more involved systems is at present being considered by this author.

Secondly, we must consider the application of these results. In the first instance,
Theorem assures us of the existence of a solution to Problem A as eG, eLO-a
matter of some conjecture when viewed in the light of the numerical calculations of [3].
Moreover, the applicability of Problem B as a useful reflector of Problem A for small
ev, eL is a result of considerable value. Being a straightforward initial-value problem,
Problem B readily lends itself to solution by standard numerical procedures. Even
though the boundary layers at z-" in Problem A are of "higher order" in the sense
that ex", eLy" are O(1) there, and not O(el), O(e[ l) respectively (as would be the
case with Dirichlet boundary conditions), they still have a disruptive effect on numeri-
cal calculations in which they occur. Hence the value of Theorem 1.

(3.10) X(z)<x-l[1-(1-x0)/(1 +%oLz2/21)],

(3.9) Y( Z ) <OLX- lz

and
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While the proof of Theorem is constructive, and provides an iterative scheme by
which we may generate approximations to the functions ,,/ and ’, this technique is
obviously too unwieldly to be considered for practical usage. What this proof does do is
to provide a sound theoretical basis upon which constructions employing heuristic and
purely formal argument may be founded--for example, the method of matched
asymptotic expansions. Note, however, that awkward as it is, the iterative scheme of
Theorem employs functions that are displayed explicitly, except for the entries of the
matrix , which remain implicit.

Finally it is of some interest whether solutions of Problem B exhibit the structural
features expected in Problem A from experimental and numerical studies. While the
results of [3] and [6] do not extend to the case ea, eL- 0, we may take a lead from these
studies, and expect Problem B to generate solutions (U,X, Y) in which X, U exhibit
minima on (0, 1), while Y exhibits a maximum there. While a detailed analysis of
Problem B is beyond the scope of this paper, we may easily show, for example, that a
necessary condition for X(z) to have a minimum on (0, 1) is that

D<a,
which is clearly a balance between the dimensions of the column and the reactive
properties of the fluid involved. Similar inequalities may be obtained for U and Y, by
elementary arguments. However, the lack of an explicit solution of Problem B seems to
limit the possibility of a sufficient conditon for such structure.
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A GLOBAL EXISTENCE AND UNIQUENESS THEOREM FOR A
RICCATI EQUATION*

J. COLBY KEGLEY"
Abstract. It is proved that a Pdccati differential equation of a particular form has a unique solution

satisfying the conditions that it is to exist for large values of the independent variable and to have its graph
stay above a certain line for large t. It is then proved that the solution exists for all t. Two forms of the
solution are developed in terms of the confluent hypergeometric functions. An application of these results is
made to an asymptotic stochastic analysis of a noisy duel problem.

1. Introduction. This paper investigates a particular form (1) in 2 of a Riccati
equation that is quadratic in the independent variable t. The approach to the problem
of the existence of a global solution is not from the usual initial-value standpoint, but is
based on a desired feature of the solution for large which is given by properties (i) and
(ii) of the theorem in 2. The form (1) of the equation makes it easy to draw rough
sketches of how the solutions behave depending on where the initial point is selected. In
particular, it becomes plausible that there exists a solution defined for all that satisfies
properties (i) and (ii), but it is by no means clear that there is only one such solution.
That this is the case indicates that this distinguished solution is extremely unstable.
Indeed, one of the implications of Lemma 5 in 3 is that every other solution diverges
from the distinguished solution as t--, oo.

Our investigation is motivated by the approach used in [3] and [6] to analyze the
equal-accuracy noisy duel problem for two players having finite unequal units of
ammunition. This approach leads to asymptotic distributions of normalized times of
first fire for the two players. The hazard rates for these distributions are expressed in
terms of a solution to a Riccati equation of the form (1), and the distributions
themselves are expressed in terms of a solution to a related Hermite equation.

A brief outline of these connections is given in 4. The reader may find it helpful
to read that section in conjunction with the statement of the theorem to understand the
reason for deriving the various properties of the distinguished solution.

2. Statement of the theorem. The principal conclusions we desire can be stated as
follows.

THEOREM. Suppose a is a positive number and , 2 are linear functions i(t)=
flit + 7i, where t2< fl and fl > O. Then there is exactly one solution of the Riccati equation

(1) v’(t)--a[v(t)-- 2(t)] [v(t)-
that has the following two properties: There is a number o such that

(i) The domain of v includes the interval o, c).
(ii) v(t)-2(t)>O for t>_to.

Moreover, this solution has the additionalproperties:
(iii) The domain of v is (-c, ).
(iv) v(t)- 2q(t)>0 for all t.

(v) f[v(t)-2q(t)]dt= f[v(t)-2qa(t)]dt= c.
(vi) v(t)-2q(t)O as t .
(vii) v’(t)--, 2/31 as t c.
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If, in addition, 2< 0, then the following hold:
(viii) If o is a number, then the conditions

v(t)--Zq9(t)>O for t>to

(A)

and

hold exactly when

where

V(to)-2q,2(to)-O

(to)-qz(to)-Zo((fll- f12)/2a,
where zo is the real zero of the Weber parabolic cylinderfunction De+ with
p-/(-).

(ix) With o as in (viii) and, for i- 1,2, we define fi(t)-xi(t)di(t),
where xi(t ) a[v(t)- 2qi(t)] and i(t)- exp(-fttoXi()dr), we have:

(ixa) (t)<___z(t when to<t<-to-2rl and
(t)>2(t) when t>-to-2rI,
where -1 is the solution of x (,t) x2(t);

(ixb) f is decreasing andpositive on (-, c);
(ixc) f is positive on (to, ) and has a maximum value that occurs

at a number > -l> to;
(ixd) fto tfz(t)dt< ;
(ixe) f,7 tf,(t)dt- .
In the process of proving this theorem, two forms of the solutions are developed.

v(t)-2q,(t)

=(+),

and

with:

q(s)-yo(s) +y(s),

and F denotes the confluent hypergeometric function

,F(a b;z) -r(b) r(a+n) z___
r(a) .:o r(b+n) n!

(B) v(t)=22(t)+
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where

z=’(t+), P fl2 fl
and Dp is the Weber parabolic cylinder function (cf. [7]).

Dp(z)--F 2p/2exp--- Rp(z),

with

Rp(z)-F(1/2_p/2) ,F --,--;-- -r(-p/2),F 2
p 3 2

2

2’2’2

3. Proof of the theorem. The demonstration of the conclusions is broken down
into several stages.

LEMMA 1. A function v is a solution of (1) on an interval I exactly when

X(2) v=ql + q’2--- x

where x( ) va 0 for in I and is a solution of
(3) x"(t)--q(t)x(t)=O
with

q-a2(q-q2)2+a( +/32).
Proof. We rewrite (1) in the form

v’+2Av+Bv--C=O,
where

A-’I(1"+’2), B=-a, C=4aOlb2.

We then apply the result (Reid [5, p. 11]) that v is a solution of (1) on an interval I if,
and only if, v u/x, where x(t)v0 on I and the pair (x, u) is a solution on I of the
linear system

(4) x’=Ax+Bu, u’=Cx-Au.
But this system is equivalent to equation (3), as can be seen through the connection
u=(x’-Ax)/B. Calculating v= u/x then gives the form (2).

In order to transform equation (3) into more comprehensible forms, first we make
a change of independent variable.

LENMh 2. The general solution of equation (1) is

v(t)_l(t)_+_d2(t ) w’(s)

where

"YI "Y2

and w is a nonvanishing solution of the Weber equation

+ o
with e =(f12 + fl )/( fl2 /81)"
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While the form (5) is simpler than the form (3), it is not easy to see when its
solutions are nonvanishing; the equation has an oscillatory interval about s 0 if e >0.
However, we can make the change of dependent variable y(s)=exp(s2/2)w(s), which
transforms (5) into a Hermite equation and clearly preserves the nonvanishing of
solutions. In fact, going through the calculations gives the following result.

LEMMA 3. The general solution of (1) is

y’(s)(6) v( ) 2ckl( ) YCs)’
where y is a nonvanishing solution of the Hermite equation

(7) y"( s ) 2sy’( s ) aay( s ) --O
with

a
2(fll--f12)

Before continuing, we point out that the procedure of transforming an equation of
the form (3), where q is quadratic, first into the form (5) and then into the form (7) is
well known. It is used, for example, in solving the time-independent Schr6dinger
equation for a harmonic oscillator.

Now, the general solution of (7) can be expressed in terms of the confluent
hypergeometric functions. In fact, we have the following result, which may be verified
by direct calculation or by referring to Slater [7, p. 100].

LEMMA 4. Let Yo andy denote the solutions of (7) that satisfy the initial conditions

yo(O) O, y(O) 1,

y,(O) 1, y(O)- O.

Then the functions Yo andy are given by

3 )(8) Yo(S)-sF a+-, - ;s

(9) Yl(S)-- F a,- ;s

We now focus our attention on property (ii) in the statement of the theorem. The
next result shows that, up to a multiplicative constant, there is only one solution of (7)
which, when substituted in (6), can possibly work.

LEMMA 5. Every nontrivial solution Y=CoYo+Cy of (7) has the property that
y’(s)/y(s) o as s c unless the constants co and c satisfy the relation

cor(a)+zc r -o.

Proof. We apply two results about confluent hypergeometric functions given in
Slater [7]. We have the derivative relation (cf. [7, p. 15])

d _a
dz lr(a’b;z) -iF(a+ l,b+ l;z),

and the asymptotic expansion as z - o (cf. [7, p. 60])

r(b) exp(z)z -b( O(z )).,F(a,b;z)_(a) 1+ -1
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If we now set y-coYo+cly where c+c2>0 and apply these identities, then after
some simplification we obtain the results that as s--,

1) exp(s 2 2a_r )s {r(a)
r(a)r a+g

y(s)=
1)exp(s 2 s2a_

(1)2F(a)V a+

Cos-Z[1 + O(s-2)] +CoF(a)[1 + O(s-2)]

+2c,F a+ [l+O(s )]

c0r(a)[l+O(s-2)]+2c,V a+- [l+O(s )]

Therefore, as s we have y’(s)/2sy(s)--, 1, which implies y’(s)/y(s) , unless the
constants co and c make this form indeterminate. But this is precisely when c0F(a)+
2ClF(a+1/2)-0.

Now recall that the variables s and are related by s=(t+), where 6>0, so the
conditions s--, and o are equivalent. Then the form (6) for v(t) shows that a
solution that exists for large will have v(t)-2ql(t)-o as t--, z unless co and c
satisfy the relation stated in Lemma 5. Furthermore, the solution y of (7) enters into the
form (6) only through the ratio y’/y, so one of the constants co and c may be chosen
arbitrarily. For convenience, we take c.t-1 and then Co--2F(a+1/2)/F(a ). We sum-
marize what we have obtained so far as follows.

LEMMA 6. A necessary condition for a solution v of equation (1) to have properties (i)
and (ii) of the theorem is that

(10) v(t)--2,(t)

where +(s)-yo(s)+yl(s ) with --2I’(a+1/2)/F(a) and Yo,Yl are defined by formulas
(8) and (9), respectively.

Notice that (10) is of the form (A) of the solution v that is given in the remarks
following the theorem. We now proceed to show that the particular solution q of (7)
forces the corresponding solution v of (1) to have properties (i) through (ix) of the
theorem.

LEMMA 7. The solution /--yo+Yl of (7) satisfies the inequalities +(s)>0 and
q’(s)<O for all s.

Proof. The major theoretical tool we need to prove this result is stated in the
Appendix. In order to apply that theorem to our problem, we put equation (7) in
self-adjoint form by multiplying both sides by exp(-s2). The result is the equivalent
equation

O,

where r(s ) exp(-s 2 ) and p(s ) 4ar(s ). Since r and p are continuous with r(s > 0 and
p(s)>0 for all s, we can conclude that if y--Oyo+y is the solution of (7) with
0--lims_ -yl(s)/yo(s), then y(s)>0 and y’(s)<0 for all s. We now show that 0-- ’.
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To do this, we proceed as in the proof of Lemma 5. Using the definition of Y0 and
y, and the asymptotic expansion of the confluent hypergeometric functions again, we
obtain, as s ,

F(1/2) exp(s:)s:._,( + O(s_:))Y(S)-r(a)
and

F(1/2) exp(s2)s_,(l+O(s_2)).Y(S)-2F(a+1/2 )
This makes it clear that 0--2F(a+1/2)/F(a)-’.

By referring to the form (10) and applying the result of Lemma 7, we immediately
have:

COROLLARY. The solution v of (1) defined by (10) satisfies properties (iii) and (iv)
and, afortiori, satisfies properties (i) and (ii).

In order to tackle properties (v) through (viii), we develop the second form (B) of
the solution v.

LEMMA 8. The solution /-fYo +Yl of (7) can be written in the form
2aF(a+1/2)

exp Dp(z)(11) +(s)-- F(1/2) --where z s/ vl-(t +) and Dp is the Weber parabolic cylinder function with p -2a
=B/(B2-B).

Proof. The result follows by using the definition of Dp and simplifying the right-
hand side of (11).

LEMMA 9. The solution v of (1) defined by (1O) can be written in the form-- Dp+l(Z )
(12) v(t)-2qz(t)+

a Dp(z)
Proof. To obtain this form, first we use formula (11) for + and calculate ’,/.

Keeping in mind that z- sv-, we obtain

D;(z)
Dp(z)"

Then we use the identity (cf. [4, p. x])

(Z)Vp(z) Vp l(Z)(13) Dp(z)-- -- +

The result is that

(14) D.+.(z)

Substitution of this expression into formula (10) and use of the relation s (t+ ,/) give
the form (12) for v, which is the form (B) that was claimed.

Properties (v), (vi) and (vii) can now be attacked by using the following asymptotic
expansion of the parabolic cylinder functions (cf. [4, p. x]). As z oe,

(15) Dp(z)-exp --- zp 1--
p(p -O(z-4)

2z 2
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LEMMA 10. If/ Yo+Yl, then /(s ) --, 0+ as s o.

Proof. We return to formula (11) for q, keeping in mind the connection z-sv
and the fact that p--2a< 0. Substitution of the result of (15) into (11) yields, as s o,

2aF(a+1/2) ze(16) q(s)
r(1)

1-
P(P-1) + O(Z_4)]

2Z 2 J
so q(s) 0 as s . Since q(s)>0 for all s, the conclusion follows.

COROLLARY. The solution v of (1) defined by (1O) satisfies property (v).
Proof. Using the form (10) with the connection s--i(t+) shows that if we fix

some o and let so be the corresponding value of s, then

(17) (v-2,)--
so -- (s0)

But s- o as t o, so ft(v-2@l)- follows immediately from Lemma 10.
For the second integral, we again fix o and then apply property (iv) to an interval

o, ]. The result is

"to
which o as , since 1 >2"

LEMMA 11. Ifq--yO+yl, then q’(s)/q(s)O ass o.

Proof. We begin by using formula (14), recalling again that z- svC-. The result is

Dp+l(z) ]z-
(s) Dp(z)

But z o as s o, and if we use just the result

.( ))Dp(z)-exp --- z 1+ -2

from formula (15), we obtain

Dp+l(Z)
z

Dp(z)
--z

Zp+’ [1 +O(z-2)] zO(z -2)
zP [1 +O(z-2)] l+O(z-2)

Proof. After using the quotient rule to calculate the indicated derivative, we use in
turn the identity (13) and its companion (cf. [4, p. x])

Dp+ l( z ) ( p + 1)Dp( z ) -The result is

(18)
Op+,

t( Op+...! ,1 (Z).Op
z)-(p+ l)+ Op (z)-z Op

which approaches zero as z o.
COROLLARY. The solution v of (1) defined by (1O) satisfies property (vi).
The asymptotic expansion (15) can be used again to establish property (vii). First,

we isolate the most important calculation that is involved.
LEMMA 12. The following limit relation holds for the parabolic cylinderfunctions:

"bp’ z) asz.
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If we apply (15) and do some reshuffling of factors, we find that

)2 ( Dp+I [1-p(p+ I)/2z2+O(zD,+, (zl-Dp Dp [1-p(p-1)/2z2+O(z
-")] [-p+zo(z-")]
-.)]

which approaches -p as z --, o. The conclusion then follows immediately.
COROLLARY. The solution v of (1) defined by (1O) satisfies property (vii).
Proof. If we look at the form (12) of the solution, we obtain

v’(t)- 2qi(t) + z) -2fl2+2 ’(z)
O Dp -d[ a Dp

since z-6(t+). But z ast , so Lemma 12 implies that

v,(t)2fl2+ 2
82

as.
Using the definition - a(fl,- 2) then gives the result.

Next, we use the following result about the parabolic cylinder functions.
LEMMA 13. If f12 < 0< fl andp /(f12 fl), then"
(i) Dp(z ) > 0 for all z;
(ii) Dp+ has exactly one real zero zo, and Dp+ (z)>0 exactly when z>zo.
Proof. The hypotheses imply that 0<p+ < 1. Hence, the result follows im-

mediately (cf. 1, p. 126]).
COROLLARY. The solution v of equation (1) defined by (10) satisfies property (viii).
Proof. If we apply Lemma 13 to the form (12) of the solution, we see that

v(t)--22(t)>O fort>to

and

V( to ) 2dP2( to ) --O
exactly when o satisfies z0- 8v/-(t0 +r/). A simple calculation using the definitions of
ql, q2, 8 and then gives the result.

LEMMA 14. The functions i defined in (ix) are related by

(19) 2(t) G(t)
where G(t)- exp(s- s 2) with s- 8(t +rl) and so 8(to +1).

Proof. Since xi(t)-a[v(t)-2qi(t)], we have Xz(t)-Xl(t)+ 282(t+/), from which
(19) follows easily.

COROLLARY. The functions i satisfy (ixa).
Proof. Since o satisfies (viii), we have

(ill- fl2)(to + r/) ql(to) q2(to) ZoO(ill-/32)/2a,
which is negative because the zero zo of Dp+ l(z) with 0<p + < is negative (cf. [1, p.
126]). Hence, to+r/<0 since/31 >/32, so s0<0. Therefore, G(t)> 1 exactly when So<S<
-s0, i.e., when to<t<-to-2.

LEMMA 15. The solution +=’yo+yl of(7) has +"(s)>O for all s.

Proof. A simple argument for this result follows from the observation, due to the
referee, that if we temporarily denote the solution q=’y0+Yl of (7) by qa, then q
satisfies (7) with a replaced by a+ 1/2. Upon comparing initial values, we find that
q(s ) (-2F(a + 1/2)/F( a ))la nt_ 1/2(S ). Iterating this argument gives /’(s ) 4a/a+ 1( S ),
which is positive by Lemma 7 and the fact that a >0.
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COROLLARY. Thefunction fl satisfies (ixb).
Proof. Since property (iv) implies X l(t)>0 for all t, it follows from the definition

of f that f(t)>0 for all t. To show that f is decreasing, notice that form (A) of the
solution to (1) implies that

8’(s ) -dIn(s )dt

Hence, we have

(20) t(t)- +(s0 )

where, as in Lemma 14, s- 6(t + /) and so 6(to + /). But then fl(t) -’l(t)
.8+’(s)/+(So), sof;(t)--82/"(s)//(So)<O by Lemmas 7 and 15.
LEMMA 16. The function f satisfies (ixc).
Proof. That f2(t) > 0 for > 0 and f(t0) 0 follows from the definition of f2 and

(viii). Next, we show that f(t) 0 as t . For, the definition of f2 and relation (19)
implyf - -(G)’. Using (20) then gives

(21) f( ) 8G( )( ) [2s -+’(s )/+(s )].
Since > to corresponds to s>So, (20) and Lemma 7 imply

(22) 0<l(t)<l fort>to.

Also, ’(s)f(s) 0 as by Lemma 11. Finally, 2sG(t) 0 as by the
definition of G. Hence, f: is a continuous function with f2(t)>0 on (t0, ) wle
f:(to)-O=f:(), so f2 has an absolute maximum in (to, ). To facilitate the calcula-
tion of fj, we first use (14) and (19) to rewrite (21) as

(23) f2( ) )
z )

with z--8(t+ 1) as before. Taking the derivative of both sides of (23) with respect to-,_and using (18) as well as 2 -f:, we find that

f(t)-282-(t) p+ 1- --(
Since t>to corresponds to z>z0, where zo is the (negative) zero of Dp+(z), it follows
from Lemma 13 that fj(t)>0 for Zo<Z_<0, i.e., to<t<_-,1. Hence, the maximum of f2
occurs at some

In order to deal with (ixd) and (ixe), we usef--i and integration by parts to get

(24) fti’f.(-)dr-to-t-i(t)+ fti’i(,r)d,r.
Then (19) and (22) easily yield

LEMMA 17. The function f2 satisfies (ixd).
Finally, (20) and the asymptotic expansion (16) for show that (t) behaves like

’ as t , where P-fll/(fl2-fl). Since fl<0<fll implies that -1 <p<0, it follows
readily from (24) that

LEMMA 18. The function f satisfies (ixe).
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4. An application to a noisy duel problem. In [3] and [6] appears a dynamic
programming approach to the m vs. n equal-accuracy noisy duel problem, where the
positive integers m<n represent the units of ammunition the two players have. The
approach begins by allowing either of the players to fire a unit of ammunition only at
times corresponding to points of a discrete grid of the interval [0, 1], which is interpre-
ted as the interval of probabilities of either player destroying the other if a unit is fired.
This produces a finite sequence of simultaneous games whose 2 2 payoff matrices are
determined by proceeding backwards inductively from the game where the probability
of destruction is unity.

Attention is focussed on an interval of grid points at which the players have no
pure strategy and which surrounds the critical probability 1/(m + n). It is found, under
suitable hypotheses suggested by computer implementation of the above approach, that
the value of the game in this interval of grid points satisfies a difference equation.
Dividing both sides of this equation by an appropriate normalization factor and letting
the mesh of the grid on [0, 1] approach zero leads to a normalized value v: Vm, of the
game that satisfies a Riccati equation of the form (1) on the interval [-1, ), with

a--(m+n)2m+n-2n--m
mC2m -n

fl= m+n--l’ f12-- ---fl,
(re+n-- 1) cm,,, Vm,n_l(-1 ) for l<_m<n-- 1,)’l= 2(m+n) Cm,n_

while 7-0 for m-n- 1,
m+n-1

7= 2(re+n)
Cmn "Vm_,,(-1 ) for l<m<_n-1,

Cm-- l,n

while 3’2-0 for m- 1.
Here, it is known that the constants ci, j are positive for <j, but analytic expres-

sions for these constants are not known a priori. However, the hypotheses a>0 and
/32<0</31 are evidently satisfied. Also, it is established in [3] and [6] that the initial
condition V(to)-2q2(to)-O is to hold when t0--1. But this does not seem to be
enough information to attack the existence and uniqueness problem for (1) in [-1, z).

Instead, attention is turned to the functions defined in (ix) with t0--1, which
corresponds in the normalization process to the beginning of the interval surrounding
p__robability__l/(m+ n) in which random strategies are to be employed. The functions
tI)(t) and (t) represent, respectively, the probability that the weaker player and the
stronger player has a normalized time of first fire occurring at or after t. The functions
xi(t ) represent the corresponding hazard rates for the cdf’s i(t)----1-(t) and the
functions f/(t) represent their densities.

One of the facts derived in [3] and [6] is that the weaker player’s hazard rate x(t)
is to be positive for t_>-l. Somewhat surprisingly, the assumption that the solution of
(1) exists for large and that x(t) be positive for large produces not only the global
existence and u_niqueness result for (1) proved herein, but also some properties of the
complements i(t) of the cdf’s dPi(t ) that could not be surmised by studying the
computer runs for the 2 2 games, namely"

Property (v) implies that

xi(t)dt- 3 for i- 1,2,
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so that

which implies

lim (t)=exp x() d-O,
t-o

lim (t) 1.

This says that the probability is unity that each player fires at some time in the
normalized interval -1 -< < during which random strategies are employed.

Property (ixa) states that the probability is greater not only for the weaker player
firing before the stronger one for normalized times near to--1, but also for the weaker
player firing after the stronger one for large t.

Properties (ixb) and (ixc) combine to show that the mode of fl occurs at t0--1
while that of f2 occurs at a value of greater than that at which the two players’ hazard
rates are equal, which is in turn greater than -1.

Properties (ixd) and (ixe) state that the expectation of 2 is finite while that of
is infinite.

Finally, information about the constants ci, j and the initial values vi, j(-1) for <j
can be obtained by means of a complicated recursive process. First, the above-mentioned
fact that v.,n(-1)- 22(-1) =0 yields, from the formulas for a, fl, 2’ 1’ and

2n
"c2 + (m+n-1) Cm’" "Vm_ (-1) ifl<m<--n--1Vm’n(-1)-- (m+n--1) m,n (m+n) c,,_,,

and

V l,n(-1) 2c21,n
Then, this relation coupled with the fact from [3] and [6] that v,,,,(t)-22(t)>O for
>-1 implies, by property (viii), that

q,(-1)-- q2(-1) gm,n/(1 2)/2a,

where Zm, n is the zero of the Weber parabolic cylinder function De+ l, with p-
-m/(m+n). Solving this relation for Cm,n, using the fact that Cm,n>O, gives

Cm,n- -Zm,nAm,n-[" nm,n
where

A,.,,.
2(m+. (m+n-2)

and

)2 [’Dm,n--l(--l)nm (m+n--12,n
2(m+n Cm,n--1

while for n > 2,

n V,,_I(-1) n

2(n+ 1) c,,,_ (n+l)

for l<m<n- 1,

Cl,n-
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and

and lastly that

(n-1)
2n- Cn_2,

BI,2-0.
Thus, we have c,2- -Zl,2/2x/ at the beginning of the recursive chain. Next, we

find that

C l, -Z l,nA l,n
.qt_ B l,n

expresses Cl,, in terms of c,,_ for n> 2. Hence, the formula vt,,(-1)- 2ct,E determines
these initial values in a simple recursive way. It is clear then that the values Cm, and
v,,,,(-1) can eventually be calculated in terms of m,n and the zeroes z,,,n, but simple
formulas for those values are not apparent.

Thus, it is indeed fortunate that the analysis presented here that is germane to the
noisy duel problem does not depend on specific information about the coefficients in
(1) beyond the hypotheses of the theorem. That lack of information is compensated for
by the condition that properties (i) and (ii) are to hold.

Appendix. The proof of Lemma 7 depends on the following results, which can be
derived by straightforward modifications of the argument given in Hille [2, {}9.2].

THEOREM. Suppose r and p are continuous functions such that r(s)>0 and p(s)>_O
for s real. Let Yo andy be the solutions of

(A1) (ry’)’-py-O

that satisfy the initial conditions

y0(0)- 0, y(0)- 1,

and

Yl(0)- 1, y(0)-.0.

Then: (a) The limits

0-lim
y(s) y(s)- yo(s), -lim

+-+ y)(s)

exist, and 0 <_ I.
(b) The solutions of (A1) passing through the point (0, 1) that have y(s)>0 and

y’(s ) <_ O for s>0 are precisely those solutions y )yo+y that have 0 <_) <_. Moreover,
every such solution satisfies:

(bl) y(s)>0 andy’(s)<_O for all reals.
(b2) y’(s)<O over any interval on which p(s) does not vanish identically.
(c) 0--/ exactly when

f0 ,)2[rCy0 +pCYo)] ,
a sufficient condition for which is the divergence of f 1/r.
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COMPARISON THEOREMS FOR SECOND ORDER
NONSELFADJOINT DIFFERENTIAL SYSTEMS*

E. C. TOMASTIK"
Abstract. Comparison theorems for conjugate and focal points of (rx’)’ +px=0 are given where r(t) and

p(t) are continuous nn matrices. No sign restrictions are made on the elements of r and p, but certain
restrictions are made on the comparing equation. All results are new even in the selfadjoint case.

Comparison theorems play a very important role in the existence and location of
zeros of differential equations, which in turn play an important role in boundary value
problems.

Consider the two second order ordinary differential equations

(i) (r(t)x’)’ +p(t)x=O,
(ii) ( R(t)y’)’ + P( t)y=O.

The classical Sturm comparison theorem states that if "P(t) is larger than p(t)" and
"r(t) is larger than R(t)", then (ii) oscillates "faster" than (i). More precisely, if there
exists a solution of (i) with x(a) x(b) 0, a< b, then there must exist a solution y(t)
of (ii) such that y(a)=y(c)-O, where c(a,b). Here the term "P(t) is larger than
p(t)" means that P(t) ->p(t) on a, b and that this inequality becomes a strict inequal-
ity for some point in [a, b].

Marston Morse [7] was the first person to obtain a comparison theorem for
systems of equations. For this result one must assume in (i) and (ii) that
r(t),p(t),R(t),P(t) are all symmetric nn matrices (the selfadjoint case) and that x(t)
and y(t) are (column) n-vectors. Morse showed that if r(t) and R(t) are positive
definite matrices for all a, b] and if "P(t) is larger than p(t)" and "R(t) is larger
than r(t)", then (ii) oscillates "faster" than (i). More precisely, if (i) has a vector
solution x(t) such that x(a) x(b) 0, a< b, then there must exist a vector solution
y(t) of (ii) such that y(a)=y(c)=O, where c(a,b). Morse defined the term "P(t) is
larger than p(t)" to mean that the matrix P(t)-p(t) is positive semidefinite for all
[a,b] and positive definite for at least one point in [a,b]. For other results and

further references in this direction, consult the books of Coppel [5], Morse [8], and Reid
[9].

More recently Ahmad and Lazer [1] established another comparison theorem for
the two n-dimensional systems (i) and (ii). They assumed that r(t) and R(t) were the
identity matrix and that the off-diagonal elements of p(t) and P(t) were nonnegative.
They then obtained the same result as Morse did only using a different definition of
"P(t) is larger than p(t)". Ahmad and Lazer defined the term "P(t) is larger than
p(t)" to mean that the matrix P(t) -p(t) has all nonnegative elements on a, b] and
that one element is positive at one poinit on [a, b]. Since P-p being positive definite is
independent of P-p having nonnegative elements, the two results of Morse and
Ahmad and Lazer are independent. Ahmad and Lazer [2] then extended their results to
the nonselfadjoint case by dropping the condition that p(t) and P(t) be symmetric
matrices. Cheng [4], Keener and Travis [6], Schmitt and Smith [10], and Smith [11] have
also recently established comparison theorems for the nonselfadjoint systems (i) and (ii)
by also assuming that certain or all elements of p(t) and P(t) are nonnegative.

Received by the editors April 9, 1981, and in revised form February 4, 1982.
Department of Mathematics, University of Connecticut, Storrs, Connecticut 06268.
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In this paper is given a comparison theorem for systems somewhat similar to that
of Ahmad and Lazer. In addition are given two comparison theorems for a "focal
point" problem. Conditions given in this paper are independent of the conditions given
in the Morse comparison theorem even in the selfadjoint case. Also the restrictions of
Ahmad and Lazer and the others mentioned above that r(t) and R(t) be the identity
matrix and that the off-diagonal elements of p(t) must be nonnegative are all dropped.
However, the result of the first theorem given here is somewhat weaker than that
obtained by Ahmad and Lazer. In [12] the author gave a comparison theorem for a
general nonlinear system that includes (i) in the case where r(t) is the identity matrix,
but in this general context the equation that (i) was compared to was required to be a
scalar equation. This requirement is not made here.

It should be emphasized that all the results in this paper are new even in the
selfadjoint case.

If y is a vector or matrix, y>0 (y_>0) shall mean that each element of y is positive
(nonnegative). If y is a vector, Yi will denote its th component. If q is a matrix, q.j will
denote the element in the ith row and jth column. If y is an n-vector, then
/"" / ly,,l.

It will be assumed throughout this paper that r(t),p(t),R(t) and P(t) are all
continuous n n matrices on [a, b], that r(t) and R(t) are nonsingular on [a, b] (to
insure existence and uniqueness), and that furthermore P(t)>_O, R-(t)>_O, no row of
P(t) is identically zero, and all diagonal elements of R-(t) are strictly positive.

The first theorem is a comparison theorem for conjugate points and requires that
r(t) and R(t) be diagonal. The comparison theorems for focal points given later do not
require this restriction.

THEOREM 1. Suppose r( ) and R( ) are diagonal with r(t) diag( rl( t),.. -, rn(t)) and
R(t)=diag(R(t),. .,R,(t)), and suppose that y(t) is a solution of

(RCt)y’)’+PCt)y--O, y(a)--O,

-1with yCt)>O on Ca, b). If Ir/-1Ct)l IPi+Ct)l<_R, (t)PqCt), l<_i,j<_n, on [a, bl and if for
any i- 1,. .,n, there exists aj=j(i), <_j<_n, and ti[a,b such that Ir-l(ti)[ Ipij(ti)l<
R. l(ti)Pij(ti), then

(1) (rCt)x’)’+p(t)x--O, xCa)--O=x(c)

has no nontrivial solution for any c (a, b].
Proof. To begin, define the diagonal matrix g diag(g,--., gn) by

--1 1(
gi(t S C ri)--

(fari l(u)du) ft ri ’(u)dufr- u)du,
--1 1(( f’r-’Cu)du) ]ari ’(u)du ff r- u)du,

a<s<t<_c,

a<_t<_s<_c,

_< i_< n. Then it readily follows that x(t) is a solution of (1) if and only if x(t) satisfies

c, t)v( )x( s

Using this notation,

(2) y(t)=fbg(t,s,b,R)e(s)y(s)ds+ R-’(u)du R-1Cu)duYCb).
Ua
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Notice that

y’(a)- bR-l(u)du R a) R u)duP(s)y(s)ds

+ R-(u)du R-’(a)y(b)>O

by the hypothesis on R, P, and y. Also notice that, since

y’(b)-- bR-(u)du R b) g u)duP(s)y(s)ds

(fb )-1 _,((b),+ R-(u)du R b)y

y/’(b)<0 if yi(b)=O. It then follows that each of the terms xi(t)y/-(t) is continuous on
[a,c]. Now define IIx[[-sup([xg(t)[y-(t): t_[a,c]) and [Ixl[-max(lixgi[: i- 1," .,n).
Then for any [a, c]

E gi(t,s,c, lril)lPik(s)l[x(s)[ds
k

=E gi(t,s, c, Iril)lpig(s)lyg(s)lx(s)lyZ’(s)ds
k

E gi(t,s,c, lril)lpig(s)ly(s)ds[lxll.
k

It follows that for (a, c),

[x,(t)[<E gi(t,s,c,ii)ei(s)y(s)dsllxl[,
k

and then

(3)
c

Ix,(t)[y-(t)<y-(t)’ &(t,s,c,Rg)P(s)y(s)dsllxll.
k

This last strict inequality will now be extended to [a, c). This will be done by showing
that

(4)

Y/-l(t) E gi(t,s, c, Iril)[Pig(s)lyg(s) ds < y-’(t) E gi(t,s,c,Ri)Pig(s)Yk(S)ds
k k

on [a, c). Toward this end notice that it has already been shown that each yi(t) has a
zero at t-a of precisely order one. Of course, xi(t ), Yff&(t,s,c, lri[)[pi(s)lyg(s)ds,
and Yfgi(t,s,c, Ri)Pik(s)yg(s)ds each has a zero at t=a of at least order one. Taking
the limit as a + of the left-hand side of (4) readily yields

(Y.(a))- r-(u)l du [r/-’(a)l E rl(u)ldulp,(s)ly(s) ds,
k
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while taking the limit as t- a + of the right-hand side of (4) yields

-l(a)2 R-l((Y/’(a)) CR l(u) du Ri u)duPik(s)yk(s) ds.
k

It is now clear that the second limit is strictly larger than the first limit. This shows that
(4) and thus (3) holds on a, c).

A computation shows that

g(t,s,,R)P()y(s)ds

=R-’(Z) R-’(u)du R-’(u)du R u)dP()()O

if fl>a, ta. Thus

since a<cb. Then from (3)

k

for t[a,c). If c<b, tNs extends immediately to [a,c] since x(c)=0 and
Ef2gg(c,s,b,R)gg(s)yk(S)ds>O. Now suppose that c=b. First assume y(b)=0.
Then taking lits as b- on each side of (4), in the very same way as was done for

a +, yields (3) for N1 [a, c]. Since y(b)O, it follows in N1 these cases that

xi(t)lY:’(t)<y:l(t)[ ? Cgi(t’s’b’Ri)Pik(s)yk(s)ds

+ R(u)du R(u)duyi(b) llxll

for a, c]. In the one remaining case that c b and yi(b) > 0, this last inequality holds
since xi(c)=O. If we recall (2), tNs last inequality is just

Ix,( t)ly (t)<y(t)[ y,( t)] Ilxll- Ilxll
for all t[a,c]. Since [xi(t)lyl(t) is continuous on [a, cl, tNs implies that II/gll<llxll
and thus x < x II. TNs contradiction then establishes Theorem 1.

THEOREM 2. Suppose that y( ) is a solution of
(R(t)y’)’+e(t)y=O, y’(b)=0,

with y(t) > 0 on (a, b). If no diagonal element of r- (t) is ever zero on a, b] and if
flr2l(u)ldufRg (u)du and g(t)lPg2(t) on [a, bl for li,jn and g for any
i= 1,. .,n there existsj=j(i), jn, and ti[a,b such that i(ti)[<Pi(ti), then

() (r(t)x’)’ +p(t)=O, x(c)=O=’(b),
has no nontrivial solution for any c a, b).

Pro@ To begin, define the matrix g(t, s, a, r) by

g(t,s,a,r)_ { f,fr-(u)du, ctsb,

f[r-(u)du, cstb.
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Then x(t) is a solution to (5) if and only if x(t) is a solution of

x t)-

When we make note of the facts

y( ) fabg( t,s,a,R )P(s )y(s ) ds+y( a),

y’(a)- R-’(a)fbe(s)y(s) ds >0,
"a

and

a g(t,s,a,R)P(s)y(s)ds--R-l(a) P(s)y(s)ds<_O,

the proof follows similar lines as in the previous theorem. The proof is actually simpler
since no component of

y(b) fa’R 1(U) du P(S )y( s ) ds

is zero.
THEOREM 3. Suppose that y( ) is a solution of

(R(t)y’)’+P(t)y-O, y’(a)--0,
with y(t) >0 on (a, b). If no diagonal element of r- l(t) is ever zero on [a, b] and if

-1ftblr[(u)ldu<ftbRi (u)du and Ipi(t)l<P(t) on [a,b] for l<_i,j<_n and if for any
i-- 1,. .,n there existsj-j(i), <_j<_n, and ti[a,b such that Ipij(ti)l<Pij(ti), then

(6) (r(t)x’)’ +p(t)x=O, x’(a)=O=x(c),
has no nontrivial solution for any c (a, b].

Proof. Define the matrix g(t, s, c, r) by

g(t,s,c,r)-- { ftbr-l(u)du’ybr-l(u)du, c<_t<_s<_b.

Then x(t) is a solution of (6) if and only if x(t) satisfies

x(t) fctg(t,s, c,r )p(s )x(x )ds.

The proof then proceeds as in the previous theorem.
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A NONLINEAR VOLTERRA INTEGRODIFFERENTIAL EQUATION
DESCRIBING THE STRETCHING OF POLYMERIC LIQUIDS*

P. MARKOWICH" AND M. RENARDY:

Abstract. We study a model equation for the elongation of filaments or sheets of polymeric liquids under
the influence of a force applied to the ends. Mathematically this equation has the form of a nonlinear
Volterra integrodifferential equation with the kernel given by a finite sum of exponentials. The unknown
function denotes the length of the filament or, respectively, the thickness of the sheet. We study the equation
both analytically and numerically. The force is assumed to converge to zero exponentially as t--oz and to
vanish identically after a finite time 0. It is shown that under this condition there is a unique solution which
approaches a given limit as -m; moreover, the solution also has a limit as / m. A numerical scheme is
analyzed and convergence uniform in is established. Particular attention is paid to the dependence of
solutions on a parameter/, which corresponds to a Newtonian contribution to the viscosity. It is proved that
solutions converge uniformly in as - O, and that the convergence of the numerical scheme is also uniform

in/.

Key words, viscoelastic liquids, nonlinear Volterra integrodifferential equations, singular perturbation,
numerical approximation on infinite intervals.

AMS-MOS subject classification (1980). Primary 34D05, 34D15, 45J05, 45L10, 65R20, 76A10.

1. Introduction. In this paper we consider a mathematical model describing the
stretching of a filament or a sheet of a molten polymer under a prescribed force f.
These two physical situations are illustrated by the diagrams in Fig. 1.

FIG.

Our model is based on the following physical assumptions (for more background
material on the problem, we refer to Petrie [18]):

(i) The polymer satisfies the "rubberlike liquid" constitutive relation [5].
(ii) The strain and stress tensors are independent of spatial coordinates, and, in

particular, inertial forces are neglected (for a model that includes inertial
forces see [9]).

(iii) The molten polymer is incompressible.
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Under these assumptions the problem is described by the equation (for a deriva-
tion see [6], [9]):

(1.1) a(t--s) --z-------y(s) ds=f(t)y (t),

where y denotes the length of the filament or the thickness of the sheet, respectively,/
is a nonnegative material constant modelling a Newtonian contribution to the viscosity,
which may physically come from a solvent or fractions of low molecular weight, and
the memory kernel a has the form

N

(1.2) a(u) ] K,e-’u
1--1

with positive constants K, ?. f denotes the force acting on the ends of the filament, or

-f denotes the force acting on the edges of the sheet, respectively. The exponent a is 2
for the filament and 1/2 for the sheet (for our mathematical analysis, we assume 0< ct < 3).
The difference comes from geometric reasons: If f were denoting the force per unit
area, a would be for both cases. Due to the incompressibility, however, the area on
whichf is acting depends on y.

Although this has no significance to the mathematical analysis, the physical rele-
vance of the model is limited to f_>0 for the filament and f_<0 for the sheet. If, for
example, one attempted to compress the filament, then buckling rather than contrac-
tion would be observed, and this instability is not described by our equation.

A problem related to ours was investigated by Lodge, McLeod and Nohel [6].
They assume y(t) is given for t_<0, it is nondecreasing (which implies but does not
follow from f_>0), and y(-o)= 1. They then assume f--0 for > 0 and study the elastic
recovery. For a class of kernels a and functions F( y( ),y(s )) under the integral, which
include those specified above, they prove the existence of a unique solution to the
history value problem, which is nondecreasing for t>0 and converges to a limit
y(o)> 1. Their proofs rely on monotonicity arguments, and they also prove that the
solutions depend monotonically on the prescribed history and the parameter/. One of
the main points in their analysis is the behavior of solutions near/--0; in this case the
solutions become discontinuous at t-0, and they face a singular perturbation problem
with a boundary layer. On the basis of these results Nevanlinna [8] used an implicit
first order Euler-type discretization scheme for (1.1). He proved that this discretization
preserves all the monotonicity properties, and that the global error is O(hv) for some
,/< uniformly with respect to/ [0,/0] and t[ 0, 0), t0>0. An error estimate O(h)
uniformly in/ was shown only for 0, T] with T finite.

In our analysis, we prescribe a continuous function f(t), which satisfies
limt__oe-tf(t)=O for some o>0, and f------0 for t[to, 0). We prove that, for any
such f, problem (1.1) has a unique solution y(t) satisfying limt__o Y(t)-- 1. This
convergence is exponential; moreover, the solution exists globally in time and con-
verges exponentially to a constant y(o)>0 as t ; more precisely, we have
limt__oe-’t(y(t)-l)=limt_+e"t(y(t)-y(o))=O. This holds for any /_>0. The
solution depends continuously on / in a norm stronger than the L-norm (more
specifically, in an exponentially weighted L-norm, which incorporates the asymptotic
behavior as t_+ o), even at/-0. No boundary layer occurs, since the solution for
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/--0 has the correct asymptotic behavior as t-+-+-oo. Our proofs are mainly based on
the implicit function theorem and Lyapunov function arguments.

In the second part of the paper we discuss the computational solution of (1.1).
Like Nevanlinna, we use a first order implicit Euler-type discretization with uniform
mesh size h, after having cut the interval [-oo, 0] at t_m. In the convergence proof, we
use a discrete analogue of exponentially weighted L-spaces (infinite sequences con-
verging exponentially on both sides). Choosing a space with an exponential weight
given by e(-e)l/I, 0_<e<o, we obtain an error estimate of the form O(h)+o(e-lt-ml) in
the norm of that space; moreover, this holds uniformly in [0, oo) and e[0,e0],
e0<o. The main tool in the proof is Keller’s nonlinear stability concept [3].

Our numerical results imply that the solution y(t, #) does not differ significantly
from y(t, 0) on [-oo, ] if # is smaller than a certain fairly large number. If # exceeds
this number, then the solutions change considerably.

The paper is organized as follows: In 2 we present the analytical results, 3
concerns the discretization procedure, and the computations are reported in 4.

2. Analysis of the continuous problem.
Solutions for small forces. Let us consider (1.1), where 0< ct < 3, a( u =1Kie-xiu,

and/>0. This equation can be reduced to a system, of ODEs in two ways. We set

h,(t)-S’ gie-XAt-S)y(s)ds.
--.oo

Then (1.1) reads

(2.1)
1( N

J----- E (giy3-hi)-f(t)Y
x--I

;=-X& ya,
t -Xihi+Ky.

If we set Yi- &y2, 8i h fly, we obtain

(2.2)

Both forms (2.1) and (2.2) will be used in the following.
Clearly, if f-- 0, then y 1, gi h i-- KffXi- Yi-- 8i is a stationary solution.
LEMMA 2.1. The (2N+ 1)-square matrix setting up the right-hand side of the lineari-

zation of (2.1) (or (2.2)) at the stationary solution y--1, gi--hi Ki/X has zero as a
simple eigenvalue. All other eigenvalues are real and negative.
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Proof. Clearly, (2.1) and (2.2) give the same eigenvalues. Let us consider (2.1). The
linearization is set up by the following matrix"

3K

--2K -X 0 0 0 0

-2K 0 -Xa 0 0 0

-2Ku 0 0 X 0 0

K 0 0 0 --k

K 0 0 0 0 -X

KN 0 0 0 0 0

0

0

This yields the characteristic polynomial

(_Xj._X)(_ 3Ki 3K

., ,
Thus N eigenvalues are given by X -X i; the remaining N+ eigenvalues are the zeros
of the last factor. Obviously one of these is zero, and it is simple. It remains to be
proved that all the remaining roots have negative real parts. Consider the equation

3K 3K

The left-hand side has poles at X=-X, and its sign is positive for X-X+ and
negative for X--, X-. For convenience, let the X’s be ordered such that X <X 2<

<XN. It follows that there is a root in each interval (-X, -Xi+ ) and anottrer root
between -XN and -m. Hence all nonzero roots are real and negative.

We want to prove the existence of solutions for small f using the implicit function
theorem. The spaces in which we apply this theorem are defined in the following:

DEFINITION 2.2. Let y,,,n- {g cn(R, R)llimltl_ o eoltlg(,)(t)-O for k-0, 1,---,n}.
A natural norm in yo,n is

IIg[I-- sup leltlg(k)(t
k=0

Moreover, let X’"-{fC"(R,N)]limltl_oeltlf(’)(t)-O for k-1,-..,n, :lf(o) such
that limt_ o et(f(t)-f(m))=limt_,_ e-tf(t)=O}. A natural norm in X’n is

Ilfll- sup leltlf()(t)l+sup le-tf(t)l
k tR t--<0

+ sup let(i(t)-i())l+
t_>O

THEOREM 2.3. Let Y denote ( y, h, "2," ", "IN, l, 2, ", N) and

Yo- (1, K,/3<, ,KN/hN, K,/X ,KN/XN )"
Let o>0 be small enough (smaller than all the absolute values of the nonzero eigenvalues
of A). Then the following holds" Iff Y’" has sufficiently small norm, then (2.2) has a
solution Y satisfying Y- Yo X’"+ X (Y’n+ l)2N" Y depends smoothly on f
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Proof. When we put Y- Y0-Z, equation (2.2) can be written in the form G(Z,f)
--0, and G is a smooth mapping from (X’n+l (yo,n+l)2N) yo,n into (yo,)2N+l.
Moreover, the linearization DzG(O, 0) is the mapping (y, 7i, i) ( + /N__ 1(7i i)’
"i3f-kiTi--(2gi/i)j(Tj--j), i-kii--(gi/i)j(7j--j)). If the 7- and 8-compo-
nents alone are considered, then, according to Lemma 2.1, all the eigenvalues of the
linearization are negative. It is easy to see that, if o is chosen less than the absolute
values of all these eigenvalues, then this part of the operator DzG(O, 0) constitutes an
isomorphism from (Y’"+ 1)2N onto (yo,n)2N (this follows from the fact that (d/dt + fl)
is an isomorphism from yo,n+ onto Y’", if /3 lies outside the interval (-o,o)).
Moreover, the mapping y-o)> is a bijection from X’n+ on Y’". Therefore DG(O, 0) is
an isomorphism from X’n+l (yo,n)2N onto (yo,n)2N+l. The implicit function theo-
rem yields the result. 7q

Global behavior of solutions for large
THEOREM 2.4. Let I>0 andf: - be continuous and such that lim t-. e-tf(t) 0

(o>0 is as in Theorem 2.3), f(t):0 for t>_to. For every such f, (2.2) has a unique
solution satisfying limt- Y(t) 1, limt- 7i lira t- 8i Ki/i. This solution exists
globally for all times t, and lim t-. + Y(t) exists and is strictly positive.

Proof. If t is chosen large enough, e-Otf(t) becomes small on (-,-t], and one
can use an implicit function argument analogous to Theorem 2.3 to prove the existence
of a solution on (-,-t]. This solution is unique in the class of solutions approach-
ing their limiting values at t=- at a rate of et. However, if a solution tends to these
limits at all, it can be seen from the last two equations of (2.2) and the implicit function
theorem that 7 and tend to their limiting values at a rate of e t. The first equation
then implies that y approaches its limiting value at the same rate. Hence the solution is
actually unique in the class of all solutions approaching the prescribed limits as t--,
as claimed in the theorem.

We now continue this solution to the right, and we have to make sure that it does
not blow up at a finite time. For that purpose it is more convenient to consider (2.1)
rather than (2.2). From the second and third equation we see that as long as y stays
positive, & and h have a positive lower bound for all finite times, which is independent
of y(t). Hence, if y becomes too large, &y3 will dominate over fy and also over h
(since this is less than some constant times max_,tly(r)). Analogously, if y becomes
too small, h will dominate over fy and giy 3. Hence y cannot go to zero or infinity in
finite time, whence we find global existence.

Let now t> 0. Thenf=0, and using (2.2) again, we find

(2.4)

N

i=1
2 K

N i a/2
"’-i:-5: 2

i=1 0ti_

_
X7

E (Oli--i)
Ki i=l i+g

Here we have put oti:7i--Ki/,i, Si:Si-Ki/Xi. As we know that 7 and 8 stay
positive, the denominators a+ Ki/X, +K/X are always positive. The left-hand side
of the equation is the time derivative of a function F(ai,), which, in the range
a, 8i>-K/X,, is bounded from below and has a unique nondegenerate minimum at
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a;= fl=0. Since F is only determined up to an additive constant, we may normalize it
so that F is zero at the minimum. On the other hand, the right-hand side is strictly
negative, as long as (a,...,aN, [3,.. ",fiN) stays outside any given neighborhood of 0.
As an immediate consequence, we find a0, fl0 as (see e.g. [13, p. 109]).
Equation (2.4) has the form dF/dt=-G, and in a neighborhood of 0 we have an
estimate of the form G>_cF. Hence the convergence of F, and therefore of ai, [3 to 0 is
exponential. One easily concludes from (2.2) that lny approaches a constant, and hence
limt- Y(t) > 0 exists. 73

Remark. A comparison of these results with those of Petrie [17], [18] is interesting.
Petrie considers the equation

f’ e-X(t-s)( y3-2(t)- y-:(s) y-(s)y(t)) ds--f(t)y:(t).

It can be shown that certain generalizations of the rubberlike liquid theory lead to such
an equation [14], [15], [16], [19], [20]. Our global existence argument fails if ,>1/2, and,
in fact, Petrie has shown that, in this case, solutions can blow up in finite time. It also
seems remarkable in this context that, if inertia is included, there is another difference
between the cases ,<1/2 and ,>1/2. Whereas ,<1/2 leads to a hyperbolic equation (for
/-0), the type of the equation for u>1/2 may change to elliptic, thus suggesting the
possibility of a very strong spatial instability.

The next corollary provides information on the final recovery for physically sig-
nificant forces.

COROLLARY 2.5. Let all the assumptions of Theorem 2.4 hold and let y.be the solution
considered there. Iff is always nonnegative and not identically zero, then y(o)>y(-o 1;
iff is always nonpositive and not identically zero, then y(o)<y(-c) 1.

Proof. Assume f_>0; the other case is analogous. It is immediate from the integral
equation (1.1) that f_>0 implies y_> for all t. Moreover, iffv0, there must be some t*
such thaty(t*)> 1. Let now z(t)--min[t,,t]y(,r ). Then (1.1) implies that- + - a ( s ) ( z ( ) ) ds

f,, a(t-s)(za(t)-l)ds.
If z(t)- is sufficiently small, this gives us an inequality of the form

d z(t)>_--Ce--kt(z--1).
+

It follows immediately that limt + Z(t) > 1. []

Remark. With "> or "< replaced by "_> or "_< ", these results are obvi-
ously expected on a physical basis. Namely, they simply state that pulling the filament
effectively increases its length (f_>0, a= 2) or the thickness of the sheet decreases
(f< 0, a-1/2), respectively. We have shown that the equal sign never holds, i.e., that the
filament can never recover its original length, nor the sheet its original shape.

We now give an argument showing that Theorem 2.4 does not hold if the condition
f(t)--0 for t> o is replaced by exponential decay of f and a4:1 (in case a= the
previous argument still goes through, the only difference being that f(t) Eiu= l(ai--i)
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has to be added on the right-hand side of (2.4)). We restrict ourselves to the case N- 1.
(2.1) reads"

K-txf-gy3-h-f(t)y’, g---Xg+7, t--Xh+Ky.

We solve these equations for t_>0 by the following ansatz:

y-yoevt, g-- goe-2Vt+gle-xt, h-hoe’t+hle-xt,
f._=foe(l-,),t +gy--ae((3--a)v--X)t__ h y0-- ae(- x),.

After some calculation one finds that this ansatz satisfies the equations if

/(

gO=yo2(X_2v)’ ho-k+v and foy-’=3vK+lzv(h-2v)(h+v)(X-2v)(X+v)
We thus find solutions for which f goes to zero exponentially, but y- z for a > and
y0 for a<l.

We have to make sure that, by appropriate continuation for <0, we can match
the conditions at t=-o. For this purpose, we continue y in an arbitrary way to the left
such that y is smooth and approaches exponentially at t=-o. The equations for g
and h then have unique solutions approaching K/ for -. These solutions can be
matched to the solutions for t>0 by appropriate choices of g and h. Finally f is
determined by the first equation.

The case/-0. In this case the first equation of (2.1) becomes
N N

y3 gi-- hi--f(t)Y-0"
i=1 i=1

PROPOSITION 2.6. For any g> O, h >0 and 0<a< 3, the equation F(y) gy3 h
fy=0 has a unique solution in (0, ).

Proof. We have F(0)<0, limy_ F(y)>0, so there is clearly a positive solution. To
show it is unique, we investigate zeros of F’(y). We have F’(y)=3gy2-afy-. If
y>0 and F’(y)=0, we find F(y)=(1/a)yF’(y)+y3(1--3/a)g-h<O. This means F
cannot have a positive maximum, whence the result. 7q

The solution y(g,h,f) can then be inserted into the other equations, yielding a
system of 2N equations.

THEORVM 2.7. The same statement as in Theorem 2.4 holds also for /z=0. Also,
Corollary, 2.5 still holds.

Sketch of the proof. The existence of a solution on (- oz, t] and global existence
in time are proved in the same manner as before, and we do not repeat the arguments.
If f=0, one finds from (2.2)

This leads to

where a; and fli are defined as before.
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Since Eg(ag-fl) is now equal to zero, we still find that a and fl approach 0
exponentially, whence the result.

For the corollary, observe that

)5(t). 3yg(t) -oa(t--s) y:(s------ -a’(t--s) yg(s)
Using this, one can apply an argument analogous to the previous one.

Finally, we want to prove that solutions depend continuously on , even at 0.
Letf yo, be given such that it either has a small norm or it satisfies the conditions of
Theorem 2.4. We know that a unique solution y(t) satisfying y(-) exists both for

-0 and for #>0. In (2.1), we put g=Xng=&, h-X= h, and z=y-/g (for -0,

f= 0, the first equation of (2.1) is solved byy-/g ). We obtain

-h-f(t)

(2.5)
i }t gi/

K

As we have proved, there exists some/,0>0 such that for every/, [0,/,0], system (2.5)
has a unique solution in the Banach manifold

Ki yo,, K / h
Y’", gi-- hi-s-

3 h 2 gM,- (z,&,hi) z

In particular, let zo, gi,O, h ,o denote the solution for/ O.
Linearizing at this solution (or likewise at any solution for >0), we obtain a

system of linear ODEs with a matrix approaching a constant limit as t--,-m and
t--, / z. From a discussion of the asymptotic behavior of solutions of the linearized
system for +_ m, one can easily see that for any inhomogeneity in (yo,n)2N+l there is
a unique solution in the tangent space of M,. The argument parallels our existence
proof for solutions: First consider the problem on (-m,- T] with T large, where the
matrix is approximated by the linearization at the trivial solution. Continuation of
solutions for t>- T presents no problem, since the equation is linear, and finally the
behavior for t--+ / oo must be discussed. We leave the details of the analysis to the
reader.

Thus the linearization is a densely defined bijective operator from the tangent
space of M, into (yo,n)2U+l. It is thus natural to attempt proving the existence of a
continuous family of solutions in a neighborhood of/,-0 using the implicit function
theorem. One does, however, face the problem that the term /,2 represents an un-
bounded operator.

The first equation of (2.4) has the form

d
-!* -dT ( Z-- Zo ) O( )( Z-- Zo ) f( ) L( h ho,f fo ) +nonlinear terms + O(/)
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where

p(t)-3go h/-+zo -af(t) S+zo
/ go / go

is positive and converges to 2=K/X for t-_+oe. L is linear in its arguments, and the
term O(/) does not involve any unbounded operators after the second and third
equation of (2.4) have been substituted into the first to replace g and/. It is easy to
show that the operator (ld/dt+o(t))-1" yo,n_ yo, is strongly continuous with re-
spect to/. Denoting V=(z-zo,g-g,o,...,gs-gs,o, h-h,o,...,hs-hs,o) we can
thus rewrite (2.5) in the abstract form,

(2.6) L(I)V=N(#, V) V--(L(I))-IN(I, V)-O,
where L(/) has a strongly continuous inverse and N(0, 0)-0, DN(O, 0)-0.

The existence of a continuous solution V(/) now follows from the following
theorem.

THEOREM 2.8. Let X, Y and Z be Banach spaces, U a neighborhood of (0, 0) in X Y,
and F: U-o Z a mapping having the followingproperties:

(i) F(0, 0)- 0,
(ii) F is continuous,
(iii) F is continuously differentiable with respect to y for each fixed x,
(iv) Dy F(O, 0): YZ is an isomorphism,
(v) DyF is continuous at the point (0, 0).

Then the equation F(x,y)-O has a unique resolution y-cp(x) in some neighborhood of
(0, 0), and cp is continuous.

The proof of this theorem differs by no means from the standard proof of the
implicit function theorem (cf. [10], [11]), but it is crucial for our problem that (iii) and
(v) are sufficient, rather than continuity of DyF in a neighborhood of (0, 0), as usually
required. Namely, we can identify X with R, Y with the tangent space of M, Z with
Y’, with/ and y with V. For/ fixed, the term L(t)-N(i, V) depends smoothly on
V; moreover, since lim,_0,v_0DvN(/, V)-0, we also have

lim Dg(L(I)-IN(I, V))- lim L(I)-IDgN(I, V)-O.
/--, 0, V-, 0 /-o0,V-,0

Hence Theorem 2.8 applies to (2.6), although the standard form of the implicit function
theorem would not. This yields a continuous solution V- V(/).

Moreover, the mapping (l,Z)(ld/dt+o(t))-z is a C’-mapping from R Y’"
into Y’"-. From the following theorem, which was also proved in [10], [11], one
concludes that V(/) is actually a C-function of/ when regarded as lying in Y’"-.

THEOREM 2.9. Let Y) and Z) respecti)ely (k-O, 1,...,N) be two hierarchies of
Banach spaces such that Yk)c Yk+), Z) CZ’+), the imbeddings being continuous.
Let X be a finite dimensional Banach space and F a mappingfrom a neighborhood U of 0
in X y(N) into Zu) haing the following properties"

(i) F(U(X Y(’)))CZ(’), k-0, 1,...,N.
(ii) For each fixed k, Fk’- FIv(xx y() satisfies the conditions of Theorem 2.8,

when it is considered as a mappingfromX Y(k) into Z(). For x fixed, Fg(x, .)
is a smooth (i.e. sufficiently often differentiable) mapping.

(iii) F:X Y(k)-o Z(k+m) is of class Cm for each k-O, 1,...,N and m<_N-k.
(iv) The mapping (x,y,u,...,uJ)z-DyF(x,y)(u, .,uj) is continuous from
X Y() (Y())J into i(x, Z(’+0).

Then the solution y-q)(x) y(O) existing by Theorem 2.8 is a cm-function of x in some
neighborhood V,, of 0, ify is regarded as an element of y(m).
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We summarize our results in the following:
THEOREM 2.10. Letf yo,n be given such that either f has small norm or f(t)--0 for

greater than some t0<oo. Then, for each /[0, o], (1.1) has a unique solution y
satisfying y- X’n. In the limit t O, y- X’ depends continuously on I, and it is
a C’-function of Ix when regarded as dwelling in X’-.

3. The discretization scheme. When solving (1.1) numerically, one faces the prob-
lem that it is to be solved on an infinite interval. A reasonable way of doing this is to
cut at -T<<0, and replacey(t) for t_<- Tby its limit limt__oy(t)-- 1. We thus obtain
the approximating problem

,y_+f-ra(t-s)ds.(y3(t)-1)
(3.1) [ y3__ (t)+ a(t-s) 9_--y_r(s)) ds-f(t)y-r(t)-O,

(3.2) y_r(t)-l-O, t<--T.

On the finite interval the integrodifferential equation can now be discretized in a
straightforward manner. Like Nevanlinna [8], we use a first order implicit (Euler-type)
method, because for this simple scheme we can prove that the qualitative properties of
solutions of (1.1), such as exponential decay at infinity and uniform convergence as
/-0, carry over to the discrete problem. Since these properties are essential for the
continuous problems it is very reasonable to require that the computed approximating
solutions exhibit them too. Our computations have shown that good approximations
can be obtained with quite large mesh sizes, and so the computational effort for the
first order scheme remains reasonably small.

We choose mesh points ti=ih, iZ, where t_,=-T, and denote by Yi the
approximation to y(ti) (or to y_r(ti)). Then the discretized form of the equation reads

(3.3)
+h a((i-j)h) ---yj -f(ti)y-O i> -m,

j=--m+l Yf
(3.4) Yi- 1-0, iN-m.

Obviously,

N KI ’l(t-m--ti)(3.5) t-ma(ti-s)ds- -t e
-o l--1

Equation (3.3) has the form

(3.6) cY +c2y + c3Yi- c4,

where the c’s depend on ,h,t_m, and yj,j<i.

Equation (3.6) will be discussed at the end of this section.
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The analysis of the discrete equation will be carried out in the same sort of spaces
as the analysis of the continuous equation. We therefore define discrete analogues of
the exponentially weighted spaces introduced in Definition 2.2.

DEFINITION 3.1. Let

S f:(f. )i= 1[ lim f,--:fo exists, lim e’hlf-fol-0, lim e-’hlf/I--0

and

Yff’- ,-(gi)i= ll lim eihlg,I-- lim e-’hlg,l-O

The natural norms in these spaces are

Ilfll sup eiahlf --fo [+ sup e-’Oh Ifl+ Ifo[
i>0 i--<0

and

II[I rg- sup e’hlg,[+ sup e-’hlgil.
i>0 i_<0

Setting 8-(Yi- 1)=_o, we rewrite (3.3) and (3.4) in the abstract form

(3.7) Fh,m(.)-O.
Now letf yo,n (o>0, n N) be given such that the assumptions of Theorem 2.4 hold.
It is an easy exercise to show that, for any e 0, o),

(3.8) Fh,m" X-Y
(we explain below why e is introduced).

The aim of the following analysis is to prove that (Yi)=-o converges to (y(ti))=_
in the topology of X-. The proof will be based on Keller’s [3] nonlinear stability-con-
sistency concept.

Let us first show consistency. The local discretization error 1-(1)=_o is defined
by

(3.9) l--Fh,m((Y(ti)--l)L_o).
For f Y’ (which implies/y yo,2, uniformly in ), we find, using the exponential- h0decay of y as t--,+ o, that in the limit t_

(a) Ili[ <_ o(1)e lt;I m,

Y(til--Y(ti-’) ,(ti) const.o(1)he-lt’l(b) h -Y

( y3(ti) y(s)) ds(3.10)(c) f/2ma(t,-s)ds’(y3(t,)-l)-f/2a(t, -s) y(-
const, o(1)e(t_.,-t,

(y3 )ft,ma((_)[y3(ti)(d) h a((i-j)h) (tg)
const, o(1)he-ltil
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Here o(1) stands for a factor that vanishes as --) -0. Therefore,

(3.11) Ilil<_const.o(1) he-ltil+e-olt-at-ml’ i> -m,
e-ltil <_ --m.

From Definition 3.1 we conclude that

(3.12) nlll Yg- -< const. ( h + o( e-l’-ml)).
The constant is independent of h,t_m, 0_<<, 0_<e_<e0<o. Note that, in particular,
the estimate contains a term o(e-elt-"l). The reason for this is that, when approximating
(1.1) by (3.1), (3.2), we have replaced f by 0 for t_<-T, and in the norm of yo-,n this
introduces an error of the order o(e-lq). This is the reason why we have introduced e;
for e=0 we would still get convergence, but no estimate for the order. (3.12) settles
consistency.

For the stability analysis, we calculate the Fr6chet derivative of Fh,,, at the exact
solution (y(ti)- 1)__,, which is denoted by

(3.13) Zh, DeFh,,,((y(ti)-1)i_).
For -(ui)=_o X we obtain

(3.14) (Zh,ml)i

Ui, iX --m,

ui--tli-lh + 3 ft-ma(ti_ s)dsy(t)2
u

( 2(ti) )tj
+3h , a((i-j)h) Y.(. ) u

j=--m+l Y

-h 2 a((i-j)h) 2 Yg(ti)-+ l uj
j=--m+l y3(tj)

of( ti )y( ti ) ui,

Stability means that Lh, exists and that it is bounded as an operator from Y into

X uniformly with respect to h,t_,,lz and 0-<e-<e0<o. Therefore we look at the
equation Lh,ml for t3 (v)__ Y-.

For i_< -m we find u=v, and for i> -m we show that

i--I

f,- y2(ti)

(3.15)
Gi(h’-m’t*) -+3 -’a(ti-s)y2(ti)ds+3h j=-m+l a((i-j)h)Y2(tj)

--otf(ti)ya-l(ti),

which is the coefficient of u in (3.14), is bounded away from 0 uniformly in h,t_,, and

It is easy to show that

(3.16)
f,, y2(ti)

Gi,(h -m,/.t) -+ 3 -ma(ti-s ) y2(s)ds-af(ti)y, ti)

-1
t- O( h ) "-t- O( e-(]til + It--ml) )
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Using (1.1) we get

(3.17)
Gi(h -m,/)-+

+ 1-5 f(t)y(ti)

It follows from {}2 that

(3.18) 0< yo<_ y(t,l)<-yo, [f;(t,)l<-;

uniformly for g [0, c). For f_<0, (3.16) provides a uniform lower bound for Gi, and,
for f_>0, (3.18) provides a uniform lower bound, since a<3.

The preceding considerations make it apparent, why the term ft_m a(ti--s)ds(y
1) should be maintained in (3.3). If this term were neglected, the uniform bounds on G
would no longer hold, and, unless a.constraint of the form lx/h >-const. is imposed, an
artificial boundary layer can be generated at t_,.

We see from the above that Lh, can formally be inverted. It remains to be proved
that the solution of

(3.19)
satisfies an estimate

2y3(ti)/y3(tj) +1 o vi(3.22) ai,j(h, -m)- Gi(h -m,O) vi-- Gi(h, -m,O)
with G as defined in (3.17). Since y(-oo) 1, this implies, after a simple calculation,

(3.23) Oli’j(h’--m)--h,LlKt/(eX’h--1) -7--’C(h,7)

where 7
Using the form (1.2) of a, we get from (3.21)

i-I N

(3.24) h E
j= --m+ 1=

The solution w of the equation obtained by replacing Ivil by the larger quantity
ei(-e)h 11 z, where

0(3.25) l)i--ei(-e)hei, 19 (i)i=_oo l
provides an upper bound for lugl. In analogy to 2, we substitute

i--I

(3.26) g[-Kth E e-X’(t’-tj)wj, l-1,2,... ,N,
j----m+

where

(3.20) allx- const. Ilell X-
with the constant independent of h, t_m, and e.

We begin with the reduced problem for -0. Equation (3.14) yields
i--I

0(3.21) ui-h 2 a((i-j)h)ai,j(h, --m)uj+vi,
j= --m+l
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which yields the difference equation

(3.27) g[+ g[- K,he-X’hwi+ ( e-x’h 1)g
and the following difference equation for w"

N N

(3.28) wi+l-wi-C(h, y) , (e-X’h--1)g+C(h, y) , K,he-X’hwi
1--1 l=1

+ (e(-)h 1)ei(O-)h[Ig[It="
Formulas (3.27) and (3.28) form a system of difference equations. Setting

(3,29) zi_(wi,g],... ,g/N), W,--((e-)h- 1)e’-)hllell,=, 0,...,0),
we can rewrite this system in the form

(3.30)
where

(3.31)

Zi+ ( I-I-A( h,’))zi--}-i

N

C( h, y) , Klhe-x’h
l--1

A(h, y)- Khe-xh

Kuhe-XNh

The solution of (3.30) is given by

C(h,y)(e-X,h-1)

e-xlh-

i--I

(3.32) z (I+A(h ]t)) i-l+mZ--m+l-- E
j-- --in

i>_ --m,

C(h,y)(e-XNh--1)

". 0

e-xNh-

(I+A(h .y)) i-j- j,

with the initial condition Z_m+ (e-(m- l)(o--e)h ll z, 0,. ., 0).
The goal of the following analysis is to show that

(3.33) supe-i(-)hi[zill<--const. []glll
i_<O

which implies

(3.34) sup e-i(-)h[uil<_ const, sup e-i(-)hlvil.
i_<0 i_<0

Summing up the geometric series in (3.32), we obtain the estimate

II(I+A(h,’Y)) i+m-’

e(i+m- 1)(o--e)h
+1(3.35) e-i(-)hl[zill<const.

I+A(h,y) -ll]
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We thus have to prove estimates of the following form:

( I+A(h"Y) )
k

(3.36) ,7,--)- _<const., kN

and

(3.37) _< const.
e(O-)h

Both will follow from an analysis of the Jordan form of A(h, ). For h, small enough
we can write

(3.38)
d

A(h,’)-h --A(O, O) + O( h ) + O(’y)

where

d A(0,0)-(3.39)

N

c(o,o) E
l=1

K

KN

-c(o,o)x, c(o,o)x 

This matrix has the characteristic polynomial

N N JktKt(3.40) p(p) C(0,0) E Kt-P- C(0, 0) E X + p
/=1 /=1

Recalling that C(O,O)-(,l=lgl/l)-1, it is an easy exercise to show that the root 0 is
two-fold. An analysis similar to that given for (2.3) shows that all remaining zeros are
real and negative.

A similar calculation shows that zero is also a double eigenvalue of (d/dh)A(O,O)
+ O(h) (as of (3.38)). Therefore we get for the eigenvalues of A(h, ,),

(a) p(h,y)=ho(1), p2(h,y)=ho(1) as y0,
(3.41)

(b) p(h,’,r)--h(+o.(1)) as h, , --, 0, i--3(1)(N+l),

where <0 for 3(1)(N+ 1), such that

(3,42)

holds. Equality in (3.42) only holds for h=0. Since (1/h)A(h, O) is holomorphic in
h-0, and since the eigenvalues of (1/h)A(h,O) do not change multiplicities as h-0
(i.e., the negative eigenvalues of (d/dh)A(O, 0) are distinct and 0 is a double eigenvalue
of (1/h)A(h, 0)), there is a matrix G(h) such that G(h), G- l(h) are holomorphic in
h 0 and J(h) defined by

A(h, O)- G(h)J(h)G-’(h)
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is the Jordan form of A(h,0) (see [2]). Therefore (3.36), (3.37) hold for 3,-0. A simple
perturbation argument assures (3.36), (3.37) for 7 sufficiently small. Thus for h suffi-
ciently small and K>0 sufficiently large, we have proved that

(3.43) sup
ti< K

The solution Ug can be continued over the finite interval [-K,0], and by a standard
stability analysis (see [1 ]) we obtain (3.34).

We now have to treat the case ti_>0. For this, we rewrite (3.21) as
I--1

ui--h a((i-j)h)oti,j(h,-m)uj
j---m+

(3.44)
+h a((i-j)h)ai,j(h,-m)uj+vi,

j-=-I

where it is assumed that i_>K is sufficiently large. After some calculation, we get from
(3.), (3.2).

(3.45) ai,j( h, m) D(h ) + flij( h, m)
where

(3.46) D(h)--hyL,Kl/(eX,h_ 1)’ 1[3i,g(h,-m)[=O(e-t), tg>_K.

It is therefore natural to study the equation
i--I

(3.47) (ti--D(h) a((i-j)h)ftj+i,
j--I

where t3i is v plus the first sum in (3.44), and interpret (3.44) as a perturbation of (3.47).
As before, we put

i--I

(3.48) gf-Kth E e-X’(ti-tJ)(tj,

which leads to the difference equation
N

(3.49) g+l-g-KtD(h)he-x’h g/+(e-x’h- 1)g+hKle-X’hi.

j---1

Here the relation
N

(3.50) (ti-- O( h )
j---1

has been used.
Putting gi-(g,’" ",giN), e(h)"-- (Kle-X’h, .,KNe-XUh), we obtain the following

matrix form of (3.49)

(3.51) g+ 1- (I+ B( h ))g+ tgh. e( h ).
This has the solution

i--I

(3.52) gi--h ] (I+B(h))i-g-’e(h).
j--I
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When dealing with the case ti<0, we used a redundant system of equations rather than
an analogue of (3.49). The reason for this was that it is easier to compute the character-
istic polynomial of the matrix of the "redundant" system. In the "redundant" ((N+ 1)-
dimensional instead of N-dimensional) form (3.49) reads

N N

5i+l-Si-D(h)h 2 Kle-X’hsiq-D(h) 2 (e-X’h--1)g[+i+l--i,
(3.53) t= t=

g[+ g[- K,he-X’h f + ( e-x’h 1) g[.
When we write this in matrix form

(3.54) el+= (I+A(h))i+d
(where zi--(fti,g,’" .,g/N), di_(i+l_i,O,. ",0)), we see immediately that A(h) is the
same matrix as (3.31), except that C(h,7) is replaced by D(h). The characteristic
polynomial is

N N -)th th

(3.55) q(p)-D(h)h , K,e-X’h-p+D(h)h K,
e (e- -1).

1--1 l--1 P--( e-x’h- )

It is easily verified that p--0 is a double root. Moreover, since

(3.56) D( h )= C(0, 0) + O(h ),
the other roots are small perturbations of those of p(o) as given by (3.40), and therefore
have negative real parts. When we pass from A(h) to the N-dimensional matrix B(h),
the eigenvalues obviously remain the same, except that 0 as an eigenvalue of B(h) has
multiplicity one rather than two. Hence there is a matrix E(h) such that E(h), E- (h)
are continuous for h [0,h0] and the Jordan form J(h) of B(h)

(3.57) J(h) E-(h)B(h)E(h)
has the block form

0 0 0
0
0

(3.58) J(h)- 0 J_(h)

where the (N- 1) (N- 1)-matrix J_(h) has only eigenvalues with negative real parts.
The continuity of E(h), E-l(h) holds since B(h) is analytic in h and since the
eigenvalues of B(h) are distinct even for h-0 (see [2]).

If we put g-- E(h)wi, (3.52) yields

i--1

(3.59) w-h (I+J(h))-g-gE-’(h)e(h).
j=l

In the first component this reads in particular

i-1

(3.60) w/ h 2 tj.(E-’(h )e(h ))’.
j--I
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From this we obtain the following estimate for I sufficiently large:

lim Iw/l I_< const, sup
i-oo >_i(3.61)

ei(-Ohlwl lim w/1 I_< const, o(1) supsup
i>_i i-o o i>_I

For the components (w,..-, wff), where only eigenvalues with negative real parts are
involved, an analogous estimate follows from the same arguments that have been used
in the case t< 0, and we even have lim_, w/= 0 for l> 1.

Let us now introduce the spaces

Ah,-t f=( f. )i:ll lime-)hlf]--O
i>_l

B,-- f=(f/)=1 lim f.=:f exists, lime(-hlf/-fol-O
i---, o

and the operator

(3.62) Pl( h ) ah-e n5
which is defined as the solution operator corresponding to (3.47), i.e., the operator
mapping (t)=i to (fii)=i. When we put

i--I

(3.63) (Gu)i-h x a((i-j)h)3,j(h,-m)uj,
j--I

equations (3.44) can be rewritten in the form

(3.64) ui=Pi(h)(Gu+) i>_I.

It follows from (3.61) that Pi(h) is a bounded operator. Moreover, (3.46) implies that G
has small norm. Therefore, 1-Pt(h)G is a nonsingular operator from A,- into B’,-],
and the norm of the inverse is bounded uniformly with respect to h,t_ and e.
Therefore,

(3.65) supei-Ohlui- lim nil+ lim u,]_<cllllx-
i>0 i--, o ioo

and, summarizing, we obtain

(3.66) all xx -< const. t3 YX
where the constant is independent of h,t_ and e [0,eo], where e0<o. This concludes
the stability proof for --0.

We briefly sketch the stability proof for/>0. Equation (3.19) now takes the form

(3.67) I h --Hi(h,-m)ui+h 2 a((i-j)h) 2
y3(ti)

+1 uj-l-l)i
j----m+ y3

where

(3.68) Hi(h -m)-3 t-ma(ti-s)y2(ti)ds+3h E a((i-j)h)
y2

--af(ti)ya-l(ti).
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With D(h) as in (3.46),

3 {O(e-t’) asti-o,(3.69) Hi(h’-m)-D(h------t- O(h)+O(et) as ti-+

We can therefore use a similar perturbation approach as before, i.e., for m, (3.67) is
regarded as a perturbation of the problem

i--1l li-- 3(3.70) I --- D(h) fii+3h a((i-j)h)fij+.
j----m+

This can be rewritten as follows:
i--2

(3.71) fti-’Y(h,l)fii- +8(h,l)h E a((i-j)h)fij+i,

where

,(h,g)- +3ha(h) -+D ) 8(h,/)-3 +D(h)
-1

We substitute
i--2 N

(3.72)
j=--m+l l=1

We set i-(li,ff,i,],...,iN), i--(8(h,g)(i--Vi_l),O,.. ",0). Then (3.70) is equiva-
lent to the system

(3.73) i- ( I+ F( h, l ))i-
with

(3.74)

F(h,l)-

"y(h,p,)- (h,p,) O’’-
N

h E K,e-2x’h 0 e-X’h(e-x’h- 1)
1--1

hKe-th 0 e-’h

0

hKNe-xNh 0

e--XNh(e--XNh--1)

". 0

e-Nh-

As before, it can be shown that the characteristic polynomial of (d/dh)F(0,) has the
same roots as (2.3), except for the fact that 0 is a double rather than a simple root.
Moreover, 0 is an exact eigenvalue of F(h,/).

A proof analogous to the one for /--0 shows the stability for / fixed and
sufficiently small h. For the limit /0, a different argument is needed. When we
substitute in (3.73)

-t
t3 (_h_. )_-- Y" ff l(3.75)

3’(h,/)-
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we obtain a system of difference equations of the form (3.73) with F(h,/) substituted
by a matrix of the following form

O(h) )(3.76) P( h,t)- dO(h) h 0) + O(h

Moreover, an estimate of the form -1 _<,(h,/)-1 <_-omin(C, Czh/#) holds where
o>0. Thus, for small/z, I’/-1]>>h. It is easy to conclude from this that there is a
coordinate transformation close to the identity which transforms to the form

(3.77) = ( (h,l)- +O(h) 0 )d
0 h--A(O,O)+o(h)

Stability follows from the above estimate for 3’- and an analysis of the eigenvalues of
(d/dh)A(O, 0) given by (3.39). For -o a similar argument holds, but D(h) is to be
replaced by a different constant b(h, t_m). From these considerations we see that

(3.78)
with a constant independent of h, -m,/ and e [0,eo], eo<O.

It is practically important to assure stability not just for h sufficiently small, but
also for arbitrary h. Recall that linearizing e-x’h- with respect to h is only justified if
h << 1/Xt. The matrix F(h,l) for arbitrary h has the same form as for h small, if the
following substitutions are made: ki-(e-xih- 1)/h, Ki Kie-2xih, + 3hiD(h). If

f has compact support, ts is sufficient to ensure stability. If the support of f is not
compact, stability for arbitrary h can be assured if the following modification is made:
In (3.3) the integral fJma(t-s)ds is replaced by h sm a(t--t). With ts modifica-
tion the term O(h) in (3.69) vanishes, and thus the matrix for the linearized problem is
asymptotically equal to F(h,) both for t and t -. In order to apply Keller’s
[3] nonlinear stability concept, it is further necessary to show that the Fr6chet deriva-
tives DeFh, are uniformly Lipschitz continuous in a sphere

SK- (Xff-e [[--(Y(ti)-1)?=_I[<K )
This follows from a fairly trivial calculation, which we do not present here.

Using the fact that the global error (y(t)-yi)=_ is estimated by a constant
times the bound for the local error (3.12), we obtain the following theorem:

THEOM 3.1. The discretization scheme (3.3), (3.4) has a unique solution for aH
f yo, which either have small norm or vanish identically for tto for some finite o,
where o is as in Theorem 2.3. This solution p-(yi)=_ can be ca&ulated by the Newton
procedure which is second order convergent from a sphere of starting values which does not
shrink to as h O, t_ -, O, and the convergence estimate

(3.79)
holds for h sufficiently small and [t_l sufficiently large. The constant is independent of h,
t_m,/ [0, Ot], e [0,e], e0<o.

This implies that the Newton procedure for the solution of (3.6) can be safely
applied, that the (y)=_ do not eibit boundary-layer-like behavior, and that

(3.80) ]y-y(t)const.e-o,(h+o(e-l-t)),
(3.81) ]lim yi-y()lconst.(h+o(e-elt-ml)),
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and the order of convergence is independent of/ [0, m].
Obviously, if f is only supported on [T, T2], then the term O(e-lt-ml) disappears

from the error estimate if t_ < T.
The discretization we used was derived from the integral equation. In 2 we

trarrsformed to a system of ordinary differential equations. In fact, up to terms of order
O(h), our discretization method corresponds to a discretization scheme for the ODE
system (2.1). Namely, if we put

gl,i-- h Kle-l(t,-tj)
j=--m+ y? gl,--m 0,

h t,i- h Kle-?’(ti-tj)yj, h l,--m -O,
j-- --m+l

our discretized equation reads as follows"

(3.83)

(a)

(b)

(c)

By calculating gt, i, h t,i for l= I(1)N from (3.83)(b), (c) and by inserting these quantities
into (3.83)(a), we obtain an equation (in each time step) of the form (3.6). Theorem 3.1
now implies that the root of this equation can be safely obtained by the Newton
procedure which is second order accurate from a sphere of starting values whose radius
is independent of h, t_m, J, [0, CX:) and i> -m.

This provides us with a very efficient method of solving the approximating prob-
lems, and Theorem 3.1 makes sure that the qualitative properties of the solution of (1.1)
carry over to the approximate solutions.

The exponential decay of the solution encourages one to attempt using variable
mesh sizes of the form

(3.84)

It can be expected that convergence of the order of one in/ (i.e., the estimate would be
O( ft )-+- o( e-lt-ml)) would follow in , but the exponential decay property of the
approximate solution would be lost. In the case of boundary value problems for
ordinary differential equations on infinite intervals, this has been shown in [7].

A further problem that should be mentioned is, which higher order discretization
schemes could be employed. It is fairly clear from our analysis that polynomial colloca-
tion methods using Radau points (see [12]) would recover the exponential decay
property and the uniform convergence as 0.
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4. Numerical results. For the computations we used the kernel a(u)- E/: Kie-x’u
with the constants K; and X shown in Table 1.

TABLE

Xi(sec-) Ki(Nm-2sec-’)
10-3 1X10-3

2 10-2 1.8100

3 10- 1.89 10

4 9.8 X 103
5 10 2.67 105
6 10 5.86 106
7 103 9.48 107
8 104 1.29 109

These numbers were obtained by Laun [4] from an experimental fit for a polyethylene
melt at 150C, which he calls "Melt 1".

The parameter # is physically identified as three times the Newtonian contribution
to the viscosity. Experimental values are not available, and theoretically/x is either a
solvent viscosity (for polymer solutions) or it results from fractions of low molecular
weight (for melts). The value of/ has to be compared to the viscosity resulting from the
memory, which, for constant shear rate, is given by ,8.= K-250000 Nm-2sec. One
would expect/ to influence the solution significantly only if it exceeds this value. This
is verified by our computations. In the plots (Figs. 2-15), the scale for y is on the left,
the scale for f is on the right, y is measured in multiples of the length (for the filament,
a- 2), or, respectively, the thickness (for the sheet, a-1/2) at t--o0, f denotes the force
acting on the ends of the filament or the edges of the sheet divided by the cross-sec-
tional area in the undeformed state at t=-o; f is expressed in N/m2. The time is
measured in seconds, f is always plotted by dashed lines, y by full lines.

All plots except Figs. 8, 9 were made for a 2, the case of the filament. In Figs.
2-12 (except 7), the forcef is of the form

f( ) fmax expa02-
with a-a2/a-O. Such anfis in C(R, R) and has the compact support [-a2,ag. ].

The parameter/ is zero in Figs. 2-10. In Figs. 2-6 we have chosen various values
of fmax, a0 and a, as can be seen from the diagrams. The calculations were done for
larger time intervals than the plots, thus yielding approximations for y(o). For Figs.
2-6, the approximate values of y(o) are as follows 2:

Fig. 2 3 4 5 6

y(o) 1.07 1.15 l.ll 1.26 1.13

2In Fig. 6 suppf is different from that in the previous ones.
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.$5

.50

.40

.25

.20

1.!5

1.!0

1.0S

These numbers indicate that, roughly speaking, the value ofy()- is proportional to
f_f(t)dt. This would in fact be exact for the linearized equation.

In Fig. 7 an oscillating force was chosen. It is observed that the solution y
"follows" the oscillations with a certain delay.

Figures 8 and 9 illustrate the case of the sheet (a-1/2). Here -f is plotted rather
than f. The results are qualitatively similar to those in Figs. 2-6, but now we have y<
instead of y> 1.

In Figs. 10-16, we have again a-2. In Figs. 10-12, we have chosen the same
f( fmax 40 000, a0--1, a--a2=20 and computed solutions for different values of/:

P, Ymax y(o)

0 103 3.3
10 89 3.4
106 7.7 4.5

For /_< 10000, no significant change was observed. For larger , the effect on the
maximal elongation seems to be more pronounced than the effect on the final length.
Recalling the fact that/= 10000 would correspond to a viscosity 3 106 as large as
that of water, it seems conceivable that for fluids like "Melt 1"/ can be neglected.
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The numbers for y(oo) are interesting in comparison with the results of Lodge,
McLeod and Nohel [6]. They showed that y(o) increases with/z, if the history of y for
<0 is kept fixed. Our numbers show the same tendency; eventually, however, y(o)
has to decrease, since for/ oo we have y const, and thus y(o)-- 1. We see from this
that, for fixed f, y(oo) is not a monotone function of .

For Figs. 13-16, a discontinuous force given by

f(t) 40 000 exp -i-d t<0,

was used. Since in this case the filament recovers freely for t>0, we are studying the
same situation as Lodge, McLeod and Nohel [6], but we prescribe the force rather than
the history of y for < 0. By considering the intervals < 0 and >0 separately, we can
easily modify the existence and convergence theory of the previous sections for the
present case. However, the solution does not depend continuously on in the L-norm
as --,0. This is because for /-0 the solution is discontinuous at t-0. Table 2.
illustrates the dependence of the maximal elongation on

TABLE 2

Ymax

0 140
2 10,5 58
3.5 105 16

I06 1.6
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LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS
AS SEMIGROUPS ON PRODUCT SPACES*

JOHN A. BURNS’:1:, TERRY L. HERDMANf AND HARLAN W. STECH?

Abstract. In this paper we consider the well-posedness of linear functional differential equations on
product spaces. Let L and D be linear Rn-valued functions with domains @(L) and (R)(D) subspaces of the
Lebesgue measurable R n-valued functions on I-r, 0] and such that W1’ P([-r, 0]; n) C_ (R)(L) N 9(D). Under
weak conditions on D and L we establish the equivalence between generalized solutions to the functional
differential equation

d
d-- Oxt-- Zx, +f(t)

and mild solutions to the Cauchy problem in

2(t) --(z(t) + f(t), 0),
where is the operator defined on

@(() ((l,p) [;n Lp([-r, O]"
by

(,):(,).
The results are applicable to neutral functional differential equations and certain singular integral equations.

1. Introduction. During the past few years it has been recognized that product
spaces provide appropriate state spaces for the investigation of certain problems involv-
ing control systems governed by retarded functional differential equations (RFDEs).
These spaces have been used by a number of authors (see [2], [26] for a survey of the
literature), and are especially well suited for the investigation of approximation tech-
niques for identification and optimal control of RFDE systems (see [2], [3], [11], [13],
[21 ], [22], [24]). One reason that the product spaces RnLp are particularly useful state
spaces for RFDEs is that it can be shown that the original RFDE system can be
equivalently formulated as a linear (ordinary differential) control system 2---z + flu in
RnLp (see [2], [3] and [21]). One is t,en able to make use of various approximation
results for well-posed Cauchy problems (i.e., Trotter-Kato theorems [27], [29], finite-
difference methods [17], [28], etc.) to develop computational algorithms and establish
convergence of numerical schemes for RFDE systems. Moreover, the product space
structure has been used to study questions of stability, controllability and observability
for retarded systems [12], and certain differential-boundary operators [7].

In the present paper we consider the well-posedness of a large class of linear
functional differential equations, including neutral functional differential equations
(NFDEs) and certain singular integral equations. In particular, we show that these
equations may be formulated as equivalent linear dynamical systems on product spaces.
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Throughout the paper, the positive integer n, the real number p [1, +m) and the
delay rE(0, +m) are assumed fixed. We shall use Lp(a,b)=Lp([a,b];l") to denote
the customary Lebesgue spaces of R"-valued "functions" on [a, b] whose components
are integrable when raised to the pth power. The usual Banach space C([a,b]; I") of
continuous Nln-valued functions on [a,b] will be denoted by C(a,b) and similarly the
Sobolev spaces (see [1]) wl’p([a,b];l ") will be denoted by W’P(a,b). Whenever
[a,b]-[-r,O] we shall simply write Lp, C and W1’ for Lp(-r,O), C(-r,O) and
WI’p(-r, 0), respectively. We shall use ]1. x to denote the norm on the normed linear
space X. However, we will use the same symbol I1" to denote any one of several norms
when it is clear from the context which norm is intended. The space of bounded linear
operators from X to the normed linear space Y will be represented by @(X, Y). For a
linear operator we use the standard notation: (R)(), (6g), 9L() for the domain,
range and null space of , respectively, and O(6g) will denote the resolvent set of . If
x:[-r,a)l for some 0<a<_ +o, then we define Xt’.[--r,O]’-- for O<_t<a by
x,(s)-x(t+s).

While we shall not attempt to give a detailed discussion of the literature concern-
ing the use of product spaces as state spaces for hereditary systems (see [2], [6], [8],
[10]), a few comments are needed to put our presentation in this paper in prospective
for the reader. In 1969, Borisovi and Turbabin [4] considered the RFDE

(1.1) :t(t)-Lxt+f(t )
with initial data

(1.2) x(0)--r/, x0-- p,

where L is a linear Nt n-valued operator, (r/,)R"L2 and f(. ) was locally integrable
on 0, +). Under strong assumptions on L, they showed that defined on

(1.3) 6(()-- ((,O, 1)) nn L2/(]o t_ wl,2,

by

(1.4) (/,p) (Lq0, )
generated a C0-semigroup (t) on nXL2. Moreover, for (,q) NtnXL2,
(1.5) ( )(, l? ) ( x( ),xt( ))
where x(.) is the unique absolutely continuous solution to the homogeneous form (i.e.,
f(t)=O) of the RFDE (1.1)-(1.2). In 1977, Vinter [30] proved the same results under
the milder assumption that L be "C-bounded" and conjectured that the result remained
valid for any L(WI’2,n). In 1978, Delfour [10] proved Vinter’s conjecture and in
the same paper Delfour stated that the converse was also true: if defined by
(1.3)-(1.4) generates a C0-semigroup on R nXL2, then it was necessary that L
633(W1,2, R ").

Section 2 is devoted to the extension of the aforementioned results to a general
class of functional differential equations of the form

d
(1.6) -Dxt- Lxt+f( ).

where L and D are N n-valued linear operators. Proofs are given for the results an-
nounced by the present authors in the note [8]. In 3 we establish an equivalence
between NFDEs of the form (1.6) and an abstract control system 2=6gz+-(t) in
I" Lp. Finally, {}4 is concerned with a class of singular integral equations not covered
by the previous theory.
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2. Semigroups on product spaces. Let L and D be linear "-valued operators with
domains @(L) and @(D) subspaces of the Lebesgue measurable "-valued functions
on [-r,0]. It is assumed that W’p C@(L)f@(D). However, note that at this point we
make no continuity assumptions on L or D. Define the operator ( with domain

(2.1) @((2)-- { rl q) ) l Lp/ep W p

by

(2.2)
Observe that if D is defined on W, p by Dq-(0), then the operator reduces to the
operator (defined by (1.3)-(1.4)) studied by Borisovi and Turbabin, Vinter and Del-
four. Theorems 2.1 and 2.2 give necessary conditions imposed on the operators L and
D if is the infinitesimal generator of a C0-semigroup on Lp. Theorems 2.3 and
2.4 give sufficient conditions on L and D that imply the operator c generates a
Co-semigroup and C0-group on "Lp. The majority of this section is devoted to the
proof of Theorem 2.3. For the sake of completeness, we give outlines of the proofs of
Theorems. 2.1 and 2.2. (Detailed proofs of these theorems may be found in [8] for the
case p-2 and only slight modifications are needed for general p.)

For ) C and L, define the operator M: Lp-L by

(2..3) [Mxk ](t)-ftex(t-’)(u)du.--"0
The following lemma is useful and quite easy to establish.

LMMa 2.1. The operator defined by (2.3) has the followingproperties:
i) (Mx)= lt’p= (qe Wl’p/q(0)--0),
ii) Mx qS(Lp, 1’p) and
iii) M[ exists and M[ e if5(I’, Lp).
THEOREM 2.1. If defined by (2.1)-(2.2) is the infinitesimal generator of a Co-semi-

group on ." Lp then both L and D belong to 6J5(W’ P," ).
Outline ofproof. As a consequence of the Hille-Yosida theorem [9], [27] we have

that d is densely defined, closed and there exists a real ,0 such that )t p(d) for all
X> 0. In particular, for each (, k) Nt" Lp the equation

(2.4) ( d-- ;KI )( /, q ) (,k)
has a unique solution (:, q0) @(d) and the solution depends continuously on (, k).
Consequently,. it follows that there is a constant vector c such that q(s ) eXc+ Mxq](s )
and c satisfies

(2.5) A(X)c= --- XD[Mx, +L[ Mxq,

where A(X)=)D[eXI]--L[eXI]. The continuous dependence of p on (,+) together
with (2.5) imply that (XD-L)Mx belongs to @(Lp,R"). Therefore, (XD-L)-
()D-L)MxM belongs to @(l’P,g ") and since W’P-" 1’p we have that
()D-L)6fb(W’P, n) for all X>o. However, D and L both belong to @(W’P,R ")
if and only if (,D L) (W1, p, .) for all > 0 and the proof is complete.

If generates a C0-semigroup on"Lp, we can apply Theorem 2.1 together with
standard representation theorems [1] to obtain n n matrix-valued functions A, B, F
and G whose column vectors belong to Lq (1/p + 1/q- 1), such that if q W’ P then

Lw=f (F(s )q(s ) + G(s )q) (s) } as,(2.6)
--F
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and

(2.7)

In light of Theorem 2.1, we assume that D and L belong to @(W’P, Ri ") and the
representations (2.6)-(2.7) hold.

THORF. 2.2. Assume that is the infinitesimal generator ofa Co-semigroup {g(t)}t_>o
and let D and L have the representation (2.6)-(2.7). If (, q)) N Lp, then there exist
uniquefunctionsy: O, +)--,N", x: [-r, +)N" such that y(.) is continuous, x,(.) Lp.
for all t>_O, Xo(S)=ep(s ) a.e. on I-r, 0] and

(2.8)
where

(2.9) y(t)-q+ G(u){x(t+u)-x(u)} du+fo f u)x(s+u)duds..

Moreover, if (1, go)6"0(), then for each t>_O, x, W’ P, Dx, is continuously’ differentia-
ble

(2.10) ( t)( l, q) ) ( Dxt,xt ),
and x(.) is the unique W’ p solution to the NFDE

d
(2.11) Dxt=Lxt,

with initial data

(2.12) Xo(S)-q(s),
Outline ofproof. First assume that (rl, q)(R)(). It follows that z(t)=g(t)(,q)

(z (t),z:(t, )) is the unique continuously differentiable solution to the Cauchy prob-
lem

(2.13) 2(t)-ffz(t), z(0)- (n, q0).
The Cauchy problem (2.13) is equivalent to the system

d(2.14) -Tz,(t).-Lz2(t, "), Zl(0) --’0.

(2.15)

where t>_O, -r<_s<_O and z2(t .) Wi’p. Equation (2.15) implies that there exists a
function x:[-r, +m)+Rt such that x is absolutely continuous on compact subinter-
vals of [-r,+m), x0 =q0 and z2(t,s)=x(t+s). Since z(t)=(Zz(t),z2(t,.))=
(zi(t),xt(.))(R)(g), it follows that x, W1,p and Dxt=zl(t ) is continuously differen-
tiable. In particular, x is the unique Wl’p solution of the initial value problem (2.11)-
(2.12), or equivalently,

so’s_o,Dxt-- rl + F( u )x( s + u ) au ds + ( u )Yc( s + u ) du ds

=1+ F(u)x(s+u)duds ){x(,+ )--x

=y(t).
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For the general case where (, p) R n Lp, select a sequence (N, t?N) @() such
that (N,t)N)"-’)(,t) and let xN denote the unique solution to the NFDE (2.10)
satisfying x-q)u. Strong continuity of g(t)implies that limN_+(DxN,xN)
(t)(N,q)U)--(Yl(t), Y2(t, ")), where yl(t) is continuous and yz(t, .)Lp. It follows
that {x N} is a Cauchy sequence in Lp(-r,t) for all t>_0 and hence there is a unique
function x:[-r, +m)Nt" such that xtLp and f_rl[xU(s)-x(s)llPdsO for each
t_>0. Consequently, xu--, xt and x=yz(t, .) in Lp. The converger ze of xu to xt and q0

u

to q can then be employed to show that y(t)=y(t) where y(t) is defined by (2.9).

Remark 2.1. It follows directly that if ( generates a C0-semigroup on N"Lp, then
D cannot be bounded as an operator on Le (i.e., DqffS(Lp,N")). In fact, if D did
belong to @(Lp,N") then by the density of t?() the representation (2.10) would hold
for all (,qg)nXLp. Strong continuity of g(t) at t=0 would imply that for each
( r, q) I Lp, lim t-0 (Dxt, x ) ( /, qo), which leads to the contradiction

= lim Dxt=
t-,0

for all (,p)NLp. This observation leads to the fact that the matrix valued
function B in the representation (2.7) can not be zero a.e. on [-r, 0].

Our attention will now be focused upon conditions on L and D which are suffi-
cien for to generate a C0-semigroup on"Lp.

Prior to the statement of the principal result (Theorem 2.3 below) we recall the
following representations and definitions. If D(C, NI"), then there is a nXn
matrix-valued function/(.) whose entries are of bounded variation on [-r, 0] and such
that if q) C, then

We shall assume that/(. ) is normalized to be right continuous on (-r, 0) with (-r)= 0
and extend (. ) over N by/(s) (0) for s >_ 0 and/(s) 0 for s _< -r. The operator D
is said to be atomic at s[-r,0] if the jump at s, J(l,s)=---t(s)-(s -) is nonsingular.
In the case where D is atomic at zero, we may assume without loss of generality that

(2.16) Vcp- qo(0)+fdg (s)ep(s)

and

(2.17) lim Var ( ) 0,
0 [-e,0]

where Varta,bl(g ) denotes the total variation of g(-) on [a,b].
THEOREM 2.3. If L@(WI’p,R n) and D@(C,N n) has an atom at s=0, then

defined by (2.1)-(2.2) generates a Co-semigroup on nZp.
Example 2.1. In order to illustrate the types of neutral equations covered by

Theorem 2.3, we present a couple of specific examples. In particular, let
m

X
j--0

and
m

Dw- 2 B w(-V)
j= -r
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where 0=r0<rl<... <r,,=r and A(.), B(.) are in L2((-r,0);Nt"x"). Clearly, L
@(WI’2,R"), D@(C,R") and D is atomic at s=0 so that Theorem 2.3 applies. This
special case was considered by Kappel in [21]. Using a norm on NL_ equivalent to
the usual norm, Kappel was able to show in this case that (6g-,0I) is maximal
dissipative and hence the generator of a C0-semigroup on N"L:.

As another example, let r 1, n and define the operators

j=0 -1

and

Dcp-q(O)- E bjq(-rj)+fb(s)q(s)ds,
j--l

where 0-r0<_<l, j-1 2,3... E.j=l]b < +, 7:0lal<+ and b(.)L2.
Observe that the operators L and D define a neutral functional differential equation
with an infinite number of delays. It is not difficult to show that the operator L does
not belong to (C,R). Therefore, the theory in [15] does not apply. However, Theo-
rem 2.3 is applicable since L(W’2,R), D@(C,R) and D is atomic at s-0.

Theorem 2.3 is an immediate consequence of the technical Lemmas (2.1)-(2.8)
given below. The proof of Theorem 2.3 will be delayed until these lemmas are estab-
lished. The following result may be found in the paper [5] by Brown and Krall.

LEMMA 2.1. Let B, B2,. B be a finite collection of linear functionals on a normed
linear space X. Then i%(Bi) is dense in X if and only if every nonzero linear
combination ni= XiBi, XiN is unbounded.

LEMMA 2.2. If L@(WI’p,N n) and D@(C,N) is atomic at s-O, then @()
defined by (2.1) is dense in"Lp.

Proof. Define the operator B: N"X W’PN" by B(,)---D and let B(,)
denote the ith coordinate of B(,), i-1,2,---,n. Clearly, @()- %(B) and
the lemma will be proved if we can show that each nonzero linear combination

A- XiB
i=1

is unbounded on RX Lp. Without loss of generality we may take X-1 and assume
that D has the representations (2.16)-(2.17).

For 0<e<r define y(e)-f[d(s)[-Var_,ol() and note that lim0y(e)-0. If
y(e)-0 for any e>0, the discontinuity of A is immediate because point evaluation at 0
is undefined. If V(e)>0 on (0,r), then define {(’)}>0 to be any family of smooth
real-valued functions for which (s)--0 on [-r,-el, (-) is nondecreasing on [-r, 0],
(0) 1/V(e) and (.) 0 in Lp([-r, 0]; R) as e 0. Define : [-r, 0] R by (s)
e(s) where {eg}= is the standard basis for R. It follows that (.)0 in Lp and yet

X IxilS l .( )lll  ll 

i=1

1/(e) constant.

The conclusion follows immediately.
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LEMMA 2.3. Let L and D ,belong to 6f(W’p,n) and be given by (2.1)-(2.2). Then
p(() if and only if

(C, g ) is atomic at s

Proof. A real number h belongs to 0() if and only if the equation

(2.18) (.- XI )(r/, q ) = (, )
has a unique solution (,,.q) (R)(. ) for .each (,) .Nt Lp and that .solution depends
continuously on (, if). The second coordinate of (2,18) is equivalent to

(s)=e’,c+![Mx,](s), -r<_s<_O,

where the constant vector c is determined by the first coordinate .of (2.18) and the
requirement that Dq-r/, i.e.,

L(eXI)c- )wl =.-L(Mx, )
and

D(eXI)c-n--D(Mx,).
This system is uniquely solvable for c and r/if and .only if A(X) is nonsingular. In the
case that det A(X) 0, the continuous dependence of (1, q) on (, q) follows from the
fact that LMx and DMx belong to @(Lp; I n) .and Mx,@(Lp, Lp).

To prove the second .assertion we first note (using the representation (2.16)-(2.17))
that limx_+D(eXl)-l. Since L@.(W’P,t n) it follows that IlL(eXI)ll <_

Iltll (1 q_)(p.)-l/p, which implies that II,X-IL(eXI)ll--,O as X +. Consequently,
X-A(X) D(eXI)+X-L(eXI) I ,as X +.o and for ,sufficiently large ,, the matrix
X-’!A(X ):(hence A(

LEMa 2.4. Let I be as in (2.16). (1) If x Lp(N), then

0

is finite a.,e. on , x x,Lp(,),and

(2) Ifx, W’e(-r,a) for.some a>0, then x W"e(O,a), -[tz * x]-Iz Yc a.e. on
[0,.a] ,and.there is a constant K (independent of a, r, , and x)such that

Proof. Part (1) is .a special case of Hewitt and Ross [18, Thm. 20.12]; therefore we
concentrate on the proof of (2). There exists an operator E %(W’e(-r,a), W’P(N))
whose norm K is independent of r and a :such that [Ex](s)-x(s) for each s [-r,a]
(see [1]). W,e write 2-Ex and note that without loss of generality 2 may be taken to

have compact support.
Let {T(t))t__>o be the ,C0-,semi,group of left translations on Lp(.), i.e., T(t)z ](s)

z(t + s) for s,:, z.Lp(N). The infinitesimal generator 2 for this semigroup is the
operator ,defined on its domain ,@(f)- (z Lp(N)/ Lp(N)} by [fz](t)-(t) (see
’r[91)"

Let x, W’P(-r,a)and define y-/z. :2 and z-/z. . By part (1), both y and z

belong to Lp() and tlz- 1/h{yh-y}ll (a)-<Var(/z)il: 1/h{2h--2}ll Ln)" Since
@,(f), this inequality implies that 1/h{yh--y}= l/h{T(h)-I}yz and hencey
(f) with fy-z. If [0,,,a], then

y(t)--f d#.(s)2(t+s)--- dtt(s)2(t+s)- lZ(S)X(t+s)
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and

2()-[ayl(t)-z(t)-f a(s)J(t+)=

Finally, by part (1)

K Var (g)llxll wl’"(-r,a)
I-r,0]

LMMA 2.5. Let L@(W’P,N) have the representation (2.6) and D @(C, N) be
atomic at s O with the representation (2.16)-(2.17). (1) If-r<-e<0<a and z Lp(-r, a )
satisfies z(t)-O a.e. on [-r,-e], then

fd, (s)z(. +s)-fG(x)z(. +s)ds[l [Var (,)+fl[G(s)ll ds] Ilzll (-r,a"
Lp(O,a) [-e,0]

(2) g-r<-e<0<a and z W’e(-r,a) satisfies z(t)-O on [-r,-e], then

IlS -S K[ Var (,)+SIIG(s)I ds]lizliwi.,(-r.a).a.,(s)(. +) ()(" +)
,..o, -,o

where K is the constant in Lemma 2.4.
Proof. Define : N N "x" by

(2.9) (s)- .()+fa(u)u -x<0,

.(0-), 0.

If z(s)=0 for -r<_s<_-e, then for O<_t<_a

fdf,_ (s)z(t+s)-fdt,(s)z(t+s)- -r

The conclusions (1) and (2) now follow from the previous lemma and the observation
that

Var (/2)_< Var (g) +flla(s)ll as.
[-r,0] [-e ,0] -’e-

The next two results establish the basic existence and continuous dependence for
solutions and generalized solutions to the NFDE Dxt-Lxt+f(t ) with initial data
(n,,) " x/.,,.

LENA 2.6. Let L63(W’,N) have the representation (2.6) and D 63(C,) be
atomic at s 0 with the representation (2.16)-(2.17). If ( 1, ) R " X Lp and fG

1OCL, (0, +oo), then there exists a unique (in the a.e. sense)function x: [-r, +oe)--+R such
that Xo(S)=(s ) a.e. on [-r, 0], xtL,for t>_O and

f +LG(s){x(t+s) x(s)}dsx(t)+ d()x(+)-
(2.20) So’S + F(s)x(u+s)dsdu+ u)du

for a.e. t>_O.
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Moreover, ifq9 WI’p andl--Dp, then xt W’p, Dxt wl’p for t>_O and

d(2.21) -Oxt-- Lxt +f( ),

for a.e. t>_O. If in addition f is continuous, then Dx is continuously differentiable.
Proof. The proof is based on a fixed point argument. For 0<a< r, let e-a and/2

be the measure defined by (2.19). Let T-- T(/, q,f) be the operator defined on Lp(-r, a)
by

(2.22) [Tx](,)

qg(t), -r<_t<O,

oF,-[- fo f-r (s)x(u+s)dsdu

+ e.(slx( +sl, O<_t<_a.

Lemma 2.4, part (1) implies that T:Lp(-r,a)Lp(-r,a) and if x,yLp(-r,a),
then Lemma 2.4, part (1), and the convolution theorem [19] imply that

(2.23) Tx- TyllLp(-r,a) <-- Ml(r )llx--YllLp(-r,a),
where M(r) is the function defined by

M1("r)- Var[-,,01 ()+fllG(s)ll_ ds-+-’r 1/p fllf(s)ll_, ds].
Let U--U(l, ep,f)-T. We shall show that U is a contraction on Lp(-r,a) (for

sufficiently small a) and make use of the observation that the resulting unique fixed
point of U is also a unique fixed point of T (see Lemma 5.4.3 in [23]). Let x,y Lp(-r,a)
and define 2 Tx, .9 Ty. Since Tx ](t) Ty](t) q(t) for -r_< t_< 0, the function
2-2-9 is zero on [-r, 0]. By the definition of/2 we have that

{ 0’f_d/2 fof_:
-r<--t<--O’

(.24) [T-Tp](t)- (s)e(t+s)+ F(s)e(u+s)dsdu, O<_t<_a.

The function satisfies the assumption in Lemma 2.5, part (1), which implies that

(2.25) lIT2- ZpllLp(-r,a) <--Ml( a)llfC--pllLp(-r,a).

Using the fact that Ux- Uy T2- T9 and combining inequalities (2.23) and (2.25), we
have that

IIUx- UYlI Lp(-r,a) M (a )Ml(r)llx-y[lLp(-r,a).
By (2.17), M(a) 0 as a 0 and, therefore, U will be a contraction on Lp(-r, a) with
Lipschitz constant a-M(a)M(r) independent of (/,q,f). The unique fixed point
x:[-r,a]--,g is also a fixed point of T and defines a unique solution to (2.20). The
independence of a on (r/, p,f) allows one to establish the existence of solutions on
[a,2a],[2a,2a],....

If p W’ P, then we define T- T(Dq, p,f) by (2.22). Lemma 2.4, part (2), and the
convolution theorem [19] imply that T: W’P(-r,a)- W’P(-r,a). If x,y W’P(-r,a),
then

(2.26) []Zx- Tyllw,.p(_r,a) <-M2(r)llx-yl[w,,p(_r,a),
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where M_() is the function

and K is the constant from Lemma 2.4. Let U= U(Dq,q,f)-T2 and for x,y
W’P(-r,a) define .-Tx, .9-Ty. As before, 2--.9 satisfies the assumption in
Lemma 2.5, part (2). Consequently, it follows that

(2.27)
and (2.26)-(2.27) combine to yield

Ilfx- UYllw"p(-r,a)M2(a)M2(r)l[x-y[lw"p(-r,a).
The contraction mapping principle can again be applied to obtain x wl’p(-r,a)
which solves (2.20) and x can be extended to I-r, +o) such that xt Wl’p for all t_>0.

By Lemma 2.4, Dxt W’P(O,a) for all a>0 and differentiation of (2.20) yields Dx
-Lxt+f(t ) for a.e. t>_0.

If in addition f is continuous, then Lxt+f(t) is continuous in (by the convolution
theorem). Hence Dx is continuous, which completes the proof.

Let F denote the product space F-gnLp Lp(O,a) and observe that for 3’-
(,p,f) the mappings U-U(3,)-T2(3’) defines a uniform contraction on

Lp(-r, a) (see 14, p. 6]). Moreover, if 3’ (/, p,f) and (, q, g) belong to F, then for
xLp(-r,a)

(2.28)

p(t)--/(t), -r<t<O,

(n--l+fo’{f(s)--g(s)} ds

0f ds, O<_t<_a.

Consequently, there is a constant A (independent of x) such that

(2.29) T( 3’ )x- T( X )XllLp(-r,a)Al]3’- k[I F
for all 3’, , F. Using the identity

U( 3’ )x- U(X)x- T( 3’ )( T( 3" )x ) T( X )( T( X )x )
r(3’)(r(3’)x)- r(3")(r(X)x)+ r(3")(r(X)x)- r(X)(r(X)x)

and inequalities (2.23) and (2.29), it follows that

U( 3’ )x U( X )XllLp(-r,a)-< MI( 3" )A + A] [13’
Therefore, the family (U(3,)/3’F} is continuous in 3’ and defines a uniform contrac-
tion on Lp(-r,a). An application of [14, Thm. 3.2] yields the following continuous
dependence result.

LEMMA 2.7. If X(. ;/,p,f) denotes the unique solution of (2.20) and >0, then the
mapping ( rl, p,f ) x(" l, p,f ) is continuous as a function from R tp Lp(O, tl ) into

Lp(O,t,).
LEMMA 2.8. Let L(W’P,R n) and D(C,) be atomic at s-O. If (n,q)

@() andfLp (0, +o), then the Cauchy problem

(2.30) 2( ) z( ) + (f(t), 0),
(2.31) z(0)- (, q0)
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has a unique solution z(t; r/, p,f). Iff is continuous, then z is continuously differentiable on
[0, +).

Proof. If (, p) ((), then by Lemma 2.6 the solution x to (2.20) belongs to
W’e([0,a]; ") for all a>0 and satisfies the NFDE (2.21). Let z(t)=(Dxt,xt) and
observe that z(t) @() solves the Cauchy problem (2.30)-(2.31). Lemma 2.6 also
implies that Dx is continuously differentiable if f is continuous. Since x W, for all
t_>0, the mapping :[0, +)--. Lp defined by (t)=x is differentiable, with deriva-
tive (t)=.t. Moreover, IIY(t) (t2)ll L --II:tt --2t L ,and since translation is
a conunuous operation on Lp t follows that (t) is continuous. Consequently, if f is
continuous then z(t) (Dxt, xt) is continuously differentiable.

Concerning the uniqueness of the solution to (2.30)-(2.31),it suffices to consider
the case f-----0. If z(t)=(z(t),z2(t .)) satisfies (2.30)-(2.31), then an argument like that
given in the proof of Theorem 2.2. shows that z2(t,s)=xt(s ) where x solves (2.21) and
Zl(t)’-Dxt. This establishes the uniqueness of z and completes the proof.

We are now able to prove our sufficiency result.
Proof of Theorem 2.3. The proof makes use of a result due to Phillips [27] which

states that an operator ( generates a C0-semigroup on a Banach space X if and only if
(i) (R)() is dense in X, (ii) the resolvent set p(6) is nonempty and (iii) the Cauchy
problem

 z(t)
dt

has a unique continuously differentiable solution on 0, + ).
If is defined by (2.1)-(2.2), then 6 is densely defined by Lemma 2.2. Lemma 2.3

implies that (() is nonempty and the existence of a unique continuously differentiable
solution of the Cauchy problem was established in Lemma 2.8.

Remark. 2.2. If both L and D belong to (C, n) with D atomic at s= 0, then it is
well known that the NFDE d-jiDxt-Lx with continuous initial data x0 pC has a
continuously differentiable solution x. The corresponding solution operator T(t): C C
defined by T(t)ep=xt, t>_O, defines a Co-semigroup on C (see [15]). By elementary
arguments (see [8]) one can show that if $(t) is the semigroup generated by d, then
$(t)(Dp,p)=(DT(t)ep, T(t)ep) for all t_>0. Thus, ((t)}t_>0 provides an "extension" of
the semigroup (T(t))t_>o on C.

We conclude this section with a result concerning the solvability of the NFDE for
t_<0.

THEOIM 2.4. If L(W’P,g") and D(C,g") is atomic at s=0 and s--r,
then - generates a Co-semigroup on RnLp. Consequently, is the generator of a
Co-group on Lp.

Proof. We define the "reflection" operator on Lp by Rp](s) qo( s- r), for
-r<_s<_O. Let Q:g"Lp--,g"Lp be defined by Q(,p)=(r/,Rp) and note that
Q=Q-. Define L (W’P,R") and D (C,R") by L---LR and Dt-DR, re-
spectively. The operator D is atomic at s-0 and Theorem 2.3 may be applied to the
operator defined on

6"(1)-- {(’0,())e[nLp/fDe W’’ p
by

In particular, d generates a Co-semigroup {$(t)}/_>o on lnLp.
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If we define =QtQ- and (t)-Qg(t)Q-, then it is easy to show that
((t)},>_o is a Co-semigroup on N"Lp with generator (. Moreover,

()-((,))-e()-(-)
and (n,q))-(-Lq),-q)--(n, q0) so that (--(,which proves that -. is a genera-
tor. The final assertion follows from well-known results (see [27]).

3. An equivalence theorem. In this section we establish an equivalence between
generalized solutions to NFDEs and the mild solutions to the corresponding abstract
Cauchy problem. Throughout this section we assume that L@(WI’P, Nt n) has the
representation (2.6) and D @(C, Nt n) is atomic at s=0 with the representation (2.16)-
(2.17). The operator d is defined by (2.1)-(2.2).

We consider the NFDE
d

(3.1) -’Dxt-Zxt-k-f(t), t>0,

with initial data

(3.2) Dxo =n, Xo= qg,

where (rl, q0) N L? and f ocLp (0, +oe). A solution to (3.1)-(3.2) is a function
x:[-r, +oe)- Nt" satisfying (i) xtL?

for all t_>0, (ii) x(s)=q)(s) a.e. on [-r, 0] and (iii)
for a.e. t(0, +oe) x solves the integral equation

(3.3) x(t)+ fdt(s)x(t+s)=y(t),_
where

(3.4) y(t)--+ fG(u){x(t+u)-x(u)}_ du

fo’,+ F(u)x(s+u)duds+ (u)du.

1OCIf (l,f)RnXtp and fULp (0, +m), then it follows from Lemma 2.6 that there
exists a unique solution x= x(.;r/, ,f) to (3.1)-(3.2). In particular, there is a unique
pair (y(" *l, q,f ),x(" *l, q,f )) satisfying (3.3).-(3.4)with x(s;,l, qg,f)=q(s) a.e. on
[-r,0]. If tl>0 and O<_t<_tl, then Lemma 2.7 implies at the. mapping (l, qg,f)
xt(. /,,f) from F=RnLpLp(O,t)into Lp is continuous. Since xtLp it follows
that y(t;l,,f) is continuous in and for each fixed t[O,t.l the mapping (/,q,f)--,
y(t; 1, q,f) from F into n is also continuous. Consequently, we have the following
result.

LWMMA 3.1. Let >0 be fixed and assume that ,1N, qN,fN ). (,1, q f ) in F. Then for
each [0,t]

lim Ilx,(. ;r/s,qs,fS)-x/(. ;r/,,.f)l[L,-0
and

lim Ily(t;nN,N,fN)--y(t;n,,f )[ln..
Let d be defined by (2.1)-(2.2) and consider the abstract Cauchy problem in

"Lp
(3.5) 2(t)-z(t)+(f(t),O), t>0,
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with initial data

(3.6) z(0)- (r/, ).
Since L(W’P,") and D(C,") is atomic at s-0, it follows from Theorem
2.3 that d generates a C0-semigroup {$(t)}t>_0 on nLp. Consequently, we may
define the mild solution of (3.5)-(3.6) z- z(.; ,/, q,f), by

(3.7) z( t; l, cp,f ) ( )( l, ep ) -+- fot ( t- s )( f( s ), O) ds.

Note that in general z defined by (3.7) may not be -. solution to (3.5)-(3.6) (in the
classical sense). However, we do have a basic equivalence between z and solutions of
(3.1)-(3.2) (see [2], [21 for similar results).

THEOREM 3.1. Let >0 be fixed. If ( ,1, q ) R Lp andf Lp(O, ), then

(3.8) z(t; r/, tp,f ) (y(t; ,,f ), xt(. , q,f )),
for all O<_t<_tl, where z is defined by (3.7) and (y,x) is the solution to the system
(3.3)-(3.4).

Proof. Pick (*lN,qN)() and fN to be continuously differentiable for N-
1,2,.-., such that (l]N, fpN,fN)--->(l"l,q),f) in F. For each N, Z(’;I]N, cpN,fN) defined by
(3.7) is a continuously differentiable solution of (3.5)-(3.6) (see [27]). However, in this
case Lemma 2.8 implies that z(t; 1N, qgN,fN) (Dxt(" N, qgN,fN), Xt(" tIN, pN,fU ))
(y(t; 1N, pN,fN), Xt(. ;N, pN,fN)) for all N- 1,2,.... Consequently, the continuity of
z in (/, q,f) and Lemma 3.1 yield

z(t;,l,q,f )- lim z(t;*lU, qU,fN)

lim (y(t;qU, qU,fU),x,(" ;lU, qU,fU))
N

(y( t, rl, q,f ), xt(" l, q,f )),
and the theorem is established.

For each [0, t], define the operator (t)" Lp(0, t ) R" Lp by

(3.9) (t)f--- fot(t-s)( f(s), O) ds,

and define : Lp(O,t)--, C([0, t]; NLp) by

(3.10) [f ](t)--(t)f.
The following result may be established by trivial modifications of the proof for the
retarded case (see [21 ]).

THEOREM 3.2. The operator is compact. In particular, for each t[0, tl] the
operator ( ) is compact.

Remark. 3.1. If fUf weakly in Lp(0, t), then it follows that (t)fU__> (t)f
uniformly for [0, t]. Since the mild solutions (3.7) may be written as

(3.11) z(t; ,1,q,f )-(t)(,1,q)+(t)f,
it follows that 7(t;l"lN,N,fN) converges strongly to z(t;,1,q,f) if (TN,(I)N)-">(T,fD) and

fNf weakly. Moreover, the convergence is uniform for t[0,t]. Because of this
feature and the equivalence (3.8), the formulation (3.5)-(3.7) provides a particularly
nice framework for the study of approximation techniques for optimal control and
identification of NFDEs (see [2], [3], [11], [13] for similar results for retarded systems
and [21] for neutral systems).
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4. A nonatomic D operator. In this section we show that the sufficient condition
that D be atomic (see Theorem 2.3) can in some cases be relaxed. In particular we
define Dq f_ q(s)lsl-ds with 0<a< 1. It is to be noted that D is bounded on C for
all a(0,1) and is bounded on L? if p>l/(1-a); however, D is unbounded yet
densely defined on Lp when p_< 1/(1- a). For simplicity we take L--=0 and consider
the scalar NFDE

d
(4.1) -Dxt-O, t>O, Xo--.

THEOREM 4.1. (i) For each ep C, the initial value problem

(4.2) Dxt=Dq, t>--O, x0-q

has a unique continuous solution x(. ;q0) on [0, c). The family of operators T(t)q=
xt(. ;q); t>_O defines a Co-semigroup on C.

(ii) Ifp< 1/(1-a) (i.e., a> 1- l/p) then for each (4,q)R Lp the initial value
problem

(4.3) Oxt=4, t>_O, Xo=,

has a unique solution x(.; q) defined a.e. on 0, + ). Moreover, the family of operators
S(t)(4,q)=(Dxt,xt)=(4,xt(. q)), t>_O defines a Co-semigroup on Lp.

(iii) Ifp >_ 1/(1 a) (i.e., a <_ 1/p) then (4.3) has a unique solution for 4, q ) in a
dense subset of Lp. However, the family of operators S(t) defined above fails to define
a Co-semigroup on L?.

Note that since L--= 0, the semigroup of part (ii) of Theorem 4.1 coincides with the
semigroup of Theorem 2.2 (see (2.9)). The above theorem illustrates that the choice of
the phase space for which (4.1) is well posed is dependent (in a sensitive way) on the
singularity of the operator D. The case a-1/2, p-2 is of particular interest in that (4.1)
arises in some models of aerodynamics [3]. In this case we have D densely defined and
unbounded but S(t) fails to define a C0-semigroup on L2.

The following lemmas will be needed for the proof of Theorem 4.1. The first,
stated without proof, is a well-known result concerning the solution of Abel’s integral
equation (see Hochstadt [20]).

LEMMA 4.1. Let f Lo(O, 1). Then x( ) satisfies

(4.4) fox(s)lt-sl ds=f(t) a.e. on (0, 1)

if and only if

(4.5) fo’X(s)ds- sinra_____ fotf(s)lt_ sl-ds on [0, I.

(4.6)

LEMMA 4.2. Let q C, 4 ff. Then (4.3) has the unique integrable solution

q’l" lS 7 (s)ds

sin(ar)/’t (t--s) a-1+ Jo (t--s) (s-1)ds+[-D]t-l’ 0<t_<l.

Proof. Given (4, q0) R C we define the continuous function f on [0, 1] by

(s)ds+ +l)-(u -D]
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and note that (4.3) becomes (4.4) with f defined as above. Consequently, our proof is
complete if we can show that the right-hand side of (4.,5). is differentiable where f is as
defined above. Changing the order of integration, and making several changes of
variables we have

fof(lul Is ul-)( u) du It-sl ds
dt -1 -, f_’l f0(I1-- I-ut-/’-’o-suu

d lul
)--- W

,,, [/-(-o--o-l

tUo

__9__IffO’f-t/u,a_ld,(u)du

(t-u) , (u)u.

For the second term of f, we have that

ddfot’(s-u+ 1)-(u

(-u+ (t-)-ar(u

dS O+ (t-O-u)-dO(u 1)du

’b(t-u)r,(u- 1)dudt

where

b(v)
)l-a(v--O (O+l)
dO.

The commutative property for convolutions together with a change of variables yield

b(v) fol/(l +v)( W) a--1 (1-w)-Saw.

Using this representation for b we obtain- l+t--u 9(u-1)du.

Finally, we note that

d Joe’(t-u)
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Remark 4.1. From (4.6) and 0<a< it is clear that (4.3) does not have a continu-
ous solution on [0, 1] unless /- Dp-- 0. The condition p< 1/(1 a) is necessary for
(4.3) to be well posed on R Lp.

Proof of Theorem 4.1(i). An application of Lemma 4.2 with 1--Dp yields the
unique integrable solution x(t), 0< t_< 1, given by (4.6) with /-Dp- 0. The first and
second terms of the representation (4.6) for x(t) are clearly continuous on (0, 1] and
[0, ], respectively. In order to establish the continuity of x(t) at t- 0 we note that

ep(s)ds- lim /t(1 +o)-lo-%p(-tO)dO
tO+

fo(1 + 0)-10_,qo (0) dO

(0) sin(art)"

Therefore a unique continuous solution x of (4.2) exists on [0, 1]. The "method of
steps" is employed to obtain a unique continuous solution on [0, +o). The bounded-
ness of the usual solution operators T(t); t_>0 follows from (4.6) while the semigroup
properties of T(t) and the strong continuity in follow by well-known arguments.

Remark 4.2. A modification of Levinson [25, Lemma 2.1] yields the existence of a
constant m (dependent only on IIpll so that Ix(t; )-x(s; )l<_mlt-sl for O<_s,t<_ 1).
As an immediate consequence of this inequality we have that the semigroup operators
T(t) are compact for t_> 1.

Proof of Theorem 4.1(ii). By Theorem 2.2 it suffices to show that 6(/,p)--(0,qb)
with 6(()-((’O, qg)_.RXLp/fpwl’p, Dp-rl} defines a Co-semigroup on Lp.
We proceed as in 2 and verify the conditions of Phillips’ theorem [9], [27]. Recall that
a> 1- I/p, thus D is unbounded and the density of (C) follows immediately.
Lemma 2.3 yields {)R[)>0)Cp(C).

To complete the proof we need only show that the Cauchy problem (4.2) with
p W’p has a unique solution xt(., p)= xt(p) which is continuously differentiable as
a function of into Lp. Since W’ p c C part (i) of Theorem 4.1 proves the existence of
the continuous solution (4.6) (with Dp-I) on 0, o). We proceed to show xt(q9)-
.ct(p) Lp for 0_< t_< and the desired result will then follow by the method of steps.
Applying Lemma 2.4 to the second term in (4.6) we note that this convolution lies in
W’P[0, 1] when pWl’p. The following lemma completes our proof of part (ii) of
Theorem 4.1.

LEMMA 4.3. Let pW’p and define h(t)=f 1/(t-s)lt/slp(s)ds for O<_t<_ 1,
then t( ) Lp(O, 1) provided a> 1/p.

Proof. The change of variables O=-s/t gives h(t)=fd/t(1 +O)-10-%p(-Ot)dO;
therefore we have

t- fo dp (- Ot ) dOt+ p(-1)- /t(1 "-[-0)-10
or, equivalently,

(4.7) /(t)- t+lP(-1)-
s -7
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For convenience we denote the three terms on the right side of (4.7) by I(t), 12(t) and
13(t), respectively. Since a > 1/p, I Lp(0, 1). Since 1/p + a < an application
of Lemma 7.23 of Adams [1] to 12 yields

folll2(t)[Pdt<--fo ta-2ftsl-al6P(-s)ldSoo dt<_

As for 13, we take arbitrary q Lq and consider

l/q 1/p

where the last inequality is a consequence of Adams [1, Lemma 7.23]. Thus, I Lp(0, 1)
with norm not larger than [1/((1/p) + a 1)]( fo Iq(-s)l’ ds)/’.

Proof of Theorem 4. l(iii). This follows immediately from Lemma 4.2 and Remark
4.1.

Remark 4.3. If a 0 in the above example then local L solutions of (4.1) coincide
with those of

(4.8) x(t)=x(t--1), t>0, x0=q0.

If 9 C, (4.8) has a continuous solution on (0, m) if and only if (0)--(-1). Thus the
problem (4.8) for C is in general, ill-posed. Similarly if q Lp then

fx(t+s)ds-l,_ t>0, x0-q

has a unique solution on (0, +o); however, (,/,)----(0,) with domain ((,/,q)R
LplDw-n) fails to generate a C0-semigroup on R Lp since D is a bounded functional
on Lp. Finally, if x(t; q) denotes the solution of (4.8) for and q Lp, then the
solution operator U(t) xt(.; q) defines a strongly continuous group of isometries on

Lp, l_<p< .
5. Concluding remarks. The results in [}2 extend and refine the paper by Delfour

[10]. We established that if d defined by (2.1)-(2.2) generates a C0-semigroup on

nLp, then both L and D belong to (W’P, n) and D cannot belong to (Lp, Rn).
In order to obtain general sufficient conditions, we imposed stronger conditions on D;
namely that D6b(C, n) and has an atom at s--0. However, in 4 we gave an
example of a singular integral equation where D(C; R n) was nonatomic and yet d
generated a C0-semigroup on the product space n tp. Consequently, the assumption
that D have an atom is not necessary. These observations lead to the following open
question: Is there a set of conditions on L and D that are both necessary and sufficient
for d to generate a C0-semigroup on ntpg. It is clear that these conditions must be
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stronger than the necessary conditions given by Theorems 2.1 and 2.2 yet weaker than
the sufficient condition required in Theorem 2.3.

The equivalence between the NFDEs and the abstract integral equation (3.7)
provides an excellent framework to study approximation techniques for neutral sys-
tems. We shall investigate particular approximation schemes in a future paper. How-
ever, we note that Kappel [21] has already made use of this basic idea in his study of
approximation schemes for certain NFDEs.

Perhaps one of the most interesting aspects of this paper concerns the integral
equation discussed in 4. For the case where the integral equation generates a dynami-
cal system on Rn Lp, there is again the possibility of using general approximation
schemes for well-posed problems to study numerical methods for these singular type
integral equations. This problem certainly seems worthy of further study.
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LOCAL EXISTENCE THEOREMS FOR NONLINEAR
DIFFERENTIAL EQUATIONS*

NORIMICHI HIRANO

Abstract. Let X be a real Banach space and UcX be an open set. In this paper, we consider the initial
value problem:

du
(O<_t<_r),

where G: C(0, T; U)L(0, T; X) is a given mapping and A is a given m-accretive set such that (I+XA)-is compact for all >0. We also study the problem above under the assumption that A is weakly closed and
G is a pointwise defined function.

1. Introduction. Let X be a real Banach space with norm II, UcX be an open
set. In this paper we study the existence of local solutions to the initial value problem:

(1.1)
du(t) +’Au(t)g(t u(t))dt

u(O)-uo.

O<_t<_T,

where A CXX is m-accretive, g is a continuous mapping from [0, a] U into X and
u0

Also, we study the generalized problem of (1.1):

(1.2)
du(t) -Au(t)G(u)(t)dt
u(O)-uo.

O<_t<_T,

where A CXX is m-accretive, G is a mapping from C(0, T; X) into L(0, T; X) and
Uo

It is well known that if A is linear and g satisfies a local Lipschitz condition, then
local solutions of (1, 1) exist (see [9]). Also it is known that if A is linear, g(t,-) is
dissipative for all O<_t<_a and g maps bounded sets into bounded sets, then a unique
solution of (1.1) exists (see [7]). In the case in which G satisfies an appropriate Lipschitz
condition, the initial value problem (1.2) was studied by Crandall and Nohel [8], while
Pazy [12] studied the problem (1.1) in the case in which A is linear and generates a
semigroup of compact operators. Recently Vrabie [13] extended Pazy’s result and
established a local existence theorem for the problem (1.2) in the case in which G is
continuous and A generates a semigroup of compact operators.

In {}2, we consider the problem (1.2) in the case in which (I+ ;kA)- is compact for
all 2>0. The proof of the result in {}2 is given in {}3. In {}4 we study the problem (1.1)
under the assumption of weak closedness of A. Throughout the rest of the present
paper, X is a real Banach space with norm I1" II and X* is its dual space with the
corresponding_norm I1,. " and ""_indicate strong and weak convergence,
respectively. D denotes the closure of D and coD denotes the closed convex hull of D.
The normalized duality mapping J of X into X* is given by

(1.3) J(x) (x* g*, (x, x*) -Ilxll IIx* -Ilxll
2 )

*Received by the editors June 22, 1981, and in revised form October 30, 1981.
Department of Information Sciences, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo,

Japan.
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for xCX. For each (x,y)CXX, define

(1.4) (x,y) + sup((x,j): j CJ(x)).
If X* is assumed to be a uniformly convex Banach space, then J is single valued and
uniformly continuous on bounded sets. If A CXX and x c X, we define Ax (y c X:
(x,y) CA), D(A)=(xCX: Axv }, R(A)= t..J (Ax: xCD(A)), and [Axl--inf(ll yll:
y CAx}. A subset A CXXis said to be weakly closed if (xx,yx) CA, xx--.x, and Yx--’Y
implies (x,y) CA. For x CX and r>0, we denote by B(x,r) the closed ball with center
x and radius r. Let T>0. C(0, T; X) denotes the space of all continuous functions from
[0, T] into X. X denotes the space X equipped with the weak topology, and C(0, T; Xw)
denotes the topological vector space of functions defined on [0, T] with values in X and
continuous in the weak topology. LP(O, T; X) denotes the space of all X-valued p-inte-
grable functions defined almost everywhere on [0, T]. For each u CLl(0, T;X), we
denote by var(u: [0, t]) the variation of u on [0, t].

We restate here some results of the theory of evolution equations which are used in
the present paper. Let A CXXbe an m-accretive set and fCL(O, T; X). A function u:
[0, T] --, X is called a strong solution of the initial value problem:

du(t__) +Au(t)f(t), O<--t<--T,
(1.5) dt

u(0)=u0,

if u is differentiable almost everywhere on [0, T], absolutely continuous, and satisfies
u(0)=u0 and u’(t)+Au(t)f(t) almost everywhere on [0, T]. An integral solution of
(1.5) is a function v: [0, T]-X such that v is continuous on [0, T], v(0)=u0 and
satisfies the inequality:

(1.6) Ilv(t) xll
: z ft(f(s) -y ) +<_llv(s)-xll +2 ,v(s)-x as

for all x,y)cA and O<_s<_t<_T. Every strong solution of (1.5) is also an integral
solution of (1.5). If u and v are integral solutions of (1.5) corresponding to h c L(0, T; X)
and g C LI(0, T; X), respectively, then

(1.7)

It is known that the initial value problem (1.5) has a unique integral solution [4], [5]. In
particular, if A is continuous with D(A) X and f is continuous, then (1.5) has a unique
strong solution.

2. The main result. In [13], Vrabie established a local existence theorem for in-
tegral solutions to the initial value problem:

(2.1)
t__.___._du( +Au(t) G( u )(t)dt
u(0)=u0,

O<_t<_ T,

under the condition that A generates a nonlinear semigroup S(t): D(A) D(A) with

S(t) compact for all t>0, while UCX is open and G: C(0,a; U)-, L(O, a; X) is
continuous. Concerning Vrabie’s result, we restate the necessary and sufficient condi-
tion for S(t) to be compact for all > 0.
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THEOREM (Br6zis [6]). Let S(t) be the semigroup generated by A. Then the following
properties are equivalent.

(i) For each t>0, S(t) is compact, i.e., S(t) maps bounded sets of D(A) into

relatively compact sets of X.
(ii) (iia) For each 2>0, (I+A)-1 is compact, i.e., (I+A)-1 maps bounded sets

ofX into compact sets of X;
(iib) for each bounded set B in D(A), the family (S(.)x: R+ --+ X: xB} is equicon-

tinuous.
The condition (iib) restricts the applicability of Vrabie’s result essentially to the

"parabolic" problem. In this section, we consider the problem (1.2) under the condition
(iia) which applies to a broad class of equations.

THEOREM 2.1. Let X be a real Banach space and A CXX be an m-accretive set
such that (I+,A)- is compact for all X>0. Let UCX be an open set and G: C(0,a; U)

C(O, a; X) satisfy the following conditions:
(C1) G; C(0,a; U) C(0,a; X) is continuous.

(C2) There exists a function k: (0,)(0, ) such that,

(2.2) var(G(u): [O, tl)<_k(d)(1 +var(u: [0,t])),
whenever u C(0, a; U) is of bounded variation and u(t)ll <_dfor all O<_t<_a.

Then for each uo D(A) fq U, there exists T (0 ,a] such that (1.2) has an integral
solution on [0, T].

COROLLARY 2.1. Let X be a reflexive Banach space and A, U be as in Theorem 2.1.
Let G: C(O, a; U)L(O, a; X) satisfy (.C2) and the following condition"

(CI’) G: C(0,a; U)L(0, a; X) is continuous.
Then for each uo D(A)fq U, there exists T(0,a] such that (1.2) has a strong

solution on [0, T].
COROLLARY 2.2. Let X,A, U and G be as in Theorem 2.1. In addition, assume that A

is linear. Then for each uo D(A) V) U there exists T (0 ,a such that (1.2) has a strong
solution u C(O, T; U) and it satisfies

u(t)-S(t)Uo/ fots(t-s)G(u)(s)ds,
for all 0 <_ <- T, where {S(t) } is the semigroup generated by A.

Remark. Condition (C2) was introduced by Crandall and Nohel [8] to guarantee
the Lipschitz continuity of solutions of (1.2). In Theorem 2.1, we need (C2) essentially
to show the existence of the solutions of (1.2).

3. Proot of Theorem 2.1. First we define operators

Jn-(l+n-A) -’, A,=n(I-J,), n=l,2,....

It is well known that the J, and A are single valued and uniformly Lipschitz continu-
ous with

IIJnx-Lyll llx-yll,

for all x,yX. Also it is known that for each n>_ 1, A. is m-accretive and IlAnx
for all xD(A). Let (Sn(t)}t>o be the semigroup generated by A,. Then for each
xD(A),

S,(t)x--,S(t)x as n o
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uniformly on a bounded interval (see [3] for details). Let uoD(A)fq U. Next we
choose positive numbers M,r and T such that B(uo,r)C U, k(r+ II u0 [I)T< and

(3.1) Ila(u)(t)l[<_M a.e. on [0, T],
for all u C(0, T; U) with u(t) B(u0, r) for all 0 < t_< T, and in addition,

(3.2) TM/ lls( )Uo- u011-<r
for all 0_< t_< T. Since G is continuous and S(t) is continuous at the origin, it is possible
to choose such positive numbers M, r and T. Now, we set

(3.3) K= {uC(O,T; u)" u(t)B(uo,r) for all O<_t<_T},
(3.4) K(V)= (uK: var(u: [0, T])_<V}
for each V>0, and define an operator Q and a sequence of operators {Q,) by the
method employed in [13]. Let n_> and uK. Then the initial value problem

dv(t) _Anv__G(u)(t ) 0<t<T,(3.) dt
v(0)=Uo

has a unique strong solution v C(0, T; X). Also the initial value problem

dw(t) Aw(t)G(u)(t) 0<t<T,at(3.6)
w(0)=Uo

has a unique integral solution w C(0, T; X). Here we set v Qnu and w-- Qu. Then Qn
and Q are operators from K into C(0, T; X).

LEMMA 3.1. There exists Vo>0 such that

QK( Vo ) C K( Vo ).
Proof. In [13], Vrabie proved that QKCK. Therefore it is sufficient to show that

there exists Vo>0 such that var(Qu: [0, T])<_Vo for all uK with vat(u: [0, T])_<Vo.
Let uKwith bounded variation. By (1.6) and (1.7), we have that for each 0_<h _< T,

(3.7)

IIQu(t/h)-Qu(t)ll <- Ila(u)(s)llds/hl,uol/ IIa(u)(s/h)--a(u)(s)]lds

(see [3, p. 132]). Then from (3.1) and the condition (C2) we obtain

(3.8) var(Qu" [O,Z])<--Z(M/luol/k(R)(l+var(u" [0, T]))),
where R r+ il Uo II. Therefore if we set V0 T(M+ IAuol / k(R))( Tk(R))- , it fol-
lows that QK(Vo)

Here we note that the condition (iia) in [}2 is equivalent to the following condition
[6]:

(iia’) For each M’>0 the set

(xD(h); Ilxll<_M’ and Ilyl[<_M for someyAx}
is relatively compact in X.

In the following lemma, we use the condition (iia’) instead of (iia).
LMM, 3.2. The set (..J,{J,,Q,,u(t); O<_t<_T, uK(Vo)} is relatively compact in X.
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Proof. By the same argument as in the proof of Lemma 3.1, we have that for each
u K(Vo) and n_> 1,

(3.9) IIQ,u(t+h)-Q,u(t)ll<_h(M+lAuol+k(R)(1 +var(u" [0, T])))
<-h(M/lauo[/k(R)(1 / Vo)).

Since Qnu is differentiable on [0, T], (3.9) implies

on [0, T l,

while, by the definition of Qn,

(3 11)
dQnu(t) +AnOnu(t)-G(u)(t )dt

on [0, T].

Therefore we have that for every u K(V0) and every n _> 1,

(3.12)
IlAnQ"u( )[[ -< dQnu( +lla(u)(t)ll

<--2M+[auol+k(R)(1 + Vo) on [0, T].
Next we show that the set B-(.Jn(JnQnu(t); O<_t<_T, uK(Vo)} is bounded. From
(1.6), we have

(3.13) [IQnu(t)-uoll<- fot(llG(u)(s)ll+lAuol)ds<-r(M+lAuol),
for all u K(Vo) and 0 _< _< T, while by the definition of An,

(3.14)
Ila.u( ) -LO.u( )ll <__n- lllAnQnu( )l

2M/lAUol/k(R)(1 / Vo) on [0, T],
for all u K(V0) and n _> 1. From (3.13) and (3.14), we obtain that for each u K(Vo),
n_> and O<_t<__T,

(3.15) IIJnQnu(t)II<-IluolI+(2+T)M+(+T)IAUoI+k(R)(I+Vo).
Now we put M’= Uoll /(2/ T)M+(1 + Z)lauol/k(R)( / Vo). Then sinceJQnu(t )
D(A) and A Qnu(t ) hJ Qnu(t) for all u K(V0) and 0 _< t_< T, we have

Ilxll_<M’ and Ilyll_<M’ for someyAx}.
Therefore by (iia’) we obtain that B is relatively compact. Vq

Proof of Theorem 2.1. A function u K(Vo) is an integral solution of (1.2) if it is a
fixed point of Q. As in the proof of [13, Th. 2.1], we show the existence of the fixed
points of Q by using Schauder’s fixed point theorem. It is easy to see that Q is
continuous (see [13]), and K(V0) is closed convex. To use Schauder’s fixed point
theorem, we show that QK(Vo) is relatively compact in C(0, T; X). From (3.7), we have
that for each u K(Vo) and 0 _< h _< T,

(3.16) ][Qu(t+h)-au(t)ll<-h(M+lAuol+k(R)(1 + Vo)).
Therefore QK(Vo) is equicontinuous in C(0, T; X). Then it is sufficient to show that the
set B’-{Qu(t);uK(Vo), O<_t<_T} is relatively compact in X. Fix uK(Vo) and
[0, T]. Since Qnu(t) converges to Qu(t) (cf. [3, Chapt. III, Lem. 2.1]), and

lim IlOnu( -JnQnu( )[ limn-’ilAnQnu(t)ll
n n
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we obtain that Qu(t)B- Un{JnQnU(t); u@g(Vo) O<_t<_T}. Since B is compact in
X, the set B’ is relatively compact in X. Therefore by Ascoli’s theorem, we have that
QK(Vo) is relatively compact in C(0, T; X), which completes the proof.

Proof of Corollary 2.1. Since X is reflexive, (3.9) implies that Qnu is differentiable
almost everywhere on [0, T] for uK(Vo). Then by the same argument as in the proof
of Theorem 2.1, we obtain the conclusion of Corollary 2.1.

4. The case where A is weakly closed. In this section, we consider the problem
(1.1) under the assumption of weak closedness of A. First we note that each function f:
[0,a] U- X(UCX) generates a function G: C(0, a; U)-* C(0,a; X).

THEOREM 4.1. Let X be a reflexive Banach space and A CXX be a weakly closed
m-accretive set. Let UCX be an open set and g: [0, a U-X satisfy the following:

(C3) g: [0,a] U-. X is a continuous mapping;
(C4) g(t, .) is weakly continuous .for all O<_t<_a, i.e. if xxx, then g(t, xx)-g(t,x )

for all O<_t<_a.

In addition, assume that the G: C(0,a; U)- C(0,a; X) generated by g satisfies (C2). Then

for each uoD(A)fq U, there exists T(0,a] such that (1.1) has a strong solution on

[0, T].
COROLLAP,Y 4.1. Let X, U and g be as in Theorem 4.1. Let A be linear and

m-accretive. Then for each uo D(A) fq U, there exists T (0, a such that (1.1) has a

strong solution u C(O, T; U) and it satisfies

(4.1) u(t)-S(t)Uo+ fts(t-s)f(s,u(s))ds, O<_t<_T,
"o

where (S(t)) is the semigroup generated by A.
To prove Theorem 4.1, we need the following lemmas.
LEMMA 4.1. Let X be reflexive. A subset D C C(0,b; Xw) is relatively sequentially

compact if the set (h(t): h D, 0 <_ <_ b) is bounded and D is equicontinuous in the norm
topology.

Lemma 4.1 is a variant of the Ascoli theorem (see [1, Lem. 4.4]).
LEMMA 4.2. Let X be reflexive and VCX be an open set. Let f: [0, b] V- X be a

continuous function such that f(t, ) is weakly continuous for every 0 <- <_ b. Then for each
vo V, there exists T (0, b] such that the initial value problem

dv(t)--f(t v(t)) 0<t<T,
(4.2)

v(0)=v0
has a strong solution on [0, T].

Proof. Let vo V. Since f is continuous, we can choose positive numbers r’, M’ and
T’ such that

(4.3) IIf(t,v)ll<_M’ for all (t,v)[O,T’lB(vo,r’).
By [ll,Lem. 1] we have that for given e>0 there exists a continuous function f:
[0, T’] B( r’, v0) -’ X such that

(4.4) sup{llf(t,v)-L(t,v)ll; (t,v)[O,T’]B(vo,r’)} <e,

and a strong solution w C(O, T’; X) of

dw(t)--f(t w(t)) 0<t<r’,
(4.5)

w(0)=v0
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exists. (4.4) implies that

(4.6) w(t)- fotf(s,w(s))ds <eT’, 0<t<T’

and

for all 0_< t_< T’.

Therefore from Lemma 4.1 we obtain that there exists a sequence
C(O, T’; B(r’, Vo)) such that Un(O)--Vo for all n_> 1,

(4.8)

for all n _> and u converges in C(0, T; Xw) to a point u C(O, T; Xw). Then it is easy to
see that the limit point u of (un) is a strong solution of (4.2). []

LEMMA 4.3. Let X be reflexive and A CXX be a weakly closed m-accretive set.
Then:

(a) For each n >_ 1, A is weakly continuous, i.e., An: X X is continuous.

(b) If (Xni) CX such that Xn,--.x and Anixniy, as i- o, then y Ax.
Proof. (a) Let n _> 1. It is sufficient to prove that Jn is weakly continuous. Let xx--.x

and putyx=Jnxx. Then there exists (zx) such that zx n-Ayx and xx=yx +zx. Since J
is a Lipschitz mapping, (Yx) is bounded and so {zx) is bounded. If we choose a subnet

(Yx.) c (Yx} and a subnet (zx. } c (zx} such that Yx--’Y and zx2z, respectively, then
from the hypothesis we have that z GAy. Therefore we obtain that Yx =JnXx--’Jnx=Y"
This completes the proof of (a).

(b) Put yn,=Jn,Xn, and Zn,--AnXni for i_> 1. Then Zn,AYn, for all i_> 1. Since (zn; }
is bounded and

(4.9) xn--Yn--(I--Jn )Xni--n;1Anixn--n"12ni

for all i_> 1, we have that yni--.x and 7.n,---’y. Then the hypothesis implies y Ax.
Proof of Theorem 4.1. Let G be the function generated by g and let M,r, T, Vo,

K,K(Vo), Q and Qn be as in 3. From Lemma 4.2, we obtain that there exists a
sequence (un) C C(0, T; X) such that Qnun=un for n_> 1. Since each u is of bounded
variation, by (C2) and [3, (2.19), p. 132] we have that

var(un: [0, T])--var(Qnun: [0, T])
(4 10) <_T(M/IAuo]/k(R)(1 /var(u" [0, T]))).
Then it follows that

(4.11) var(u," [O, TI)<_T(M+IAuoI+k(R)(I+Vo))<_Vo.
Therefore (un)CK(V0). Then by (3.9), (Un) is equicontinuous in the norm topology.
Also from (3.13), we have that the set {Qnun(t): O<_t<_T, n_>l) is bounded in X.
Therefore (un} is relatively compact in C(0, T; Xw). Let
which converges in C(0, T; Xw) to a point u C(O, T; Xw). Hence we set v(t)-weak-
limAnun,(t) for all 0 _< t-< T. Then we have

u(t) weak-lim un,(t)

(4.12) weak-lim fot(-An,un,(s)+ g(s, un,(s)))ds

f0’(- +
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By Lemma 4.3, v(t)Au(t) for all O<_t<_.T. Therefore we obtain that

(4.13) du(t) -Au(t)g(t u(t)) a.e. on [0 T]

Since u(0) weak-lim un,(O) = Uo, u is a strong solution of (1.1).
Remark. Any linear m-accretive operator is weakly closed since such an operator is

a closed operator. In Hilbert spaces, an m-accretive set A is weakly closed if A satisfies
the condition (iia).

5. Examples. Throughout this section, is a bounded open subset of R" with
sufficiently smooth boundary F. Hk() and H() stand for Sobolev spaces on ft.

Example 1. We consider a nonlinear differential operator of the form

(5.1) Au- Z (-1)l’lD"A,(x,u, ",D’u),

where A,(x, z) are real functions defined on f R. A,(x, z) is measurable in x and
continuous in z for all a. In addition, we impose on A the following condition:

(5.2) (A,(x,z)-A(x,y))(z-y)>_w( [za--yal2),
for (z,y)R"R", where w>0.

Now we consider the nonlinear integrodifferential equation [13]:

(.3) Ou )"D"a,(,u u)+f0 )g( ()) 0,+ (- ,. .," ’a(t- ,u

with Dirichlet bounda conditions

(.4) "u=0 on [0, ] xr eor Iln-
and initial condition

(.) u(O,)=Uo(X ) on .
By using Theorem 2.1, we improve [13, Th. 6.4]:
TnOM 5.1. Let H=L(), V=H() and A: V V be the nonlinear operator

defined above. Let a: [0,)R and g: [0, )R" R be continuous functions. In addition,
assume that

(5.6) a’ /o(0, o),
(5.7) Ig(t,x)l<-b(t)llu(t)ll+c,
where b oe(O, o) and c> O.

Then for each xoL(f), there exists T>0 such that (5.3), (5.4) and (5.5) have a
strong solution on [0, T].

Proof. Let AH be a operator defined by

(5.8) AHU--Au foruD(AH)=(uV:AuH}.
Then AH is a maximal monotone operator on H [3], and (5.3), (5.4), (5.5) can be
rewritten in the form

(5.9) u(O) =Uo,
where G(u)(t)-- f)a(t-s)g(s, u(s))ds.
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Since An is coercive by (5.2) and V is compactly imbedded in H, we can see that
(I+XA)-l is compact for X>0. It is easy to see that for each T>0, G" C(O,T;H)
C(0, T; H) is continuous. Then in order to apply Theorem 2.1, it is sufficient to show
that G satisfies the condition (C2). Now fix T’ >0. Then for each 0_< t_< T’,

(a(O) + a’ [[,?(o,T’))[[g( u
(a(O) + + cT’).

Therefore (C2) holds, which completes the proof. 7q

Example 2. Let A be as in Example 1. We consider the following differential
equation:

--+ E (--1 A(x u "’,D"u)+ b(x)u(t,x)dx u(t x)-O,

where b L2(f), with boundary conditions (5.4) and initial value condition (5.5). Then
(5.10) and (5.4) can be rewritten in the form:

du
(5.11) -d-[+AHu(t)+(b,u)u(t)--O, O<_t<_T,

where (., ) stands for the inner product in H.
Then by .applying Theorem 2.1, we can see that there exists T>0 such that (5.10),

(5.4) and (5.5) have a strong solution on [0, T].
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CONFORMAL KILLING TENSORS AND VARIABLE SEPARATION
FOR HAMILTON-JACOBI EQUATIONS*

E. G. KALNINSf AND WILLARD MILLER, JR.

Abstract. Every separable coordinate system for the Hamilton-Jacobi equation gij W.Wj.=0 corresponds
to a family of n- conformal Killing tensors in involution, but the converse is false. For general n we find a
practical characterization of those families of conformal Killing tensors that correspond to variable separa-
tion, orthogonal or not.

1. Introduction. This paper is devoted to the separation of variables problem for
the Hamilton-Jacobi equation

(1.1) giJOx,W)WxJ:O, gij:gi, <_i,j<_n

and the explicit relation between variable separation and second order conformal
Killing tensors on the (local) manifold V with metric tensor {gi} analytic in the local
coordinates {x}. (Here all coordinates and tensors are complex valued and we adopt
the notation in Eisenhart’s book [1].) Equation (1.1) is intimately related to the separa-
tion of variables problem for the Laplace or wave equation,

Oxi(V-giJOxj)--O g:det(giy ).

It is straightforward to show that any coordinate system yielding (product) R-separa-
tion of (1.2) also yields (additive) separation of (1.1). (We have also shown for flat
space and n 3, 4 that the converse holds, i.e., the two equations separate in exactly the
same coordinate systems, orthogonal or not [2], [3].)

In 1891 Stickel [4] showed that (1.1) is additively separable in the orthogonal
coordinate system {x) if and only if there exists a nonzero function Q(xj) such that
the metric d2 where

(1.3) ds2-gijdxidxJ-Hj2(dxJ)2-Qh(dxj)2-Qd2

can be expressed in Stiickelform:

1,...

where is a Stickel determinant, =det(0k), (Ok(Xk)) is a Stickel matrix (row k
depends only on the variable xk), and i is the (i, 1)-cofactor of this matrix. Thus the
condition for additive separation of (1.1) in coordinates {xj) is that ds 2 is conformal to
a metric d2 in Stickel form. Separable solutions of (1.1) take the form W=iB(xi).

Moon and Spencer [5] show that (1.2) admits orthogonal R-separable solutions,
i.e., solutions of the form -eHT:Ai(xi) where R is a fixed function, if and only if
(1) ds 2 is conformal (with factor Q-) to a Stckel form metric d2, (2) that

flo
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and (3) that e R satisfy

(1.6)
@jl

j=l -J Oxj( fJO#e-R) +ae-R--O

where a is a constant. (See, however, [6] for a discussion of condition (1.6).) In practice,
to determine the orthogonal R-separable coordinate systems for the Laplace equation
on the manifold V, one first finds all orthogonal separable systems for the Hamilton-
Jacobi equation (1.1) and then determines for each system whether or not conditions
(1.5) and (1.6) can be satisfied. For nonorthogonal coordinates the relationship is
similar but more complicated, see [2], [3].

The relation between variable separation for (1.1) and conformal Killing tensors
on V is most conveniently presented in terms of the symplectic structure on the
cotangent bundle 17" of this manifold. Corresponding to local coordinates (xj) on V
we introduce coordinates (xJ,p} on l?n. New coordinates (k(x)} on V correspond to
coordinates (k,.k) on Pn where pk=p)Xt/Ok. The Poisson bracket of two functions
F(x,p), G(xJ,pj) on l? is given by

(1.7) F, G )x,FOpG- Dp,F)x,G.
Let
(1.8) H=g’+p,p+.
A first order symmetry of (1.1) is a linear function L in the momenta pj.,

(1.9) L-9(x)pj
such that

(1.10) [L,H]--p(x)H
for some analytic function O. Clearly, L is a symmetry if and only if (J) is a conformal
Killing vector for V [1 ]. Indeed it is straightforward to show that (1.10) is equivalent to

(1.11)
where ;,j. is thejth covariant derivative of i" Similarly a second order symmetry of (1.1)
is a quadratic function

(1.12) A-ai+(x)p,p, ai+-a+i,

such that

(1.13) A,H] ( Q’(x)p,)H
where the (Q) are analytic. Condition (1.13) is equivalent to

(1.14) a y,k + aki,j + ayk,i - (Q gjk+ Qk g,y+ Qygki )
i.e., (aij) (or (aij)) is a conformal Killing tensor of order 2. It is obvious that p(x)H is a
(trivial) conformal Killing tensor for any analytic function p. Thus by addition of
multiples pH of H if necessary, one could assume that every nontrivial conformal
Killing tensor is traceless, a=0. (We shall ordinarily not make this assumption.) Note
that then the Qi can be expressed simply in terms of the components of a traceless A:
Qi-(4/(n + 2))a For future use we also note that the condition for two quadratic1,l"
functions A and B-bijpip to be in involution, i.e., [A, B]-0, is

b

_
bi,atk + bki, _[_ bjk(1.15) aij,lblk -+- aki,lbJ+ ak,t a ,la



128 E. G. KALNINS AND WILLARD MILLER, JR.

We can now state the basic relation between separation of variables for (1.1) and
conformal Killing tensors" To every orthogonal coordinate system (yi) which permits
additive separation of variables in (1.1), there correspond n- second order conformal
Killing tensors A1,-..,A,_ which are in involution and such that (H,A,...,A,_) is
linearly independent. The separable solutions W=E=W(k)(yk) are characterized by
the relations

(1.16) H(yJ,pj)-O, A,(yJ,ps)-t,
where ,-..,k,_ are the separation constants. The basis tensors A are of course not
unique, but the space spanned by these tensors is uniquely determined. (A new proof of
this correspondence is contained in Theorems 4 and 7 to follow. Expressions (1.16) are
then obvious from Stickel’s construction.) For nonorthogonal separable coordinates,
the same characterization is valid except that one or more of the A are conformal
Killing vectors. For n_<4 all possible separable systems and their corresponding confor-
mal Killing tensors have been explicitly determined [2], [3].

A remaining problem with the theory is that there exist involutive families of n-
conformal Killing tensors that are not related to any separable coordinate system. In
this paper we give a complete solution to this problem. That is, we provide directly
verifiable necessary and sufficient conditions for a family of conformal Killing tensors
to determine a separable coordinate system for (1.1), and we show how to compute the
separable coordinates from the given tensors. In 2 we study the case of orthogonal
separable coordinates where the Killing tensor characterization is especially simple.
Finally, in 3 we treat the general nonorthogonal case. The results of this paper are a
nontrivial extension of the results in [7], [8] for the equation g’J OiWjW=E with E 4:0.

2. The orthogonai case. Let {xJ} be a local orthogonal coordinate system on V
and let ds2-gijdxidxJ-nj2(dxJ)2 be the metric for V as expressed in these
coordinates. It follows from (1.3) and (1.4) that the Hamilton-Jacobi equation (1.1) is
separable in the {xi} if and only if there exists an analytic function Q(x) such that
H-Qh where the metric dg2-h(dx)2 is in Stackel form. We begin our study of such
"conformally Stickel" metrics by deriving a more convenient characterization for them.

It is well known that the metric dg2 is in Stickel form with respect to the
coordinates {xJ } if and only if the conditions

are satisfied [1,App. 13]. Let dg K(dxS) where K 2 2 2--h/h.; in particular K.- 1. A
straightforward computation using (2.1) yields

LEMMA 1. If the metric d-h(dxJ) is in Stickel form then so is the metric
d2 --.h 2d2.

Now let ds-Hj.2(dx)- Qd2. If d2 is in Stickel form, then by Lemma the
metric H-2ds2-h2d2 is also in Stickel form. Conversely, if H-ds2 is in Stickel
form then ds2-Hff(H- ds) is conformal to a Stickel form metric. This proves

LEMMA 2. ds2=Hj2(dxJ)2 is conformal to a Stiickel form metric if and only if the
coefficients I-I. satisfy the conditions

021nK/2 01nK/2 01nK/2 01nK 01nKf 01nKi2 01nK(2.2) ++=0, jk,
Ox Ox k Ox 3x k 3x xk 3xk Oxj

where Kf- 2 2t6
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Note that for i--n, equations (2.2) are satisfied identically and for k--n they read

lnKi2 ln(K/Ki)
0 jvn(2 3) 021nK/2

t-
)xJOx OXj OX

THEOREM 1. Let A be a second order conformal Killing tensor such that the n roots

O(x),..., p,(x ) of the characteristic equation

(2.4) det(aij- Pgij ) --0
are pairwise distinct. Furthermore, suppose the eigenvector fields corresponding to these n
roots are normalizable, i.e., there exists a coordinate system (yJ) on V, such that

(2.5) ds2- gijdxidxJ-nj(dyj)2, -aijdxidxJ-pjnj2(dyj)2.
Then the Hamilton-Jacobi equation (1.1) is separable in the coordinates

Proof. Conditions (1.14) for A are equivalent to

(2.6) Oy,ln( ,p!- pk )H
-0, 14:k.

Setting/ O- O,, a 1,. ., n 1, we see that these equations can be written in the
form

(2.7) b) 0y.ln -- 0,

or

0/t- (/a-)0ln(Hff) +0InHn2

(2.8)

The integrability conditions 00j.=0j.0/ for the system (2.8) can be written in the
form

(2.9)

/-/.

(/-/) vln -0ln v

In -0,

ln( H2)H +ln
a, fl, 3’ pairwise distinct,
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Since the pg are pairwise distinct by assumption, we have #-4=0 for a4 fl, so
conditions (2.9) become

OlnK OlnK2 OlnKi2 OlnK 0, j:/:k(2.10) O21nK? olnK? OlnK?+q-
yJ0yk yJ yk y y’ y, y

where K- 2 2Hi/HA i-1,...,n. It follows from Lemma 2 that Hj.(dy)2 is conformal
to a Stickel metric, hence (1.1) separates in the coordinates (yJ}. Q.E.D.

Note that if (1.1) is separable in the coordinates (yJ}, then equations (2.10) hold
and the integrability conditions for the system (2.8) are satisfied identically. Thus (2.8)
admits a basis of n- vector solutions (p}t)}, fl- 1,. .,n- 1. This proves

THEOREM 2. Necessary and sufficient conditions that the metric ds2-ggjdxidxj

=H/(dyJ)2 on V is conforma! to a Stickel form metric with respect to the coordinates
{ya} are:

1) The space admits n-1 conformal Killing tensors a, fl= 1,...,n-1 such that
the n tensors (gij, a}-#) } form a linearly independent set at each point x.

2) The roots p(’t)for each of the characteristic equations det(aj)- p(B)gij)--O are
simple.

3)
(2.11) (a)--p(h#)gij)Xi(h)--O, h--1,...,n, fl--1,. .,n--1,

where p(l#, .,p(f are the roots ofaf and )i(h OXi/Oyh.
Note that condition 3) requires the vector fields ki(,...,kg(n to be normal and to

satisfy equations (2.11) for all ft. Theorem 2 and its proof are patterned after the
corresponding theorem due to Eisenhart which relates Killing tensors and (true) St/ickel
forms [1], [9]. The theorem is not very useful in a practical sense because of the
difficulty in deciding when the vector fields ()ki(h)} defined by (2.11) are normalizable,
i.e., when there exists an orthogonal coordinate system (y) such that ()q(h)) is orthog-
onal to the coordinate surface yh const, for each h 1,. ., n.

To solve this problem we recall some classical results in differential geometry that
can be found in Eisenhart’s book [1]. Given a family of orthogonal vector fields

(N(h)(X), _< h -< n } we define their coefficients of rotation "Ylh k by

(2.12) "Ylhk--k(l)i,jki(h){k), <l,h,k<_n;

see [1, p. 97]. A necessary and sufficient condition that there exist coordinates (yh) and
nonzero invariant functions fh such that )i(h) (Oxi/OYh )fh, h 1,’’ ", n, is

(2.13) lhk=O, <_l,h,k<_n, h,k,l pairwise distinct.

Let ag be a tensor field with n roots P 1,"" ", Pn (not necessarily distinct) and let
be a corresponding orthonormal set of eigenvectors:

(2.14) (aij--Phgij)ki(h)--O, h--1,... ,n,

(2.15) )ki(h))k(k)i--hk, <_h,k<_n.

It follows easily from (2.12), (2.14) and (2.15) that
j k(2.16) aij,kki(h)k(l)i(m) (Ph--Pl)’hlm, h=/=l"

From (2.13) we find
THEOREM 3 (Eisenhart [1,p. 118]). If aq has pairwise distinct roots P," ",On then the

vector fields (i(h } are normalizable if and only if
(2.17) aij,kXih)?oXkm)--O i<_h,l,m<_n, h,l,m distinct.
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This leads us to our fundamental result:
THEOREM 4. Necessary and sufficient conditions that the orthogonal coordinate system

(yJ) be separable for the Hamilton-Jacobi equation (1.1) are the existence of n-1
quadratic functions A(t), fl= 1,... ,n- 1, (1.12), such that:

1) The (A()) are second order symmetries of (1.1), i.e., the (a})) are conformal
Killing tensors.

2) The (A()) are in involution: [A(),A(t)]--0, 1 <_a, fl<_n-1.
3) The set {H,A(1), .,A(’-l)} is linearly independent (as n quadratic forms at each

point x).
4) At least one of the quadratic forms, say A(1), has pairwise distinct roots.
5) In any local coordinate system (xj} the quadratic forms satisfy the algebraic

commutation property

(2 18) a(’)a(-a})a(’)ij k k

(This property is independent of local coordinates.)
Proof. We suppose that conditions 1)-5) are satisfied. Conditions 4) and 5) imply

that the quadratic forms can be simultaneously diagonalized by a family of orthonor-
mal vector fields. In local coordinates {x} we have

(2.19) (a})--ph#)gij)Xi(h)--O, h--1,...,n, fl--1,. .,n--1,

where p(z),...,p(f) are the roots of a! and Xi(h)X(k)i--Shk. Setting p(hn)- 1, for h-
l,- .,n we can express condition 3) as

(2.20) det(p)) 4= O.

(2.22) det pt) pht) Ot) 0, --< a < fl--< n 1.

"Yh m "Y h "Yh -- "Y h "Y h -- "Y h

From (2.20) and (2.21) we have "mhl--’Ylmh--’Yhlm" Substituting this result into (2.22)
and using (2.20) we find "mhl--’Ylmh--’Yhlm--O. Thus, by (2.13) the vector fields (h))
are normalizable. It then follows from Theorem 2 that the (At)) determine an orthog-
onal separable coordinate system (y}.

Conversely, given an orthogonal separable coordinate system (y) for (1.1), we see
from the definition of separability, (e.g., (3.5)), that H=fH’ for some function f where
H’ is in Stckel form with respect to these coordinates. It follows from [7, Thm. 6], that
there exist Killing tensors (with respect to H’) Al,...,An_ that satisfy properties
2)-5). It is obvious that the Aj are conformal Killing tensors for H. Q.E.D.

3. The general case. We now examine the separation for variables problem for
(1.1) for the more general case in which the separable coordinates may be nonorthog-
onal. Our definition of variable separation is identical with that presented in [2], [3] and
is based on a division of the separable coordinates into three classes: ignorable, essential

of type and essential of type 2. Let (x) be a coordinate system on V with con-
travariant metric tensor (giJ) and such that the first n coordinates x are essential of

and

Furthermore, by (1.14), (1.15), (2.16), and (2.19), conditions 1) and 2) imply

( Pa) P(ha) P(ma) )(2.21) det -0, l_<a_<n- 1, h,l,m distinct,

Ymh Ylmh Yhlm
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type 1, the next n 2 coordinates x are essential of type 2, and the last n
are ignorable, n n + n 2 + n3. (In the following, indices a, b, c range from to n,
indices, r, s, range from n / to n + n 2, indices a,/3, 3’ range from n + n 2 + to n,
and indices i,j,k range from to n.) This means that in terms of the coordinates {xj}
the metric satisfies gik_ Q#,ik where 0,"k-0, a-n + n 2 + 1,...,n, and that the sep-
aration equations take the form

Wa + X

(3.2) 2 XBT(xr)WrW.+ E Cra’fl(xr)WaWfl-Or(xr, X)

(3.3)
Here A’’t(-Aa’"), C’(=Cf’") and (I) are defined and analytic in a neighborhood
NC C"+’ of some given point (x,. ,x +":). Furthermore,

hi+n2
(3.4) (i(xi,X) E kjOij(xi), i--1,"" ",n +n2,

j=2

where the complex parameters hi,.-.,X are arbitrary and the vectors Ox.(I), j-2,. -,
n + n 2 are linearly independent for x N.

We say that the coordinates (xj} are separable for the H-J equation

(3.5) X g’O,WOW=O
if there exist analytic functions A, B, C, (I) above and functions U,(xi), Vr(Xi), analytic
in N, such that (3.5) can be written in the form

(3.6) E Ua*a -- E Vrtr O
a

(identically in the parameters X2’"" "’X,,+,2), where W=X.a= 1W(J)(xJ), Wi--OiW=
OiW(i).

The functions Ua, V are uniquely determined by (3.6) up to an arbitrary mul-
tiplicative factor Q(x). To analyse the structure of these solutions it is convenient to
introduce an (n +n2)(n +n2) Stgckel matrix (Oij(xi)), i,j- 1,-’-,nl +n2 whose
first column (not unique) is subject only to the condition O-det(0,.j)4=0 and whose
remaining columns are determined by (3.4). Then

Qoal Qorl

(3.7) Ua-- 0 Vr-- 0

where 0lm is the (lm)-cofactor of the matrix (Oq). The nonzero components of the
contravariant metric tensor are thus

0
ab, gra__ g.r-- QOrl

o

( Oat

r)
O rl )(3.8) -g"-Q EA’B(xa)’---+E C’B(x W ’a
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Furthermore,

(3.9)
nl +n2 0lm ( 0 if m- 1,E ------ t)l hm otherwise,
1--1

SO,

(3.10)
H(x,p)--giypip-O,
Am(x,p)=a(m)piPj Xm, rn 2,. .,n +n2,
L(x,p)----p-X, p-OxW

ijwhere the nonzero terms of the symmetric quadratic form (a(m)) are

a(m) 0
ab, a(m B,

1 E,4 ’a + E c:,a o(3.11) - a(m 0
O :#: fl

c

) O
a(m)- E A’a----+ E Cra’a t9

It follows immediately from [8, Thm. 2] that

(3.12)
(a) Am, L, are conformal Killing tensors,

(b) [AmAt]--O [Am,La]-O [L,L]-0.

Note that while relations (3.6) determine the coordinates and the metric in an essen-
tially unique manner, there is some freedom of choice for the conformal Killing tensors
Am, due to the nonuniqueness of the first column in the Stickel matrix. (This freedom
is due to the fact that we may replace A by Am+f(x)H without altering relations
(3.10).)

We shall now analyse the structure of these separation equations and their rela-
tionship to the commutation properties (3.12). First we derive practical, necessary and
sufficient conditions to determine if a given coordinate system (xJ} yields separation
for the Hamilton-Jacobi equation (1.1). Let gij be the components of the contravariant
metric tensor in these coordinates. It is convenient to reorder the coordinates in a
standard form. Let rt be the number of ignorable variables x. Of the remaining n-n
variables, suppose n
variables x satisfy gaa =/= O. We relable the variables so that _< a_< n , n + _< n -< n +
n2, and n +n2+

THEOREM 5. Suppose (gij) is in standardform with respect to the variables {xi}. The
Hamilton-Jacobi equation (1.1) is separable for this system if and only if:

1) The contravariant metric assumes the form

where B B(xr).

gl gl n

tabn2 0 0

0 0 H;-2B7
n!

n2

n3
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2) The metric dg2-Yn la2a(dxa)2--n’+n21nr2(dxr)2 is conformal to a Stickelr--n!

form metric i.e. relations (2.2) hold for K-/H,+n"
3) For each g(x) gH2n,+n i a Stckel multiplier for the metric d/H+n, i.e.,

O,jg + Oig OjlnHf + Ojg Oiln2 +g(Oijln + 0, In OjlnHi2 ) -O.
Proof. Ts result follows directly from [8, Thm. 1] and Lemma 2.
THEOREM 6. Let (gij) be the metric tensor on V in the coordinates (xi). If the

Hamilton-Jacobi equation (1.1) is separable in these coordinates then there exist a func-
tion Q(x) and a r-dimensional vector space of second order conformal Killing tensors on
V such that:

1) Each L and A is a (true) Killing tensor for the Hamiltonian , where
H Q(x), and .

2) [A,B]0, [L,L]0, [L,A]Ofor allA,B.
3) For each of the n essential coordinates of type 1, x, the form dx is a simulta-

neous eigenform for each A , with simple root

4) For each of the n 2 essential coordinates of type 2, x, the form dx is a simulta-
neous eigenform for eery , with root of multiplicity 2. The root corresponds to

only one eigenform.
5) Oi(a-pg)=O, i= 1,. .,n +n,A.
6) gab 0 if a b; gar gaa grS O.
7) x=n+n3(n 1)/2.
These results are readily obtained from the following theorem. Let (x} be a local

coordinate system for V, with coordinates divided into three classes containing n, n2
and n variables, respectively. (We call these variables essential of types and 2 or
ignorable, respectively, even thou they may have nothing to do with variable separa-
tion.) Let H=gipip.

THEOREM 7. Suppose there exists a x-dimensional space of second order conformal
Killing tensors and an n3-dimensional space of Killing vectors with basis L=p, a= n +
n 2 + 1,...,n. Furthermore, suppose conditions 2)-7) of Theorem 6 are satisfied. Then the
Hamilton-Jacobi equation (1.1) is separable in the coordinates (xi). There exists a
Stckel matrix (Oi(xi)) such that the Killing tensors A, Am, m-2,...,n +n2, (3.10)
and LL#=pp#, n +n2+ afln,form a basis for

Proof. Most of the proof follows closely that of [8,Thm. 3], with the added
complication that the elements of are conformal, rather than true, lling tensors.
Conditions 3), 4) and 6) imply that for any A we have

(3.13) (aiJ)

nl n2 n3

ablan2 0 0

0 prg a/

nl

n2

n3

If (pA)_ (pB) for A,B it follows from (3.13) and condition 5) that A-B is a linear
combination of the n3(n -+- 1)/2 conformal Killing tensors LL/s---pp/, a<_ ft.

The condition (1.13) can be written as

(3.14)
aijOjgk’+ alJOjgi+ akJOjg’i- giJOja’-- glJOjai- gJOja ’i

Qig,t+ Qtgi, + Qkgli.
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Setting (i,k,l)=(a,b,b) in (3.14) we obtain

(3.15) a(Pb--Pa)--(Pb--Pa)alnn2, aPa--- -QaH2a.
Setting (i, k, l) (a, r, a) we find

(3.16) Oa(Pr--Pa)---(pr--Pa)alng if gray-O

and for (i,k,l)--(a,a,a),
as,, fl--(3 17) OrOa-t-(Pa-Pr)Orlnn2nt-groOB, g ,st Q

The case (i,k,l)=(a,a,r) leads to Qr=0 and (i,k,l)=(r,a,) leads to

( g  gor+ + )( + g" )
-q- OagrB-+- QBgra- 0

Multiplying both sides of (3.18) by gRgsa and summing on a and fl we find

OSPR+ORPS t_ (Or-- [3S )gRSgar-- ( lot PR),SOR g, fir
(3.19)

+gRQ"+gs,Q8 o.

For R S-- r in this expression we find

(3.20) )rPr-Jr-grQO-O.
Furthermore, for r--S, r :/= R in (3.19) we obtain

(3.21) 3R( Ps- PR ) ( OR Ps )gsa3R gS.

sum on s ).

Substitution of (3.20) and (3.21) into (3.18), elimination of all derivative terms 3iPj and
computation of the coefficient of ps in the resulting equation lead to

(3.22) grvlgVr-lk(lng’r) if r=/=s and gary-O.

Since this expression is independent of a, we can set

(3.23) g"r-B[’(x)H-2.
Expressions (3.15)-(3.17) and (3.20)-(3.23) lead to

(3.24) 3i(pj-pi)-(pj-pi)3ilnI-I, i,j- 1,. .,n ff-n 2

Comparing this equation with (2.6) we see that the metric d2-n+noi2(dxi)2-i=l is
conformal to a Stickel form metric.

The integrability conditions 33a=33iaa for condition 5) are simply that
2 2gaH2, +n2 is a Stickel multiplier for the metric dg /H;,, +,_. Thus, the Hamilton-Jacobi

equation separates in the coordinates x. Q.E.D.
Remark 1. It is sufficient to require that condition 5) of Theorem 6 be valid for

n 4- 1,. ., n 4- n 2 since the requirement that the elements of be conformal Killing
tensors with (i,j, k) (a, a, fl) in (3.14) yields this condition for 1,..., n

Remark 2. Most of the conditions [A, B] 0, A, B ( (this is just (3.14) with gij
replaced by b; and Q=0) are satisfied as a consequence of (3.24) and condition 5).
However, the cases (i,k,l)=(a,a,a) and (i,k,l)=(r,a, fl) lead to the additional re-
quirements

(3.25) #i)iPi=Pi)itJ, i, i= 1,. .,m, (m+n,
where A has roots
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It is now easy to formulate and prove our main result, the characterization of those
involutive families of conformal Killing tensors that correspond to variable separation
for the Hamilton-Jacobi equation.

Let (xj) be a local coordinate system on the Riemannian manifold V and let
O(j)--i() dx, <_j<_n, be a local basis of one-forms on Vn. The dual basis of vector
fields is X(h)= Nh)0x,, 1 <_h<_n, where Ai(h)ki(j) ((;)). We say that the forms (0o.).) are
normalizable if there exist local analytic functions go), Y such that Oo. g(9)dyj, (no
sum).

THEOREM 8. Suppose there exists a r-dimensional vector space of second order
conformal Killing tensors on Vn such that:

1) [A,B]=0 for each A,B.
2) There is a basis of one-forms O(h)--ki(h)dX i, <_h<_n, such that:

a) The n forms Ota), <_a<_nl, are simultaneous eigenforms for every A
with root pAa:

( aiJ-- pAagij ) j<a) O.

b) The nz forms O(r), n + <_r<_n + n2, are simultaneous eigenforms for every
A with root Or"

( ai ogi )X() O.

The root OA has multiplicity 2 but corresponds to only one eigenform.
3) x(hl(i(,)aiJtj(B)--O,i()gijtj(B))--O, h--n + 1,. .,n +n2, for all A and

alla, fl=n +n2+ 1,...,n.
4) [L,,Lt]- 0 where La-Ai(a)pi and each L is a conformal Killing vector.
5) [A,L,]=0 for each A 6g.

6) x=n+n3(n 1)/2 where n3=n-nl-n 2.

7) G(ab)=X(a)gJXj(b)--O if <_a<b<_n, and G(ar)- G(a)- G(r)-O for <_a<_nl,
n + <_r,s<_n + n2, n + n2+ <_a<_n.

Then there exist local coordinates (yJ} for V such that O(j)=f(J)(y)dyj for suitably
chosen functions f(), and the Hamilton-Jacobi equation (1.1) is separable in these coordi-
nates. Conversely, to every separable coordinate system (yJ} for the Hamilton-Jacobi
equation there corresponds a family of conformal Killing tensors on V with properties
1)-7).

Proof. This result follows immediately from Theorem 7, once we show that the O(h
are normalizable.

The rest of the proof coincides almost word for word with the proof of [8, Thm. 4].
To see this, we remark that the proof of [8,Thm. 4] exploits the relations [A,B]=0 for
A, B d, identical to those in the present case, and the relations [A, H] 0. In the
present case, A is only a conformal Killing tensor so [A,H]=0 is replaced by (3.14).
Multiplying (3.14) by )(m,)X(m)k.(,,,)t and summing on i,k,l we obtain an identity
A,HEm,,m:,. 3, the right-hand side of which is 2t(,,,,)Q’G(mm)+)t(m:)QG(m,, +

X(,,,zQtG(m,:I. Examining each step in the proof of [8,Thm. 4], we see that the
analogy of this identity is needed only in those instances where ml, m2, m are such

A,Hthat the right-hand side of Em,,,:,m vanishes. Q.E.D.
Examples illustrating the practical application of Theorems 4 and 8 can easily be

obtained from the corresponding examples in [7] and [8].
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ON THE BLOW UP PROBLEM FOR
SEMILINEAR HEAT EQUATIONS*

R. O. AYENI

Abstract. This paper is concerned with the instability behaviour of a differential system arising from the
theory of channel and cylindrical flow of viscous fluids with high heat generation. The spatial domain under
consideration is the whole space Rn, since usually in this type of problem a bounded domain can be
transformed into an unbounded domain. It is shown that if the physical parameter g(x, t), which corresponds
to the stress on the fluid is such that g(x,t)>ktn+’-lH(x,t), where H(x,t) is the fundamental solution of
the heat equation and k and a are positive constants, then for certain classes of initial conditions the
corresponding solution of the initial value problem grows unbounded in a finite time. We obtain an upper
bound for the blow up time. We also explain how the method can be applied to a typical physical problem.

1. Introduction. We consider the problem:

(1 1) O----U--Au--f(x u)Ot
(1.2) u(x,O)-uo(X ),
(1.3) u(x,t):O,

as Ixl- 

t>O, xR",

Uo(X)>--O,

Problem (1.1)-(1.3) has been investigated by many authors under various condi-
tions on f and u0. Under certain conditions on f and u0 (see [3]), there exists a positive
local solution u(x, ) of ( 1.1)-( 1.3) such that

(i) u(x,t) is defined in R"[0, T), strictly positive in R"(O,T) and u(x,0)=
Uo(X),

(ii) for any To< T, u(x, t) is bounded and continuous on R" [0, T0),
(iii) Ou/Ot and O2u/OxiOxj (l<_i,j<_n) exist in R"(O,T) and u(x,t) satisfies

(1.1)-(1.3) in the classical sense,
where T is a positive number. If To denotes the supremum of all T satisfying the above
three conditions, then the existence of the global solution is the case To o. A positive
solution of (1.1)-(1.3) is said to blow up in a finite time and the corresponding To is
called the blow up time of the solution, provided that T < 0. A global positive
solution u(x, t) of (1.1)-(1.3) is said to grow to infinity, if for each positive constant M
and each compact set K in R there exists T< such that t> T and xK imply
u(x,t)>m.

Kobayahi et al. [3] considered the function f when f(x,t,?)=f(k), f(?)>0 for
? >0, and they gave conditions under which a positive solution of (1.1)-(1.3) blows up
in a finite time or grows to infinity. On the other hand, Pao [4, see the literature cited
therein] recently studied problem (1.1)-(1.3) when the operator A is replaced by a more
general elliptic operator L; he not only gave a class of function f for which the solution
blows up in a finite time, but also gave an upper bound for the blow up time.

In this paper we investigate another class of functions which arises from the theory
of channel and cylindrical flow of viscous fluids with high heat generation (see [6] and
[8]). Pao did not cover the class of functions we consider here; moreover, our proofs

*Received by the editors July 10, 1981, and in revised form November 10, 1981.
Department of Mathematics, University of Ife, Ile-Ife, Nigeria.
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depend on the maximum principle while Pao used upper and lower solutions. We
consider the function f in the forms

(1.4) f(x, t, u) gl(x, t) exp u,

(1.5) f(x,t,u)--g2(x,t)(1 +u2),
where g; is a smooth function and

(1.6) gi(x,t)>_it- exp i- 1,2,

(1.7) gi(+--c,t)--O, i=1,2,

and a and 8 are positive constants.

2. The main result.
LEMMA. Let f----gi (i--1,2) such that gi satisfies (1.6) and (1.7). Then the unique

solution u of ( 1.1)-( 1.3) satisfies

THEOREM 1. Let f satisfy (1.4), (1.6) and (1.7). The unique solution u of (1.1)-(1.3)
satisfies

(i) u(x,t)>_log 1-8 a+- texp

(ii) u(O,t) as t[8-’(a+n2 )]’/’
THEOREM 2. Let f satisfy (1.5), (1.6) and (1.7). Then the unique solution u of

( 1.1)-(1.3) satisfies

(i)

(ii)

u(x,t)>_tani a+- t’exp

u(O,t) ast rS-’ (a+n/2) ]l/,
2 j

3. Proofs of the lemma and the theorems. We will not bother to prove the ex-
istence and uniqueness of the solution since the method of the proof is well docu-
mented in the literature (see for example [4]). Furthermore, we will take Uo(X)=--O. The
results are true if u0(x)>0.

Proof of the lemma. Let w(x, t) u( x, t) (a + n/2)- lta exp( -Ixl2/4t ). Then

Ow
(3.1) 0--- Aw_>0,

(3.2) w(x,0) =0,
(3.3) w(+-- o,t) =0.

By the maximum principle for parabolic equations (see [7,p. 183]) the solution
w(x,t) of (3.1)-(3.3) satisfies w(x,t)>_O. The result follows.
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Proof of Theorem 1. Let v- -e-u. Then u-log(1 -v)-1. This is increasing in v if
0<v< and v satisfies

(3.4) 0-- mv

(3.5)
(3.6) v(+--,t)-O.

Hence, by the lemma, v(x, t) >_ 8(a + n/2)- t exp(-[x12/4t). Then

(i)

(ii)

u(x, t) -log(1 -v(x, t))-1,

[ ( n)] 1/a
u(O,t) ast i- a+

Proof of Theorem 2. Let v-tan- u. Then u-tanv. This is increasing in v if
0<v<r/2 and v satisfies

(3.7) Av>g2(x, t),

(3.8)
(3.9)

Hence by the lemma, v(x, ) >_(a + n/2)- lt exp( -Ixl:/4t ). Then

(i) u(x,t)-tanv(x,t),

(ii) u(0 t) --, as [ + n/2
t 2

4. Applications. When gi(x,t)-8/(x + 1)4, x>0, let

24(1 "-X)4 exp(- (x-1
4t ) --exp( -(

Then

(4.1)
Ow Ow Ow

>0
0t (l+x) x 0x2

(4.2) w(x,O)-O,
(4.3) w(O,t)-w(m,t)-O.
By the maximum principle, w(x, t) _> 0.

Remark. In the case of a bounded domain CR", the method of Pao [4] is
applicable if gi(x, t) _>.
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QUALITATIVE BEHAVIOR AND BOUNDS
IN A NONLINEAR PLASMA PROBLEM*

CATHERINE BANDLEt AND REN] P. SPERB:

Abstract. Bounds for the boundary values of the variational solutions of a plasma problem are con-
structed, estimates for the distance between the boundary of the domain and the region filled with plasma are

given and an isoperimetric inequality for the area of this region is derived.

(1.1)

1. Introduction. We shall consider problems of the form

zXu + X( u+)P-o
u-a on 0D,

OD Ou
-ndS-I,

inDCR 2 u+’- max(u, 0),

where p> and is the outer normal derivative of D; X>0 and I>0 are given and a
is an unknown constant determined by the data. This equation has its origin in plasma
physics and describes the equilibrium of a plasma confined in a Tokomak machine. The
plasma occupies the unknown region D+ := {x: u(x)>0} and D- := {x: u(x)<0} is
the vacuum. The model case p has been treated by Temam [14], [15] and problem
(1.1) as well as some of its generalizations have been investigated by Berestycki and
Br6zis [4]. They proved the existence of a solution, called a variational solution, which
also solves the problem

(1.2)
J[v] fo[ Ivvl2-p+12-- x (v+ }p+,] dx+2iv(OD)_,infimum
v K’- fo(w+)l dx-I}.

Very little is known on the number of variational solutions. A result of Berestycki and
Br6zis [4, Thm. 4] and estimates in [3] suggest that for small a and I there is a unique
solution. For the model case p-- 1 examples are known with several solutions [5], [11 ].

It follows immediately from the maximum principle that u(x)> a in D. If a < 0,
then D+ is completely contained in D and the problem (1.1) can be interpreted as a free
boundary value problem with OD+ as free boundary. Hence a free boundary appears if
and only if a is negative. It was shown in [3] that in the case of variational solutions the
sign of a depends only on I. More precisely, the following statement holds: There exists
a number I > 0 such that

a>0 for allI<ls,
a<0 for allI>Is.

For 1-I we have either a-0 if there is only one variational solution, or if there are at
least two variational solutions, one is with a_>O and one with a_<O.
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Let us now consider problem (1.1) in the circle D*={x: Ixl<R). According to a
result of Gidas, Ni and Nirenberg [6] the solutions are radially symmetric. Denote by
uo the unique positive solution of

(1.3) Au0+xu-0 inD*, u0-0 on OD*.

For p> the existence is guaranteed by a result of Levinson [8], and the uniqueness
follows from an argument in [6]. We have

LEMMA 1.1. (i) The circle has a unique solution.
(ii) A free boundary appears ifand only if

-0TnD

Proof. Any radially symmetric solutions of Au+Xu’=0, which is regular at the
origin, can be expressed in terms of uo. Thus for >0 we have

u(r)=C/(P-)uo(Cr) (r := Ixl),
C being a constant smaller than one such that

I= Ou [2/(p- l)l+

The right-hand side depends monotonically on C. There exists therefore a unique
solution provided that I<I0. If a<0 we have

u(r)-
A logr+ B inD*-"-

where u(p)--0 implies that B---A log0 and A is determined by the continuity as-
sumption for u’(r) at r-p, that is,

C[2/(p-1)]+ lu;(C0) _A

Moreover we must have

(1.4) I=0 0u
D,+ -n ds--2rpC[2/(l-l)]+lu(Co)-C2/(p-1) D,- n ds,

which determines a unique C> 1. The lemma is now obvious. []

The aim of this paper is to obtain various estimates for the solutions of (1.1),
depending only on the area A of D. By means of an isoperimetric inequality of Payne,
Sperb and Stakgold 10] and Schwarz’s symmetrization we show:

Among all domains of given area the boundary value of a variational solution is
smallest for the circle.

We then study the geometry of D+ and prove for variational solutions:
Among all domains of given total area, the area ofD+ achieves its minimum for the

circle.
The last part contains mainly applications of a gradient bound from Payne and
Stakgold [9]; cf. also [12]. First we give an estimate for the location of D+ and then
make use of level line techniques [1 ], [12] to get relations between Uma and A.
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For the case p= similar investigations were carried out in [2]. Other methods
were used in [5] to obtain information on the asymptotic behavior of the variational
solutions.

2. Inequalities.
2.1. The results of this section are based on an inequality by Payne, Sperb and

Stakgold [10], which for the solutions u of problem (1.1) may be written as

(2.1)
.AotP+ 1.47 P +

X( Up+I dx <- 8r
+ P+li2

8rr

12 if a>O,

if a_<O.

Equality holds in both cases for the circle.

2.2. Upper bounds for Um,,. This inequality gives rise to an estimate for Uma in the
case where a<0. Denoting by g(x,y) the Green’s function of the Laplacian with
g(x,.) =0 on OD, we have for any solution of (1.1)

u(x)-X fDg(x,y)[u+(y)]Pdy+a.
By means of H61der’s inequality it follows that

{SD }’/(P+’){SD }PI(P+’)lu(x)  l_<x g.+ l(x,y) dy +Up+I dy

In view of (2.1) we conclude
LEMMA 2.1. If U is any solution of (1.1) with a <_ O, then

Um’x-- 8rr
I max h gp+l(x,y)

xGD

1/(p+ 1)

Remarks. (1) Estimates for maXxo(fogp+l(x,y)dy)l/(p+l) are given in [14], [1].
There, an isoperimetric upper bound is given, which depends only on the area A of D
and p, and which tends to zero as A 0.

(2) Forp- it has been shown in [2] that among all domains of given area, Uma of
a variational solution achieves its maximal value for the circle. This statement can be
expressed as

Umax
I

2rjo Jl ( Jo )

if R --<J0/V-otherwise,

where R is the radius of the circle with the same area as D and Jn is the Bessel function
of order n and J0--2.4048..- is the first zero of J0.

2.3. Upper bounds for a. We first note that for any solution of (1.1)

(2.2) J[u]-Ia+ p-1 x fo up+ldx
p+l +
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This relation holds independently of the sign of a. If we restrict ourselves to variational
solutions, it follows that for any vK

(2.3) J[ v >--la + p-1
p+l +

From HOlder’s inequality and the flux condition we conclude that

(2.4) X fo uP+’dx>( lp+l ) ’/p

( IP+I )
I/p

+ A+ > A+ dx

Inequalities (2.3) and (2.4) yield
LEMMA 2.2. If VK is any admissible function in the variational characterization

(1.2), then the bounda values a of a variational solution satisfy

I- [1 + x
A being the area of

Z4. ier fr . Let u be any solution of (1.1) in D and let u* be the
solution in the circle of the same area as D, say D*. By means of the Schwarz
symmetrization it follows that

From (2.2) and inequality (2.1) we find

(.6) jv.[,,]/+f- XA’++P’II8 if>0,

p+l p+l
8 I otheise.

Moreover, we have

p+l
p-1 XA(*)’++ 8 I if*>0,

(.7) Jv’[u*]-I* + f+ f+l
-8e Ia otherwise.

From these observations we conclude
To2.1. For any solution u ofproblem (1.1) we have

*,
where * is the bounda ealue of the unique solution in D*.

Pro@ The statement of the theorem is a consequence of (2.5), (2.6) and (2.7). We
have to distinguish between the cases.

Case 1. * 0, 0. Then

p- ii+p-
I*+ I,

which proves that
Case 2. * 0, > 0. The inequality of Theorem 2.1 is then triviNly implied.
Case 3. *0, 0. Then (2.5), (2.6) and (2.7) yield

I* +P-
p+l p+l
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Since we assumed that p> 1, the function f(t):= It+((p- 1)/(p+ 1))XAtp+ is
monotone, and we therefore have a* _< a.

Case 4. a* >_0, a< 0. By (2.5), (2.6) and (2.7) we have

Ia* +P- XA(a,)p+ <Ia<0.
p+l

contradicting our assumption a* >0. The proof of the theorem is thus completed.
Remarks. For p= this result was already found in [2]. If p= 1, all variational

solutions have the same value of a, and all other solutions have larger boundary values
[2]. It is not yet clear whether a similar relation holds for general p.

2.5. Remarks on the variational solutions. Let u be a variational solution with a < 0.
In this case there is a free boundary and we have D+ C D. As Berestycki and Br6zis
observed in [4], D+ is simply connected. This is a direct consequence of the minimum
property of the variational solutions.

Let us now consider the following variational problem:

F[v]--
fD/[Vv[2dx

infimum over

(2.8) ( fD+ t)P+I dx)2/(p+I)
vQ.(D+) (wH(D+)" x fz+wP+’ dx--f+lvwl2dx}.

By standard methods using a Sobolev inequality and compactness arguments, a solu-
tion of (2.8) is easily established. Notice that Levinson [8] considered similar problems
in order to prove the existence of positive solutions for nonlinear Dirichlet problems.
He showed that if OD+ is sufficiently smooth, say of class C 1, then the solutions of (2.8)
solve also the problem

Au+)uP=O inD+, u=0 on0D+.
As a first step we show
LEMMA 2.3. A variational solution u restricted to D+ is a solution of (2.8).
Proof. Suppose that u is not a solution of (2.8). Then

for any solution v0 of (2.8).
Let

f,,+ Ivul dx w01 dx,

flvo in D+

u in D-D+

where/3>0 is determined such that wK, that is, w is admissible for problem (1.2).
Then

L 2flp+lfzJ w h/13 2

+
vvo

=dx + +
v + dx

Since for fl > 0 we have

2Bp+l
p/l -p/l
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it follows that

J[w]<-Ia+P-lfzp+ Vv12dx<Ia + p+ p+l +
IVu[zdx-J[u]’

which contradicts the minimum property of u. The assertion of the lemma thus
follows.

Let D’ be the circle of the same area as D+ and let, for any domain B,
#(B) := infQ(B)F[v ]. This quantity is uniquely determined although the solutions of
(2.8) may not be unique.

LEMMA 2.4. Under the assumptions stated above we have

I(D’)<-#(D+).
Proof. We shall prove this lemma by means of Schwarz symmetrization. Let u:

D’ R+ be the radially symmetric function such that

area(xD+:u(x)>t}=area{xD’:u(x)>t) Vt (O, um].
Since u(x) is real analytic in D+ u belongs to H(D’) and satisfies [1]

fz ,l v u l=dx f vul=dx
and

fz uP + dx fz uP+ dx.
+

Let fl be such that flu Q(D’). Since fl_< 1, it follows that

(fD)(p-1)/(p+l) (fD)(p-1)/(p+l)tz(D’)<-- ,IxTflu12dx +lvuldx :#(D+),

which establishes the lemma.
If u’ denotes any solution of (2.8) in D’, we conclude from the previous lemma and

(2.1) that

(2.9) x fo (u’)p+ldx<h fo uP+’ dx<P+ I
+ 8

As already mentioned, u’ solves Au’+ (u’)P- 0 in D’, u’-0 on OD’. Hence by (2.1)

(2 10) X fo (u’)p+’dx-p+ X ,(u’)Pdx
Combining this identity with (2.9) we find that

(2.11) I"- x fo,(u’)PdxI.
Let uo and I0 be defined as in Lemma 1.1. We are now in a position to prove:

THOgM 2.2. Let D* be the circle with the same area as D and suppose that a < O.
Denote by u a variational solution of (1.1) in D and let u* be the solution in D*.
Furthermore let

D+-{xD’u(x)>O} and D*+-{xD*’u*(x)>O}.
Then the following relation holds for the areas ofD+ and D* +
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Proof. Let p and p’ be the radii of D*+ and D’, respectively. In view of (1.4) it
follows that p=R(Io/I)(’-)/-, and hence p decreases if I increases. By the same
argument we have p’=R(Io/I’)(p-W2, and in view of (2.11) we get p’>p, which
implies thatA(D+)=r(p’)2>-rpV-=A(D*+). V1

Remarks. (1) If I --, , then A(D*+ ) --, 0.
(2) A(D*+) does not depend on the size of D*, but only on I.

3. Applications of a theorem by Payne and Stakgold.
3.1. Some direct consequences. Throughout this section we shall assume D to be

convex.
The following result can be found in [9].
THEOREM 3.1. (Payne and Stakgold). Let u be a solution of (1.1) and D a convex

domain. Then one has

2, + 2h up+(3.1) IVu[-+p+ {u }P+ _<p_ 1..max
in D.

Inequality (3.1) will be the basis for the derivation of a number of inequalities in
problem (1.1). The techniques used below have been described in Payne, Sperb and
Stakgold [10] and need only some modification in the present context. Our general aim
is to derive some inequalities relating the geometry of D and Ureax, a and the total flux.
It should be pointed out that our considerations hold for any solution, and are not
restricted to the variational ones.

From now on we consider only problems with a free boundary, that is, a< O.
Let xt be a point of D+ where u assumes the value Ureax and y be any point of OD.

Denote by g the straight line joining xt to y, and let r measure the distance from a
point on g to xt. Putting for the derivative along g, we get from inequality (3.1)

(3.2) du<{ 2X }/2Umax Up+ ) in D
dr ’i- ( p+l +

} /2du< 2k up+(’ a- +1 "’ax i z-.

For the distance from xt to the first intersection point z on OD+, (3.2) yields

du ( 2X )1/2p+l
Umax __up+ )1/2 p/l Iz xl

Now the integral in (3.4) can be calculated explicitly giving

with

2Xuf)/N(P)<- p+l

1/2

N(p)
r( l+ lp+l )
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Since this inequality is independent of the choice of g, it holds in particular for the
point z nearest to xt. (3.5) then yields

LEMMA 3.1. Let

Then

(3.6)

d up)/2 p +2
A+>_rd2 (A + := A(D+)).

The upper bound for Ureax of {}2.2. can be used to get an estimate from below for d.
Now let y D and z OD+ be two points such that dist(OD,D+) ]y z] and let

g be the straight line joining y to z. It is clear that (3.3) holds also in this case if r
denotes the distance from z. An integration yields

LEMMA 3.2. The distance between OD+ and OD is boundedfrom below by

(3.7) ,_> (P)1/2[0 --(p+l)/2/’/max

We can again combine this result with Lemmas 2.1 and 2.2 to construct an
estimate which depends only on certain geometrical data of D.

Remark. Related results for p= are found in [5]. Caffarelli and Friedman used
different methods which enabled them to study the asymptotic behavior of D+ as

3.2. Combination of (3.1) and integration along level lines. It is possible to derive
yet another set of inequalities in problem (1.1) if the inequality (3.1) is used in
conjunction with techniques described in Payne, Sperb and Stakgold [1O].

Let D(t) be the subdomain of D where u> and let F(t) be its boundary. Denote
by a(t) the area enclosed by F(t), and set

(3.8) E(t) uPdx--’ Ivu[ds.
(t) (t)

F(t) is real analytic for 4:0 and it follows therefore that a(t) is monotonic. Let t(a) be
its inverse. In addition, it is known [1] that t(a) is differentiable almost everywhere.
Routine level technique yields

whence

(3.9)
dt ,E(a) ds

ivulds"

Inequality (3.9) can now be combined with (3.1) to give the two inequalities

<
:2 p+ a(0 A )(3 lO)

dt E(a)_--(u -(u(a))P+), +
da max

dt E(a)
du
i<

2 -p+l + A)(3.11) da -a p+l umax’ a(A
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We first integrate inequality (3.10) in two steps. We multiply both sides in (3.10) by
(t(a))p- dE/da and separate variables to obtain

-(p+ 1)tP(dt/da) <2(dE/da)
up+l-tp+ E
max

Integration from a to A + yields

up+l
max

UmaxP+l tP+
Hence

UPmax(1-- (E-)Z)
p/p+’)

which finally leads to

rl/X dE
UmaxA + >--Jo

We state the result as
LEMMA 3.3. If

dE
>_tp--

da’

(1__ (

_
) 2) p/(p+ I) k (1 y2 )p/(p+ I)

M( p ) 2-2p/(p+ l)

2

then

uPmaxA+ -X P

Complements. (1) Integration of (3.11) yields

2 ] p+(A_A +I1I> p/ Umax ).

(2) Another interesting combination of inequalities is possible as follows. For
A + ,A) we may write (3.9) as

-u -u I= v u[ ds >_ 4ra
Ivul

where Schwarz’s inequality and the classical isoperimetric inequality were used in the
last step. Thus we have

and after integration

du I
-a -t--a >-- O, a ( A + ,A ),

Alal< log
A +’

which is essentially Carleman’s inequality [1].
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EIGENVALUES OF POSITIVE DEFINITE KERNELS*

J. B. READE"
Abstract. The main result is that the eigenvalues of any continuously differentiable positive definite

kernel are o(1/n2). The method of proof is to approximate the kernel by kernels of finite rank in such a way
that the difference is positive definite. The tail of the eigenvalue series can then be related to the trace integral
of the difference by means of Mercer’s theorem and a trace norm version of the Weyl-Courant .minimax
principle. It is conjectured that, for p times continuously differentiable positivedefinite kernels, the eigenval-
ues are o(l/np+l).

1. Introduction. Suppose that K(x, t) L2[0, 112 and
K(t,x)=K(x,t)

for almost all 0_< x, t_< 1. Then the operator T defined by

Tf(x ) =f01K(x, )f( ) dt

is a compact symmetric operator on L2[O, 1]. It therefore has an infinite sequence (Xn)
of real eigenvalues which converges to zero. (See e.g. [1, p. 233].) H. Weyl has proved
(see [2]) that, if these eigenvalues are arranged in decreasing order of modulus, then for
K(x, t) C I[0, 2 we have

kn-- O ’3/2n

as n- oo. It is the purpose of this paper to show that, if K(x, t) is also assumed to be
positive definite, i.e.

io’ foIK(X ’’ )f(X )f(’ ) dx, d’ >0

for all fL2[0, 1], then Weyl’s result can be improved to

as n.

2. Best approximations. If (qn) are the corresponding eigenfunctions of T, then
they can be assumed to form an orthonormal sequence. (See [1, p. 234].) Also the
operator T and its kernel K(x, t) have the following eigenfunction expansions:

Zf--EXn( f,n) g(x,t)--EXndPn(X)n(t),

convergent in mean square over [0, 1] and [0, ]2 respectively, where (f, q,) denotes the
inner product

( f, q, ) =fo’f(t)q,(t ) dt

on L2[0, 1]. (See [1, pp. 234, 243].)

Received by the editors September 1, 1981.
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If R is the operator with kernel Yh,qn(X)qn(t ), then R is the best approximation
to T in the operator norm by symmetric operators of rank _<N, the minimum distance
being

IIR-
Also ,nq(x)q(t) is the best approximation to K(x,t) in mean square by symmetric
kernels of rank _<N, the minimum distance being+,2n. (See [1, p. 239, 243].)

If we now assume K(x,t) is positive definite and continuous, then we have
Mercer’s theorem, which says that the above eigenfunction expansions are uniformly
absolutely convergent, also that ,_>0 for all n, K(x,x)>_O for all x and

2kn-- K(x,x)Mx<

(See [1, p. 245].) Kernels of this type therefore give rise to trace class operators, i.e.,
operators whose trace norm IIT t- Y’] I,1 is finite.

LEMMA 1. If K(x,t) is symmetric and trace class, then Yr(X,q,,(x)q,(t) is the best
approximation to K(x, t) in the trace norm by symmetric kernels of rank N.

Proof. Let R be any symmetric operator of rank _<N, and suppose that T-R has
eigenfunction expansion ]/x,k,(x)k1/4(t). Then

p

S’- R+E IXnn(X )bn( )

has rank _<N+p and

Therefore

Hence

T-S- 2
p+l

Z
N+I

However, for the operator R having kernel ,,q,(x)q,,(t), we have

N+

SO the lemma is proved.

3. Square roots. Any positive trace class operator T has a unique positive square
root S. In fact, if T has kernel K(x, t) with eigenfunction expansion

g(x,t) =2 tnfl)n(X)@n( t),

then S must have kernel J(x, t) given by

J( x, t) 2 kln/’ 2bn( X )dPn(t )
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LEMMA 2. If K(x,t) is continuous and positive definite and J(x,t) is its positive
square root, then, for any fL2[0, 1],

fo’J(x,t)f(t)dt
is a continuous function of x.

Proof.

flj(x,t)f(t) dt- E "n/2 ( f, *n ) dn(X)

and the series is uniformly absolutely convergent since

M M M

by tke Cauoky-Scwarz inequality, ana

uniformly absolutely, whilst
N

M

by Bessel’s inequality. Every n(X) is continuous, since K(x,t) is, so the lemma
follows. 3

LEMMA 3. If T is positive with continuous kernel and S is its positive square root and,
ifR is offinite rank and satisfies

O<_R<_I,
where I is the identity operator, then SRS has continuous kernel and

O<_SRS<_T.

Proof. If R, S, T have kernels H(x, t), J(x, t), K(x, t) respectively, then SRS has
kernel

o(x,,):fo’fo.’x(
Now H(u, v) takes the form

H(u,v)- aiji(u)j(v),
i,j--1

where aji =aiy; therefore

folj(xu)lPi(u)dufolj(t,v)j(v) dvG(x,t)- aij
i,j=l

which is continuous by Lemma 2. The rest of the proof is easy.

4. Proof of the result. Suppose K(x,t) is positive definite and continuously dif-
ferentiable. Then, for any e >0, we can choose N such that

0K 0K 0K 0K
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for all x,y, t, u [0, satisfying

[x-y[<,
Let R be the operator with kernel

where

Then

N

H(x,t)-NEn(X)n(t),

(x) {1 if n-l<x_<N
0 otherwise.

O<_R<_I

clearly, and so, by Lemma 3, SRS has a continuous kernel and

0 <_ SRS <_ T,
where S is the positive square root of T. Therefore, by Mercer’s theorem, we have

Now

since

1K(x x)dx- IH( u v) J(x,u)J(v x)dx dudv

folK(x,x) dx-fol foln(u,))g(u,u ) dudv--fol foln(u,v)g(19,) ) dudv,

folH( u, v) du-folH( u, v) dv

for all u, v. Therefore

fofo [1 )1IIT_SRSIItr_ H(u,v) (K(u,u)+g(v,v))-K(v,u dudv

Nfn/N fn/N [1--N X"(n-1)/N"(n-1)/Nt(K(u’u)+K(v’v))-K(v’u)I - ( K( u, u) + K( v, v)) -K( v, u) >_O

Note that

since

IK(u,v)l(K(u,u)K(v,v))l/2,
-on account of the positive definiteness of K(u, v),

<-(K(u u)+K(v v))
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by the arithmetic geometric mean inequality. Also, if [u-v < 1/N, we have

<1O_-(K( u,u) +K( v, v))-K( v,u)

-flu
for some , r/lying between u and v,

---2(u-v) (c,c)+e, (c,c)+e2

where c-1/2(u+v) and

since K(u, v) is symmetric,

N"
If K(u, v) is complex it is only necessary to consider its real part since the contribution
to the integral

1’H(u, v)K( v, u) dudv

from the imanary part of K(v, u) is zero. Therefore
N

IIT-SRSIItrN j_)/jn_)/ dudv--.
But R, and therefore SRS, has rank N, so, by Lemma 1, we have

g"
N+I

Hence

2 X -o
N+I

as N--, o, from which it follows that

as n--> .
5. Extensions and generalisations. If K(x,t) is LiPl (and positive definite) then

the same argument proves

as n--, o.
These results are best possible since e.g. Y(cos2rrn(x-t)/n2) is LiPl, whilst

2(cos2rn(x-t)/n") is C for any a>2.
Both results clearly extend to the case where K(x,t) has a finite number of

negative eigenvalues. This is a consequence of the fact that, if K(x,t) is C l, then the
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eigenfunctions are C and so the positive part of K(x,t) is C Similar considerations
apply if K(x, t) is Lip l.

In [2], Weyl also showed that, if K(x, t) is Cp, then

Xn_o ( 1

as n- c. One might conjecture that, if also K(x, t) is positive definite, then

as n . Unfortunately, we have so far been unable to prove this.

REFERENCES

F. RIESZ AND B. S. NAGY, Functional Analysis, Ungar, New York, 1952.
[2] H. WEYL, Das Asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen,

Math. Ann., 71 (1912), pp. 441-479.



SIAM J. MATH. ANAL.
Vol. 14, No. 1, January 1983

(C) 1983 Society for Industrial and Applied Mathematics

0036-1410/83/1401-0013 $01.25/0

PERIODICALLY INVARIANT LINEAR SYSTEMS*

KLAUS BARBEY"
Abstract. The topic of this paper is the analysis of abstract linear systems on a locally compact group G,

that is, of continuous linear operators N: (R)(G) (R)’(G). Here, (R)(G) denotes the space of test functions on G
with its inductive limit topology as introduced by Bruhat, Maurin and Kac and (R)’(G) the space of
distributions on G with the weak topology. We call such a linear system N periodically invariant with respect
to a given closed subgroup F, if N commutes with translations from F. Periodically invariant systems are of
interest, e.g., in the theory of electrical networks with periodically varying parameters or in process control
theory. Under the assumption that the quotient group G/F is compact, a Fourier series representation for
F-periodic distributions on G is derived. From this we conclude via the Schwartz kernel theorem that the
classical convolution representation for a translation invariant system (F--G) generalizes to a Fourier
superposition xNx of translation invariant systems Nx, where summation runs over all characters
vanishing on F. Finally, it is proved that N is causal with respect to a semigroup P c G if and only if all
individual systems Nx are causal.

1. Introduction. The realizability theory of abstract linear systems as developed in
Zemanian’s book [17] studies continuous linear mappings N from the space (R)(G) of
Schwartz test functions on G=R or G=R into the space of distributions (R)’(G) with
the weak topology. If N is translation invariant, that is, if

N(’ruep ) =’ruN( ep ) runG,

where u denotes the translation operator rub(t)=(t-u) for all G, then it is well
known that N can be realized as convolution with a fixed distribution V(R)’(G):

Nq= V,q

Under additional conditions such as causality and dissipativity a more detailed repre-
sentation of N is possible [10], [7].

In the present paper we consider a situation which is more general in two respects.
First, following, e.g., Fours and Segal [5], Falb and Freedman [4], Hackenbroch [8]
and Bose [2], G is allowed to be any locally compact abelian group. The Schwartz space
of test functions is then replaced by its natural generalization introduced by Bruhat [3],
Maurin [11] and Kac [9]. Second, the assumption of translation invariance is weakened:
we suppose merely that the system N is periodically invariant, that is,

N(’ruq ) "ruN( q ) YulE,

where F c G is a given (without loss of generality closed) subgroup which is not too
small in the sense that G/F is compact. It is then shown that the above convolution
representation NW V. for a translation invariant system N generalizes to a Fourier
superposition

Nq)- x(Vx,q) withVx(R)’(G )
xF+/-

in case that N is only periodically invariant. If G R this result is due to Willie [16], if
G=R it is found in [1]. Starting from electrical network and process control theory,
periodically invariant linear systems were considered by Unbehauen [14], [15], where
also a forerunner of the above formula can be found.
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The paper is organized as follows. Section 2 recalls in brief the definition of @(G)
for a locally compact group G as given by Bruhat. For all details and proofs, the reader
is referred to the original paper [3]. In 3 a Fourier series representation is established
for F-periodic distributions on G which yields in 4 the above Fourier series realization
for a I’-invariant system N via the Schwartz kernel theorem. Finally it is shown in 5
that N is causal with respect to a given semigroup P if and only if all systems q9Vx q9

for all q(R)(G) in the decomposition of N are causal with respect to P which in turn
corresponds to carrier conditions on the distributions V (R)’(G).

2. Distributions on locally compact groups. In this section we provide some defini-
tions and facts from the theory of distributions on a locally compact group G as
developed in [3]. In case of a Lie group G (or more generally in case of a differentiable
manifold G), (R)(G) is the usual space of Schwartz test functions with its inductive limit
topology. In case of an arbitrary locally compact group G, the definition of @(G) is
given in two steps: Let (R) be the set of all compact invariant subgroups k c G such that
G/k is a Lie group; (R) is directed downwards by inclusion. For k (R) we denote by rk
the canonical mapping G-.G/k, and by @.k(G) the complex vector space {+
/c=@(G/k)} equipped with the topology inherited from @(G/k). Hence, a function
G-,C belongs to @k(G) if and only if it is constant on the left cosets modulo k and,
regarded then as a function qS: G/k-C, belongs to @(G/k). If G satisfies f-)keek (e},
then G is called Lie projective and the space @(G) is defined to be the inductive limit of
the spaces @’(G) (k@). It is known [12,p. 175] that G is Lie projective if G/Go is
compact, where GO is the component of the identity element e C=G. In general, G
contains an open Lie projective subgroup G [12, p. 54]. Thus, @(G1) is defined, and for
a left coset A =xG1, let @(A) be the space of all functions tq)(x-t) for all A,
where (R)(G1) together with the topology induced from @(G1)o Then (R)(A) is
independent from xA and (R)(G) is defined to be the locally convex direct sum of the
spaces @(A), where A varies over all left cosets modulo G 1. Furthermore, (G) is the
space of all functions g,: GC such that q0+ (R)(G) for all tp @(G) together with the
coarsest locally convex topology that makes continuous all mappings g(G)--,@(G)
defined by g, tpp for all q (G), where tp @(G). As usual, the elements of the dual
space @’(G) (respective ’(G)) are called distributions (respective distributions with
compact support) on G. If KC G is compact, the subspace @r(G) consists of all
@(G) with support supptp CK.

For a closed subgroup F c G, let mr denote a left Haar measure on F regarded as a
measure on G and normalized if F is compact. If a left Haar measure ma on G is fixed,
every continuous function f: G C gives rise to a distribution [f] via q)fqfdma for
all tp(R)(G); in this sense we have (G):= (f: G--,C continuous} C@’(G).

3. F-periodic distributions. Let G be a locally compact abelian group and F c G a
fixed closed subgroup. r is the canonical mapping from G onto the group G/F of left
cosets. We call a distribution F@’(G) F-periodic if

vu r,

where Zu denotes translation by u G, that is, %q(t)=q(u-t) for all G. In this
section we establish a Fourier series expansion for F-periodic distributions in the case
that G/F is compact. We start with the following remark which allows us to identify
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F-periodic distributions with distributions on the group G/F. Let v denote the continu-
ous linear mapping from (G) onto (R)(G/F) [3, p. 59] defined by

,()(r)-f(-l)dm()-,m() V. V().

Remark 1. The mapping UV: V()-- U(v(q)) for all (G) is a bijection
between the distributions U’(G/F)and the F-periodic distributions V’(G); its
inverse is given by U: U(#)=(fl(#o)) for all #(G/F) where fl is any
function fl(G) with suppfl-l(K) compact for K CG/F compact and
ffl(xt-)dmr(t)= for all xG.

The existence of such functions fl (G) is proved in [3, p. 59]. For a F-periodic
’(G), Remark shows that (fl(#o)) (#(G/F)) is independent of the
particular fl (G).

Proof. 1) Since #fl(# o ) is a continuous linear mapping (G/F)(G), the
mapping U: U(#)= (fl(# o )) for all #(G/F) is well defined, furthermore, it
satisfies

v((o ))= v((( o )))= v() v(o/r)
if U@’(G/F) and V= Uo v@’(G).

2) Now let V@’(G) be F-periodic and define U@’(G/F) by U()=
V(fl( o )) for all @(G/F). We have to show that U o v= V. To ts end fix some
W @(G) and choose a function a @(G) with a on supp fl &- ((supp W)).
Define S, T’(G) by

S(+)=V(+) and T(+):V(afl+)
Then the F-periodicity of V implies that

u(()): v((,m)): v(,(,m)):(.m)

r, w)=f t-l))dmr( ) =f v< t-1))dmr( )

f v< dmr(t ) fs(< t-,)) dmr(t ) S, mr( aft )

=S((afl),mr)- V(qfa(.t-’)fl(.t-’)dmr(t))- V(W). Q.E.D.

It is a remarkable feature of Bruhat’s theory that the coefficients of finite dimen-
sional representations of G belong to (G) [3,p. 50], in particular, the dual group (
satisfies G C(G). Hence, for a distribution U on a compact abelian group G, we can
define the Fourier coefficients O(X) C (X () by

O(x)- u(.) vxe,
where the bar denotes complex conjugation.

Remark 2. Assume that G is compact and abelian. Then every distribution U
’(G) has the unique Fourier series expansion

u= 0(x)[x];
x8

the series is weakly summable, that means U(q) flQ(x)fqxdma for all (G),
where the series is summable (- the partial sums over finite subsets of ( converge to
u()).
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Proof. The uniqueness of the representation is dear from the orthogonality of the
characters X (. Hence, it suffices to show that every q @(G) has the representation
q)-Zff(X)X, where the series is summable in the topology of @(G) and q(X)-
fq(dma for all X (. This is easily deduced from classical facts in case that G is a Lie
group since then G-TH, with T a torus group and H a finite abelian group. Now,
since any compact group is Lie projective, for every q)(R)(G) there is a k (R) such
that q) is invariant under k with corresponding function (p(R)(G/k), hence --Z2(a./k)^() where the series is summable in @(G/k). In view of (G/k)^---k+/---

{X G" X- on k) via the identification 2 =-.X, this implies q-Zxkq(2)X, where the
series is summable in (R)k(G). Finally, we obtain

/k 0 if X k+/-. Q.E.D.

Now we come to the main result of this section. If G/F is compact we define for a
F-periodic distribution V @’(G) the Fourier coefficients I(X) C(X F+/-) of V by

where U is the distribution on G/ corresponding to V and fl is any function as in
Remark 1. Observe that the compactness of G/ implies that even/3 E@(G).

THEOREM 1. Let G be a locally compact abelian group and F C G a closed subgroup
such that G/F is compact. Then every F-periodic distribution V(R)’(G) admits a Fourier
series representation

v= 2
XEF+/-

where the series is weakly summable.
Proof. Let (R)(G) and let U denote the distribution on G/F corresponding to V.

We apply Remark 2 with G replaced by G/F to obtain

V(q))- U(v(q))- X O()fG/rV(q)dma/r
2E(G/r)

and hence the result since

fGq)xdm--fG/F ( fFq(xt)x(xt)dmr(t)) dm/r(xF)-fG/Fv(q9)dma/r

for all xF+/-=(G/F)^. It remains to prove the uniqueness assertion. Assume that
V-ExrCx[X] with any cxC and fix IF+/-. The orthogonality of the characters
then implies that

l(l)- V()- , CxfX dma
xF+/-, cxf (frB(Xt)X(xt)rt(xt)dmr(t))dma/r(xF)
xF+/- G/F

2 cxfa 2(xr)(xr)dmo/r(xr)-%. Q.E.D.
xi- /r
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4. Periodically invariant linear systems. Let G be a locally compact abelian group
and N: (R)(G)--, ’(G) a linear system, that is a linear operator which is continuous with
respect to the weak topology on ’(G). Suppose that F C G is a subgroup. We call N
F-invariant if

Since the translation u >ZuW is continuous on G for every W @(G), we may assume F
to be closed. The most important example is of course G-R and F--((klCl,’- .,kncn):
kl,...,kn--O +--- 1, -----2,’’’ ) CRn, with fixed period length Cl,...,G>0. The aim of this
section is to prove the following theorem.

THEOREM 2. Assume that G is a locally compact abelian group and F C G is a closed
subgroup such that G/F is compact. Let N: (G)6’(G) be a F-invariant linear system.
Then for every character X F+/- there exists a unique distribution Vx 6,(G) such that

xF+/-

where the series & weakly summable, that is,

Nw(k)- E f(v*w)x+dmo
xF+/-

The proof of the theorem leans heavily on the Schwartz kernel theorem in the
version of Bruhat [3, pp. 55-56]: For every linear system N: (R)(G) (R)’(G), there exists
a unique distribution S@’(G G) such that

Nq(k) S(q (R) k)
where q(R)k@(G G) denotes the function @+(s,t)=(s)+(t) for all s,tG. Fur-
thermore, N is F-invariant if and only if S satisfies S(z(u,u)) S() for all u F for all

Another consequence of the kernel theorem is the following. For every two distri-
butions G V on G, there exists a unique distribution on GX G denoted by U@ V which
satisfies U@ V(W@)= U(w)V() for all ,@(G). The subsequent remark follows
easily from the definitions.

Remark 3. Assume that S@’(GXG) satisfies S(,u)=S() for all uF for
all @(GX G) and define C: GXGGXGby C(s,t)=(s-t,t) for alls, tG. Then
C C is the identity function and W: W()=S( o C) for all @(GXG) is a
distribution on GX G such that W(,u)= W() for all uF and S()= W( C)
for all @(GX G).

Proof of Theorem 2. The kernel theorem via the above remark supplies us with a
distribution W@’(GXG) such that W(,u)=W() for all uF for all
@(GX G). For fixed W@(G), we set W()= W(W@) for all @(G). Then W
@’(G) is F-periodic; hence, Theorem implies that

W()-W()- E V()[X]()- E V[X]() V,e(O),
xF xF

where Vx @’(G) is defined by
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Now we apply Lemma 2 to obtain

w()- 2]
xF+/-

xF+/-

c),

For V@’(G) define I(R)’(G) by l(q)-V(q) and q(t)-(t-1) for all q(R)(G)
for all G. Then an easy calculation shows that

c)-
and, hence,

Np()-S((R))- 2 [+x](Vx*qo)- f(Vx*W)x’kdm
xF+/- xF+/-

It remains to prove the uniqueness assertion. Suppose that Ux@’(G) for all xF+/-

such that

S((R)+)- Y f(ux,cp)xkdma- 2
XF+/- XF+/-

oC)

We apply Lemma 2 again with Sx: Sx(d)=Ux(R)[X](oC) for all @(GG) to
obtain

c)- E
XF+/-, Ux(w)fx,pdm Vq,+(R)(G).

XF+/-

So we conclude Ux(()- IV(X)- Vx(cp) for all xF+/- from the uniqueness assertion in
Theorem 1. Q.E.D.

Now we must prove the subsequent Lemma 2 which we have used in the proof of
the theorem. We shall need the following fact, which may be well known; in any case it
admits a standard proof via the Banach-Steinhaus theorem.

LEMMA 1. Let E, F be locally convex barrelled spaces. Assume that ( bi)iI is a family
of separately continuous bilinear forms on EF such that Eitbi(u, v) is summable for all
uF. Then the convergence of itb is uniform on products P Q ofprecompact subsets
PCE and QCF.

Proof. 1) Suppose that I--{ 1,2,... } and that =lbn(u, v) converges for all u cE
for all v F. Then an iterated application of the Banach-Steinhaus theorem, e.g., in the
versions of [13, p. 69], shows that the convergence is uniform on P Q.

2) Now let I be an arbitrary index set. If the assertion is assumed to be false, then
there is a e>0 and a sequence 3(1), 3(2),-.. of disjoint finite subsets c I such that
SUPuP,vQlY,i(n)bi(u,v)l>e for all n= 1,2,.... Apply 1) with an--,i(n)b (n=
1,2,... ), to arrive at a contradiction. Q.E.D.

LEMMA 2. Assume that (Si)i I is a family of distributions on G G such that
YiISi((R)p) is summable for all q,p(R)(G). Then YitSi((b) is summable for all
C(G G) and defines a distribution on G G.
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Proof. Without loss of generality, we may assume that G is Lie projective.
1) Fix some @(G G) and denote by K (respective L) the projection of supp

onto the first (respective second) coordinate.. There is a k(R) such that
@kk(GG); hence the corresponding function on G/kG/k satisfies
(r)(L)(G/k G/k)-,(r)(G/k),(L)(G/k), where the inductive and projec-
tive tensor products coincide since both factors are Fr6chet spaces [6, Chap. IIp. 84].
Now a theorem of Grothendieck [6, Chap. I p. 51] implies the existence of a sequence
(?,) in C with ,1,,[_< and of sequences (qS,) in.6,(K)(G/k), (,)in (R)()(G/k),
both converging to zero, such that =EOn__lknl)n(lpn, hence --Yn--lknfDn(lpn, with
sequences (qgn), (qn) in @(G), both converging to zero. For later application we note
that even pn(R)/c(G) and kn(R)(G) for all n= 1,2,--- as follows from suppc
(supp)k k.

2) Given e>0, we obtain from Lemma a finite subset a cI such that
(R)q,)l-<e for all n 1, 2,--. for every finite subset c I disjoint with a. We conclude
that

n-l n--I
E

and hence ]EiS()l_<e for the 8cI in question.
3) Since EiiSi() is summable, it is absolutely summable, in particular, the

family (ES;: ctCI finite) is pointwise bounded. This gives the continuity of EitSg
via the Banach-Steinhaus theorem. Q.E.D.

The following corollary is (in case of a separable group) due to Bose [2].
COROLLARY. Let G be a locally compact abelian group and assume that N: (R)(G)-,

(R)’(G) is a translation-invariant linear system. Then there exists a unique distribution
V ’(G) such that

Let us now consider a system which is regular into (G), that means a linear
system N: (R)(G)--,(G)C(R)’(G). The closed graph theorem then shows that N is
continuous even with respect to the usual topology on (G). As in [16], we introduce a
function Z: G @’(G) by

Z(x)p=N(x(p )(x ) VxEG,

Then Z is continuous with respect to the weak topology on (R)’(G) and represents N in
the sense that

furthermore, N is F-invariant if and only if the function Z is F-periodic, as follows
easily from the definitions. In particular, N is translation invariant if and only if Z is

constant on G. Assume again that G/F is compact. If N is F-invariant and if N is
represented according to Theorem 2 as NP=ExV.x[Vx,9], then we have Vx- (X),
where the Fourier coefficients (X) (R)’(G) (X F’) are given by

with/3 (R)(G) as in [}2.
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5. Causality. In this section we study F-invariant linear systems on a locally
compact abelian group G under the additional assumption of causality. We fix a closed
semigroup P c G, that is, a subset P c G such that eP and PP C P; furthermore, we
assume that e C intP, where intP means the topological interior of P. A linear system
N: (G)(R)’(G) is called P-causal if q0-0 on uP- implies Nqg-0 on u(intP)- for
all u G for all q (R)(G). In the classical case of a translation invariant linear system
N-V,, it is known that N is P-causal if and only if supp VCP. Our goal is to
establish the corresponding result in the F-invariant case.

LEMMA 3. Assume that N: (G)-’(G) is a linear system and let S denote the
distribution on G G such that Nqg()-S(qg(R)) for all qg,/(G). Then N is P-causal
if and only if supp S c ((s, t)" s, G, s- it P}.

Proof. 1) We set Q-((s,t): s,tG, s-tP) and Qu-((s,t): s,tG, suP-,
u(int P)-1} for all u G. From our topological assumption on P it is easy to deduce

that Q- uQu.
2) " Let G be an open Lie projective subgroup of G. Then G G is an open

Lie projective subgroup of G G. Consider a (R)(G G) such that supp C Qu for
some uG and let KC G\uP- (respective LCu(intP)-1) denote the projection of
supp onto the first (respective second) coordinate. By definition, is a finite sum

t= r( x( t), y(t)) with x(1),.-.,x(r), y(1),--.,y(r)G and 1, Xt’r(Gl GI).
As in the proof of Lemma 2, we conclude that xI,1-oo on-’ln(R)A with n--I [lnl and
sequences ( r(G ), (;,) in @x(t)- lnt)n in 6y(/)_!L(G ), both converging to zero (l,=
1,-.., r). The P-causality of N then implies that

S()- E E klng(’rx(l)(R)Ty(,)) -0"
/=1 n=l

Thus we have S-0 on Q for all u G; hence from 1) we see that S-0 on Q since
(R)(G G) admits partitions of unity [3, pp. 46-49].

3) " Let ,+@(G) and uG such that 9-0 on uP- and supp+cu(intP)-1.
Then supp( (R) k) (supp) (supp k) C Q, and hence N(p) S( (R) q) 0.
Q.E.D.

Now we are able to prove the following.
THEOREM 3. Let G be a locally compact abelian group and let F C G be a closed

subgroup such that G/F is compact. Assume that the linear system N: @(G)- @’(G) is

represented according to Theorem 2 as Nq-rX[Vx, q] for all q(G). Then N is

P-causal if and only if supp Vx cP for all X F+/-, that means, if and only if the individual
systems N" Nx(q ) Vx ,q for all q(G) are P-causalfor all XF+/-

Proof. 1) Let N be P-causal with corresponding distribution S (R)’(G G). We
retain the notations introduced in the proof of Theorem 2. Lemma 3 shows that
suppSC ((s,t): s,tG, s-tP} and hence supp WcP G. It follows that Vx(q)-
W(q(R)fl)- for all tp (R)(G) with supp c G\P and for all xF+/-.

2) It remains to prove the following: If V(R)’(G) is a distribution with supp VCP,
then the linear systemV, for all tp (R)(G) is P-causal. To see this, fix ,+ (R)(G)
and uG satisfying -0 on uP-1 and suppqcu(intP)-. We have to show that
f(V, q)+dm-O. Write x supp + as x- uv- with v int P. Then supp(rq)
x(supp)- c G\(v-intP)C G\P in view of vP CintP. Now the assumption on V tells
us that V, tp(x) V() 0 for all x supp q and hence the assertion. Q.E.D.

Finally let us remark that a regular system N: @(G)E(G) is P-causal if and only
if the function Z: G @’(G) introduced in 4 satisfies supp Z(x) cP for all x G.
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COMPARISON AND STABILITY OF SOLUTIONS FOR A NEUTRON
TRANSPORT PROBLEM WITH TEMPERATURE FEEDBACK*

C. V. PAO"
Abstract. A system of coupled equations arising from the neutron transport in a reactor system is

investigated where the effect of temperature feedback is taken into consideration. Using the method of
successive approximation and the notion of upper and lower solutions, two monotone sequences are con-
structed for the corresponding integral equations. It is shown that these two sequences converge monotoni-
cally from above and below, respectively, to a unique solution of the system. This monotone convergence
leads to an existence-comparison theorem in terms of the initial iteration as well as each of the succeeding
iterations. Through suitable construction of the initial iteration the existence-comparison theorem is then
used to investigate the stability and instability property of a steady-state solution. Sufficient conditions in
terms of the physical parameters are given to ensure the stability and instability of the system, including some
explicit stability and instability regions. It is also shown under suitable conditions on the same set of physical
parameters that global solutions exist for one class of initial functions while they blow up in finite time for
another class of initial functions. Characterizations of these two classes of initial functions are obtained. In
some special feedback model, global solutions exist for all initial functions but they grow at a rate no less
than the order of exp(exp(,/t)) for some

1. Introduction. In the theory of neutron transport in a nuclear reactor, if the
effect of temperature feedback is taken into consideration then the neutron transport
equation for the neutron density is supplemented by a temperature equation. Suppose
the temperature feedback is only through the multiplication factor in a monoenergetic
slab medium where the two faces of the slab are located at x---0 and x-1. Then
according to the balance relation for neutron density and Newton’s law of cooling for
temperature where the effect of heat conduction is small the equations, governing the
density function N-- N(t, x,/) and temperature T= T(t, x) at time t, position x and
direction cosine/= cos0 are given by (cf. [1], [2]):

(t<O,O<x<l,-l<_<_l).
Here v,o0, Tc, /- are given positive constants representing the neutron speed, total
cross-section, coolant temperature and mean time for heat transfer to coolant, respec-
tively, and the functions 3,,h, which in general depend on T, are the multiplication
factor and the energy generation coefficient. In conventional notations the multipli-
cation factor may be expressed as =%+ POf, where %, (If are the respective scattering
and fission cross-sections and , is the mean number of secondary neutrons per fission.
Assume there is no neutron entering the slab from the outside. Then the boundary
condition for the neutron density is given by

(1.2) N(t,0,u)=0 fort>0, 0<_<1, N(t,l, lx)=O fort>0, -1_</<0.

As usual, the initial conditions for N, T are in the form

(1.3) N(O,x,l)--No(x,l), T(O,x)- To(x (0<x<l,--l_<_<l).

*Received by the editors December 23, 1980, and in revised form October 3, 1981.
Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650.
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The system (1.1)-(1.3) gives a mathematical description of the neutron’s density
and temperature distribution in a slab reactor system. In this system the temperature
feedback is considered only through the multiplication factor , and the energy produc-
tion coefficient h. In general, the total cross-section o0 is also temperature dependent.
However, in certain special situations such as the case of prompt feedback due to the
Doppler effect on resonance absorption the fission cross-section of is significantly
temperature dependent (cf. [1], [8]). For these types of models it is reasonable to
consider constant 0- On the other hand, the dependence of 3’, h on temperature is often
determined by the relation

dY=alT-m Y(Tc) 30>0 (m-->0)
(1.4) dT

dh
d--=a:T-’, h(T)-ho>O (n>_O)

where a 1, a 2 are some constants (cf. [5], [8]). This leads to the explicit expression for 3’,h
given by

,,(T)-o+a, ln - (m-1),

(1.5) fm(T)-.o-a,(m- 1)(T-(m-’)- Tc-(m- 1) ) (m:/= 1),

h,(T)-ho+aln (n-

hn(T)-ho-a2(n- 1)(T-(’- l)- T-(,-’)) (n :/: 1).

Of special interest is the function 3fm(T) in (1.5) with m-- 3/2 (see [8]). In this paper we
only consider the case of positive temperature feedback ai>--O (i--1,2) which is an

important concern in reactor stability consideration.
The neutron transport equation has been investigated by many researchers in the

field, but most of the discussions are devoted to the linear transport equation where the
effect of temperature feedback is neglected (e.g., see [4], [9], [14]). When the tempera-
ture effect is taken into consideration it is often investigated in the framework of
diffusion approximation, especially in relation to the qualitative property of the solu-
tion (cf. [6]-[8], [11]-[13]). An important problem in these investigations is to de-
termine how the temperature affects the stability property of the flux distribution in the
reactor system. The work in [11] also discusses the blowing-up property of the solution.
On the other hand, the neutron transport problem with temperature feedback without
the diffusion approximation has been investigated in [2], [3]. The main concern in these
papers is the existence-uniqueness question using semi-group theory of evolution equa-
tions. As usual, the definition of stability and instability in this paper is in the sense of
Lyapunov. For physical reasons, our stability or instability of the steady-state solution
(0, T.) is always with respect to nonnegative initial perturbations (N0, T0)_> (0, To).

The purpose of this paper is twofold: first we develop an iterative scheme for the
construction of a solution from which an existence-comparison theorem is established.
An important consequence of this theorem is that it gives an upper and a lower bound
of the solution in terms of the initial iteration. Furthermore, each succeeding iteration
narrows the gap between the upper and the lower bound of the solution. Our second
goal is to use the existence-comparison theorem to investigate the asymptotic behavior
of the solution and the possible blowing-up property of the system. Sufficient condi-
tions in terms of the physical parameters are given to ensure the stability, instability
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and blowing-up behavior of the system without explicit knowledge of the solution. In
the case of a given finite time interval, both upper and lower bounds of the solution are
obtained.

The plan of the paper is as follows: in 2, we construct two monotone sequences
and show that these sequences converge monotonically from above and below, respec-
tively, to a unique solution of the system. This monotone convergence leads to an
existence-comparison theorem in terms of the initial iteration as well as succeeding
iterations. A recursion formula for the calculation of the iterations is included in the
discussion. Through suitable construction of the initial iterations, called upper and
lower solutions, we investigate in [}3 the stability and instability property of the
steady-state solution (0, T). Sufficient conditions for the stability and instability as well
as a stability and an instability region of (0, T) are explicitly given. Finally, in 4 we
discuss the existence and nonexistence of global solutions. Special attention is given to
the functions 3,,h given by (1.5). It is shown for this model that ifm 1, n___ 1, then for
every nonnegative initial function (N0, u0), a unique global solution always exists.
Furthermore, the solution grows no faster than an exponential order when m> 1, n >
but it may grow in the order of exp(exp(/t)) for some r/> 0 when rn- n-- 1. However, if
rn < 1, n < then global solutions exist for one class of initial functions while they blow
up in finite time for another class of initial functions. Estimates for these two classes of
initial functions are obtained.

2. The existence-comparison theorem. Let D (0, (0, !), D2 (0, l) 1, ],
Q-(O,tl](O,/)[- 1,1] and let Di, Q denote the respective closure of D and Q,
where >0 is finite but can be arbitrarily large. Throughout this paper we assume that
/,h are positive continuous functions on R+ ----[0, ). The aim of this section is to
establish an existence-comparison theorem by constructing two monotone sequences
which converge from above and below, respectively, to a unique solution of (1.1)-(1.3).
For this purpose, it is convenient to let u--T-T and transform the system (1.1)-(1.3)
into the form

(2.1)
((t,x,la)Q),

((t,x,)

u( t, x ) u0(x )exp(- fit) +f0texp[- fl( t--)]( f2( N, u ))( ’, x ) d-
(2.5)

(2.2) N( t, O,ix)-O (t<O,O</x<l), N(t,l,t)--O (t>O,-l<<O),

(2.3) N(O,x,tz)=No(x,tx), u(O,x)=Uo(X ) ((x,/z) UD2),
where u0(x) T0(x) Tc(x). By considering (N + vlNx) as the total derivative
(d/dt)N(t,x+vtzt), an integration of (2.1), using the conditions (2.2), (2.3), yields the
integral equation

(2.4)
U( t,x, l ) exp(-VOot )No( x-vlzt, l )

+ exp[-%(t-’)](f(N,u))(’,x-el(t--))d" ((t,x,) ’),
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where

(f(N,u))(t,x)--

(f2(N,u))(t,x)=

y(u(t,x)) f! N(t,X,l,)dl,2 -1

h ( u( t, x ) f folN( t’ x’’ l’) dx’ dl’"

In the integral representation (2.4) it is defined that

Uo(x,l)=(f,(U,u))(t,x)=O when x [0,/l.
Clearly, every solution of the differential system (2.1)-(2.3) is a solution of the integral
equations (2.4), (2.5). Conversely, every solution of (2.4), (2.5) is also a solution of
(2.1)-(2.3) when (N+eINx) is considered as the total derivative (d/dt)N(t,x+vlt).
In this paper, a solution of (2.1)-(2.3) (or (1.1)-(1.3)) is always meant in the above
sense. It is to be noted that in the present definition of a solution the function (N, u)
needs to be continuous and possesses a total derivative in (in the classical sense).
Hence the solution defined in this paper is stronger than the solution in the LP-space
for every p (1 _<p_< ). For physical reasons, we are concerned with only nonnegative
solutions of (2.1)-(2.3).

To ensure the existence of a global nonnegative solution of (2.1)-(2.3) it is neces-
sary to impose some conditions on 7,h. Our basic hypothesis on these functions is the
following.

(H0). There exist positive constants 0, K such that

(2.7)
7( u2 ) -->7( u, ) >0

(0_<u, _<u2_< 0)-
Ih(u=)-h(ul)l’Klu:-u,I

The requirement on 7 in (H0) corresponds to positive temperature feedback which is an
important concern in reactor stability consideration. In the special case where , is given
by (1.5) this requirement is fulfilled for every O< m when a _>0. In general, condition
(2.7) is required only for some O>0, and the value of O is often determined by the
magnitude of upper and lower solutions which are defined as follows:

DEFINITION 2.1. A continuous vector-valued function (2,ti) is called an upper
solution of (2.4), (2.5) if it satisfies

(t, x,/)_>exp(-vo0t)N0(x- vlt,l)
+ foteXp[--VOo(t--’r 1]( f(/, fi))( "r,x--v( t-- "r 1) d’r,(2.8)

(t( t,x ) >_Uo(X ) exp(--/t) +[texp[-j(t--)]( f2( 2, 7 ))( ,x ) de.

Similarly, a continuous function (.N,.u) is called a lower solution if it satisfies the
reversed inequalities in (2.8).

Let (,fi), (.N,.u) be upper and lower solutions with (,fi)_>(N.,.u)_>(0,.0) (i.e.__,
>_N>_O,>_u>_O) and let o,M be positive constants such that O_>fi, M>_KN on Q,
where o,K are" the constants in (H0). Then by adding Mu on both sides of the second
equation in (2.1) and integrating we obtain the corresponding integral equation

(2.9)
u( t,x ) Uo( X ) exp(-(/3 +M)t )

+ foteXp[-(+M)(t-’)](Mu+f2(N,u))(r,x)d
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It is clear that this integral equation coincides with the equation in (2.5). By using
(N),u))-(,ti),as an initial iteration we can construct a sequence, denoted by
(](k), i(k) }, from the recursion formula

(2.10)

N(k)( t,x, lx ) exp(-voot )No( x-vlxt, l )

fotexp Oo(t )](/(N(k-1)+ [-v ,u(

u(k)( t, x ) Uo(X )exp[- ( fl +M)t]

Similarly, we can obtain another sequence from (2.10) by using the initial iteration

(N),u))-(.N,.u), and this is denoted by (_Nk),u)). These two sequences, referred
to as maximal and minimal sequence, respectively, possess the following monotone

properties.
LEMMA 2.1. The maximal sequence (k),ig)} is monotone nonincreasing and the

minimal sequence (_Ng), uk) } is monotone nondecreasing. Moreover,

(_N(k),_u(k))_<(](),i(k)) on for every k-1,2,’"

Proof. It is easily seen by letting k- in (2.10) and using the definition of upper
and lower solutions that (ffl), i))_< (o), io)), (_NO, u0)_>(_NO), uO)). We show that
(l),ffo)_>(_N0,u0). Let (N,ul), (N2,u2) be any two functions such that (0,0)_<
(Nl,Ul)<_(N2,u_)<_(N, ft). Then by (2.6), (2.7) and the nonnegative property of h(u),

fl(N2 u2)-fl(Nl,Ul) -’{(u2) f’2 -l

v(u) fl Nldl’>-0,2 -1

(2.11) f2(N2,u_)-f2(N,,Ul)-h(u2)21 f_fotN2dx’d#’ h u,) f, fo,u dx’ dl’21

where we have suppressed the dummy variables in the integral expressions. Since
M>_K>_(K/2l)f_lfdN2dx’dl’ and (0,0)_<(N),u))_<(.), ff))-(, fi) the above
relation and (2.10) imply that

(2.12)

(I)_ _N(,)=foteXp[_ vOo( t--" )]( fl((o), if(o)) _f(N(O), _u(O)))

.(,x-v(t-))dO,
(1)_ (l)=texp ( +M)( t-- z)] M( ffo)_ o))

+f2(;(), if(o)) -fz(Y(), (o))](r,x)d0.

This proves the relation

(N(0), U(0)) (.N(I), u(l)) ((1),/(1) ) ( j(o),
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Assume, by induction, that

(2.13) (N(k-l),u(k-l))(N(k),u_(k))((k),(k))((k-l),(k-l)).
Then by (2.10),(2.11) with (N2,u2)=((k-O,(k-)), (NI,U)--((k),g(k)) we have

/(k) _/(c+ ,)=texp[- VOo( t-- ,)] ( f,((k-,), (k-l))_fl((k), if(k)))

"(,,x-v(t-,))d,O,
if(k)_ ff(+ 1)=texp [ ( +M)(t- y )]

[(*-’)-)) +/(-’),-))-/(),))] (x,,) a,z0

wNch proves the relation ((,),ff(,))(ff(,+o, ff(+l)). A silar argument leads to
the conclusion N() u() ((+ E(+ (), (() ff(),_ ,_ ) o, o) and ( E()) ). It follows
from the inductive principle that (2.13) holds for every k. This proves the conclusion of
the lemma.

In view of Lemma 2.1 the pointwise (and componentwise) limits

(2.14) lim ((k),(g))=(,), lim (_N(*),u())--(_N,_u)
k--, o k--, o

exist and the convergence of these sequences are monotone. Letting__k--, in (2.10) and
applying the dominated convergence theorem we see that both (N, if) and (_N,_u) are
solutions of the integral equations (2.4), (2.9). The equivalence between the equations in
(2.5) and (2.9) ensures that they are also solutions of (2.4), (2.5). This conclusion leads
to the following existence-comparison theorem.

THEOREM 2.1. Let (, ft), (N., u.) be upper and lower solutions such that (,
(.N,.u)_>(0,0) and let (H0) hold for some.._O>-t. Then the maximal sequence ((k),fi(k)}
converges montonically to a solution (N,) of (2.1)-(2.3) and the minimal sequence
{ N_ , u_ } converges monotonically to a solution ( N_, u_). Moreover,

(2.15) (, .u) _< (_(*), u(*)) _<(_, _u) _<(,)_<((*), a(*)) _<(, a)

for every k- 1,2,....
In order to show that (N, fi) coincides with (_N, u) and is the unique solution of

(2.1)-(2.3) we need to impose a Lipschitz condition on y,
(H). There exist positive constants K1, O such that

(2.16) I.(u2)-.r(Ul)lK, lu2-ul forO---<UlU2 p.

Again the Lipschitz condition on y is required only on the finite interval [0, p]. With
this additional condition we have the following uniqueness-comparison theorem.

TrI.ORM 2.2. Let (,ft), (N.,u.) be upper and lower solutions such that (,f)>-
(N., u. ) >-- (0, O) and let (Ho), (H1) hold for some O >-. Then (N,) (N, u) and is the
unique solution (N, u) of (2.1)-(2.3) such that

(2.17) ( .N, .u)--< (_N(), u()) --< (N, u) -< (;(*), ff())-<(, fi)

for every k- 1,2,....
Proof. Let be an arbitrary positive constant to be chosen and let

N, e-Xt(--N_ ), u, e-Xt( ff u ).



NEUTRON TRANSPORT PROBLEM WITH TEMPERATURE FEEDBACK 173

Then (N*, u*)> (0, 0) and satisfies the equations

(Nt.+vp,N.x)+(VOo+X)N._ve-X’[ f,2 ,(ff)fl_lN d’-y(_u) l__Ndbt’
e-ht I fl fo’ f folNdx’dlJ,’],--1 --1

u*(.0.,)=0 (>0.0<_). U*(..,)=0 (>0.-_,<0.

Denote by h the least upper bound of h(u) for 0u0 and let Ml, M be any positive
constants satisfying 2e-IMI-->()+ Klf ind.’, 21M+KffN&’d’, where
K, K are the LipscNtz constants of ,h. Then by the hypotheses (Ho), (H),

--1 --1 --1 --1

2-Mex u* + N* d’

+h()f’l(-)dx’d,’
21Mex{ u* + d’

Using the above relation in the first two equations of (2.18) and letting h -vo0+ X,
h

_
fl + h we obtain

The above inequalities together with the boundary and initial conditions in (2.18) imply
that

Define

N*(t,x,l)<-ml fot exp(--Xl(t--’r))( u* + IN* dl’)(.x-vtx(t-z))] d,.

u*(l’x)<--M2Sotlexp(--X2(t--’r))( u*+S’-- fotN" dx’ dt’t’)(’r’x)] d’t’"

IINII-sup(IN(t,x,)l;(t,x,t)O}, Ilull=suP(lU(t,x)l;(t,x)O}.
Then by (2.20) and the nonnegative property of (N*, u*),

IIN*II-<Ml(llu*ll+ 211N*II) texp(--,l(t--’))d,--- (llu*ll+ 211N*II),

[’exp(- x=(t-))d= (11 u* I1+ 241N* II).2111N*II)
0
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Addition of the above two inequalities leads to the relation

(2.21) IIN*II/Ilu*II<--(2M, /2ZM2X-i’)(IIN*II/Ilu*II).
However, if , is chosen so that l >4M, X2_> 4lM_, then the relation (2.21) cannot hold
unless IIN*II 4-Ilu*ll-0. This implies_that N-_N and ff=u. Now if (N,u) is any other
solution such that (N.,u.)<_(N,u)<_(N,) then it is also an upper solution as well as a
lower solution. Using (N,u) as the initial iteration in (2.10), the same argument as in
the proof of Lemma 2.1 shows that (N,u)<--((k),ff(k)) and (N,u)>--(N_(k),u(k)) for
every k- 1,2, . It follows that (N, ff) >_( N, u) >_( N_, u) and therefore (N, if) (or (N, u))
is the unique solution. This completes the proof of the theorem.

Remark 2.1. (a) The conditions in (H0), (Hi) are all satisfied if 3’,h are continu-
ously differentiable in u and 3’ is nondecreasing in u for 0_<u_< p. The constant p is
determined by the least upper bound of and plays an important role in the determina-
tion of a stability region.

(b) The uniqueness of the solution in Theorem 2.2 is insured only in the region
bounded by upper and lower solutions, and nothing can be said about the system
outside this region. However, if the Lipschitz conditions (2.7), (2.16) for h, 3’ hold for
every finite p, where the Lipschitz constants K,K may depend on p, then there exists
exactly one nonnegative solution. This can be seen from the proof of Theorem 2.2.
Notice that the uniqueness proof depends on the fact that (N, ff)_>(_N,u).

3. Stability and instability problem. It is seen from Theorem 2.2 that the existence
of upper and lower solutions gives not only the existence and upper and lower bounds
of the solution, but also that a suitable construction of these functions can often
determine the stability and instability property of a steady-state solution. The aim of
this section is to construct explicit upper and lower solutions so that either a unique
global solution exists and converges to a steady-state solution or it grows unbounded as. This decay or growth property of the solution depends on the physical parame-
ters of the system without explicit knowledge of the solution. We first establish the
global existence problem when 3’, h are uniformly bounded in R+.

THEOREM 3.1. Let 3", h satisfy (Ho), (H l) for every finite p>0 and let y(u)_< b l,

h(u)<-b2 in R+ for some positive constants b, b2. Then the problem (2.1)-(2.3) has a
unique global solution ( N, u) such that

(3.1) O<_N(t,x,l)<_oet O<_u(t,x)<_O2et (t>0, (x,#) 2)
whenever (0,0)(No, uo)(lOl,lO2) where a, p 02 are constants with a (not necessarily
positive) satisfying

(3.2) a >--max(v( b’-)’ b2P’- fl}
Proof. In view of Theorem 2.2 it suffices to show that (],t)--(Pleat, P2eat),

(.N, .u)--(0, 0) are upper and lower solutions of (2.1)-(2.3), respectively. Indeed, since
by (2.6), f(0, 0)-0 for each i- 1,2, the zero function (0, 0) is a lower solution. To show
that (Pleat, p2eat) is an upper solution we observe from the equivalence between the
differential system (2.1)-(2.3) and the integral representation (2.4), (2.5) that (2,) is
an upper solution if

v lt + lax+ OO >--f ( l(l, fi ) ft + fl fi >--f2( ll’, ft

(3.3) /(t,O,/x)O (t>O,O</x 1), 1Q(t,l, lz)O (t>O, -1
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Since the boundary and initial requirements are clearly satisfied by 1, ft) p e at, p_e at )
we only need to verify that

( v-la-+-oo )Pleat>y( P2eat )Pleat
(a + fl )p2eat>h( p2et)ple ’t.

By the hypothesis .(u)<_b, h(u)<_b2 for all u_>0, the above inequalities are satisfied
by any constant a such that v-a+Oo>_bl and a+>b2Pl/P2. This leads to the choice
of a satisfying (3.2). The existence of a global solution and the relation (3.1) follow
from Theorem 2.2.

The result of Theorem 3.1 states that if v,h are uniformly bounded then for any
nonnegative initial function a unique global solution to (2.1)-(2.3) exists and grows no
faster than an exponential order. In fact, if b <0o, b2Pl/P2<fl then a can be taken
negative and the solution decays exponentially to (0, O) as 0. Since the condition
b2Pl/pz<fl can always be satisfied by taking 02 sufficiently large the decayed property
of the solution is insured whenever b < o0. This is, of course, to be expected physically.
On the other hand, if one or both of the functions ,,h are not uniformly bounded,
global solution may not exist, and even if it exists it may not converge to a steady-state
solution. In this situation it is important to know under what condition on ,/,h and for
what class of initial functions the corresponding global solutions exist and converge to
a steady state. It is also interesting to know when the solutions grow unbounded and at
what rate. In order to investigate these questions in the framework of the previous
section it is necessary to construct some different upper and lower solutions. To this
end we first find a function q,(x,/Z)_>O satisfying the equations

(3.4) /zq’x+-M ((x’/z) eD2)’
q,(0,/z)-0 for 0</Z_< 1, q,(l,/z)-0 for- I_</Z<0,

where M0 is a given positive constant. It is easily seen that the solution of the above
boundary-value problem is given by (cf. [9], [10])

M(1--e-x/’ ) (/Z> 0),
o0

(3.5) (x,/z)- M (/z-- O),
oo

M(1--e(t-x)/’ (/Z< 0).
Oo

We choose the constant Mo so that is normalized in the sense that f fod?( x, /z ) dx d/z
-2l. Direct integration of shows that Mo is given by

00 oo(l--x)/lz(3.6) go -l (2 e /’ e ) d/z dx

We next define

h (Uo)-sup(h(u); 0_<u_<u0}, h(uo)-inf(h(u); u>_Uo),
(3.7) E2(z)=foeXp(-z//z)d/z (z>_O),

where for simplicity, uo is taken as a constant. The function E2(z ) is the exponential
integral of order two. With these notations we have the following existence-stability
result when 3’, h are not necessarily bounded.
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THEOREM 3.2. Let 7,h satisfy (Ho), (H1)for some p>_Uo>_O, where uo is a constant.

Oo > {l )(3.8) .,{( uo) \, 2

then for any No<_Poq with po<fluo/h(uo) there exists a constant a>0 such that a unique
global solution (N, u) exists and satisfies

(3.9)
N(x-vlt’l)e-’t<-U(t’x’)<:Pe-tdp(x’) (t>0, (x
Uoe-(#+M)t u( x ) < Uoe-at

where M-- Kpo and K is the Lipschitz constant in (2.7).
Proof. We first show that (N, ft)-(Ooe-t,k, uoe-’t), (.N,.u)-(0,0) are upper and

lower solutions, respectively. It is clear from the proof of Theorem 3.1 that (0, 0) is a
lower solution. Since (O,x, lx)-Ooq>_No, fi(O,x)-uo, and by (3.4), (t,O,/,)-O for
0 </,_< 1, (t, l,/,) 0 for _</,< O, we only need to show that (,) satisfies the
differential inequalities in (3.3), that is,

T(Uoe-t)
Ooe x l’) dl’,[qx+(

h(uoe-at) fl fotOOe_tq,(x,,l,)dx, dl,.(-a)ue-’’>- ’2l _,
In view of the equation (3.4) and the normalized property of q the above relation is
equivalent to

,(x, t’) dl’,
2 -1

(fl-a)Uo>Poh(uoe-at).
It is clear from po<uo/h(uo) that the second inequality is satisfied by a sufficiently
small a>0. Since Y(uoe-at)<_Y(Uo) and q is given by (3.5) the first inequality is also
satisfied when

(3.10)
M-v-’aq)>M’(u)--

2O’o [fo’(I-e-’x/’’)dlx’+ff (I-e"(t-x)/")dlz’

M0v(u0)

where

(3.11) to(x) =fo[2- e-x/’’- e-(’-x>/"’l dl’.

It is easily seen that the maximum value of 0(x) occurs at x-1/2 and is given by
o(l/2) 2(1 E2(Oo//2)). Hence condition (3.10) holds if

Mo-v- ’a,k>_
My(u ) (1-E2( lOo -5-
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The above relation follows immediately from (3.8) for a sufficiently small a>0. This
shows that (oe-’t,uoe-’t) is an upper solution. By Theorem 2.2, a global solution
(N, u) exists and satisfies

(3.12) O<_N(t,x,l)<--pe-tq(x,l), O<_u(t,x)<_Uoe-’t.
From the recursion formula (2.10) with (_NO), u))= (0, 0) and observing that f/(0, 0)-- 0,
i-- 1,2, the first iteration (_N, u1)) is given by

(3.13)
N0)( t, x, # ) exp(-VOot )No(x vlt, l ),
u’)( t,x ) uo exp(- (/3 + M)t).

But (N(1),u(1)) is also a lower bound of (N,u); the relation (3.19) follows from (3.12).
This completes the proof of the theorem.

The result of Theorem 3.2 implies that under the condition (3.8) the zero steady-
state solution is exponentially asymptotically stable. In the following theorem we show
that under a similar condition on the same set of physical parameters the solution
grows unbounded either as oe or at a finite time.

THEOREM 3.3. Let (H0), (H1) holdfor every p< . If
Oo(3.14) V(Uo)< 2

then for any No>_Srk with 8>fluo/h(uo) there exists a constant e>0 such that the system
(2.1)-(2.3) has a unique solution ( N, u) which satisfies
(3.15) N(t,x,l)>_Se’, u(t,x)>_Uoet (t>0, (x,/) 2)
for as long as it exists.

Proof. Let M* be an arbitrarily large constant and define modified functions ,/*,
h* such that 3,*(u)=,/(u), h*(u)=h(u) for O<_u<_M* and ,*, h* are uniformly bounded
and satisfy the hypotheses (H0), (H) for all u_>0 (for example, ,*(u)=,/(u) for
O<_u<_M* and *(u) =,(M*) for u>M*). Then by Theorem 2.2 the modified problem
(2.1)-(2.3) (i.e., with 7,h replaced by 7", h*) has a unique solution (N*, u*) and satisfies
(.N,.u)_<(N*,u*)_<(/,fi) provided that (,fi), (N,.u) are upper and lower solutions of
this modified system. We first seek a lower solution in the form (N.,u)=(Setq,,Uoet).
This will be done if it satisfies all the reversed inequalities in (3.3). Indeed, since the
boundary and initial requirements are fulfilled it suffices to.show that

"[*(Uoeet) et[ldPx+(Oo+V-le)dp]et< f e (x,’)d’2

(+)ueet<h*(ueet)--
2l f’_l

By choosing e>0 sufficiently small, the second inequality follows from the hypothesis
fluo<(Uo). In view of (3.4), (3.5) and the relation V*(uoe")V(uo) the first inequal-
ity is also satisfied if

(M0+_ls,)(u0) fl ,(x,t)dt =MO(uO) (x).2 2o0

Since the minimum value of 0(x) on [0,/] is attained at x=0 (or x= 1) and is given by
o(0) o(/) 1- E2(ool ) the above inequality holds whenever

mo+v-’erkM’/(u) [1-Ee(ool)].20o
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But this follows from the condition (3.14) for a sufficiently small e>0. The above
conclusion shows that for a small e>0, (N.,u.)-(Se"q,,Uoet) is a lower solution of the
modified problem. Using the uniform boundedness of the modified functions ,*, h* the
same construction as in the proof of Theorem 3.1 shows that for any constants 01-->No,
I02->U0 and a suitable a>e_ the function (]Q, b)-- (io le ", p2eat) is an upper solution. The
above choice of Pl, O_, a also ensures that (/,5)->( .N., .u). It follows from Theorem 2.2
that a unique global solution (N*, u*) to the modified problem exists and satisfies

(et,uoet)<_(U* u*) < (O,_e"’, 02e "’ ).
Since (N*, u*) is the solution of the original problem whenever u* _<M* and since M*
can be taken arbitrarily large we conclude that either (N*,u*) is the solution of the
original problem and satisfies (3.15) for all t->0 or the solution of (2.1)-(2.3) blows up
in a finite time. This completes the proof of the theorem.

Remark 3.1. (a) The results of Theorems 3.1 and 3.2 imply that under the condi-
tion (3.8) the zero steady-state solution of (2.1)-(2.2) is asymptotically stable while
under the condition (3.14) it is unstable. A stability region and an instability region are
given, respectively, by

A -{(No,uo)->(O O)" No<-powithoo< flu }
(3.16)

Ai- {(No Uo)>(O,O)" No>8owith> flu }h_(Uo)

Notice that if h(u)-h o is independent of u then h(uo)-h(uo)-h o and the stability
and instability regions given by (3.16) become rather sharp. On the other hand, if
y(u)<b, h(u)<_b2 then for any N0->0 there exist u0, P0 such that No<_Po<fluo/b2.

This implies that if (3.8) holds with Y(u0) replaced by b then the solution (N,u)
satisfies (3.9) and thus it decays to (0, 0) as t--, m. Hence condition (3.8) improves the
stability condition b <o0 in Theorem 3.1 when ,, h are uniformly bounded.

(b) The dependence of , on temperature is reflected in the stability and instability
conditions (3.8), (3.14). In the present situation of positive temperature feedback this
dependency only involves the initial temperature increment uo. In the special case
where ,(u0)-3,0 is independent of u0 the stability and instability conditions are re-
duced, respectively, to

(o0 Oo/,o> E2 -- and < a
’o 2

These are exactly the same conditions as for the linear transport equation obtained in
[9]. Notice that since (1-E2(ool/2)) is approximately equal to 1/2(1- E2(ool)) when ool
is sufficiently small, conditions (3.8), (3.14) for stability and instability give a criticality
result for small values of ool. For large values of ool there is a gap between these two
functions whose ratio is always less than 2 for every finite ool.

(c) When u0-- Uo(X ) depends on x all the conclusions in Theorems 3.2 and 3.3
remain true if ,(u0) in the conditions (3.8) and (3.14) is replaced by 3’(if0) and y(u0),
respectively, where fro, u0 denote the least upper bound and greatest lower bound of u0

on [0,1]. In either case, whether u0 is constant or not, if the temperature increment u0

from the coolant temperature T is small; the feedback effect on the stability or
instability of the steady-state (0, To) differs little from the linear system.
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(d) The slab length also plays an important role in the stability or instability of
the system. In fact, given any o0, 7, u0, one can determine a slab length l, from (3.8) and
2 from (3.14) so that the system (2.1)-(2.3) is stable for all 1<_1 and is unstable for all

1>--12
When the functions 7,h are given by (1.5) with m_> 1, n_> all the conditions in

(Ho), (H) are satisfied. In terms of the initial temperature To--> T the functions 7(Uo),
h(uo) become

(3.17)
7(u)--71(T)--Y+alln form--1,

7(Uo)--Ym(To)--7o--a(m-- 1)-(To-(’-)- T-(m-l)) form->

and a similar expression of h(uo). As a direct consequence of Theorem 3.2 and 3.3 we
have the following conclusion for the system (1.1)-(1.3) when 7,h are given by (1.5).

COROLLARY. Let 7=7(T), h=h(T) be given by (1.5) with m=n=l and let
TO -> T.. Then the steady-state (0, T,.) of (1.1), (1.2) is asymptotically stable if

and it is unstable if

(3.19) o 7o+a In cc <
2

Similarly, when 7 7m(T), h hm(T) with m> 1, n > 1, the stability and instability condi-
tions for (0, Tc) are given, respectively, by

and

(3.21) %[70 al(m 1)l(z0-(m-1)TtT(m-l))] [1- E2(ool)]

In each case, a stability and an instability region are given by (3.16) with uo To- T,..
4. Blowing-up property of the solution. It is seen from Theorem 3.3 that under the

condition (3.14) the solution (N, u) of (2.1)-(2.3) grows unbound either at infinity or in
a finite time. Clearly for uniformly bounded functions 7, h, global solutions always exist
and thus (N, u) cannot grow faster than exponential order. A mathematically interest-
ing question is that for nonuniformly bounded functions 7,h whether the solution can

grow unbounded in finite time and whether it can grow faster than an exponential
order if a global solution does exist. In particular, it is interesting to know these
possibilities for the type of functions 7, h given by (1.5) when m_< and n_< 1. The aim
of this section is to investigate the existence and nonexistence of a global solution as
well as the growth or decay property of the solution. We first show that if 7,h satisfy
the condition

(4.1)
h(u)>_ho+bau2 (u->O)
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for some constants 30_>0, h0_>0, b>0, ,>0, no matter how small bi, , may be
(i= 1,2), then for certain classes of initial functions the corresponding solutions blow
up in finite time. In the special model (1.5), condition (4.1) corresponds to the case
m< 1, n< 1. In order to give more specific information about this class of initial
functions, it is convenient to use the following notations:

,-min(,,,2), co-
(1-E(ol)) B-b2(vblCo) -1

(4.2) 2

B*-b(vblco)1-, *-max(-hoB-,V(Oo-Coro),O).
THEOREM 4.1. Let t, h satisfy the condition (4.1) and the hypotheses (H0), (H) for

every p< o, and let > ( fl*/B*) /. Then for any No, uo ) >_ ( ick, iB) there exists a finite
t*>0 such that a unique (local) solution (N,u) exists on [0, t*)[0,/][-1,1] and
satisfies either

(4.3) lim, max N(t,x,lx)]-- or lim [max u(t,x)]-tt (x,/z)D t-,t* O<--x<l

(or both). Moreover, t* <_,B*i when fl*=0 and

(4.4) t*<_(vfl*)-ln[B*8(B*8--fl*) -1] when fl*>0.
Proof. We first seek a lower solution in the form ( .N, .u) (p(t)q, q(t)), where p, q

are some positive functions with p(0)= 8, q(0)-8B. To this end, it suffices to find p, q
such that (.N, .u) satisfies all the reversed inequalities in (3.3). Since the boundary and
initial requirements are fulfilled we only need to choose (p, q)>(0, 0) such that

v_,p,q,+(q,x+OOq)p<_V(q)p fl2 -1(4.5) h(q)P f’ fo’q + flq< q ( x lz’ dx dlz’ h ( q )p21 -l

Now from the expression for q in (3.5),

q,(X,l)<--M and f’ q,(X,l’)dl.t’>M (1-E2(aol)).
O0 --00

This relation together with (3.4) and the hypothesis (4.1) imply that (4.5) will be
satisfied if p’_> 0 and

(4.6)
Mop’+Mop<M (1 E_(ool)) (’o + blq"’)P,
OoV -200
q’+ flq<--(ho+b2q2)p.

Choose q= Bp, where B is given by (4.2). Then by using the notation in (4.2) the above
relation holds when

(4.7)
p’ + v(oo- CoYo)p <_ vb,coBP1+,
p’ + ( fl- hoB- )p<_b2B ’p’ +.

Since vb,coB" b2 B’-- B*, both inequalities in (4.7) hold if p satisfies

p’ + fl*p <_ B*p +"
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where fl*, B* are given by (4.2). It follows that for/3* >0 p can be chosen as

B*(" B*(" *t [0,(4.8) p(t)-8 , , -1 e" (t ))

where p(O)-i>(B*/B*)/ and o is given by the right side of (4.4). The requirement
of 6>B*/B* ensures that p’ and p are both positive on [0, to) and p(t)-o oe as t-,to.
When fl*-0 it suffices to choose p(t)-i(1-vB*i"t)-/ for t<(vB*i")-. With this
choice of p, (N., u. ) (p, Bp) is a lower solution in the domain Q (0 l] X D2 for
every t <t0. To show the blowing-up property (4.3) we follow a similar argument as in
[11] where a diffusion system was considered. Assume, by contradiction, that the
solution of (2.1)-(2.3) were bounded on Q0 [0, o D2 (say, by A). Then there exists

t <to such that either max(pg)_>A + or max(Bp)>_A + (or both) in the region Q.
Choose M*>_A + sufficiently large and define modified functions 3’*, h* as in the
proof of Theorem 3.3. Then (pq,Bp) remains a lower solution of the modified system
(2.1)-(2.3) in the domain Q. By choosing O,a sufficiently large the function (N,5)-
(__o_peat, peat) is an upper solution of the modified problem in Q1 and (/,5)_>(.N,_u) on
Q. Hence the modified problem has a unique solution (N*,u*) such that (N*,u*)>_
(p,Bp) on Ol. This relation implies that for some t2<_tl, (N*,u*)<_(M*,M*) and
either maxN* =A + or maxu* =A + in the region Q2-[O, t2]D. Hence (N*,u*)
is a solution of the original problem in Q2 with either maxN*-A + 1 or maxu*-A +
on Q. This contradicts the assumption that the solution be bounded by A on Q0-
Therefore there must exist some t* _<to such that (4.3) holds. This completes the proof
of the theorem.

When the functions ,/, h are given by

(4.9) .(u)-.o-l-bl uv, h(u)-ho+b_u": (v;_> 1)
all the conditions in (Ho), (HI) and (4.1) are satisfied for every 0< m. In view of
Theorems 3.2 and 4.1 we have

COROLLARY. Let /,h be given by (4.9) and let (3.8) hold with /(uo)--7o+blU"o.
Then for any (N0, u0)_>(0,0) with No <_Ooq and Oo<fluo(ho + b.u)2) , a unique global
solution to (2.1)-(2.3) exists and converges to (0, O) as --, o while for (No, uo) >_ (Sq, iB)
with 6> ( fl*/B*)1/ the corresponding solution blows up in finite time.

Remark 4.1. The result of Theorem 4.1 remains true when the first condition in
(4.1) is satisfied only for u_>q and the second condition is satisfied for u>_B6 (rather
than for all u_>0). The blowing-up property of the solution in the corollary to Theorem
4.1 remains true when condition (4.9) holds only for v;>0, no matter how small v; may
be. (Note that in this situation, Theorem 2.1 ensures the existence of a solution but not
uniqueness.) In any case a "strong instability region" is given by

A- ((N0,u0); No>_80,Uo>_iB with >(I*/B*)I/v},
where B,B*, fl*, v are defined in (4.2).

The blowing-up property of the solution obtained in Theorem 4.1 is based on the
condition in (4.1) which is not physically realistic since it corresponds to m< 1, n < in
the model (1.5). Nevertheless it is an interesting mathematical problem since this
conclusion is in sharp contrast to the case m> 1, n > for which global solution always
exists for every nonnegative (No, u0). An immediate question is that when m= n
whether global solutions can exist for all nonnegative (N0, u0). Since in this model,

(4.10) (u)3,(u)--30+alln +-c (u)h(u)-ho+a21n 1+-
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which grows unbounded as u--, o but not as fast as u" one cannot draw a conclusion
from either Theorem 3.2 or Theorem 4.1. It turns out that for this model, global
solutions do exist for all nonnegative (N0, u0) but as t- o they may grow to infinity at
a rate faster than exponential order. In order to exhibit this type of growth property of
the solution more explicitly we set

o (va)
(4.11) c--max{a-(Y--) a-h -c2 min (a-( (%-- Oo/Co ),aho ( vaco)-},
where co is defined in (4.2). Notice that the constants c, c may be positive as well as
negative, depending on the magnitude of the various constants.

THeOReM 4.2. Let 7, h be given by (4.10) and let

(4.12) ql(t)- Tc[exp(
q2(t) T[exp(C2 exp(va,cot c2) 1],

where C, C2 are some positive constants. Then for any (No, uo)_>(0,0) there exists a
constant C >_c such that a unique global solution (N,u) exists and satisfies

No(x-vtt, I )e-vt<_N( t,x, I) <-(a lVal ) ql(t),
(4.13)

Uo( X )e-a+t)’ <_u( t,x <_q( ).

Moreover, if (No, uo)>(8q,62) for some 62>(e-- 1), 6>_(alvalco)62 then there
exists a positive constant C2

<_ C such that the solution ( N, u) satisfies

(a Ivalco )q2(t) <_N( t,x, Ix)<--(a ’va, ) ql (t),(4.14)
q( ) <u( t,x <--q,( ).

In particular, if c >-- 0 then for every positive (No, uo), the corresponding solution grows to

infinity in the order no less than exp(exp( valcot)) and no more than exp(exp(vat)).
Proof. For the relation (4.13) we seek an upper and a lower solution in the form

(,ft)-(p(t),q(t)), .N, .u (0, 0) where p,q are some positive functions to be de-
termined. Since (0, 0) is a lower solution it suffices to find (p,q)>_(0,0) such that
(p(0), q(0)) >_(N0, uo) and

v-’p’+oop>_7(q)p, q’+flq>_h(q)p.
Choose p-(ava)q, where q(O)>_uo and (aIva)q(O)>--No Then by (4.10) the re-

quirement on (p, q) becomes

q’+vooq>-v[yo+alln(1 +aoq)]q,
(4.15) q,+ flq>_(alva)[ho+a21n( +aoq)]q,

where a0- T,71. Using the notations in (4.11), both inequalities in (4.15) hold if

(4.16) q’>_va[c /ln(1 +aoq)] q.

Let r(t) + aoq(t). Then the above inequality becomes

(4.17) r’(t)>_val[(C +lnr)r-(c +lnr)].
Now if c>_0 then from c +lnr(0)-c +ln(1 +aoq(0))_>0 it suffices to find r(t) such
that

r’(t)>_va,(c, +lnr)r,r(O)- +qoq(O).
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This leads to the choice of

(4.18) r(t)-exp[(c + lnr(O))exp(vat)-c].
Hence a desired function q(t) may be taken as the function q(t) in (4.12) with

C--c +ln(1 +a0q(0)). With this choice of q the function (p,q)--(avaq,q) is an
upper solution. It follows from Theorem 2.2 that a unique global solution (N,u) to
(2.1)-(2.3) exists and

(4.19) O<_N(t,x,l)<_(ava)q(t), O<_u(t,x)<_q(t).

Since the function (_N,u) given by (3.13) is a lower bound of the solution we conclude
that (N,u) satisfies the relation (4.13). In the case of c <0 the relation (4.17) is still
satisfied by the function r(t) in (3.18) when q(0) is chosen such that In(1 + aoq(O))>_- c.
In either case, whether c _>0 or c <0, the conclusion in (4.13) holds for every nonnega-
tive (N0, u0) (where C depends on (N0, u0)).

To show the relation (4.14) when (No,uo)>_(6q, i2) we seek a different lower
solution in the form _N,.u)=(pq,p2 ) where p, P2 are some positive functions with
p(0)--6, p2(0)--6. Following the same argument as in the proof of Theorem 4.1,
(Pq,P2) is a lower solution if p’ _>0 and

Mp’ +Mop <M (1-Ez(ool))[yo+aln(1 +aopz)] p,
(4.20) oV 200

p_+p<-[ho+a2ln(1 + a0P_)] P
(see (4.6)). Let p--a(vaco)pz, where co is given by (4.2). Then a simple calculation
shows that both inequalities in (4.20) are verified ifp satisfies the relation

(4.21) p’2<_vaco[c+ln(1 +aoP2)]p,
where c is defined by (4.11). Since the above inequality has exactly the same form as in
(4.16) except with c, va replaced by c2 and vaco, respectively, it is satisfied by the
function q2(t) in (4.12) provided that C2--c2+1n(1 +p(0))_>0. The condition C2_>0 is
insured by the hypothesis p2(0)---2>e-c2- 1. Since p(O)q,-(avaco)62,<_6<_No
we see that (pq,p)-((a-vaco)qz,q) is a lower solution. It is easily seen from

Co< that qe<_q when C<_C. By choosing C sufficiently large (or equivalently q(0)
large), if necessary, we also have qz<q. This choice of C implies that (peb, q2)<
p, q), that is, _N, _u) _< (, fi). The relation (4.14) follows from Theorem 2.2. Finally, if

c2_>0 then c2+ln(1-k-p2(0))>0 for every p2(0)>0. In this situation, the relation (4.14)
holds for every positive (No, uo) (with a corresponding C>_C>_O). The growth prop-
erty of the solution as stated in the theorem follows from the relation (4.12), (4.14). The
proof of the theorem is completed.
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CONTINUOUS SELECTIONS AND APPROXIMATE SELECTION
FOR SET-VALUED MAPPINGS AND APPLICATIONS

TO METRIC PROJECTIONS*

FRANK DEUTSCHf AND PETAR KENDEROV $

Abstract. Two new continuity properties for set-valued mappings are defined which are weaker than
lower semicontinuity. One of these properties characterizes when approximate selections exist. A few selec-
tion theorems characterized by the other property are established. Some applications are made to set-valued
metric projections.

Key words, set-valued mapping, continuous selection, continuous approximate selection, metric projec-
tion, continuous selections for metric projections

1. Introduction. The most important mapping which arises in approximation the-
ory is the set-valued metric projection or proximity map. This is the mapping which
associates with each element of a normed linear space its set of nearest points ("best
approximations") from a prescribed subset. In particular, there has been substantial
interest in determining conditions which insure that the metric projection onto a
finite-dimensional subspace has a continuous selection. The well-known Michael selec-
tion theorem (see below) states that lower semicontinuity of the metric projection is
sufficient. Unfortunately, lower semicontinuity is not necessary and, in fact, is often
absent in any given problem. This has forced many researchers to employ ad hoc
techniques to establish the existence (or nonexistence) of continuous selections for the.
metric projection (see e.g. [2], [3], [10], [11], [13], [14], [16], [17], [201, [21], [22]).

The main motivation for this paper was a desire to determine a continuity property
of the metric projection which characterizes when a continuous selection exists. More-
over, since the key step in the proof of the Michael selection theorem was the construc-
tion of "continuous e-approximate" selections, we sought a continuity criterion which
characterized this latter condition as well. Our results can be very briefly summarized
as follows: We were successful on the latter problem and were partially successful on
the former. More precisely, we proved that the existence of continuous e-approximate
selections for each e>0 is equivalent to "almost lower semicontinuity" (Theorem 2.4).
And, in certain cases of interest, the existence of a continuous selection is equivalent to
"2-lower semicontinuity" (Theorems 2.7 and 2.9 and Corollaries 3.3 and 3.5).

Since our results are valid for rather general set-valued mappings (not necessarily
metric projections) and have independent interest, we have formulated them in a
general setting in {}2 and then applied these results to metric projections in {}3.

An announcement, without proofs, of some of the results of this paper involving
metric projections was made in [6]. (In [6], "n-lower semicontinuity" was called "n-con-
tinuity".)
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2. Almost lower semicontinuity and n-lower semicontinuity. Let X be a topological
space, Y a metric space with metric d, and 2r the collection of all nonempty subsets of
Y. Let F:X- 2r’. That is, F is a function on X whose images are nonempty subsets of
Y. The e-neighborhood of a nonempty set A in Y is given by

B(A)’- (y rld(y,A)<e),
where

d(y,A)--inf{d(y,a)la
DEFiNITiONS 2.1. F is called almost lower semicontinuous (a.l.s.Co) (resp. n-lower

semicontinuous (n-l.s.c.)) at x0X if for each e>0, there exists a neighborhood U of x0

such that

N B(F(x))=/=
xU

(resp. nB(F(xi))4= for each choice of n points x 1, Xz,...,x in U). F is called
almost lower semicontinuous (a.l.s.c.) (resp. n-lower semicontinuous ( n-l.s.c.)) if F is a.l.s.c.
(resp. n-l.s.c.) at each point of X.

A continuous selection (resp. continuous e-approximate selection) for F is a continu-
ous function f:X Y such that f(x) E F(x) (resp. f(x) E B(F(x))) for each x E X.
("Approximate selections" have been studied by Cellina [4], [5] and Reich [18], but
their definition differs significantly from ours.)

It is useful for comparison purposes to mention here the celebrated selection (resp.
approximate selection) theorem of Michael [12]: Let X be a paracompact space, Y a
Banach space resp. normed linear space), and suppose F X 2Y has closed convex ( resp.
convex) images. If F is lower semicontinuous, then F has a continuous selection ( resp. a
continuous e-approximate selection for each e> 0).

Recall that F is lower semicontinuous at x0 if for any open set V in Y with
F(xo)n Vva , there exists a neighborhood U of x0 such that F(x) Vva for all
x U. It is easy to give examples which show that lower semicontinuity of F is not

necessary for F to admit either a continuous selection or a continuous e-approximate
selection (see the examples following Lemma 2.2). To the best of our knowledge, the
result of Michael’s is the only one previously known about continuous e-approximate
selections.

Some easy consequences of the definitions are recorded in the following lemma.
LEMMA 2.2. (1) F is always 1-1.s.c..
(2) IfF is n-l.s.c., then F is k-l.s.c, for every k <-n.
(3) If n>_2 and F is sing&ton-valued, then F is n-l.s.c, or a.l.s.c, if and only if F is

continuous (in the usual sense).
(4) If F is a.l.s.c. (resp. n-l.s.c.), then the mapping x F(x) is also a.l.s.c. (resp.

n-l.s.c.) (since B(F( x )) B(F(x))).
(5) Every continuous selection is a continuous e-approximate selection.
It is worth noticing that a mapping F could have a continuous e-approximate

selection for each e>0, yet fail to have a continuous selection. For example, define
F: --, 2 by F(x)= [- 1, 0) if x is rational and F(x)= (0, 1] if x is irrational. Then for
any e>0, the function f=f=--O is a continuous e-approximate selection for F, but F
obviously has no continuous selection. Furthermore, F is not 1.s.c. This shows that
lower semicontinuity is not necessary in Michael’s approximate selection theorem stated
above. However, F is a.l.s.c, and this is the reason why F admits continuous e-ap-
proximate selections for every e> 0 (see Theorem 2.4 below).
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By slightly modifying the above example, we can show that lower semicontinuity is
not necessary in Michael’s selection theorem. Indeed, define F: R 2n by F(x) 1,0]
if x is rational and F(x)=[0, 1] if x is irrational. Then F is not 1.s.c. but admits the
continuous selection f=0. The reason F admits a continuous selection is because F is
2-1.s.c. (see Theorem 2.7 below).

The next lemma exhibits the hierarchy of these continuity properties and shows, in
particular, the almost lower semicontinuity and n-lower semicontinuity are weaker than
either lower semicontinuity or the admission of a continuous selection.

LEMMA 2.3. Consider the following statements.
(1) F is 1.s.c..
(2) F has a continuous selection.
(3) F has continuous e-approximate selections for each e> O.
(4) F is a.l.s.c..
(5) F is n-l.s.c, for every n.
(6) F is n-l.s.c, for some n >_ 2.
(7) F is 2-1.s.c.
Then (2) (3) (4) (5) (6) (7) and (1)(4).
Proof. The implications (2)(3) and (4) (5) (6) (7) are obvious.
(3)(4). Assume (3) holds, xoX, and e>0. Let f--f be a continuous -ap-

proximate selection for F. Choose a neighborhood U of x0 such that d(f(xo),f(x))<
for all x U. Hencef(xo)B/z(f(x))CB(F(x)) for all x U. Thus r)zuB(F(x))#

and F is a.l.s.c, at x0.

(1)(4). Assume F is 1.s.c., x0 X, and e>0. Choose any Yo F(xo). Obviously,
F(xo)rB(yo)# r so there exists a neighborhood U of x0 such that F(x)NB(yo):/:
for all x U. In particular, yoB(F(x)) for all x U so (’IzuB(F(x)):/: and F is
a.l.s.c, at x0.

rq

Our first theorem characterizes those mappings which have continuous e-ap-
proximate selections for every e.

THEOREM 2.4. Let X be a paracompact space e. g. a metric space) and let Y be a
normed linear space. Let F:X 2v have convex images. Then F is almost lower semicon-
tinuous if and only iffor each e > O, F has a continuous e-approximate selection.

Proof. Sufficiency follows from Lemma 2.3.
Necessity. Suppose F is a.l.s.c, and e>0. For each x0 X there exists a neighbor-

hood U(xo) of x0 such that

Since X is paracompact, the open cover {U(x)lxX} of X has a locally finite refine-
ment {]iI}. For each iI, choose xX such that a U(x). Using paracompact-
ness, we can choose a partition of unity {pliI} subordinate to {]iI}. That is,
each function p: X--, [0, 1] is continuous, 2zp(x)= for all xX, and p.=O off .
For each iI, choosey (3 (B(F(x))lx E} and set

f(x): E P,(x)Yi, xX.
iI

Given any x X, there is a neighborhood of x which intersects only finitely many of
the V,. so x V/ for only a finite set of indices I(x) in I. Thus f is well-defined,
continuous, and has range in Y. Further, Yi Be(F(x)) for all I(x) implies that

f(x)---- X p,(x)y, co(B(r(x)))--B,(F(x)).
idl(x)

Thus f is a continuous e-approximate selection for F. Fq
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The method of proof of the necessity is similar to that used by Michael [12]. Note
that Theorem 2.4 generalizes the approximate selection theorem of Michael stated
above.

With an additional restriction on the images of F, we can also relate n-lower
semicontinuity to the admission of continuous e-approximate selections.

THEOREM 2.5. Let X be a paracompact space, Y an n-dimensional normed linear
space, and suppose the mapping F X2r has closed, bounded, and convex images. Then
F is (n+ 1)-lower semicontinuous if and only if for each e>0, F has a continuous

e-approximate selection.

Proof. Sufficiency follows from Lemma 2.3.
Necessity. Suppose F is (n+ 1)-l.s.c., x0 X, and e>0. Then there exists a neigh-

borhood U of x0 such that

n+l

i=1

for each choice of n+l points in U. Each set B/z(r(x)) is compact convex and is
contained in B(F(x)). By (.), the collection of compact convex sets (B/z(r(x))]x U)
has the property that the intersection of each n + of them has a nonempty intersec-
tion. By Helly’s theorem [19,p. 191] the intersection of the whole collection is non-
empty. Hence

This shows that F is a.l.s.c, at x0. The result now follows by Theorem 2.4. g]

For the special case n- 1, each of the statements of Theorem 2.5 is equivalent to
the condition that F have a continuous selection. Before proving this, it is convenient to
isolate a key step of the proof.

LEMMA 2.6. Let Y be a 1-dimensional normed linear space, and suppose the mapping
F X- 2r is 2-lower semicontinuous and has closed, bounded, and convex images. Let
r> 0 and let f be a continuous r-approximate selection for F. Then the mapping G X- 2r

defined by

G(x)=F(x)Br(f(x)) xX

is 2-1ower semicontinuous and has closed, bounded, and convex images.

Proof. Note first that for each x X,

G(x) D F(x) NBr( f(x))=/=
since f(x) G B(F(x)). Thus G(x) E 2r and G has (closed) bounded and convex images
since F has. Thus it remains to verify that G is 2-1.s.c.

First we verify
CLAI 1. For each e >0 and each x X,

B(G(x))=B(F(x)) nB+r( f(x)).
For let y B(G(x)). Then there exists z F(x) n B(f(x)) such that y B(z).

Hence

yB(r(x )) N B(B( f( x ))) B( F( x )) N B+r( f(x ))
and so B(G(x))CB(F(x))B+(f(x)).

For the reverse inclusion, let yB(F(x))NBr+(f(x)). Then Y=Yl +el=Y2+e2,
where y F(x), Y2 B(f(x)), and e B(O) for 1,2. Since F(x) and B(f(x)) are
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both intervals in the 1-dimensional space Y and F(x) Br(f(x))# , there exists X,
0 _< X_< 1, such that

3y, +(1-X)y2 F(x)f-)Br(f(x)).
Since B(0) is convex, he + (1 )e B(0) and so

y=X(yl +el)+(1-)(y2+e2)=Xy+(1-X)y2+Xe+(1-X)e2

F(x) f3 Br( f(x)) + B(O) B( F(x) [’-’]Br( f(x)))
=B(F(x) fqB,.( f(x)))-B(G(x)).

This shows that B(F(x)) B+r(f(x)) CB(G(x)) and verifies the claim.
To prove that G is 2-1.s.c., let x0X and e>0. Since F is 2-1.s.c. and f is

continuous, there exists a neighborhood U of x0 such that for all x, x: in U,

(i) B(F(x,))fqB(F(x))
and

(ii) f(x1) B(f(x2)).
Using the claim, we have for all x, x in U

B(G(x,)) NB(G(x2))-B(F(x,)) N B+r(f(x,)) NB(F(x2)) N B+r(f(x2))
To show that this intersection of four sets is nonempty, it suffices by Helly’s theorem
[19,p. 196] to verify that any two of the sets has a nonempty intersection. Let A
B(F(x)), A2-B+r(f(xl)), A3-B(F(x2)), and A4-B+r(f(x2)). Since B(F(x))N
B+r(f(x))DF(x)nB,.(f(x))# , it follows that A NA2# andA3NA4:# . By (i),
A NA3 . Also (ii) implies that A NA4 B(F(x)) N Br+(f(x)) D F(x) N
Br(f(x))# . Similarly, AznA3DF(xz)NBr(f(x:z))# . Finally, A2NA4# by (ii).
Since every two of the A’s has a nonempty intersection, n4A# . That is,

for all x t, x2 in U, and thus G is 2-1.s.c. at x0.

We can now state our first selection theorem, which shows that 2-lower semicon-
tinuity is the essential property.

THEOREM 2.7. Let X be a paracompact space, Y a 1-dimensional normed linear
space, and suppose the mapping F"X 2 has closed, bounded and convex images. Then
F has a continuous selection if and only ifF is 2-lower semicontinuous.

Proof. Using Lemma 2.3, it suffices to verify sufficiency. Let F be 2-1.s.c. We will
obtain a continuous selection for F as the limit of a certain sequence of functions.
Towards this end, we will construct a sequence of continuous functions f" X-, Y such
that for all x X:

(i) f(x)GBz-(F(x)) (k-1,2, ),
(ix) L(x)4.2-(L-,(x)) (-2,3,.-.).

We proceed by induction on k. By Theorem 2.5, F has a continuous 2--approximate
selection f. That is, f "X--, Y is continuous and f(x)B2-,(F(x)) for all x. Next
suppose that f, f2,... ,fk have been chosen in accordance with (i) and (ii). Define

G(x)=F(x)B2-( fk(x)), xX.

By Lemma 2.6, G is 2-1.s.c. and has closed, bounded, and convex images. By Theorem
2.5 (applied to G instead of F), G has a continuous 2-(+ ) approximate selectionf+ .
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In particular, fk+ :X--, Y is continuous andfk+l(X)B2-,+,)(G(x)) for all xX. Then
for each x X,

fk+ l(X) Bz-,*+,)( r(x))
and

This completes the induction step and hence establishes (i) and (ii).
By (ii), the sequence of functions f} is uniformly Cauchy so it must converge to

some continuous function f:X Y. By (i), f(x) F(x) for all x X. Thus f is a
continuous selection for F.

The idea of obtaining a continuous selection as a limit of continuous e-approxi-
mate selections goes back at least to Michael [12]. Note that the example given at the
end of this paper shows that lower semicontinuity cannot be substituted for 2-lower
semicontinuity in Theorem 2.7.

In view of the improvement made in Theorem 2.5 in the case when n--1 (viz.
Theorem 2.7) and noting the role played by Helly’s theorem in the proof, it is natural to
ask whether this improvement actually holds in the general case. That is, under the
hypothesis of Theorem 2.5, if F is (n + 1)-l.s.c., must F have a continuous selection?
Pelant has kindly communicated a counterexample to us. His example is of a mapping
F from R into the subsets of R 2 which has closed, bounded and convex images, and has
continuous e-approximate selections for every e >0. But F has no continuous selection.

Before stating our next selection theorem which shows (again) that 2-lower semi-
continuity is the essential property, we note the following useful equivalent reformula-
tion of 2-lower semicontinuity.

LFMMA 2.8. Let F X-+ 2r and xo X. Consider the following statements:
(1) F is 2-lower semicontinuous at xo.
(2) For each e>0, there is a neighborhood U ofxo such that

d(F(Xl), F(xz))-inf{d(yl,Y2)lyir(xi) i-1,2}
for each choice ofpoints Xl, x2 in U.

(3) For each pair of sequences {Xn} (X’n} in X converging to Xo, there exist points

Yn F(x,), y F(xn) such that d(Yn,y;,)-,O.
Then (1) (2)(3). IfX is also a metric space, then (3)(1) and all three statements

are equivalent.
Remark. The property defined by statement (2) was first studied in [9] where it was

called the "continuity property" (cp) of F at x0. Thus (cp) and 2-lower semicontinuity
are the same. Among other things, it was shown in [9] that many upper semicontinuous
set-valued mappings must be (cp) on a dense G set.

For a given mapping F" X--, 2Y, let S(F) denote the set of points for which F is
single-valued; that is,

S(F)- (xXlr(x) is a singleton}.
THEOREM 2.9. Let Y be a complete metric space and suppose F:X2r has closed

images and S(F) is dense in X. Then F has a continuous selection if and only if F is
2-lower semicontinuous. Moreover, ifF has a continuous selection, it is unique.

Proof. The necessity has already been proved in Lemma 2.3. For the sufficiency,
suppose F is 2-1.s.c. The proof will proceed through a series of claims.

CLAIM 2. For each xoXand each net (x,} in S(F) with Xn- XO, the net (F(x,)} is
Cauchy.
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For given any e>0, choose a neighborhood U of xo such that d(F(x),F(x’))<e for
all x,x’ in U. Since x, U eventually, we have d(F(xn),F(Xm))<e for all n and rn
eventually. Hence (F(x,)} is a Cauchy net.

CLAIM 3. For each xoX and each net {In) in S(F) with xn--+xo, the limit
limF(x,) exists, depends only on xo (and not the particular net converging to Xo), and
lim F(x F(xo ).

Since Y is complete, Claim 2 implies that there exists yo Y such that Yo limF(x,).
If {z,,) is any other net in S(F) converging to xo, then the same argument shows that
there exists yd Y such that y=limF(zm). Given any e>0, Lemma 2.8 implies that
there exists a neighborhood U of xo such that d(F(x),F(x’))<e for all x,x’ in U. Since
x,, z,, are in U eventually, d(F(Xn),F(zm))<e eventually. Thus

d( yo,yd )= limd( F(x,),F(Zm)) <--e.

Since e was arbitrary, Yo =Y. Hence limF(x,) exists and depends only on xo and not
the particular net in S(F) converging to xo. Finally, using Lemma 2.8, we get

d(Yo,r(xo)) limd(r(x,),F(xo)) =0.
Hence Yo F(xo ) F(xo).

Using Claim 3, we may define a function f:X--, Y by

f(x)=limr(x,), xX,

where (x,) is any net in S(F) converging to x. Further, f(x) F(x) for each x X.
That is, f is a selection for F.

CLAIM 4. For each xo X,

inf sup(d(f(xo),r(x))lxS(r)Nu)-o,
U(Xo)

where (Xo) denotes the collection of all neighborhoods ofxo.
For if the result were false, there would exist a net (xn) in S(F) with x,--, xo and

d(f(xo),F(x,))>_e>O for all n. But this contradicts Claim 3.
CLAIM 5. f is a continuous selection for F.
Let xoX and e>0 be given. By Claim 4, there exists a neighborhood U of Xo

such that d(f(xo),f(x))< for all xS(F)C U. Hence for any x U (applying Claim
4 to x instead of Xo), there exists x S(F) U such that d(f(x),f(xl))< . Thus

#(x,)) + d(
This proves f is continuous at x0.

CLAIM 6. f iS the only continuous selection for F.
This is a consequence of the fact that any other continuous selection for F must

agree with f on the dense set S(F), hence everywhere.
This completes the proof of the theorem. U]

3. Applications to metric projections. Let M be a nonempty subset of the normed
linear space X. For a given x X, the set of all best approximations or nearest points to
x from M is defined by

PM(X)-- {YMIlix--YlI--d(x,M) }
M is called proximinal (resp. Chebyshev) provided PM(X) contains at least (resp.
exactly) one point for each x X. For a proximinal set M, the set-valued mapping
PM:X-* 2M thus defined is called the metric projection onto M. It is well known and
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easy to prove that a proximinal set M is always dosed, PM(X) is always dosed and
bounded, and PM(X) is convex if M is convex.

As a consequence of Theorem 2.9, we have
COROLLARY 3.1. Let M be a proximinal subset of the Banach space X and suppose

that

S(Pt)- (xXlPM(x) is a singleton)

is dense in X. Then Pt has a continuous selection if and only ifPt is 2-lower semicontinu-
ous. Moreover, ifPt has a continuous selection, it is unique.

In the particular case that X is a strictly convex space, it is easy to verify that
S(Pt) is dense in X for any proximinal subset of M of X. (Indeed, if x X\M and
Y Pt(x), then every point of the form hx+ (1 N)y, 0< < 1, has Y0 as its unique best
approximation in M. In particular, there are points arbitrarily close to x lying in
S(Pt).) If, moreover, Pt admits a continuous selection, then M must be a Chebyshev
set, i.e. S(Pt) X. (For if x X\S(Pt), choose distinct points y, Y2 in Pt(x). Then

1)x + -y zthe sequences x, (1 z and z- (1 )x + zY2 have the property that P(x,)
-y and Pt(Zn)=y2 for n sufficiently large, and both (x,} and (z,} converge to x.
This precludes the existence of a selection for Pt which is continuous at x.) These
remarks prove that ifM is a proximinal subset of the strictly convex space X, then Pt has
a continuous selection if and only ifM is Chebyshev and Pt is continuous.

A subset M of the normed linear space X is called almost Chebyshev if X\S(Pt) is
a set of first category in X. Garkavi [7], [8] studied almost Chebyshev sets and showed
that they are rather plentiful. For example, in every separable Banach space (resp. dual
space), there exist almost Chebyshev subspaces of every finite dimension (resp. finite
codimension). Since the complement of a first category set in a Banach space is dense,
Theorem 2.9 implies the following result.

COROLLARY 3.2. Let M be a proximinal almost Chebyshev subset of the Banach
space X. Then Pt has a continuous selection if and only if PM is 2-lower semicontinuous.
Moreover, if Pt has a continuous selection, it is unique.

Let T be a compact Hausdorff space. A finite dimensional subspace M of C(T) is
called a Z-subspace [11] if the only element of M which vanishes on an open subset of T
is the zero function. As a consequence of the main result of Garkavi [8], Z-subspaces
are almost Chebyshev. This fact and Corollary 3.2 yield:

COROLLARY 3.3. Let M be a Z-subspace of C(T). Then Pt has a continuous selection

if and only ifPt is 2-lower semicontinuous. IfP has a continuous selection, it is unique.
The uniqueness statement in this corollary was also proved by Brown [2] without

appealing to Garkavi’s theorem.
In related work, Brown [3] proved a "Mairhuber-type" theorem when he showed

that if C(T) contains a Z-subspace M of dimension at least two and Pt admits a
continuous selection, then T is essentially an "interval." Niirnberger [14], building on
earlier work in [16] and [22], gave an intrinsic characterization of those Z-subspaces of
C[a, b] whose metric projections admit continuous selections. More generally, Sommer
[21] filled the remaining gap left by [14], [16], and [22] and thus completed an intrinsic
characterization of those finite dimensional subspaces of C[a,b] whose metric projec-
tions admit continuous selections. The more general question [11] of characterizing
those n (> 1)-dimensional subspaces of C(T) whose metric projections admit continu-
ous selections remains open.

Our next result is an immediate consequence of Theorems 2.4 and 2.5.
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COROLLARY 3.4. Let M be an n-dimensional subspace of the normed linear space X.
Then the following statements are equivalent.

(1) PM has a continuous e-approximate selection for each e> O.
(2) Pt is almost lower semicontinuous.

(3) P is ( n + 1)-lower semicontinuous.
We have also the following consequence of Theorem 2.7.
COROLLARY 3.5. Let M be a 1-dimensional subspace of the normed linear space X.

Then Pt has a continuous selection if and only ifPt is 2-lower semicontinuous.
In relation to this corollary, we note that Lazar, Morris and Wulbert [11] gave an

intrinsic characterization of those 1-dimensional subspaces of C(T) whose metric
projections admit continuous selections. Also, Lazar [10] gave an intrinsic characteriza-
tion of those 1-dimensional subspaces of whose metric projections admit continuous
selections.

We conclude the paper with an example which sheds some further light on the
distinction between 2-lower semicontinuity and lower semicontinuity, and shows that
some of the more obvious choices for continuous selections fail.

Example. Let X--R with the norm

Ilx II- Ix(l)[ + (x(2)2 + x(3)2 x=(x(1),x(2),x(3)).

(The unit ball looks like a "double cone.") Let M be the 1-dimensional subspace
M--span{x}, where x =(1, 1,0). It is easy to verify that

PM(x) (ax, la--Xx(1)+(l_X)x(Z),O<_X<_l }
if x(3) v0,
if x(3)=0.

In particular, the function

f(x)--X(1)Xl, XU_.X

is a continuous (even linear!) selection for P. Since S(P)-{xXIx(3)vO} is dense
in X, Corollary 3.1 implies that Pt is 2-1.s.c. and f is the only continuous selection for

Pt- Observe, however, that Pt is not lower semicontinuous at the point x0 =(1,0, 0).
(For the open set V--(xXlllxll< 1) has the property that Pt(Xo)fq Vnv since 0 is
in the intersection. Yet for each neighborhood U of x0, the element zn=(1,n-l,n-) is
in U eventually and Pt(Zn) q V= {x} fq V= .)

Furthermore, f is not obtained by any of the more natural choices for a selection.
That is, in general, f(x) is not the element of Pt(x) having minimal norm (for
f(x0)ll-1 >O-inf(llylllyPt(Xo)}); f(x) is not the midpoint of the line segment

Pt(x) (for the midpoint of Pt(Xo) is 1/2xl vx =f(x0)); f(x) is not the element of

Pt(x) with the largest (or smallest) coefficient of x (for the element of Pt(-Xo)
which has the largest coefficient is 0 4: x =f( x0), and the element of Pt(x0) which
has the smallest coefficient is 0vx =f(x0)).
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A COMPARISON OF SOME MULTIVARIATE
PADI-APPROXIMANTS*

ANNIE A. M. CUYT"
Abstract. In [5] Levin defined general order Padr-type rational approximants of a function of n variables

(here referred to as "type L" approximants). In 1 we repeat briefly the defining equations and the
determinant representation for n 2. Levin proved that the Chisholm approximants were a special case of his
"type L" approximants.

The multivariate Padr-approximants (here referred to as "type C" approximants) were introduced in [1]
and [2]; we repeat the definition for n--2 in 2. They have several nice properties which often imply
numerical advantages; examples of such situations are given in [3] and [4].

In 3 we show that "type C" approximants are also a special case of the "type L" approximants. The
explicit determinant formulas are a link between the solution of the Pad approximation problem and the
irreducible rational form of the solution. Via the determinant representation we can also see that, in the case
of "type C" approximants, we deal with matrices that are near-Toeplitz. This is not true for the Chisholm
approximants. A theorem concerning the displacement-rank of the matrix of the homogeneous system,
defining the coefficients of the denominator of the "type C" approximant, is proved.

In 4 analogous results are formulated for n > 2.

1. General order Pad6-type rational approximants in two variables (or type L
approximants). We repeat some notations and definitions given by Levin.

Let N- (0, 1,2,... )._Given a subset D of Z we define"
(a) the complement D- Z2\ D,
(b) the (i,j)-translation of D as Dij- {(k,n)l(k+ i,n+j)D},
(c) the nonnegative part of D as D+ -D f3 N2.

To any subset D such that D+ is a finite set we associate polynomials

E bijxiyj with bj in R
(i,j)GD+

We call D the rank of the polynomials. Given the double power series

f(x,y)- E cijxiyj
i,j=O

we will choose three subsets N, D and E of Z2 and construct an [N/D]e approximation
to f(x,y) as follows:

(1.1a) P(x,y)- aixiy
(i,j)N+

(1.1b) Q(x,y)=
(i,j)D+

(1.1c) (f.Q-P)(x,y)= ]
(i,j)+

We select N, D and E such that
(a) D CN2 has rn elements, numbered

N numerator),

bijxiyj ( D ,-- denominator),

dijxiyj ( E ,- equations).

(il,Jl),’’’,(im,Jm),
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(b) NCE and H-EN has rn- elements in N2, numbered
(hz,k2 ),..., (hm,km) (H,-- homogeneous equations).

Then P(x,y) and Q(x,y), defined by (1.1c), are given by:

xi’yJ’Ni,j,(x,y) xi2yJ2Ni2J2(x,y) ximyJmNi,,dm(X,y)
Ch 2-- k -Jl Ch 2-- i2 ,k --J2 Ch 2-- ira, k 2--Jm

Ch3--il,ka--j! Ch3-i2,ka--J2 Ch 3--ira ka--Jm

Ch m-- i!, km-j Ch m-- i2, kin--j2 Ch m-- ira, km--Jm

where

and

i,j Nit

(1.1d) Q(x,y)-

xi!yj xi2yJ2 xi,,,yJm
Ch 2-- i! k2-Jl Ch2--i2,k2--J2 Ch 2- k2--Jm

Ch 3-- il k3--Ji Ch3--i2,k3-J2 Ch3--im,k3--Jm

Chm-i,km-j! Chm-i2,km-J2 Chm__im,km__Jm

2. Multivariate Pad6-approximants for a double power series (or type C approxi-
mants). We define a polynomial of degree in two variables as

E aijxiyj.
i+j=0

A term aux’yJ is said to be of degree i-+-j. The order 0P and the exact degree OP are
defined by

OoP-min{i+jla,y=/=O ) OP-max{i+jla,y:/=O )
In the Pad-approximation problem of order (l,m) we try to find a pair (P, Q) of
two-variable polynomials,

/m+l

(2.1a) P(x,y)- E aijxiyj,
+j= lm

lm+m
(2.1b) Q(x,y)- X bijxiyj,

i+j=lm

such that

(2.1c) (f.Q-P)(x,y)- E
i+j=lm+l+m+

Equation (2.1 c) is equivalent with

dijxiyj.

Oo(f.Q-P)>_lm+l+m+ l.
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A nontrivial Q(x,y), such that (2.1) is satisfied, always exists [2]. If the polynomials
R(x,y) and S(x,y) also satisfy (2.1), in other words if Oo(f.S-R)>_lm+l+m+ 1, too,
then

P(x,y). S(x,y)- Q(x,y).R(x,y).
This property justifies the following definitions:

(a) Let (P,/Q,)(x,y) be the irreducible form of (P/Q)(x,y) such that Q,(0,0)-
1; if this form exists we call it the multivariate Pad&approximant of order
(l,m) forf.

(b) If the irreducible form (P,/Q,)(x,y) is such that 00Q,_>l, then we call
P,/Q, the multivariate rational approximant of order (l,m) for f.

The (l, m)-multivariate rational approximant is unique up to a multiplicative constant
in numerator and denominator. For P,(x,y) and Q,(x,y) we define:

l’ OP, OoQ,, m’ OQ,- OoQ,.
We can prove that

l’<__l, m’<_m.

It is also easy to verify the following theorem.
THEOREM 2.1. For the irreducible form P,/Q, of P/Q where (P, Q) satisfies (2.1)

and for every polynomial R(x,y) -vs i..s--i
.i=ori y with s lm-)oQ, +min(l-l’,m-m’),

(P, R, Q, R) satisfies (2.1).
Also s= lm- 00Q, + min(/- l’,m- m’) is the highest possible degree that allows

the construction of a homogeneous polynomial R(x,y)-Z=orixiys-i such that (2.1) is
satisfied by (P,. R, Q,)-R. From now on the multivariate Pad6-approximant as well as
the multivariate rational approximant will be called type C approximants.

3. Connection between the two approaches. First of all we remark that for the case
of one variable the type-L approximant [5] as well as the type C approximant [1,2]
reduce to the well-known ordinary Pad-approximant. And the polynomials P(x,y)
and Q(x,y) satisfying (2.1) do also satisfy (1.1) when the sets N, D and E are chosen as
follows:

N= {(i,j)li,jN, lm<--i+j<-lm+l},
D= ( ( i,j) i,jN, lm<_i +j<_lm + m},
E= ((i,j)[i,jN, lm<--i+j<--lm+l+m}.

The set H=E\N has one element less than the set D, as required; but we could also
add to E the set {(i,j) i,j N, /j< lm}, since o( f" Q P) >- lm for all polynomials P
and Q as in (2.1a) and (2.1b). Doing so we do not impose more conditions on the
coefficients a ij. and bij; we write

Eext- ((i,j)li,jCN i+j<-lm+l+m}.
Let us now number the points in D and H, using a diagonal enumeration:

(a)

D-{(lm,O),____(lm-l,1),...,(O, Im),_ ,_(lm+l’O)"’"(O’lm+l)_, ,...,
first diagonal second diagonal

(lm/m,O),...,(O, lm/m)},
last diagonal
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(b)

H={!lm+l+ 1,0), (lm+l, 1),...,(O, lm+l+ 1),(lm+l+2,0),.., .,(O, lm+l+2),...,_
first diagonal second iagonal

(lm+ l+ m,O),. (O, lm+ l+ m) }.
last diagonal

When we write down the equations equivalent with condition (2.1 c), the set of homoge-
neous equations in the unknown bij. has a coefficient matrix which is exactly the matrix
in (1.1d) after removing the first row. From now on we will call this matrix G; it has
p (lm+l +2 ) ( lm++2 ) rOWS and one more columns than rows.

THEOREM 3.1. The rank of the matrix is at most p-(lm-3oQ, + min(/-/’,
m-re’)).

Proof. We only have to prove that the dimension of the null-space of , which is
the dimension of the space of solutions of the homogeneous system of equations, is at
least lm-3oQ, + min(/-l’,m-m’)+ 1; in other words that (2.1) admits solutions where
at least lm-3oQ, +min(l-l’,m-m’)+ of the bij. can be freely chosen. Precisely this
is formulated in Theorem 2.1.

The number s=lm-OoQ.+min(l-l’,m-m’) is one less than the number of
coefficients in a homogeneous polynomial of degree s in two variables, namely (s+l).
The number of coefficients in a homogeneous polynomial of degree s in n variables is
(s+n-). But first of all we are going to take a closer look at the matrix . for the type C
approximants when n= 2; in the next section we will treat the n-variable case with
n > 2. To examine the special structure of we introduce the following notation. For

n’im+m h v."Q(x,y) i+j=lm,,ij.tyJ we write

Bl

blm o

blm-’l,l
Blm+

blm+ 1,0

blm,l

bo,lm+

blm+ ,0

blm+m- 1,1

bo,lm+m

Equations (2.1 c) can now be written as

i+ ,lm nl,lm+

-II+ ,lm

,lm+m Blm

Blm+m

where Hi,j is a matrix with (i +j+ 1) rows and (j+ 1) columns and the first column
equal to the transpose of (Ci,oCi_l,l’’’Cl,i_lCo,iO’’" 0) and the next columns equal to
their previous column but with all the elements shifted down one place and a zero
added on top.
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To calculate the displacement ranka(%) of %, we have to construct the lower
shifted difference

hl,l

hp,p+l
hp_l, hp_l,p

hi, hi,p+

hp ,1

Now a()-rank(8)+ 2 [6]
THEOREM 32 The displacement-rank of the matrix }C is at most m+ 2.

Proof. Let us write down the matrix more explicitly"

ct+,o 0 0

Co,l+
0 c+ ,o

0 Cod+

Cl+m,0 0 0

Co,i+ 0

0 cl+ ,0

0 Co,l+

C1,0

CO,I
0

0

1,0

CO,l

CI+ --m,O

Co,l+
0

0

CI+ --m,O

CO,l+

In our case i has the structure (A A 2"’" A m-4-1 ), where A has ( p 1) rows
and lm columns, A has (p- 1) rows and (lm+ i) columns for i-2,...,m + 1, and only
the first column in A; with i>2 may contain nonzero elements; all the other elements in

% equal zero. So rank(%) -<m and this proves our theorem.
We will illustrate the theorems with some very simple examples. Consider f(x,y)=

+x/(O. 1-y)+sin(xy).
(a) Take l= m. The type C approximant is

+10x- 10-ly
1-10.1y

with l’- l-re’, b0Q,-0, s- and a()- 3.
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The matrix

0 0 10 0 0

96= 101 0 0 10 0
0 101 0 0 10
0 0 0 0 0

its rank is 3.
(b) Take 1=4 and m-2. The type C approximant is

+ 10x- 10y+xy- 10xy 2

1- 10y

with l’-3, m’- 1, OoQ,-0, s-9 and a()- 4.
The matrix

H Hz n3]= H4 Hs H6

where

H -105[/.,j+4], a 14 9 matrix,

H2- 104[i,j+3], a 14 10 matrix,

H 103[i,j+2], a 14 11 matrix,

H4- 106[i,j+5]---[i,j+3], a 15)<9 matrix,

H5- 105[i,j+4], a 15 10 matrix,

H6- 104[i,j+3], a 15 11 matrix,

0 0

101
0 0

_0 0

0 0

0 0
1000I

0 0

10I

0 0 0
0 0 0 0 1015

1014

0 0 0 O 0 0 0 0

where I is the k k unit-matrix. The rank of is 10.
(d) Consider f(x,y)-(xeX-yeY)/x-y and take l= 1-m. The determinant repre-

sentations yield

P(x,y)----1/2(x+y+O.5x2+ 1.5xy+O.5y2),
Q( x,y) 1/2(x +y-O.5x-O.5xy-O.5y ),

0
%- 0

0

and 8,: is the Kronecker symbol (here used in rectangular matrices). is a matrix of
rank 20.

(c) Take l= and rn 2. The type C approximant is

x- 1.01y+ 10y2 + 10x2- 20.2xy
x- 1.01y+ 10y2- 10.1xy + 2.01xy

with l’ 1, m’ 2, )oQ, 1, s= and a() 4. The matrix



MULTIVARIATE PAD-APPROXIMANTS 9.01

and indeed the type C approximant is

P(x,y) P.(x,y)
O(x,y) Q.(x,y)

with 0Q. and l’-- --m’. The matrix 9C has rank p (s-0) and a()= 3.

4. The multivariate case. Given the power series

f(x) X c,xk,
k--0

xk- k" and X,=0 X=0 "Y,.=0,wherex (x 1, -,x,)R", ck ek, ..k., Xf’X" X

the Pad6-approximation problem of order (l,m) is the following:
find

lm+l

(4.1a) P(x)= X aixi,

im+m

(4.1b) O(x)- E bx
’1 =tin

where a=a,..., and b=b...., [il=i +... +i, and [=j +... +j,, such that

(4.1c) o(f.Q-P)lm+l+m+
where 0 is again the degree of the first nonzero term.

After calculation of the nontrivial solution of (4.1) [2] we can proceed as in 2 and
define the multivariate Pad6-appromant of order (l, m) and the multivariate rational
approximant of order (l, m).

The integers l’ and m’ are defined as in the two-variable case and it is easy to
prove the following n-dimensional analogue of Theorem 2.1.

THeOreM 4.1. For the irreducible form P,/Q, of P/Q where (P, Q) satisfies (4.1)
and for eve polynomial R(x)-Zlil=rixi with s-lm-oQ, +min(l-l’,m-m’),
( P , R, Q, R) satisfies (4.1).

Let us again study the connection with the approach of Levin. Condition (4.1c)
results in (,+m+t+mtin+ Z+m ) equations: the first (,+t+t)t+t equations express the a as linear
combinations of the b and the remaining equations form an overdeterned homoge-
neous linear system in the unknown b [2]; there are

unknown coefficients bj.. The bj. can be found by solving a homogeneous subsystem of p
equations, having the rank of the overdetermined system.

Choose the sets N,D and H as follows:
N:{i:(i,,." .,in)liN n, lm<-[il<-lm+l};
D:(i:(i,...,in)liNn, lm<-lil<-lm+m};. select a particular b and let ch,)_,i be the coefficient of b in the kth equation of
the homogeneous subsystem we have to solve (k- 1,...,p),

H- {h(k)-(h(k),. .,h,,(k))lk--1,. .,p}.
We call the coefficient matrix of the homogeneous subsystem again . It is easy to

prove the following n-dimensional analogue of Theorem 3.1.
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THEOREM 4.2. The rank of the matrix OC is at most p_(S+n-1)+ 1 with s-lm-
00Q, + min(l- l’, m m’).

If we use an enumeration of the points in D and H, similar to the one described in
3, it is obvious that in the multivariate case C is also a matrix with low displacement
rank.

Acknowledgment. I want to express my sincere thanks to the referee for construc-
tive remarks.
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TYPE t ENTROPY AND MAJORIZATION*

A. CLAUSINGt

EnAbstract. Let t>0 and let p (Pl, ",Pn) be a probability vector. By Ht(P)=--(i_lpilogpi)/(,’/_pi)
we denote the type entropy of p. Recently, Stolarsky has considered the problem of finding the best, that is,
smallest, value of such that the entropy inequality Ht( p)_<log n is valid for all p. In this paper we determine
this value. We also prove that for n_>3 and optimal equality can be achieved in the above inequality with a

probability vector different from the trivial one p-( ).5,. This confirms a conjecture of Stolarsky.

1. Introduction. Let p- (pl,. ",Pn) be a probability vector, that is, Pi ->0
(i- n) and ni= Pi 1. Also, let >0. The quantity

(1) Ht(p)- Xin--- lP[ logp/
i:lP

is known as Kapur’s entropy of order and type t. (If pi-O, put plogpi-0 in the
sum.) It has been discussed by various authors (cf. [1], [3], [4]). In particular, a result of
Kapur ([1, p. 433, let a tend to in line (19)]) implies that Ht achieves its maximum
value atp-(1/4 ., 5), that is,

(2) Ht(P)<_logn for allp.

For t= 1, this is the well-known entropy inequality due to Shannon. Since Ht(P) is
decreasing in t, (2) is a stronger result than Shannon’s inequality if t< 1. However,
Stolarsky [5] recently has observed that (2) does not hold for all t>0. In fact, if

(3) to:to(n )
denotes the smallest number such that (2) holds for t_> 0, Stolarsky has proved that

(4) t0(2) --,
(5) to(n)<lq ------t(n) forn>3

n-- logn

(6) t0(n)>l-
4 log log n
log2n

for n sufficiently large.

Furthermore, he has conjectured that there are numbers n and such that (2) is valid
and equality holds in (2) for at least one p other than (,...,). In the case of
Shannon’s inequality, the latter probability vector is the only one for which equality
holds.

In this paper we shall prove that the best possible exponent o is given by

(7) t0(n)- sup p(z),
z(0,1)

where Pn is defined for n _> 2, z (0, 1) by

tp,(z)_
log(n--1) +log(--log(1 --z))-loglog(1 +(n-- 1)z)() log(1 +(n--1)z)--log(1 --z)

Received by the editors August 24, 1981.
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Note that, if we put p-((1-z)/n,...,(1-z)/n, (1-z)/n+z) for z(O, 1), then

is equivalent to

Ht(P)-<logn,
as can be easily checked. Therefore, Shannon’s inequality yields that % is uniformly
bounded by 1, and the supremum of % is obviously a lower bound for to(n ). An
explicit expression for the supremum does not seem to be possible, since the derivative
of % is rather unwieldy. Some numerical results and a fairly good approximation for
to(n ) will be given in 4. We shall also see that for n_>3 and t= to(n ), sup%(z) is
attained for some z (0, 1), proving that there is a probability vector p v (-,...,-) for
which equality is obtained in (2). This confirms the conjecture of Stolarsky. The main
tool in the proof will be the majorization ordering which we are now going to describe.

2. Majorization. In the sequel, the majorization order will be an essential tool. We
therefore briefly recall some notation and facts concerning majorization. For further
information we refer to the recent book [2].

For any x--(x,...,x,,)R n, let

(9) X[ll’’’ X[n
denote the components of x in decreasing order. For X--(Xl,"" ",Xn) and Y--(Yl,’’’,Yn)
in R n, X is said to be majorized by y, x-< y, if

k k

(10) X[il E Y[i] (k- 1,...,n),
i--I i-l

with equality holding for k-n. For example, if :g--zl Ei__In xi then

(11) (:g,.." ,.,)" (Xl,""
Majorization is equivalent to the following condition"

n

i(12) E g(xi)<-- g(Yi)
i=1 i=1

for all convex functions g: - . (See [2, Prop. 4.B.1].) If y is not a permutation of x
and x-< y, then strict inequality holds in (12) if g is strictly convex.

We shall need the following result ([2], Prop. 5.C.1):
LEMMA (Kemperman). Suppose that a<b and x a, b] n. Then there exists a

unique c a, b) and a unique integer (0,..., n) such that
n

xi--(n--l-- 1)a+c+lb.
i=1

With c and so determined,

n--l--I

The following consequence of this lemma will be crucial:
PROPOSITION 1. Let a<_xo<_b and let g:[a,b]N be strictly convex in [a, x0] and

strictly concave in [x0,b ]. Then, for every (Xl,...,xn)[a,b] n, there are a nonnegative
integer l, n, and numbers x,y a, b), y x, such that

(n-l-1)y+x+lb- E x
i=l
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and

(14)

Unless

(n-l- 1)g(y)+g(x)+lg(b)<_ g(xi).
i--1

for some y, x, y <_ x, strict inequality can be achieved (- denotes equality up to permuta-
tion).

l_nProof. If x0 b, we can take 1=0 and x--y i-lxi by virtue of (11) and (12). If
xo- a, the proposition follows from Kemperman’s lemma. Now assume a<xo <b, and
let k be such that xtl>Xo,...,Xtkl>xo and Xtk+l<_Xo (If there is no such k, then
xl,...,x [a, x0], and the proof follows from (11) and (12) again.)

Since g is concave in [x0,b we may apply Kemperman’s lemma to (xtl,. .,xtl)
[x0,b] k. We thus get an integer and an x[xo, b) such that

k

(k-l-1)Xo+x+lb- x[i
i--I

k

(15) (k-l-1)g(xo)+g(x)+lg(b)<- E g(xli]).
i--1

Now let y-(1/(n-l- 1))(in=k+xlil+(k-I 1)Xo). Then

n--l--I k--l--I

by (11), and therefore, using that g is convex in [a, x0 ], we obtain
n

i--k+l

Adding (15) and (16) and cancelling the term (k-l-1)g(x0) on both sides of the
result yields (14). The assumption that g is strictly convex (resp. strictly concave) in
[a, xo] (resp. [x0,b]) guarantees that strict inequality can be obtained in (14) in all
nontrivial cases.

3. ProoI of the main result. By putting x=npi we see that inequality (2) is
equivalent to

(17) qt(x)-- x[logxi>--O
i--I

for all x-(x1,...,x,,), xi>-O (i- 1,...,n), ,in=lxi--n. Let us assume 0<t< since for
>_ inequality (2) follows from Shannon’s inequality. Let, for x > 0,

(18) gt(x)-xtlogx,

and put gt(O)-O. Since g’(x)-xt-(2t 1-t(1-t)logx) for x>0, gt is strictly con-
vex in [0, xt] and strictly concave in [xt, c), where

(19) x,-exp t(1-t)

and
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It is worth noting that even without using Kemperman’s lemma and Proposition 1, one
can give an estimate for o that is almost as good as Stolarsky’s but has a much shorter
proof:

LEMMA 2. Let n >_ 2 and

_1 )"(20) tz(n)-- 2 logn + (logn

For t>t2(n ), inequality (2) holds, with equality if and only if p (-,. ,-).
Proof. t>_t2(n is equivalent to n<_x

t. Since in this case gt is strictly convex in
[0,n], we see from (12) that E"i= gt(xi) >_Y= gt(1) 0, with equality only if x for
all i.

The exponent t2(n ) is of the same order of magnitude as tl(n ) in (5) but is larger
for all n.

We now prove the main result.
THEOREM. Let n >_ 2. Then inequality (2) holds if and only if

(21) t>_to(n)= sup %(z).
z(0,1)

Equality holds in (2) if and only if either p (1/4,. .,-) or

t= to( n ) qgn( Z
and

22 P- n "’" n n

for some z (0, 1).
Proof. Let 0< < 1. By Proposition 1, qt attains its minimum at some point

n--l--I

where is a nonnegative integer, x,y [0, n ], y _< x, and

(n-l-1)y+x+ln--n.
Of the two possible values and l-0, the former implies

(23) t(x):gt(n)>O:t(1,..., 1)
and hence can be excluded. Therefore,

(n--x n--x)n--l’ ’n--l’X
where(n-x)/(n-1)_<x<n, or <_x<n. This yields

n-1
log

n-1
+xtlgx

which, on substituting z (x )/( n 1), becomes

O,(x)-(n-1)(1 -z)’log(1 -z) / (1 /(n- 1)z)’log(1 /(n-1)z).
Thus we have to find the smallest such that

qt (x) _> 0 for all z (0, 1).
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Using the notation of (8), this can be rewritten as

(24) t>_q),(z) for all z (0, 1),
which proves the first part of the theorem.

By Proposition 1, equality can hold in (17) only if

(25) x "-(1-z,. .,1-z, +(n-1)z)
for some z [0, 1]. Here z- can be ruled out by the argument used for (23). The case
z--0 clearly always yields equality. If z 4=0, that is, x =/= (1,.-., 1), then qt(x) is a strictly
increasing function of t; thus in this case equality holds in (17) if and only if t-tp,(z)
for some z (0, 1). This proves (22). F1

4. Remarks. From (8) we see that qg,(z) becomes asymptotically equal to
log log(1 z)- /log( z )- as z approaches 1. In particular,

lim tp, (z) 0 and lim q,( z .
z-,1 zl

A somewhat lengthier calculation shows that %(z) has the expansion %(z)-1/2+
z(n 2)/2 / O(z 2 ) at z 0. Thus we have

PROPOSITION 2. If n>_3 and t=to(n ), equality holds in (2)for a probability vector

different from (l- - ).
Proof. Since % is increasing at z-0 and decreasing at z--1, it attains its supre-

mum somewhere in (0, 1). Now use (21) and (22). []

Numerical calculations suggest that qn is strictly concave for n>_ 3, and hence the
equality case of Proposition 2 is unique. We did not succeed in proving this. Except
near the endpoints, the graph of q, (n_>3) is almost horizontal. For n-2, n is
decreasing, so that t0(2 %(0) 1/2.

We conclude by giving in Table a few numerical values, rounded to four
decimals. It appears that

5 2n/3
log( n 1) + log log -- loglog

5

log
3

is a close approximation to to(n ) for n< 103.

t2(n)
[see (20)]
tl(n)
[see (5)]
to(n)=
max q.

.6283

.5898

.5049

.5032

4

.6563

.6120

.5119

1.5115

.6762

.6287

.5184

TABLE

6

.6912

.6419

.5242

10

.7280

.6768

.5416

.51841.52421.5414

10

.8280

.7930

.6206

10

.8758

.8562

10

.9031

.8915

1010

.9585

.9566

.6834 .7297 .8532

.6834’ .7295 .8514

10 30

.9857

.9856

.9364

.9346

Note added in proof. The author is indebted to J. Acz61 for drawing his attention to
reference [6]. In {}6 of this paper, the type entropy seems to have been occurred for the
first time.
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MATRIX STIELTJES SERIES AND NETWORK MODELS*

S. BASU"{" AND N. K. BOSE*

Abstract. Simple proofs are given of the fact that Pad6 approximants of certain orders, to a symmetric
matrix power series, are realizable as RC multiports, possibly containing ideal transformers. One proof
technique uses the matrix continued fraction expansion while the other uses the theory of matrix Cauchy
index. An important offshoot of the main result is the presentation of properties of a set of matrix
polynomials, which are orthogonal over a real semi-infinite interval.

1. Introduction. The fact that scalar Pad6 approximants of certain orders to a
Stieltjes power series characterize RC driving point functions is well known [1]. Very
recently, the matrix counterpart of this result has been given [2]. The primary objective
of this paper is to provide alternate proofs of this result, via the simple artifices of
matrix continued fraction [3] and the more recently developed tool of matrix Cauchy
index [4]. Furthermore, it is shown that the "denominator" polynomial matrices of the
Pad6 approximants to a matrix Stieltjes series form a sequence of polynomial matrices
orthogonal over a real semi-infinite interval. Matrix counterparts of many results
related to the classical orthogonal polynomials are derived and, in the context of
present discussion, these results also fall out as consequences of network theoretic
interpretations given to the matrix Pad6 approximants. It may be noted that matrix
extensions of the theory of polynomial matrices orthogonal on the unit circle has been
carried out recently [5], [10]

In 2 of this paper, the matrix Stieltjes series is introduced and the equivalence
between the Pad6 approximants to this series and the matrix continued fraction of
Shieh et al. [3] with positive definite coefficients is established, thereby providing a
proof, via synthesis, of multiport impedance realizability of the approximants. In [}3
matrix extensions of some results related to the classical theory of orthogonal poly-
nomials are presented. These results, coupled with those on matrix Cauchy index, then
make feasible the presentation in [}4 of a more direct discussion of multiport RC
realizability of Pad approximants to a matrix Stieltjes series. Finally, in [}5, it is
pointed out that some of the results proved in [}4 follow directly from the network
interpretations given to a matrix Stieltjes series.

2. Matrix Stieltjes series and RC continued fraction synthesis of Pad6 approxi-
mants. Consider a formal matrix power series,

(2.1) T(s)- X Tgsk,
k=O

where T, is a symmetric (pp) matrix. Square block Hankel matrices, Hn(T ) and
H(T), are associated with the series T(s) in (2.2) below.

Received by the editors February 4, 1981, and in revised form August 25, 1981. This research was
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(2.2)

/L(v)-

DEFINITION 1. The series T(s) in (2.1) will be called a matrix Stieltjes series if
Hn(T) is positive definite and H,(T) is negative definite for n--0, 1,2, . The follow-
ing preliminary results will be of use in later discussions.

LEMMA 2.1. If T(s) is any symmetric formal matrix power series as in (2.1), then its

formal inverse denoted by [T(s)]- exists, is unique and it is also symmetric.
Proof. First it will be shown that [T(s)]--E=0 Wsk exists such that

(2.3) T.s Wg.s -1.
k=0 k=0

Equation (2.3) would imply that (2.4) has to hold for any n.

Wo I

(2.4) F(T)-
W 0

where F(T) is the lower triangular block Toeplitz matrix in (2.5) associated with the
power series T(s) in (2.1).

(2.5) F(T)-
T .. 0

T, T, TO

Positive definiteness of T0, then, implies the existence of matrices Wk, k-0, 1,..-.
Uniqueness follows from the invertibility of T0. The fact that Wk’S are symmetric is

proved next. Since the elements of T(s) belong to an integral domain,

(2.6) [(T(s))-l] t- [(T(s))t1-1- IT(s)] -1.
The last equality follows from the symmetry of Tk’S and the proof of the lemma is now

complete.
LEMMA 2.2. If T(s) is a matrix Stieltjes series, then so is G(s), given by

T(s)-[Al nt-sG(s)] -1,
whereA T(0)]- .

Proof. The proof will be in two different parts. In the first part a proof for the
special case To I=A, where I is an identity matrix of appropriate order, will be
provided, and in the second part it will be shown that no loss of generality occurs under
this assumption.
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Part I. Equation (2.8) follows from (2.7).

(2.8) T(s)[I+sG(s)] =[I+sa(s)]T(s)=I.
Let G(s)-E Gs where symmetry of each G follows from Lemma 2.1k=0

Associate square block Hankel matrices Hn(G) and H,(G) of orders (n + 1)p and rip, as
in (2.2). On equating coefficients of like powers of s in (2.8) and defining

(2.9)

I
GO I 0

G,_ Go 1

(2.10) and (2.11) can be easily verified.

(2.10) S,+,H(T)S+,=
1, 0

0,

(2.11) S,+ IH,+ ,( T)S+ ,= -H(G).
In (2.10), positive definiteness of H,(T) implies negative definiteness of H,(G),

and in (2.11) negative definiteness of H+ l(T) implies positive definiteness of H.(G).
Part 2. If To=/=I then consider the series T’(s)= Td-1/a’T(s)’Td-1/2, where To/ is

the Hermitian square root of To and To-/ is its inverse. Next, it is noted that if Hn(T’)
and H,(T’) are the block Hankel matrices as in (2.2) associated with the series T’(s)
then (2.12) and (2.13) holds, implying that, when T(s) is a matrix Stieltjes series, Hn(T’)
and H,(T’) are positive definite and negative definite respectively.

(2.12) H.(r’)-diag(T-’/2T-’/2... T-l/2)Hn(T)diag(T-l/2T-1/2"’" To-1/2)
and

(2.13) H(T’)-diag(Td-l/2Tf 1/2... T-/2)H(T)diag(T-/2T-1/2... To-l/2).
Thus the series T’(s) is also a matrix Stieltjes series. Using Part above gives T’(s)--
[A’ +s.G’(s)] -1, where A’-I is positive definite and G’(s) is a matrix Stieltjes series.
Therefore, T(s)- T/Z.T’(s).To/a-[Al +s.G(s)]-, with A1- Td-/Z.A’I.T-/2 and
G(s)-- Td- 1/a.G’(s).Td-l/a. Positive definiteness of A is obvious from positive definite-
ness of A’. Finally, invoking the type of argument used in connection with (2.12) and
(2.13), it readily follows that G(s) is a matrix Stieltjes series. The proof of the lemma is
therefore, complete.

Repeated use of Lemma 2.2 yields the following expansion for a matrix Stieltjes
series T(s ):

1A l(k)+ 1Tk( )(2.14) T(s)-- A, + 2 +’’’ s-7Ak+S- s

where l(k)=0 for k odd and l(k)= for k even. As., for j= 1,2,..-,k, are symmetric
positive definite matrices and Tk(S ) is a matrix Stieltjes series. It is interesting to note
that the matrix continued fraction in (2.14) is of the same type as has been dealt with in
[31.

The proof of the scalar version of the following lemma is given in [1, p. 55], [6, p.
380]. A proof for the matrix case can be constructed exactly along parallel lines and is
omitted for the sake of brevity.
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LEMMA 2.3. For each k-1,2,3,.-., the kth convergent to the matrix continued

fraction in (2.14) is equal to the matrix Padb approximant of order [(m- 1)/m] or [m/m]
to T(s), according as k 2m or k 2m + 1.

In the topic of passive reciprocal network synthesis, elements like resistors, induc-
tors, capacitors and transformers are the fundamental building blocks. Rational matrices
which characterize the input-output behaviour of such networks have distinguishing
properties and a detailed documentation of these and related materials is available in
[7]. Networks modeled from resistors, capacitors and ideal transformers form an im-
portant subclass of the class of passive, reciprocal networks. A rational matrix with
special properties can be synthesized in various ways to yield different networks, each
of whose input-output behaviour is characterizable by the specified rational matrix.
One synthesis technique is based on the theory of continued fraction expansion. In
particular, for the k th convergent associated with (2.14), the positive definiteness of the
coefficients matrices hi, i--1,2,-" ",k guarantees the feasibility of synthesis of the
convergents using resistors, capacitors and ideal transformers (RC-ideal transformer)
[7, pp. 216-218] as circuit elements. It then becomes clear from the results developed so
far that a RC-ideal transformer realization of Pad6 approximants of orders [(m- 1)/m]
and [m/m] to T(s) in (2.14) is possible. This conclusion linking the continued-fraction
expansion associated with a matrix Stieltjes series and the important topic of RC
network synthesis (in microminiaturized circuits, the elements fabricated in integrated
form are resistors, capacitors and active elements like transistors) is summarized in
Theorem 2.1 below.

THEOREM 2.1. The [(m--1)/m] and [m/m] order Padb approximants to a matrix
Stieltjes series can be synthesized as multiports using resistors and capacitors (possibly
including ideal transformers).

3. Matrix analogues of orthogonai polynomials on real intervals. It is known [1]
that the sequence of denominator polynomials of scalar Pad6 approximants to a
Stieltjes series forms an orthogonal polynomial sequence, orthogonal on the real inter-
val (-c, 0]. In the present section an investigation into whether or not similar results
also hold in the matrix case is carried out. Matrix counterparts of many classical results
related to orthogonal polynomials on a real interval is obtained.

To begin with, some notations are introduced first. Consider the set of linear
simultaneous equations in (3.1):

(3.1)

where p(n), k 1,2, 3,. ., and Dn are ( p p) matrices, I is an identity matrix and 0 is a
null matrix, each of order (p p). Then the polynomial matrix Pn(S) in (3.2) is the

(3.2) P(s ) p)sk po) l
k=0

"denominator" polynomial matrix associated with the Pad6 aproximant of order [(n-
1)/n] to the series T(s). Note that in (3.1) and (3.2) the superscript (n) is taken to
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mean that Pad6 approximants of order [(n- 1)/n] are being considered. Consider, also,
the "inverse polynomial matrix," P’(s) in (3.3).

(3.3) P/,(s)- n(n)S k
Fn k

k=0

It will be seen in what follows that under the assumption that Hn(T) is positive definite
for all n, the polynomial matrix P,(s) enjoys properties which can be considered as
matrix counterparts of the properties of classical scalar orthogonal polynomials. Before
taking up a detailed discussion of the properties, a few results which are almost obvious
are presented in Lemma 3.1. To avoid clutter in notation the matrices Kn and M, are
introduced.

(3.4) g EnD-I-En D---1

(3.5) Mn--[D(n)t n(n)t pn)t I]Fn--

LEMMA 3.1. If H(T) is positive definite for all n, then: (i) D is symmetric positive
definite, (ii) K,Dn is symmetric.

Proof. (i) From (3.1) and (3.5), MtH,(T)M-D,. The result then follows from the
fact that H,(T) is positive definite and Mn, by definition, is of full column rank. (ii)
Again, (3.1) for n and n- together with (3.5), lead to (3.6).

(3.6) n--I nn(Z )
Mt, 0 P")tDn- +En- Dn

Since the left-hand side of (3.6) is symmetric,

(3.7) pn)tOn_l---En_l-O.
Furthermore, it follows on straightforward premultiplication of (3.1) (excluding the
first block row), by the transpose of (3.5) and subsequent use of (3.7) and (3.4),

(3.8) _D-IMH+l(r)Mn--pn)tOnnt-En --En n_lOn+En--KnO
The last two equalities follow via the use of (3.7) and (3.4). The proof of the lemma is
thus complete.

Consider now two "inverse polynomial matrices" P,(s) and P,(s), with n _> m.
Define the inner product,

(3.9a) (P,(s),P,(s))-[Mtm 0 O]H,,(T)Mn,
where M,, H,(T) are defined in (3.5) and (2.2), respectively, while [Mm 0 0] is
formed by augmenting M,, (where M is defined analogously to M, in (3.5)) by (n-m)
null matrices, each of size (p p). It is readily verifiable via use of (3.1) that

0, n=/=m,(3.9b) (P(s)’Pr(s)) On, n--m.

Note that D, is symmetric positive definite, as proved in part (i) of Lemma 3.1. In light
of the preceding discussion, it is justifiable to say that the set {P(s)} of "inverse
polynomial matrices" associated with the Pad6 approximants to a matrix Stieltjes series,
forms a sequence of orthogonal polynomial matrices.

To continue the discussion of properties of P,(s), under the assumption that
H,,(T) is positive definite for all n, note that the grouping of equations determining the
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"denominator polynomial matrices" of Pad6 approximants of orders [(n-2)/(n-1)],
[(n- 1)/n] leads to (3.10).

(3.10) H+I(T)

0 0 0

0 0 0
D,,_ 0 D,
E._ D.
,Fn_ E

Right multiplying (3.10) by the matrix N in (3.11) yields (3.12). (Note that nonsingular-
ity of Dn and D,_ follows from positive definiteness of H,,(T), n-O, 1,2,-...)

(3.11)

(3.12)

Mn- M,, 0 0

Hn+I(T ) 0 Nn__ ;
0 0 M, Dn+

where D+ is naturally defined.
Therefore, in view of (3.1) and (3.12), the recurring relation (3.13) follows.

Mn_ M 0

(3.13) Mn+ 0 N,.

Finally, noting the relation between M and the coefficients of s, k=0, 1,.-.,n, in
P(s), (3.13) yields in (3.14) and (3.15) the matrix version of the familiar three term
recurrence formula relating sequence of polynomials orthogonal on a real interval.

P,+l(s)--P(s)(sI--Ck)--P_l(s)tk, k 1,2,..-,

=i,

(3.14a)
(3.14b)
with

(3.15a)
(3.15b)

Ck--D[1KkDk,
)t k Dk 1Dk

Now, the first major result in this section will be stated and proved.
TnEOIM 3.1. /f Hn(T ) is positive definite for any integer n>0, then: (i) the zeros of

IP/,(s)l (i.e., the determinant of P/,(s)) are real; (ii) if ag is a zero of IP,(s)l of multiplicity
m there exists a set of exactly m linearly independent sets of (1 p) vectors {v) vjZ....v" }
such that v} P,( a2 ) O, i- 1,2,..., m.

Proof. (i) For any zero s=aj of IP/,(s)[, there exists at least one (1 p) vector v
such that vP/,(%)=O. Next, considering (3.14) with s=aj. for k=0, 1,. .,n and noting
that vP2( a1) O,

(3.16)
[ve)(aj) ve(aj) ve/,_l(ay)]A,-[vPO(aj) vPj’(aj) vP,_l(aj)]aj,
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where A is the block tridiagonal matrix in familiar form:

I C )2
(3.17) An- ..".

0 I

(3.18) -diag[D- D- T,

D-,] D,

0

D

KD

Equation (3.18) follows from (3.17) via the use of (3.15). Note from (3.16) that %. is
an eigenvalue of An. Also in (3.18), in view of Lemma 3.1, the diagonal matrix on the
left is positive definite and the tridiagonal matrix on the right is symmetric. Next,
invoking a standard result on eigenvalues of quadratic forms [8, p. 310] it is found that
aj is always real.

(ii) To prove the second part of the lemma, it is further noted that if A in (3.16)
has an eigenvalue aj of multiplicity m, then there must exist a set of vectors
{v) v}... vj } such that the (1 rip) vectors vPO(aj) vP(aj).., vP,_ (aj)] for
k-1,2,3,...,m are all linearly independent. However, linear independence of

v)P/_,(aj)] implies the linear independence of the set
{v/v/.:2

.vjm}. The proof of the lemma is thus complete.
The following two corollaries are immediate consequences of the above theorem.
COROLLARY 3.1. Any zero of IP/,(s)l cannot be of multiplicity larger than p.
Proof. The above result is obvious from the fact that if s-a is any zero of

[P,(s)l- 0 then vP/,(a) 0 cannot have more than p linearly independent solutions for

COROLLARY 3.2. The invariant factors in the Smith canonical form for P/,(s) cannot
have zeros of multiple order.

Proof. Let v(s),v2(s),...,Vp(S ) denote the invariant factors. Obviously vj(a)--0
for some j implies IP,(a)1-0. Also if a is of multiplicity m, invoking part (ii) of the
above theorem yields that P,(a) is of rank (p-m), which in turn implies that vj(a)--0
for exactly m different values of j. The required result then follows by noting the fact
that the multiplicity of factor (s-a), in [P,(s)[- II;= vj(s), is exactly equal to m.

Interestingly, it is noted that Corollaries 3.1 and 3.2 can be considered as the
matrix interpretation of the scalar result that zeros of orthogonal polynomials are not
only real but also simple.

Before proceeding further a polynomial matrix Kn(S, u) in two variables s and u is
introduced.

n

(3.19) Kn(s,u)- P,(s)D-Pff(u).
k-0

In keeping with the scalar theory Kn(s,u) will be called the kernel polynomial
matrix. The following result is the matrix version of Christoffel-Darboux identity [11 ].

THEOIM 3.2. The following is true for all values of n.

l/,t (U)(S--U)Kn(S,U) P+l(S)O1pt(u)--P/(s)O.n+l
The proof for the above theorem runs exactly parallel to the scalar case and is

outlined in the following. Postmultiplying (3.14a) by D-1 ,tP (u), k> 0, and rearranging

Dn-,
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terms, after using (3.15) one obtains

(3.21) sPf,(s)Dlp,t(u)--P,+l(S)D-lpf,t(u)-+-Pf,(s)D-lgkp,t(u)
_ji.. p -1 vt

Again taking transpose of (3.14a), with s replaced by the variable u, premultiplying by
P(s)D- and rearranging, after using (3.15), one obtains

(3.22) uP(s)D-’Pt(u)=P(s)D-’Pt+,(u)+P;,(s)KD-’P;,t(u)
pt+e;(s)Dk-_, _,(u).

Next, subtracting (3.22) from (3.21), summing the resulting equation through k=
1,2,...,n and adding to the resulting sum the corresponding equation for k=0 (use
(3.14) with k set to zero), the desired equality is obtained (use has to be made of the
fact that KkDk is symmetric). The final property require will be a matrix version of the
Gauss quadrature formula. In the scalar case, at least two different forms of the
formula exist in the literature. The matrix version of the form given by Gragg [9] will be
proved here.

Let % be a zero of IP},(s)l of multiplicity mj. Then, from Theorem 3.1, there exists
a linearly independent set of (1 p) vectors (vff), k= 1,2,.-., m. such that vP},(aj)= 0
for k= 1,2,.-.,mj. Next, consider the kernel polynomial matrix evaluated at

Kn( aj, aj ) D- -t-
k=l

Since D is positive definite, K,(aj, aj) is a positive definite symmetric matrix. Therefore

K,(aj, aj) can be taken to induce an inner product in the vector space spanned by the
linearly independent set (v), k-l, 2,...,mj. If (uJ, u,-..,u} is a set of orthogonal
vectors in this space obtained from (v) vj2... v), by means of Gram-Schmidt ortho-
gonalization procedure, then

(3.23) u;.K,(aj, Olj)(Utf ) t- {01/G;% fOrfor
where, G. is a real positive number.

Let i be assumed that the above construction has been carried out for each zero

aj,j- 1,2,..., of [P,(s)], where/is the number of distinct zeros of ]P,(s
Two notations are introduced next, to denote the matrices U and V of sizes

(m mp) and (mp np ), respectively, where (m +m2 + +mt) m.

(3.24) Un&diag[u u’u.-, u".., u} u’],

I Iat Ia Ia7-1

I Iot I/ Ia’-
(3.25)

m block rows

block rows
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The following results will be the key to the matrix Gauss quadrature formula.
LEMMA 3.2. The following hold true:

(i)

K %)(u)t_
0 for x 4:,

.1/ nj forr-/

(ii)

uKn_l(ai,aj)(@)t-O for i=/=j and any value of r and .
(iii) The mnp) matrix UV is offull rank.
Proof: (i) By construction of {u}, r 1,2,..., m2.
(ii) From Theorem 3.2 it follows that

(3.26) (oti--aj)Kn(ot otj)--P+l(ai)D-lp2t(otj)-P(ai)DlPn+ (otj)
Then the required result easily follows by noting that u’[P/,(a)- O,

u.P,(og)-O and u’Kn(a,,%)(u)t-u’Kn_l(ai,%)(u) t.
(iii) The following notation for the (np np) upper triangular block Toeplitz

matrix in (3.27) is needed

(3.27) Ln ’"

p22) (n--l)Pn-

I p(n-l
pn-1)

I

Note that on carrying out straight forward block matrix multiplication

(3.28) (VnLn)-

m block rows

m block rows

Next, using the notation of (3.27), it follows from (3.1) in a compact form:

(3.29) LH,,_I(T)L.-diag(DoD, Dn_l).

Taking the inverse of (3.29), transferring the L on the right-hand side and them
premultiplying and postmultiplying the resulting equation by UnV,, and (U,,Vn)t, respec-
tively, (3.30) is obtained.
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(3.30) (UnV)H,(T)(U,,V)t- U,,[(VLn)(diag(D-1D- o_ll))(VnLn)t]Unt.
Carrying out the matrix multiplication and using (3.19) the quantity inside square

bracket in the right-hand side becomes:

(3.31)
( VnLn ) { diag( D- D- D-_, ) ) ( VnLn )

Kn_l(al,al) Kn_l(al,al) Kn_l(Otl,Otl) Kn_l(Otl,Otl)

Kn_l(Otl,Otl) Kn_l(Otl,Otl)

K,,_,(al,a,)

K._,(a,,a,) K._,(al,al)

K,_,(a,,a,) Kn_l(al,Otl)

Next, pre- and postmultiplying the matrix in (3.31) by U. and U. respectively and
taking Lemma 3.2 into account it follows from (3.30) that

(3.32) (UnV H-’, )t_ [diag(GJ, ":
Since in (3.32) H,,_(T) and the right-hand side are nonsingular matrices, it follows
that (UV) is of full rank. The proof of the lemma is, therefore, completed.

Finally to arrive at the matrix version of Gauss quadrature formula, (3.32) is
written as

(3.33) Hn_I(T)-(U,,V) dlag(G, Gml,,
Comparing each (pp) block element on both sides of (3.33) it follows that

mj

(3.34) T-- Gj(u) .u) ).a
j=l

for k-0, 1,2,- .,(2n-2).
Also, considering (3.1) again,

(3.35a) T2n_ T2n_r_ pr)
r=l

(3 35b) Gg(u;t’u;)qn-r-lp(rn)
nj

r=l j=l =1

(on substituting for T2n_ from (3.34)).
n p(rn)Ot;--r---Again, since u)P,,(%.)-0 making use of (3.3), it follows that u =-u.I. Interchanging summation in (3.35b) and making use of the above equation,

t 2n--1(3.36) Z2n_ G:j( Uj "U) )Ol)
j=l x-l
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To summarize our result, we write matricial Gauss quadrature formula in the
following theorem.

THEOREM 3.3. If aj, j= 1,2,’’-,l, is a zero of ]P(s)[, of multiplicity mj, then there
exists a set of (1 p) vectors {u} and positive real numbers G, for x 1,2,..., mj and
j= 1,2,...,l such that (3.34) holds for k=0, 1,2,-..,(2n- 1).

COROLLARY 3.3. If H(T) is negative (positive) definite for all n, then the zeros of
[P(s)[ are also negative (positive).

Proof. Theorem 3.3 can be used to write the following:

(3.37)

H(T)-(UnVn)t[diag(Ga G2na Ga, Gn,atGnat.... Gn/a/)]UnVn
Negativity (positivity) of aj, j-- 1,2,-.-,! then readily follows from (3.37) by noting the
facts that (U,V) is of full rank and G:, x-- 1,2,-..,mj, j-- 1,2,-.-, l, are all positive.

It has been demonstrated in tle above how the matrix version of the Gauss
quadrature formula can be used to prove the negativeness of the zeros of IPA(s)l. This
property is crucial to the use of the matrix Cauchy index for demonstrating the
RC-ideal transformer realizability of certain Pad6 approximants to any specified matrix
Stieltjes series, as discussed in the following section.

4. Proof of RC realizability of the matrix Pad-approximants via the matrix Cauchy
index. Recently the concept of Cauchy index of a rational function has been extended
to rational matrices by Bitmead and Anderson [4]. Furthermore, criteria for rational
matrices to be realizable multiport impedances have also been given in terms of the
concepts of Cauchy index and McMillan degree. The purpose of this section is to show
alternate ways of viewing Theorem 2.1 in the light of matrix Cauchy index and the
results on matrix orthogonal polynomials dealt with in the last section. Facts from [4]
will be freely made. use of.

For the sake of logical development of the results it is necessary to show that a
Pad6 approximant of appropriate order to a matrix Stieltjes series is a symmetric
rational matrix. It is obvious from positive definiteness of Hn(T) and from (3.1) that
right matrix Pad approximant QL(S)P(s) of order [L/M] exists for a matrix
Stieltjes series. Since (4.1) holds and T(s) is symmetric, [QL(s)P (s)]

(4.1) QL(s )Pt l(s)-- T( s ) O( s+M+ )
is definitely a left Pad6 approximant of the same order. Since both right and left matrix
Pad6 approximants exist, they must be identically equal [1, Chap. 17] and therefore, the
symmetry of the approximant follows.

The following result from [4] gives a criterion for RC or RL multiport realizablity
of a rational matrix in terms of matrix Cauchy index and McMillan degree. Consider a
real rational (pp) symmetric matrix Z(s) and denote its matrix Cauchy index
between [a,b] and McMillan degree by IZ(s) and 8[Z(s)] respectively. Then, the
following holds.

THEOREM 4.1 [4]. (i)Z(s) is realizable as an impedance of a p-port RC network,
possibly including transformers if and only if l_oZ(s)--8[Z(s)] for all e>0. (ii) Z(s) is
realizable as an impedance of a p-port RL network, possibly including ideal transformers if
and only if (a) any pole of entries of Z(s) is of order at most one and the associated residue
matrix Zo (for a possible pole at s= ) is nonnegative definite (b) I_ Z(s)= -8[Z(s)]
+ rank Zo for all e> O.
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In the following it will be shown in several elementary steps that the above
condition for RC realizability is satisfied by the [(n-1)/n] and [n/n] order Pad6
approximants to a matrix Stieltjes series. For brevity the [(n- 1)/n] case will be treated
in detail and the case for [n/n] approximants will be outlined only.

1. Note again that, in view of (3.2), (3.3), the sequence of "denominator" poly-
nomial matrices {Pn(s)} of Pad6 approximants of order [(n- 1)/n] are the sequence of
inverse polynomial matices obtained from the sequence (P,(s)}. Since for a matrix
Stieltjes series, H,(T) is negative definite for all n, Corollary 3.3 implies that zeros of
IP,(s)l are negative, which in turn ensures the negativity of poles of each entry of
Qn- l(S)P- (s). The eigenvalues of Z(s), therefore, cannot go to infinity for any
nonnegative value of s. Recalling from [4] that Ia Z(s) is the number of eigenvalues of
Z(s) which jump from -c to + c minus the number which jump from + to -c as
s traverses the real axis from a to b, it can be readily seen that I+[Q,,_(s)P-(s)]--O

I*_[Q,,_(s)p-l(s)] for all e>0.
2. Consider, next the power series expansion

S kQn-(s)P-l(s) X Rk
k-0

where by virtue of the fact that Q,_(s)P-(s) is the [(n-1)/hi order Pad6 approxi-
mant to T(s)--Yk=oTkSk, one has Rk- Tk for k-0, 1,2,-..,(2n- 1). Then

(1) (1) 1) k+l

(4.2) Q,,-I e X Rg
S S S

k=0
S

If one considers the infinite Hankel matrix associated with the power series expansion
(4.2), then it is clearly seen from (4.3) that its (np np) leading principal submatrix is
H I(T), which is positive definite. Considering the fact

(4.3)

Rn-

R2n-2
R R2n_

R2n_

R2n
R2,,-

that the McMillan degree of 7 Q_()p-l(_}) is the rank of the infinite Hankel matrix
in (4.3), it is possible to assert that this rank is at least as large as np. However, the
McMillan degree cannot be larger than np. Therefore,

s
np.

3 Finally, it is noted from [4] that I+[{ _l()P ({)] is equal to the finite
signature of the infinite Hankel matrix in (4.3), which is the signature of Hn_(T).
Since H,,_I(T ) is positive definite symmetric, its eigenvalues, np in number, are all
positive, implying that I+[ Q,_ ()Pn-1({)]-- nP

It is therefore seen from the above discussion that condition (i) of Theorem 4.1 is
satisfied by Q,_ l(7)P, ({). RC impedance realizability of Q,_(s)P-l(s) therefore
follows by noting the fact that Z(s) is RC impedance realizable if {Z() is also RC
impedance realizable.

R R2n_ll R2n
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An exactly similar proof can be worked out for the [n/n] approximant
Qn(s)P l(s), by invoking part (ii) of Theorem 4.1 on Qn(7)PI (J) -=0--kTx’o, + )k. The
required result then follows by noting that for the case under consideration Q,(-)P-(-)
cannot have any pole at infinity, i.e., Zoo-0 and I_o -Q,(7)P () -np. Since
Q(7)P. l(), viewed as an impedance matrix, is RL-ideal transformer realizable,
Q,(s)p;l(s) must be realizable as an impedance matrix of a RC-ideal transformer
multiport.

5. Discussion and conclusion. Some network theoretic interpretations of the re-
sults of 3 will be given here. First, it is noted that since it is known from 2 that
[(n- 1)/n] Pad6 approximants, when Hn(T) is positive definite and H(T) is negative
definite, are indeed impedance matrices of multiport RC networks, one could, in this
special case, very well expect that the zeros of IP(s)[ would turn out to be not only real
but also negative. Furthermore, in the special case, when H(T) and -H(T) are
positive definite, one could, via a network argument prove the Gauss quadrature
formula of Theorem 3.3. This is done in the following:

Since Q_(s)P-(s) is a realizable RC multiport impedance, it can be written as a
partial fraction expansion as:

mj

(5.1) Qn-I(S)P21(S) 2 g21S4jAj,
j--|

where fly’s are positive and A,.’s are nonnegative definite symmetric matrices. Note that
since P,(s) in (3.2) and P,fs) in (3.3) are mutually inverse polynomial matrices,
/3j=
Expanding (5.1),

Qn-l(S)P-’(s) 2 2 2 S An
j=l x=l k=O

j=l  jj.A y
Now because of the fact that Q,_(s)P-(s) is a Pad6 approximant of order [(n- 1)/n]
to T(s) -Ek=o Tks ’, comparison of coefficients of s k, k-0, 1, 2,..., (2n-1), in the
power series expansion for T(s) and in (5.2), one obtains,

mj

2 E
j=l

for k-O, 1,2,...,(2n- 1).
It is noted that since (-A, ) is a nonnegative definite matrix, (5.3) is nothing but the
Gauss quadrature formula in different form. Interestingly, this formulation also estab-
lishes a relation between the residue matrices A,.’s and K,(%,%), the kernel poly-
nomial evaluated at %, via the use of Theorem 3.3.

The primary objective of the paper, therefore, has been the demonstration of the
relationship between rational approximants of appropriate orders to a specified sym-
metric matrix power series of a special type and multiport network synthesis using the
matrix version of the classical continued fraction expansion theory and the recently
developed artifice of matrix Cauchy index. The ’denominator’ polynomial matrices of
the approximants are shown to form an orthogonal polynomial matrix sequence over a
real semi-infinite interval. Though mathematical derivations of the properties of the
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polynomial matrices belonging to the orthogonal polynomial matrix sequence have
been given, the reader has also been alerted to the feasibility of network-theoretic
justification of the results. It is hoped that these links between mathematical results and
the theory of network realizability will kindle interest for further research among
scientists coming from either discipline.

Acknowledgment. The authors wish to extend their sincere thanks to the reviewer
for helpful and constructive criticisms of the paper.
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MEAN VALUE AND TAYLOR FORMS IN INTERVAL ANALYSIS*

L. B. RALL"
Abstract. Basic spaces for interval analysis are constructed as Cartesian products of the real line. The

spaces obtained in this way include real finite- and infinite-dimensional real vector spaces, and have a
number of important Hilbert and Banach spaces as subspaces in the sense of set inclusion. A Gteaux-type
derivative is defined in these spaces, and is used in the corresponding interval spaces, together with interval
arithmetic, to obtain interval versions of the mean value theorem and Taylor’s theorem. These theorems
provide ways to construct accurate interval inclusions of operators, called mean value and Taylor forms. The
forms resulting from expansion about midpoints of intervals are shown to be inclusion monotone, and the
effect of outward rounding on this class of forms is also considered. An application is made to show that
interval iteration operators for the solution of operator equations can be constructed which have arbitrarily
high order of convergence in width. Derivations of the fundamental theorems of less generality from results
in real and functional analysis are also presented. As in the case of real and functional analysis, the interval
Taylor’s theorem given here provides a powerful tool for applications of interval analysis to problems in
applied mathematics.

Key words, interval analysis, calculus in abstract spaces, mean value theorem, Taylor’s theorem, interval
inclusions, interval iteration, fixed point problems, solution of equations

1. A setting for interval analysis. In the same way that real analysis is concerned
with transformations of real numbers (or vectors) into others, interval analysis [6], [7]
deals with transformations of intervals (or interval vectors). Since an ordering relation-
ship is fundamental to the definition of intervals, a natural abstract setting for interval
analysis is a partially ordered space [1], [14], or, more specifically, a lattice [1], [8]. Here,
a more concrete approach will be taken, which results in the construction of what will
be called IR-spaces by forming Cartesian products of the set IR of nonempty closed
intervals

(1.1) X=[a,b]- (xla<_x<_b, xR),
on the real line R. Interval analysis on these/R-spaces will be called real interval
analysis; it is general enough to cover many important applications, and the theory
obtained adapts readily to actual numerical computation, for which only a finite set of
real numbers is available.

1.1. Real spaces. The spaces to be considered here are built in a natural way from
the set R of real numbers. Given a set A, one can form the Cartesian product

(1.2) P- I-IR
A

of R over the index set A to obtain a set of vectors fwith real componentsf R, aA.
Writing f--(f[aA, fR} for fP, e is a linear space for the componentwise
definitions of addition f+ g and multiplication by scalars (real numbers) a .f given by

(1.3)
respectively 12], [16].

a.f: {a.fl,E_,t }
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Another way of looking at the product space P given by (1.2) is as the set of all
functionals (real-valued functions)f on A; one writes f=f(a), and (1.3) gives the
natural definitions of sums and scalar multiples of functionals, which are also function-
als.

DEFINITION 1.1. A real space (or R-space for short) is a linear space P constructed
according.to (1.2) and (1.3) or the Cartesian product

(1.4) P- 1"-[ PflB

of such spaces, again with addition and multiplication by scalars defined component-
wise.

Examples of R-spaces abound. The choice A =(1,2,...,n} in (1.2) gives P=Rn,
the space of n-dimensional real vectors f= ( fl,f2,""" ,fn), while A ( 1,2, 3,..- ), the set
of positive integers, gives R, which consists of the real sequential vectors f-
(fl,f2,f3,""). Going on to A X-[a,b], a nonempty interval (1.1), one gets P-R[a,b],
the space of all real functions f on the interval [a,b], the components of which are
usually denoted by f(x)=fx, a<_x<_b. Similarly, if Y=[c,d] is also an interval, then
taking A X Y= a, b] c, d gives the space R([a, b] c, d ]) of real functions f of
two variables with components f(x,y), a<_x<_b, c<_y<_d, and so on.

Cartesian products (1.4) can be used for concise description of sets of functions
taking on values in R-spaces. For example, with X=[a,b], Y--[,d], the real space
R(X Y)R(X Y) consists of all functions f:X YCR2R2 with components
f(x,y)=(fl(x,y),f2(x,y)) a<_x<_b, c<_y<_d. More generally, if DCP and Q is a real
space, then

(1.5) -[ Q- ( f[f DcP- Q)
D

is also a real space by Definition 1.1. In (1.5), it is not required that P be a real space,
but this will usually be the case in the following discussion. A simple, but important,
example of (1.5) is obtained for P--Rn, Q--Rm, which gives the set of functions (or
operators) f: D QRn ---) Rm, which are fundamental to computational numerical analysis
[10], [12].

The subject of functional analysis is concerned with analysis on normed linear
spaces (usually the ones which are complete, called Banach spaces) [12], [16]. A number
of useful spaces of this type over the real scalar field can be considered to be subspaces
of real spaces P in the sense that all their elements belong to P. In particular, all
finite-dimensional real normed linear spaces are pretty much indistinguishable, due to
the equivalence of norms [16], and can be identified with the real spaces R". The
situation is different for infinite-dimensional spaces. For example, the elements of the
Banach space R of sequential real vectorsf such that

(1.6) IIII1 sup {ILl)
(n)

form a subspace of R which is different from the one consisting of elements of R,
for which

(1.7) Ilfll- f. < +-n--1
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Similarly, the space C[a, b] of continuous functions f on a_<x-< b (with the usual norm)
can be identified with a subspace of R[a,b] which is different from the one obtained
from L2[a,b], which consists offR[a,b] such that

where (L) denotes Lebesgue integration [16]. This natural type of embedding of
normed linear spaces into real spaces will be helpful below in connection with the
derivation of interval versions of results from real and functional analysis.

1.2. Real interval spaces. The set of finite, nonempty intervals (1.1) on the real line
R will be denoted by IR. There is a natural identification of real numbers x R with
degenerate intervals [x,x]IR with equal endpoints, and one writes

(1.9) x-[x,x].
Ordinary arithmetic, extended from R to IR, is called interval arithmetic [6], [7]. For
example, addition of intervals X-[a,b] and Y--[c,d] is defined by

(1.10) X+ Y--[a,b]+[c,d]=[a+c,b+d],
and multiplication of X-- a, b by a real number r- r, r by

(1.11) r.X={[ra,rb], r>O,
rb ra r<0.

Note that with these definitions, 1R is not a linear space; with subtraction defined
in the usual way by X- Y--X+ (- 1)- Y, (1.10) and (1.11) give

(1.12) [0, 1]-[0, 1]-[-1,1]
instead of the identity element 0--[0, 0] of interval addition.

It will be useful to associate the following real numbers with an interval X--[a,b]
IR: Its midpoint m[a, b (a + b)/2, its width w(X) w[a, b b a, and its absolute

value (or modulus) Igl--I[a, b]l max(lal, Ibl) [7].
Another important property of intervals is that the intersection Xf3 Y- a, b] f3 c, d

is either the interval

(1.13) X Y:[a,b][c,d]:[max{a,c},min{b,d)]
or the empty set ; if b<c or a> d, then

(1.14) XY-;

otherwise, (1.13) holds. Furthermore, if (X) is a sequence of nested intervals, that is

(1.15) XI 2 X2 2 X3 [D

then

(1.16) X-- (-] Xn# Z,
n--1

since each X is a closed, nonempty subset of R [15].
The construction (1.2), (1.4) of real spaces in 1.1 will now be used to obtain the

corresponding interval spaces, by starting with IR in place of R.
DEFINITION 1.2. A real interval space IP is a space of the form

(1.17) IP I-[ IR
A
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or

(1.18) IP- I-[ IP,

in which each real interval space IPI is of the form (1.17). Real interval spaces will also
be referred to as IR-spaces.

There is an obvious one-to-one correspondence between interval spaces (1.17),
(1.18) and real spaces (1.2), (1.4), respectively. Furthermore, the order relationships
<, _<, _>, > in R can be extended componentwise to a real space P to obtain a partial
ordering [1] of P. In the resulting partial ordering, the corresponding /R-space IP
consists of the set of all intervals in P; that is, XIP if and only if there are elements
a,bP such that a<_b and X=[a,b]-{xla<_x<_b, xP}, which is (1.1) with R
replaced by P. This leads to the embedding x=[x,x] of P into IP, as in (1.9).
Moreover, interval arithmetic is also extended componentwise from IR to an arbitrary
real interval space IP. As in the case of IR, IP will not be a linear space, unlike its
underlying R-space P. The quantities m(X), w(X), and ISl defined previously for real
intervals XIR can also be defined componentwise for XIP, with the result being
that m(X), w(X), and IXl will be elements of P.

Typical examples of/R-spaces are the space IR of interval vectors

(1.19) X=(X,X2,..- ,Xn), XIR, i-- 1,2,. -,n,

and the space IR [a, b] of intervalfunctions Y on [a, b] IR defined by

(1.20) Y(x)=[c(x),d(x)], a<_x<_b,

where c,dR[a,b] and c_<d [3], [13]. For XIRn, for example, one has

(1.21) re(X) (m(X1),m(X2),..- ,m(X,)) eR",
and for YIR[a,b], [YI is defined by

(1.22) IYi(x)--iY(x)l--max(lc(x)l,ld(x)l ) a<_x<_b,

and thus Y[ R[a, b] is a real function.
An interval XIP is, by construction, a subset of the underlying R-space P. One

important property of intervals in IP as subsets of P is convexity.
LEMMA 1.1. If P is a real space and XIP, then X is a convex subset of P; that is,

for arbitrary points x,y X,

(1.23) A(x,y)- (zlz-Oy+(1-O)x, 0_<0_< 1} CX.
Proof. It follows from Definition 1.1 that each fP, P a real space, can be

represented as f= { fvlfv R, BA F}, the real numbers fv, )’ F, being the com-
ponents of f. Now, let X--- [a, b], and define c, d P by

(1.24) c- min(x y} d-max(x y} "t F.

For x,y X, it follows that

(1.25) av<--cv<-Oyv+(1-O)xv<_dv<_gv, {r,

for 0_<0_< 1; hence, from (1.23), A(x,y)cX. Q.E.D.
As usual, the set A(x,y) defined by (1.23) is called the line segment from x (0--0)

to y (0= 1). A useful class of intervals is the symmetric intervals, defined as follows:
DEFINITION 1.3. An interval S IP is said to be symmetric if s S for each s S.
As a consequence of this definition, each symmetric interval S contains the origin 0

of P; furthermore, S=[-a,a] for some element a_>0 of P. Moreover, if s P, then
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S [- 1, ]. s will be a symmetric interval; in this case, one can write S 1, 1]. s s-
[-1, 1]=[-Isl, Isl], where Isl is the absolute value of s defined componentwise in the
usual way.

In addition to the origin 0 of a real space P (the element such that 0v=0, 7F), it
is helpful to single out the element eP defined by ev= 1, F. In terms of e, the
symmetric intervals So IP are defined for real 0_>0 by

(1.26) So-p.[-e,e]-pe.[-1,1], pER, p>--O.

DEVINITION 1.4. A set D CP is said to be bounded if

(1.27) D C So- oe -1,1

for some real O such that 0_<O< + c, in particular, if D consists of a single element
fP, then f is called a bounded element of P.

2. Interval transformations. Suppose that IP, IQ are/R-spaces, and F:ID CIP-
IQ is an operator defined on a domain ID in IP which takes on values in IQ. The result
of applying F to X ID is symbolized by

(2.1) Y--F(X),

where YGIQ, and F is called an interval transformation from IDCIP into IQ. It
follows that FIIioIQ. What will be called interval analysis here refers to the study of
interval transformations.

DEFINITION 2.1. The interval transformation F: ID C IP--, IQ, where IP, IQ are
real interval spaces, is said to have an interval domain ID if ZID implies that XID
for each subinterval XCZ of Z.

An important class of interval transformations are the ones which are monotone in
the sense of the following definition.

DEFINITION 2.2. An interval transformation F:ID CIP IQ with interval domain
ID is said to be inclusion monotone (or simply monotone) on ID if

(2.2) XCZF(X) CF(Z)
for each Z ID.

Given a domain D CP, P a real space, the corresponding interval domain ID in IP
can be constructed from the set of intervals Z CD (which includes all the degenerate
intervals equivalent to points of D) by adjoining all subintervals of each such Z, if
necessary. In what follows, it will be assumed that domains ID for interval transforma-
tions corresponding to domains D of real transformations are formed in this way, and
hence will be interval domains. One has also D CID by the identification of points of P
with degenerate intervals in IP. The concept of an interval domain corresponding to a
real one leads to a fundamental relationship between real and interval transformations.

DEFINITION 2.3. The interval transformation F" IDCIPIQ is said to be an
inclusion of the real transformation f: D CP- Q between the underlying real spaces P
and Q if

(2.3) f(X)- (f(x)lxS} CF(X)

for each XCD. If F is monotone on ID, then it is called a monotone inclusion of f.
For most of the results to be obtained below, inclusions of real transformations are

adequate. However, the property of monotonicity is highly desirable in many applica-
tions. Some interval inclusions of real transformations also have the following property.
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DEFINITION 2.4. The interval inclusion F: ID CIP IQ of f: D cP Q is said to
have the restriction property on D if

(2.4) F(x) F([ x,x 1) =f(x)
for each x D, in which case F is called an interval extension of f on D. If F is also
monotone on D, then it is called a monotone interval extension off on D.

The rules of interval arithmetic [6], [7] are examples of monotone interval exten-
sions, in this case of the real transformations f: R--, R defined by f(x,y) x y for

+, -,.,/. (For division, D R (R \(0 }), of course.) In actual computation, one
ordinarily has to forego the restriction property (2.4), since it is impossible to represent
arbitrary real numbers exactly with the finite set of numbers available on a given
computer. The use of interval arithmetic and directed (or perhaps outward) rounding,
however, allows one to construct monotone inclusions of rational functions automati-
cally, even if the endpoints of intervals have to be selected from a finite set of numbers
G, provided that the computation stays within the interval IG=[min(G},max(G}] [61,
[7]. Along with interval arithmetic, there are other methods for the construction of
interval inclusions of real transformations. The ones to be discussed in this paper are
based on interval versions of the mean value theorem and Taylor’s theorem in ordinary
real analysis [4].

3. A derivative in R-spaces. As usual, if P is a real space, then a function f: D CR
--, P will be called an abstract function; for example, z:R P defined for x,yP by

(3.1) z(O)=Oy+(1-O)x=x+O(y-x), OR,

takes on values on the line through x,y for xvy (see (1.23)). For f: D CR- P, where D
contains a neighborhood of 0, it is said that

(3.2) limf(0)-0
/9-,0

if there is a real-valued function p_>0, monotone decreasing in 10[, such that

(3.3) f(O)p(O)e.[-1,1] and limp(0)=0.
00

DEFINITION 3.1. A function f: D CP- Q, D convex, is said to be differentiable at
x D if a linear operator, denoted byf(x) or simply f’(x), exists from the linear space
LD spanned by D into Q such that

(3.4) lim
rx’y(0)

0--,0 0 =0,

where

rx,y(O)=f(x +O( y--x))--f(x)--f’(x) .O(y--x).

The operator f’(x), easily seen to be unique if it exists, is of course called the
derivative of f at x D. (The linear space LD referred to in Definition 3.1 is simply the
set of all linear combinations of elements of D [16].) Defined in this way, f’ is a
derivative of Ggteaux type; in fact, if D is a Banach subspace of P such that condition
(3.4) and limo_oll.rx,y(O)l[-O are equivalent (such as R,R,and C[0, 1]), then f’(x)
is precisely the Gtteaux derivative in D off at x [4], [10]. Because of the dependence of
f’(x)=f(x) on the domain D, this derivative can also be considered to be a type of
directional derivative; for example, one can take D to be the line through the origin of P
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consisting of the points defined by (3.1). In case it is desirable to distinguish the
derivative defined above from some other derivative, it will be called the elementary real
derivative, or simply the R-derivative of f at x D.

4. Elementary mean value forms.
THEOREM 4.1. IfX is an interval such that f is differentiable on XN D, D convex, and

F’ is an interval inclusion off’ on X, then

(4.1) f(y)-f(x)CF’(X).(X-x), x,yXfqD.

Proof. For x,yXD, it follows from Definition 3.1 that given a real e>0, there
exists a real number , 0<_< 1, such that

(4.2) f(x+O(y-x))-f(x)F’(X).O(y-x)+eOe.[-1,1]

for 0_<0_<. To show that (4.2) holds for 0-l, the assumption that < is the
supremum of the values for which it is valid will now be contradicted. Set z--x +
(y-x). Since f’(z) exists, there is a real number fl, </3_< such that

(4.3) f(x+,l(y--x))--f(z)F’(X).(,1--r)(y--x)+e(l--)e.[--1,1],
r_<r/_<fl. Let 0- in (4.2) and add to (4.3) to obtain

(4.4) f(x+,l(y-x))-f(x)F’(X).,l(y-x)+e,le.[-1,1],
_<,/_< fl, and thus (4.2) holds for 0_<0_< fl, which contradicts the assumed property of

(4.2) becomesz, since fl>. Hence, for 0- 1,

(4.5) f(y)-f(x)F’(X)(X-x)+e.[-1 1]
n

It follows that

(4.6) f(y)--f(x) 0 {F’(X)’(X-x)+e’[-1 1]}-F’(X).(X-x)+[O 0]
n--I

which is nothing more nor less than (4.1). Q.E.D.
The proof of Theorem 4.1 given above is truly elementary in that only interval

arithmetic and the definitions of interval inclusions and the derivative are used. Replac-
ing X by A(x,y) in the above proof leads to the conclusion

(4.7) f(y)-f(x)r’(A(x,y)).(y-x)cr’(A(x,y)).(X-x),
which is also valid. If F’ is a monotone inclusion of f’, then (4.7) implies (4.1). Note
that f’ need not be defined on all of X; all that is required is that f’(XfqD)CF’(X);
one can takef’(x)--F’([x,x]) for xX\(Xf3D).

DEFINITION 4.1. If F’ is an interval inclusion of f’ on X, then the interval inclusion
F off on X defined by

(4.8) F(X) =f(x)+F’(X). (X-x)
is called the (elementary) mean value form of f.

The mean value form was introduced by Moore [6] in Rn, and studied in R" and
C’[a, b] by Caprani and Madsen [2], whose results will be returned to below. The form
(4.8) provides a method, in addition to interval arithmetic, for the construction of
interval inclusions of real transformations. A useful case of the mean value form is its
midpoint (or centered) form, obtained for x--re(X). Since

(4.9) X= m( X) +1/2w(x) [- 1,1]
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for an arbitrary interval X and w(X)_>0, one has, if m(X)D,

(4.10) f(S)-f(m(S))/1/2lF’(S)lw(S).[-1,1]
in this case, which expresses F(X) as the sum of the point f(m(X))Q and a
symmetric interval in IQ. The midpoint form (4.10) is even simpler in case y D and

(4.11) X--X(y,p)-y+pe.[-1,1]
is the cube with centery P and radius p. Then,

(4.12) F(X(y,p)) =f(y) + plF’(X(y,p))ie. [- 1, II,
which often can be computed very economically.

The following theorem, which is a generalization of the fundamental result due to
Caprani and Madsen [2], shows that F defined by the midpoint mean value form (4.10)
is monotone.

THEOREM 4.2. If F’ is a monotone inclusion of f’, then F defined by the midpoint
mean value form (4.10) is monotone on the set of intervals X such that m( X) D.

Since F is already an inclusion off on the set of intervals cited, all that needs to be
established is monotonicity. The following lemma is the key to the proof.

LEMMA 4.1 (Caprani-Madsen [1 ]). If X, Z are intervals in a real space P, then

(4.13) XCZ1/2w(Z)>-1/2w(X)+Im(Z)-m(X)I.

Proof. Suppose the inequality in (4.13) holds. Then, for x X,

(4.14)
x-m(Z)-x-m(X)+ (m(X)-m(Z)} {1/2w(X)+lm(Z)-m(X)[ }.[- 1,1],

so that x m(Z)+ 1/2 w(Z)-[- 1, 1] Z, and thus Xc Z. On the other hand, suppose
that Xc Z, or

(4.15) m(X) + 1/2w( X)-[- 1,1] Cm(Z) + 1/2w(Z). [- 1, 1].
Since w(Z)>_w(X)>_O, this gives

(4.16) m( X)- m(Z) 1/2 (w(Z)- w(X) }. [- 1,1],
and the inequality in (4.13) follows from multiplication by [- 1, 1]. Q.E.D.

Proof of Theorem 4.2. Suppose that UC V, where U, VIP are such that
m(U),m(V)O. Set X--F(U), Z--F(V). It follows that m(X)--f(m(U)), m(Z)=
f(m(V)), 1/2w(X)-IF’(U)Iw(U)/2, 1/2w(Z)-If’(V)lw(V)/2. Since UCV, one has
m(U),m(V) V, and, from the proof of Theorem 4.1,

(4.17) f(m(V))-f(m(U))r’(V){m(V)-m(U)),
so that

(4.18) f(m(V))-f(m(U)) lF’(V)llm(V)-m(U)l [-1,1].
For xX, x-m(Z)--x-m(X)+f(m(U))-f(m(V)), and

(4.19) x-m(X) [F’(U)lw(U). [- , 1 1/21F’(V)Iw(U). [- , 1,
since the monotonicity of F’ implies that IF’(V)I>IF’(U)I for UC V. Using (4.18) and
(4.19), one gets

(4.20)
x- m(Z) IF’(V)I { 1/2w(U) + Im(V)- m(U)l ) [- 1,11 c 1/21F’(V)Iw(V). [- 1,11
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by the Caprani-Madsen Lemma 4.1, so that xZ, and thus UC VF(U)CF(V).
Q.E.D.

Monotonicity is often crucial in numerical computation, in which only a finite set
of points G and corresponding intervals IG are available. When an interval XIP is
approximated by an interval Z IG cIP such that XcZ (this process is called outward
rounding), one wants to be sure that F(X)CF(Z) in order for the results actually
computed to contain the ones that would be obtained by exact computation.

5. Elementary Taylor forms. It can be verified without difficulty that the elemen-
tary derivative defined in {}3 has the ordinary properties of a Ggtteaux derivative; for
example, (f+g) ’=f’+g’ and the chain rule holds: proofs will be omitted here.
Furthermore, successive differentiations give rise to multilinear operators from P into Q
in the usual way [4], [10], [12]. The following result is an interval version of Taylor’s
theorem of real analysis.

THEOREM 5.1. If f is differentiable n times on XD, D convex, and F() is an
interval inclusion off() on X, then for x,yXD,

(5.1) f(y)--f(x)-- nl l lc(k) ( X) k )( n.
k!

,x)(y- .F(n X).(X-x)
k=l

Proof. The proof will be carried out by mathematical induction. Theorem 4.1
shows that (5.1) is valid for n-- 1, and it will be assumed to hold for n m- 1. If ff is an
abstract function which is differentiable on [0, 1], then, given any e >0, it follows as in
the proof of Theorem 4.1 that there exists a finite sequence of points {0}.=o, 0 0o<0
<... <0,_ <0. 1, such that

(5.2) dp ( Oi ) ( Oi_ )
_

dpt ( Oi_ ) ( Oi Oi_ ) + t3( Oi Oi_ ) e --1,11.
For the particular abstract function

m--

(k)( k(5.3) k(O)=f(x+O(y--x))-f(x)- , --(.f x)O (y--x),
k=l

one has (0)= 0, and thus

(5.4)
m--I

f)( x)k(1)-rk(O)-(1)=f(Y)-f(x)- E -. x)(y-
k=l

and

m-l

rk’(O)=f’(x+O(y--x))(Y-x)--f’(x)(y--x)-- E
--2 (k-1)!

By the induction hypothesis,

(5.6) ’(0)--(m-- 1)!
Therefore, from (5.2),

(5.7) h(Oi ) q(O- )
rn1)

i= 1,2,...,,. Thus,

f()(x)Oc-l(y--x).
F(m)(x).(X-x)mom-l[o, 1].

F(m)(x)’(S-x)mOim_-l(Oi-Oi_l)[O, 1]

+e(Oi--Oi_l)e’[--1,1 ],
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However,

(5.9)

(m- 1)!F(m)(x)(x-x i i-l Oi-Oi-1) [0, l]+ee 1])m Ore_l(
i=1

folOO< oim_-l(oi--Oi_l)< _ldO_
i=1

m

since the sum is a lower Riemann sum for the integral. Since X is convex and x X
implies O(X-x), it follows that (X-x).a[O, 1]-a(X-x)C(X-x).fl[O, 1]-
/3(X- x) for 0< a </3. Using this fact and

(5.10) ee- [- 1,1]- [0,0],
e--*O

one has

F( F( )m,0(1) .. m)(x)’(X-x) -ql- [0, 0] --. m)(x)’(X--x

which is equivalent to (5.1) with n- rn by (5.4). This completes the proof of the theorem
by mathematical induction. Q.E.D.

Once again, little more than interval arithmetic is required in the proof.
DEFINITION 5.1. If f: DCP- Q is differentiable n times on Xf-)D, XIP, then for

xXND,
n--I

(k)(x) (X_x)kF(X)=f(x)+ E -k-(.f
k=l

+-.1 F(n)(x)’(X-x)n,

where F(") is an interval inclusion off(") on X, is called the (elementary) Taylorform of
f of order n.

It follows from Theorem 5.1 that F defined by (5.12) is an interval inclusion off on
X. For the particular choice x-m(X), one obtains the midpoint form of (5.12),
(5.13)

iF(n)( X)IW(x)n)F(X)=f(m(X))+ l [f(k)(m(X))[w(X)k+ 2nn! [--1 l]
k=, 2ik!

and, for X- X(y, p) a cube, the cube-centered form

(5.14) F(X(y,o))=f(y)+ --(. If(’)(y)le’+-. lF(n)(X(y,o))[en .[-1, II.
k=l

Evaluations of this latter form can often be carried out very economically, since
operations on e ordinarily do not require multiplications, and only nonnegative opera-
tors are involved. Monotonicity of the midpoint Taylor form (5.13) also follows from
monotonicity of F(n), in much the same way as for the midpoint mean value form
(4.10).

THEOREM 5.2. If F(n) is a monotone inclusion off (n), then F defined by the midpoint
Taylorform (5.13) is monotone on the set of intervals X such that m(X) D.
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Proof. As before, suppose UC V, and it is to be shown that F(U)CF(V), where
the results of the transformations of U, V by F are given by (5.13). For brevity of
notation, set u=m(U), v=m(V). It follows that

(5.15) m(F(U))=f(m(U))=f(u), m(F(V))=f(m(V))=f(v),
and

(5.16)
a

F(.)( w(U)w(F(U))_]f,(u)[1 w(U) +’"+---[ U)[ --w(U ) +-.. f’’ ( u )
n

with an analogous expression for 1/2w(F(V)). In order to prove that F(U)CF(V), it will
be shown that 1/2w(F(U))+[m(F(U))-m(F(V))[<_1/2w(F(V)), from which the desired
result follows by the Caprani-Madsen Lemma 4.1.

First, since F(’) is assumed to be monotone,

(5.17) IF(’)(U)I(1/2w(U))nIF(n)(v)I(1/2w(U)) n.
Furthermore, by Theorem 5.1,

If(>(u)[ [f(>(v)[ + E (j_),[f<>(v)l’lu-vl
j=k+l

(5.18) -+- iF(n>(V)llu_vl,-(n-k)!
n--I

J= (j_ g)! If(>(v)l. [u-vl- (n-k)! IF<">(V)I [U--Vln--k’

k-- 1,2,- .,n- 1, using the result of multiplication of (5.1) by [- 1, 1]. It follows from
(5.16), (5.17) and (5.18) that

(5.19)

w(F(U)) < E- (j--k=l j=k

n

iF(n>(v)llu_vl,- w(u)+ X k’(n-k)’k--1

Interchange of order of the double summation in (5.19) results in

? E
=, j=k k’(j. -k)’. [f()(v)l’lu-v[- w(U)

(5.20) ,,-I j

"--j=IE k=lE k,(j_k),lf(S)(v)[’lu-vls-k. -lw(U)
Theorem 5.1 also gives - i+lF<>(g)l.lu_vl.(5.21) If(u)--f(v)l E [f(>(v)l’lu-v n

j=l
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Addition of (5.19) and (5.21) results in the inequality

w(F(U )) + If( u ) -f( v )[

.-, f. v)l =02 ,(j_),. lu-v(- -w(U)
(5.22)

Hence, by the Caprani-Madsen Lemma 4.1,

1_ w( F(U)) + Im( F(U)) m(F(V))2

(5.23) -<j=IE ’.1 if(j)(v)[ -lw(v) / [F(")(v)I -w(V)

=I-w(F(V))
2

and thus F(U) F(V). Q.E.D.
Remark 5.1. Some of the combinatorial aspects of the proof of Theorem 5.2 can be

avoided by the use of the identity

(,,_O(u)(x_u),-,k(u)+ck’(u)(x-u)+ + (n-1)

(5.24) =,(v)+,’(v)((-u)+(u-v)} +...

(n- 1)! )(n--1)(1) ) ( (X--U) -- ( U--1) } n-1

in which q is an (abstract) polynomial of degree n- [12].

6. Application to iteration operators. The interval versions of the mean value and
Taylor’s theorem given above, like their counterparts in real and functional analysis,
have numerous applications. Theorem 5.1 shows, for example, that the interval re-

mainder term

(6.1) F(n)(x).(X--x)nR.( X) .
contains the truncation error f(Y)-fn-l(Y) resulting from the use of the Taylor poly-
nomial

(6.2) f_,(y)=f(x)+f’(x)(y-x)+ +(n- 1)!
f("-’)(x)(y--x)"-’

of degree n-1 in place off(y) for arbitrary y X. In particular, the results obtained by
Moore [6], [7] on the numerical solution of differential equations by interval methods
follow from this expansion.
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The application to be considered here is to the solution of the equation

(6.3) f(x)-0
for xDP, where f" D CP- Q is a differentiable operator. Given a nonsingular
linear operator Y" Q- P, equation (6.3) can be transformed into the fixedpoint problem
x- g(x) for the operator g’D CP- P defined by

(6.4) g(x ) x Yf(x ).
Since simple iteration is often used to solve fixed point problems, g will be called an
iteration operator for f. The choice Y=f’(x)-1 corresponds to Newton’s method for the
solution of (6.3), Y=f’(z)-1 for z vax to a method of Stirling type [11], and so on.
Treating Y as a constant operator, one has

(6.5) g’(x)-I- Yf’(x), g"(x)-- Yf"(x), ..., g(n)(x)- Yf(n)(x),
where I denotes the identity operator in P, and thus, if f is differentiable at least n
times, then

g(x) rf(z) +
(6.6)

)n--1(n--1)’. Yf(n-l)(z)(X--Z

for x, z X, where F(n) is an interval inclusion of f(n) on X.
Now, given an arbitrary sequence Y0, Y1,"" of nonsingular linear operators, a

sequence of intervals X0, X1,. ., and points zX, k-0, 1,2,. ., one can construct
the corresponding sequence G0, G l, of interval iteration operators forf defined by

Gk(Xk)--zk- Ykf(zk)+ {I- Ykf’(zk)} .(X-zk)
(6.7)

n! YkF(n)( xk ) ( Xk-- Zk )

k-0, 1,2,-... The following theorem is a direct consequence of (6.6).
TnEOREM 6.1. IfX--X* Xo is a solution of (6.3), then for

Xk+I-XkNG(Xk), k-0, 1,2,. .,(6.8)
one has

(6.9) x* X= (’ X.
k=0

Proof. It follows from (6.6) that x* Xx*G(X), since x*=g(x*), which in
turn implies x* X+ 1. This gives (6.9). Q.E.D.

The process (6.9) is called interval iteration [14]. Since

(6.10) Xo) Xl X2 )

this process gives improved lower and upper bounds for x* as long as X,+I :/= X,. The
contrapositive of the assertion in Theorem 6.1 is that if

(6.11) Xk+I-XkfqG(X)=

for some positive integer k, where denotes the empty set, then x* X0, and there is
consequently no fixed point of g or solution of (6.3) in the initial interval X0 [14].
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In the case n-- 1, one obtains the Krawczyk operators [5]

(6.12) Kk(Xk)--Zk-- Ykf(Zk)+ (I-- YkF’(Xk)} "(Xk--Zk)

from (6.7), with zk m(Xg). Suppose that F" is an interval inclusion of f" which is
consistent with F’ in the sense that

(6.13) L-F’(X)CF"(X)w(X), LF’(X).
Then, from (6.12), for YIF’(Xg),

(6.14) Kg(X)Czg-Ygf(zk)+1/2YF"(X)w(X)2.[-1,1],
since Xk--Zg--Xg--m(Xk)--1/2W(Xk)" [- 1, 1]. It follows that interval iteration with the
Krawczyk operator converges quadratically as w(X)--, 0 to a degenerate interval, thus
mimicking the behavior of its real counterparts.

For n 2, the Chebyshev-type iteration operator 12]

)2(6.15) T,(X,) z,- Ykf(zk)+ (I- Ykf’(zk)}.(Xg--Zk)--1/2YF"(Xk).(Xg--z

results, and so on. It follows that (6.7) can be used to construct interval iteration
operators with arbitrarily high orders of convergence in width as w(X,) 0.

7. Other derivations o| the mean value and Taylor’s theorem. In certain particular
cases, Taylor’s theorem as given above (which includes the mean value theorem for
n- 1), can be derived directly from classical results in real or functional analysis. For
example, with P Q R, one has

f(b)=f(a)+f’(a)(b-a)+ + (n--l) n--1

(n_l)! / (at(b-a)

+ -f(")( )(b- a )" a<l<b,

in which the remainder term is said to be in Lagrange form. For X--[a,b], one has
f’)(l)Fn)(X), b-aX-a, which gives (5.1) at once in this special case. Formula
(7.1) also holds componentwise in R", which leads to a similar generalization, since
fn)(l)F")(X), k--1,2,- .,u, even though (7.1) does not necessarily hold for some

XcR. This generalization to R" has been used by Moore [6], [7], and Caprani and
Madsen [2]. In the latter paper, a version of the mean value theorem was also derived
for integral operators, but the results are not easy to interpret without the use of
interval integration [3], [13].

A more straightforward method of generalization of Taylor’s theorem can be based
on the use of the Cauchy form of the remainder term,

(7.2) Rn(f;a’b)-flf(n)(a/O(b-a))-"o (1-0)n-l(n-1)! "(b-a)ndO’

which holds in Banach spaces [4], [12]. In R, the use of interval integration gives

--f01r(n)(a (n 1)! "(b a)"dO(7.3) R,(f;a,b) +O(b-a)) (1 --0)n--

fol (1--o)n-1CF")(X)’(X-a) (n-’l)i dO,
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from which (5.1) is obtained by evaluation of the real integral. By a simple extension of
the concept of the interval integral [3], [13] to abstract functions f which take on values
in a Banach space D, D C Q, Q a real space, a corresponding generalization of formula
(7.3) will be obtained.

In order to construct the interval integral of an abstract function q,=q(0) which
takes on values in an R-space Q for 0_<0_< 1, one simply partitions O=[0,1] into
subintervals Oi=[0i_,0i], i= 1,2,. -.,m, by means of points 0=80<0_<. <--Om= 1.
The set of all such partitions into rn subintervals will be denoted by A m. The abstract
intervalfunction P :119 --, IQ will be defined by

(7.4) (I)(O/)-[i)f(0), supq(0)].o,
DEFINITION 7.1. The interval integral of the abstract function q, over [0, 1] is

defined to be

(7.5) foq,(O)d8 f ., dp(Oi)w(O)IQ.
m-- A i--

This follows exactly the construction of [3]; again, the interval integral defined by
(7.5) is the intersection of a nested sequence of nonempty intervals, and hence is
nonempty.

Now, suppose that D C Q is a Banach space in which XND is a closed set for
XIQ. The Riemann (R) integral of abstract functions q, taking on values in D is
defined to be the limit of the Riemann sums

tn

(7.6) m,A-- 2 f(’ri)(Oi--Oi-1), ’riOi,
i--1

as m--, oo and IIAII-maxi)w(Oi)--,O [4], [12]. It follows that
m

(7.7) (R)fock(O)dO x (O)w(O) C(O),
i---1

since the intersection of D with the interval Darboux sums [3] appearing in (7.5) is
closed in the topology of D. Therefore, from (7.5),

(7.8 
ao ao

if q, is Riemann (R) integrable over [0, 1] in the sense defined by Graves [4]. Thus, in
the special case that f is a function taking on values in a Banach space D with
f(n)(a + 0(b- a)) Riemann integrable over [0, ], (7.3) follows immediately by interval
integration and gives (5.1) for interval inclusions F(n) of f(n). This derivation is also less
general than the one given in 5, which holds in R-spaces.
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ON FUNCTIONS REPRESENTABLE AS A SUPREMUM
OF A FAMILY OF SMOOTH FUNCTIONS*

Y. YOMDiN

Abstract. Functions representable as a supremum of a bounded in a C2-norm family of twice differentia-
ble functions are considered. It is shown that the second generalized .derivatives of such functions are

measures. In particular, a new proof of this fact for convex functions follows. An upper estimate of the

singular part of the second generalized derivatives is obtained in terms of some diameters of the family in the

space of C2-smooth functions. Applications to the distance function are given.

1. Introduction. We consider here the functionsf representable as

(1.1) f(x)= sup h(x), xDCR",
hQ

where Q is a bounded in a C2-norm family of twice differentiable functions on a
domain D CRn. It is shown in [7] that these functions (called in [7] subconvex) are
rather similar to convex ones. In particular, the function f is subconvex if and only if it
can be represented as

(1.2) f--g--g2,

where gl is convex, and g2 is convex and C2-smooth.
(Note that the high smoothness of functions h, without assumption of a boundness

of Q in a C2-norm, does not guarantee good properties of f= SUPheQh: e.g., any lower
semicontinuous function can be represented as a supremum of a family of C-smooth
functions.)

From (1.2) it follows that the differentiability properties of subconvex functions
are actually the same as those of convex ones. However, the representation (1.1)
contains the information, which becomes less explicit in a form (1.2). (1.1) gives also a
possibility to apply various analytical methods for the study of subconvex functions.

In this note we estimate the "measure of a nonsmoothness" of f in terms of some
"diameters" of the set Q in a space of C2-smooth functions.

The approach is based on the following two remarks: consider the finite set

(h l,’" ", h ) of twice differentiable functions, and let f= max(h ,..., h). Typically f is
a piecewise smooth function with "edges", on which the gradient XTf has a jump.
Define o(f) as the integral of the absolute value of this jump along all the edges, o(f)
can serve the "measure of a nonsmoothness" of f. Then:

1. It turns out that o(f) is bounded by some constant, depending only on the
common bound of the first and the second derivatives of h 1,"" ,h, and not depending
on the number k of the functions h involved and on their mutual position (while, say,
the common length of the edges off can be infinite).

2. The generalized second differential of f coincides with the usual one at smooth
points of f and its singular part is equal to the integral along the edges of 8-functions,
weighted by the jump of x7f. Hence o(f) is closely related to the singular part of the
generalized second differential of f. In turns out that o(f) is exactly the total variation
of the singular part of a generalized Laplacian Af.

Received by the editors April 28, 1981, and in revised form April 22, 1982.
Department of Mathematics, Ben Gurion University of the Negev, Beersheva 84120, Israel.

239



240 Y. YOMDIN

For a general subconvex function f, the total variation of a singular part of Af is
considered in this note as the measure of nonsmoothness of f (and is denoted by o(f)).
The main result (Theorem 2.3) is the upper estimate of o(f) by the size of Q in some
special seminorm in a space of C2-smooth functions.

Clearly, all the considerations in the case of subconcave function f (f=infhoh)
are exactly the same.

Some applications to the distance function (which is one of the most important
examples of subconcave functions) are given.

In all these results no assumptions on the structure of the family Q are used. If we
consider f=maxth(x,t), where h(x,t) is a family of smooth functions smoothly de-
pending on the finite-dimensional parameter t, the methods of singularity theory can be
applied in a study of nonsmooth points of f. Some results in this direction are discussed
in [}5.

Remark. It can be shown that o(f) reflects the structure of the set Sn_l(f) of
points where the supporting hyperplanes off at (x,f(x)) have one "degree of freedom"
(see [1 ]). The analytical invariants reflecting the structure of the sets Sk(f), 0 _< k<n-
(see [1]) can also be built and estimated for subconvex functions. These results will
appear separately.

2. Statement of the theorem. In what follows, rn denotes the Lebesgue measure on
R’, s denotes the (n-1)-Lebesgue measure on smooth hypersurfaces in R, Xl,...,x
are the standard coordinates in R, and (-,-) and II-II denote the usual scalar product
and the norm in R.

Let D be a closed bounded domain in R with a Cl-smooth boundary 8D. The
function h:DR is said to be twice continuously differentiable in D if it can be
extended to a twice continuously differentiable function / defined in some open
neighborhood of D. Denote by C2(D) the space of all such functions with the norm

IIhllc(o)-max If(x)l+max
xD xD i:

-x/(x) +max.xD i,j=

d:(h):maxlAh(x)l.

Here vh is the vector of a gradient (Oh/OXl,...,Oh/Ox,), Ah is the Laplacian
Ei%lO2h/Ox2, and for y OD n(y) denotes the unit outward normal vector to 0D at y.

Now we define IS(Q) as follows:

(2.1) iS(Q)- inf ( sup dl(h-g)s(OD)+ sup d2(h-g)m(D)).
gCZ(D) hQ hQ

Taking g 0 in (2.1) we obtain

(2.2) I(Q)_<K(Q)(s(D) + re(D)).
To formulate the theorem we also need some notions of generalized functions and

measure theory (see e.g. [4], [6]). Let L(D) be the linear topological space of all the

Now for h C2(D) define the seminorms dl, d2 by

d(h)- max [(vh(y),n(y))[,
yOD

Let Qc C2(D) be a subset bounded in the norm C=(D). Let

g(o)- sup Ilhllc:(D), g(o)- sup ( max IzXh(x)l).
hQ hQ xGD
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C-smooth functions with a compact support in /5. The generalized function (or
distribution) is a continuous linear functional on L(D).

Each Borel measure on D (not necessarily positive) defines a distribution [] by

[/z q0 =ftd/z, qL(D).

A necessary and sufficient condition for the distribution to be defined by the measure
is given by the Riesz theorem: a distribution is equal to [/z] for (uniquely defined)
Borel measure/z if and only if there exists a constant K, such that

(2.3) II(q0)l--<K- max Iq(x)l.
xD

The total variation is then equal to the infinum of K, satisfying (2.3).
For the Borel measure # let/z-/zr+/x be the Lebesgue decompositon of/z. Here

the regular part/r is given by the integral/(A)--fA gdin, A C D, and the singular part
/z is concentrated on the set of Lebesgue measure zero.

For a locally integrable function f on D, the generalized Laplacian Af is the
distribution defined by Af(q) fof" Aep, q L(D).

Now let QCC2(D) be a bounded subset, fa(X)--suPhah(x), xD. It is well
known that fQ is a continuous and Lipschitzian function on D.

THEOREM 2.1. The generalized Laplacian AfQ is defined by the measure tz( fa ). The
total variation Ilz( fo.)[ does not exceed KI(Q)- m(D)+ IS(Q).

Let #(fo) -/z(fo) +/z(fo) be the Lebesgue decomposition of/z(fa).
DEFINITION 2.2. The total variation I/z(fo)[ is called the measure of nonsmoothness

offo. and is denoted by o( fo)"
THEOREM 2.3.

o( f2)<-8(Q).
Remark. In a manner completely similar to the proof of Theorems 2.1 and 2.3, it

can be shown that any generalized second partial derivative of fQ is defined by a
measure, and the total variation of the singular part of this measure does not exceed
8(Q).

Note that the representability of the generalized second derivatives of a convex
function by a measure is well known (see [2]) and follows by (1.2) for subconvex
functions. We obtain, therefore, as a by-product, another proof of this result.

3. Proof of theorems. First we consider the case where f is a maximum of a finite
number of smooth functions. Let hi,...,h C2(D). We assume that these functions
are in "general position", i.e.,

1. For each i,j <_k the set {hi-hi-0} is a regular submanifold in D (i4:j).
2. All the intersections of these submanifolds are transversal, as are their intersec-

tions with the boundary 3D.
Note that if the given functions ht,...,h k are not in general position then, for any

e>0, we can find functions h’l,...,h’C2(D) in general position such that
Ilh’i-hllc2o)<_e. (See e.g. [5].)

Let Q {h 1’’" "’ h), f=fo. max(h l,’" ", h). For each 1,.-., k denote by D the
set (xD/f(x)-hi(x)}, and let Fij-DifqDj, Ft=ODfqD. Clearly, each Fij is a subre-
gion of the submanifold {h-hj-O}, and each D is a closed domain with OD=
(_J

j,i Fj U F. (Note that some of Di, ’ij, ’l could be empty or disconnected.) Fory 0D
denote by n(y) the (a.e. defined) unit outward normal vector to OO at y.
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Now let be a twice differentiable function on D. We have

k

(3.1) f}.Aqdm- fohiAqdm.
i--1

To each integral in the right-hand side of (3.1) we apply the Green formula:

(3.2) LDh Aqg dm f,DiA h qg dm fo,
(Th n ) qg ds d-

aDih ( 7qg n ) ds

Substituting the expressions (3.2) in (3.1) we obtain:

(3.3)
k k

f}.Aqdm- fD,Ahi.cpdm- fr, [(vhi’ni)+(vhj’nj)]qgds
i-- i,j j

k

+ E fr[ht(veP,nt)-eP(vht,n,)] ds.
1=1

(Note that the integrals containing X7tp are cancelled on each Fij’)
NOW, if (p EL(D) has a compact support in/, the integrals over F in (3.3) vanish.

Hence (3.3) gives a representation of a generalized Laplacian Af by the measure. We
see that the regular part of this measure is given by Ah on each Di, and the singular
part coincides with the Lebesgue n-1 measure on hypersurfaces Fij, weighted by
-[(7hi,n i) + (vhj, nj)].

The following lemma shows that this weight is equal to the absolute value of the
jump of x7f on Fo.. Hence the singular measure #s(f) is positive, and its total variation
o(f) coincides with o(f), defined in the introduction.

LEMMA 3.1.

[(vhi,ni)+(vhj,nj)] --I}vhi- XThjll
at each point of Fig.

Proof. Since ni-- nj at each point of Fij, we have (vhi, ni) -Jr- (7hj, nj)
(V(h hj), n ). Since Fq is defined by h hj 0, the vector V(h hj.) is collinear to
ng. Now, by definition of Dg, f=max(hl,...,hk) is equal to h on Dg and is equal to hj
on Dj. Hence h- hj>0 on D and h hj<0 on Dj, i.e., the direction of V(h;- hi)
is opposite to the direction of hi. Therefore

(3.4)

COROLLARY 3.2.

<.(s)- :z Si..  h ila,-- [(vhi’ni)+(vhj’nj)]ds"
i,j j i,j j

The following lemma proves the estimate of Theorem 2.3 in a special case f--
max(hi,.. ,h)"

LEMMa 3.3.

o(f)- Efr,.. vh,- vh;llds<--a((h,,’’.



FUNCTIONS REPRESENTABLE AS A SUPREMUM 24B

Proof. By (3.3), applied to --= 1,

o(f )---- fr,, [(Thi,ni)+(v’hj,nj)]dsi,j-- j

(3.5) k, fr,(Vht,nl) ds- , f Ahi’dm"
1:1 i:1 Di

Let g C(D). For the smooth function g we have an equality:
k k

(3.6) 0= (vg, n)s-foagm- fr,(vg, n,)s- f Agdm.
O l:1 i=l Di

(Note that Ft form a partition of D, and for yFt, nt(y)-n(y).) Subtracting (3.6)
from (3.5) we obtain:

k k

I=I i=I

Now, for each y D, x D,

k k

hence o(f)supd(h-g).s(D)+supd(h-g).m(D), and taking inf over a11
g C(D) we obtain the required inequality.

Now turn back to the general situation. Let Q c C(D) be a bounded subset,
fQ--suphQh.

PROPOSITION 3.4. Let L(D). Then

xD

where m(supp) is the Lebesgue measure of the support of
Proof. Take some e>0. We can chose a finite number of functions h,...,h Q

and then replace them by the functions h,.-.,h in a general position in such a way
that for f=max(h,...,h), on the one hand IfDfo.dmlIfDf.dml+, and on
the other hand K((h,...,h})K(Q)+e, 8({h,...,h})8(Q)+e. But for f we
have by (3.3) and Lemmas 3.1, 3.2 and 3.3"

xD upp

max I(x)I (m(supp )- g({h,,... ,h})+((,--. ,h} )).

Hence

<_maxlq(x)l[m(suppq).(K,(Q)+e)+8(Q)+e +e.
xD

Since e can be chosen arbitrarily small, the proposition follows. []

Proof of Theorem 2.1. Since for each tp L(D), m(supp q0) _< m(D), Proposition 3.4
shows that for the distribution AfQ the inequality (2.3) is satisfied with K-re(D).
KI(Q)+8(Q). Hence by the Riesz theorem AfQ--[l(fa)], and the total variation
II( fQ)l does not exceed m(D)- KI(Q) + 8(O). V]
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To prove Theorem 2.3 let us consider the set Z CD, on which the singular measure
/s(fQ) is concentrated, m(Y)=0. The total variation I  (fo)l is equal to the total
variation I(fo)l() of (fo) on y, wch in turn is equal to inflt(fa)l(V), V is open,
VD E. (see e.g. [6]). Now, by the Riesz theorem and Proposition 3.4, I(fo)l(V)<-m(V)
Kl(Q) + 8(Q) (supp (p c V in our case).

Since m(N)=0, the measure m(V), VD Y., can be arbitrarily small, and we obtain
the required inequality o(fQ) Is( fo)l -< i(Q), if]

Let us consider an example showing that the coefficients in the estimate of
Theorem 2.3 cannot be improved. Let D be a closed disk in R2 of radius r, centered at
the origin.

Take hl-X+X, h2-c, 0-<c<r2, f=max(h,h2). We have Vh-(2Xl,2X:),
Ah=4, Vha=0, Ahg.=0. In computation of (((h,h2}) we can take g--h/2, and
hence ((h,h})<_r 2rr+ 2. rr2- 4’r2.

The "edge" of the function f is the circle of the radius rid, and the jump of vf on
this edge is equal to 2(b-. Hence o(f)= 2rvrb-. 2vrk 4rc, and for c tending to r 2, o(f)
tends to the right’hand side of the inequality.

4. Applications to the distance function. It is convenient to consider the square of
the usual distance function.

Let F be a closed subset in Rn. For xR let PF(x)=minyFp(Y,X), where
p(y,x)-Il y-xll 2.

Let Q be a bounded closed set in R’, and let D be a bounded domain with a
C-smooth boundary. We identify the set Q with the subset (O(Y, "),Y Q} c C(D).

LEMMA 4.1. ((Q)<_2r(Q).s(1)D), where r(Q) is the radius of the circumscribed ball
of Q in R.

Proof. We have VxO(y,x)=2(x-y), AxO(y,x)-2n. Let Y0 be the center of a
circumscribed ball of Q in R". Take g=O(Yo, ") in a definition of ((Q). Since the
difference of Laplacians Ah- Ag is identically zero, and the differencell vh Vg II--
2ll(x-y)-(x-yo)ll=2ll yo-yll<_2r(Q), then i(O)<_2r(Q).s(D), vq

Now let FCR" be an arbitrary dosed subset D as above. Define QF(D) as the set
of all y F, which are the closest points in F to at least one point x D. By Lemma 4.1
and Theorem 2.3 we have:

PROPOSITION 4.2. For the restriction OF on D,

o( pr/D)_<2r(QF(D )) s(OD ).
In particular, for F bounded we obtain"
COROLLARY 4.3.

o(p/’D)--< 2r(F). s(OD).
To formulate the last result here, we give the definition of the central set C(F). A

closed ball B, CR’\F, which is not a proper subset of another ball B, [ CR’\F, is
called a maximal ball. The set consisting of the centers of all maximal balls is called the
central set C(F) of F. (see e.g. [8]).

Let x C(F). Denote by B, the closed ball of the radius 7, centered at x.
COROLLARY 4.4. O(PF/Bn)= O(]n), i.e., O(PF/B)/?q remains bounded as 7-*0.
Proof. It can be shown easily that for x
Remark. Similar considerations show that for the usual distance function bF

(pF)/2, the following inequality holds:

r(QF(D))
,(b/’D)<_

r(QF(D)) m(D)+ s(D)"
R2 R

R is the distance between the sets F and D.
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5. The case of a smooth dependence on the parameter. In this section smooth
means C differentiable, l_>6. Let f(x)-maxtrh(x,t), where xDCRn, T is a
compact smooth k-dimensional manifold and the function h(x,t) is assumed to be
smooth on (x,t). In this case the structure of the function f can be studied by the
methods of singularity theory. The typical restriction here is that in order to obtain
sufficiently detailed information, we should assume some kind of genericity of the
family considered.

In applications this assumption is justified by the following facts:
1) The set of generic families is dense in the space of all families h(x, t). In other

words, any smooth family can be deformed to the generic one by an arbitrarly small
perturbation.

2) Generic families are stable. In other words, if h(x, t) is a generic family, then
any family h(x, t) sufficiently close to h(x, t) is generic and is equivalent, in some sense,
to h(x,t).

Thus the structure of f(x)-maxtrh(x,t) for h(x,t) a generic family can be
considered as a typical and a stable one.

We state here the theorem describing all the possible normal forms of f (up to
addition of a smooth function and a smooth coordinate change) in a neigborhood of
the point x0 of a nonsmoothness, for a generic family h(x,t) and the number n of
variables x equal to 1,2,3. (It turns out that the dimension k of the space T of
parameters is not important in this description.) For each of these normal forms we
give also the first terms of the development of 0(’0)-o(f/B,) by powers of ’0.

Let

Vl(Xl)--max(xl, --Xl)--]Xl] v2(Xl,X2)--max(xl,x2, --x --x2)
t2+x2t)V3(XI X2’X3) max(-x;l X2 3, Xl X2 X3), K(XI X2)--max( t4+Xl

Below, g will denote the smooth function. The precise definition of the notion of
genericity used below can be found in [8].

THEOREM 5.1. Let f(x)--maxtTh(X,t), where xRn, n-1,2,3, and h(x,t) is a
generic family. Then in a neighborhood of each point xo of a nonsmoothness of f the
coordinate system x,...,x can be chosen such that f in a neighborhood of xo can be
written in one of the following forms"

n- 1. Co2".f(xl)--l,l(Xl)2f-g(Xl), o(’0)--c.

Cg:f(.xl,X2)--ll(Xl)- g(Xl, x2),
Cg’.f(xl,x2)- lI2(Xl,X2) 2f- g(Xl,X2),

C’f(xl,x2)-- (Xl, x2) + g(Xl,X2),

o()-c+O(2).
0( "0 ) C’0 -- 0( "02 ).
O( "0 ) C’0 /2 ..]_ O( "02 ).

C02 f(x x2 x ) l (X ) --Ji- g(X X2 X ) 0(’0)--c’02-+-0(’03).
C30".f(xI,X2,X3)--V2(Xl,X2)+g(Xl,X2,X3), O(1) C’02 + O(’03).
C:f(xI,X2,X3)=V3(XI,X2,X3)d’-g(XI,X2,X3), 0(’0)--C’02-{-0(’03).
C:f(xl,xz,X3)--(Xl,Xz)+g(Xl,X2,X3), 0(’0)-- e’0/2 + 0(’03).
C’("f(xl,Xz,Xa)--max(r(x,x2),xa)+ g(xl,Xz,Xa),

0(’0) Cl’0
2 -- C2’05/2 + 0(’03).

The normal forms given here can be found (in slightly different notations) in [3].
For the topological description of the set of nonsmoothness of f see [8], where the
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results are obtained in the case of the distance function. The description in the general
case f(x)-maxth(x,t) is exactly the same. The precise computations of o(r/) in the
forms given above, and in more complicated cases, will appear separately.
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HILBERT TRANSFORM OF A FUNCTION HAVING A
BOUNDED INTEGRAL AND A BOUNDED DERIVATIVE*

B. F. LOGAN

Abstract. It is shown that if f(x), - <x<, satisfies Ifaf(x)dxl<--M for any interval (a,b), and f is
differentiable almost everywhere with f’(x)[-< m, thenf, the Hilbert transform off, satisfies

and this incquality is bcst possiblc.

Supposef(.) is any function defined on the real line satisfying

fabf(x) dx <-M for any interval (a, b)

and f is differentiable almost everywhere with

If’(x)l-<m.
Thenf(x) is bounded and so is its Hilbert transform.

THEOREM. Under the above assumptions,

lim lim f(t)
A-,m e---,O .’--A "e

Proof. Define

F( ) fotf( x ) dx F(O)-O.

Then we have the following identity for arbitrary C and positive T:

Thus,

T

F(t)dtf+ Jlt[> T 2

m log
T

1)C-- (F(T) +F(- T)}.

Now if T and C are chosen such that

T 2
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equality will be obtained above for the function

mr,

f(t)-- m(T_itl)sgnt

o, Itl>T.

This function satisfies the conditions and the resulting inequality as stated in the
theorem is best possible.



SIAM J. MATH. ANAL.
Vol. 14, No. 2, March 1983

(C) 1983 Society for Industrial and Applied Mathematics
0036-1410/83/1402-0005 $01.25/0

EXTREMAL PROBLEMS FOR POSITIVE-DEFINITE
BANDLIMITED FUNCTIONS. I.

EVENTUALLY POSITIVE FUNCTIONS WITH ZERO INTEGRAL*

B. F. LOGAN

Abstract. A function f(t) is bandlimited to [-X,X] if it is the restriction to the real line of an entire
function of exponential type --<X. This class of functions includes all functions whose Fourier transforms
vanish outside [-h,X ]. A real-valued function is positive definite if its Fourier transform is nonnegative on
the real line. Such a function is necessarily even. In this paper we consider even real-valued functions f(t)
with foof(t) dt=O which are eventually nonnegative, i.e.,

(i) f(t) >--0 for Itl-> T,
and whose Fourier transforms are nonnegative in a neighborhood of the origin (in particular, positive-definite
f(t)), and vanish outside [- 1, 1]. We show that (i) cannot hold for T<3cr unless f(t) vanishes identically. On
the other hand, (i) holds for T- 3r and the positive-definite function

(ii) f(t)= (cs t/2)2
(1-,2/r2)(l-t2/9r2)

This result is established by applying the Poisson sum formula to (a2-t2)f(t), 0<a--<r, after proving for
more general eventually-positivef(t) that for any positive e

(iii) (l-cosxt)f(t)dt<--O, 0--<x<e,

implies

(i,O -If()l e<.
1. Introduction. This paper is the first of a series of papers on various extremal

problems concerning the behavior of positive-definite bandlimited functions (see [1],
[2], this issue, pp. 253-257, 258-268 ).

A. M. Odlyzko posed the following problem, which arose in connection with the
question whether Dedekind zeta functions ’e(S) of algebraic number fields k of high
degree have complex zeros close to (but not on) the real axis. Suppose f(t)0 is an
even real-valued function whose Fourier cosine transform F(x) satisfies

f2 {0, -lxl,
(1) F(x) f(t) cos xt dt

O, Ixl>
(2) F(0)--0,
and in addition

(3) f(t)>_O, ItlT.
What is the smallest T (and f) for which (3) can hold subject to (1) and (2)?

We must have f(0)>0, so f(t) must have at least two sign changes in (0, T] in
order to satisfy (2); viz.,

ff(t)_ dt-O.

We ask how soon this sign changing can be accomplished subject to the condition (1).
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The condition (3) implies that F(x) cannot vanish over an interval (-e, e), for then
f(t) would be a high-pass function which must change sign, roughly speaking, as often
as cos et. (See [1, Thm. 5.4.3, p. 32].) Since the integral of f(t) is (conditionally)
convergent and f(t) is eventually nonnegative, we conclude that f(t) is absolutely
integrable. Hence, F(x) is continuous and vanishes outside (- 1, 1). Under these condi-
tions, the Poisson sum formula

(2rk)ei2rkO/(4) " f(k+O)- F
--0

is valid, giving the quadrature formula

() , f(k+O)=ff(t)dt,_ 0<_<2r.

In particular, under conditions (1), (2) and (3),

(6) X f(2kr)- 0,

and since f(0)>0, we conclude that (3) cannot hold for T as small as 2rr. The example

(7) f(t)-- (cos t/2)2

(1 t2/r2)(1 2/9rr 2 )’
*r2

Isin rrxlF(x)-- -- <x< 1,

O, Ixl_>l,

shows that (1), (2), (3) can hold for T--3r. This, in fact, is the extremal function, even
with condition (1) relaxed to requiring the Fourier transform to be nonnegative only in
a neighborhood of the origin.

THEOREM. Let f(t) be an even real-valued function whose Fourier transform F(x)
satisfies

(i) F(x ) f y( ) cos xt clt

(ii) F(0)-0,
(iii) F(x)>_O,

for some positive e. Then

(iv) f(t) >_0 for [tl-> T

cannot hoMfor T< 3r, unless

(v) f(t)--=O,

and can hold for T= 3r with f(t) given in (7).
In other words, if f(t)-O and (iv) holds for T<3r, with F(x) vanishing for x-0

and Ix[ > 1, then F(x) is negative in a neighborhood of the origin.
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2. Proof of the theorem. In order to establish the theorem we prove a simple but
interesting lemma.

LEMMn. Let f( t) be an even real-valuedfunction satisfying

(i) f(t)-->0, Itl>T
for some finite positive T, and whose Fourier transform

F(x)= f(t)cosxtdt
--0

satisfies
(ii)

for some positive e. Then

F(O)-F(x)<_O, I1<

(iii) talf(t)l dt< o,

and consequently F(x) has a continuous second derivative, with

(iv) F"(O)- ft2f(t)dt>--O._
For example, if F(x) behaves like Ixl near the origin, then f(t) cannot be positive

for all sufficiently large Itl unless ,_>2. It is rather remarkable that (i) and (ii) place
such a strong smoothness condition on F(x).

Proof of the lemma. We have

F(0)- F(x) _f’ -cos xt f -cosxt

x 2
7; x 2 f(t)dt+ c f(t)dt<_O

I>T
for O<_x<e. Now as we let x0, (1--cosxt)/x2 t/2 on compact sets. Thus the first
integral tends to a finite limit as x-0. The second integral is nonnegative for all
0_<x <e and hence is bounded above for all 0_<x< e, since the sum of the two integrals
is nonpositive, i.e.,

Therefore,

Then

tf(t)dt=flt tlf(t)ldt<"
I>T

f tlf( )[ dt< o.
0

x-O -o
f(t)dt-- _o-f(t)dt<_O,

and the lemma is proved. []

Proof of the theorem. According to the lemma and the hypotheses of the theorem,
the function t2f(t) belongs to L and its Fourier transform vanishes outside (-1, 1).
Also we have from the lemma

(8) t2f(t)dt<-O.
--O

Now we define the function

(9) ga(t) (a9- )f(t), a>0,
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which belongs to L and whose Fourier transform vanishes outside (-1, 1). We have

Now we apply the quadrature formula (5) to g with -= 2a, 0= a, and aNr, to obtain

(11) 2a 2 ga{(2kd-1)a}-f ga(t)dt>__O (0<a_<rr).
--OO

Then using (9) and the fact thatf is even we have

(12) k(k+ 1)/{(2k+ 1)a} _<0 (0<a_<r).

Now if we suppose

(13) f(t)>--O,
for some positive e, we conclude from (12) and (13) that

(14) /{(2k+ 1)a} =0 for k= 1,2,3,..-, (r-e)_<a_<r;
i.e, that the entire functionf vanishes over intervals. Thus the assumption (13) implies

(15) f(t)=--O.
This, with the example (7), completes the proof of the theorem.
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EXTREMAL PROBLEMS FOR POSITIVE-DEFINITE
BANDLIMITED FUNCTIONS. II.

EVENTUALLY NEGATIVE FUNCTIONS*

B. F. LOGANt

Abstract. A function is bandlimited to [-X,h] if it is the restriction to the real line of an entire function
of exponential type _<X. This class of functions includes all functions whose Fourier transforms vanish
outside [-, X ]. A real-valued function is positive definite if its Fourier transform is nonnegative on the real
line. Such a function is necessarily even. In this paper we consider even real-valued functionsf(t) bandlimited
to [- 1, 1]. These are functions of the form

f(t) :f01cos xt dF( x

where dF(x) is a bounded Stieltjes measure. We suppose that f(0)= f dF(x)- 1. We show that if dF(x)>--O
for 0 --< x --< for some e> 0, then f(t) can satisfy

f(t)<_O for [tl>_T
if and only if T_>r; and for T---r if and only iff(t) is the positive-definite function

t/2)(cos fl (sin rx cos xt dx.f -1--t l7 - "0

1. Introduction. This paper is the second of a series of papers on various extremal
problems concerning the behavior of positive-definite bandlimited functions (see [1],
[2], this issue, pp. 249-252, 258-268).

Suppose f(t) is a real-valued positive-definite function bandlimited to [- 1, ]; i.e.,
a function of the form

(1)
f(t) So cosxtdF(x),

f(0) =fidF(x) 1.
a0

dF(x)>_O,

In [1] we showed that if a function f(t) of the form (1) satisfies

ff(t)dt-O,
with the integral conditional convergent, then it would satisfy

f(t) >_0 for tl_>T
if and only if T_> 3r.

Here we ask the related question: What is the smallest T for which a function of
the form (1) can satisfy

(2) f(t)<_O for Itl_>T?

To answer the question we need only require that F(x) in (1) be nondecreasing in
a neighborhood of the origin.
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THEOREM. Let f(t) be a function of the form

f(t) cosxtdF(x),

where

Then f(t) can satisfy

f(O)--1,

dF(x)>_O forO<_x<_eandO<e<_l.

f(t) <-- 0 for tl>_ T
if and only if T>_r; andfor T-- r if and only ill(t) is the positive definite function

(cost/2)2
rr fol(sinrrx)cosxtdx.

Another interpretation of this result is: If a function of the form (1) has a first zero

t in the open interval (0, r), then it must have a second sign change; otherwise we
would have

f(t)<0 for Itl>t,,
in violation of the theorem. Note that f(t) must be decreasing in (0, r) (if f(t) 1,
which the assumptionf(t)=0 rules out); i.e.,

(3) f’(t) fo xsinxtdF(x)<O for 0<t<r.

Hence t in (0,r) must be a simple zero; i.e., f(t) changes sign at t. Note further that
we must have t _>, since

(4) f0 cos xt dF(x) >-- cos t, _< t-< r,

i.e., cosxt takes its minimum value over [0, 1] at x-1 in case 0_<t_<r. It would be
interesting to determine how remote t, the next point of sign change, can be, given t
in (, r). We leave this investigation for a future paper, giving the example

(5) fn(t)--(sin 4n+2) sin(r/(4n+2)--t/(4n+ 1))sin(r/(4n+ 1)+t/(4n+ 1))

where t =r-r/(4n + 2), t=(4n + 1)e/2, (n= 1,2,.-- ). Note that

cos
(6) lim f( )

n+m 1--t2/ 2

2. Prom of the theorem. We now turn to the proof of the theorem. We first
observe that F(x) cannot be constant over an interval including the origin, for then f(t)
would be a high-pass function which must have an infinite number of sign changes on a
half-line [3].

LEMMA. Suppose f(t) is a real-valuedfunction of the form

f( ) cos xtdF(x ), IdF(x )l< o

where F satisfies, for some positive e,

F(x)-F(y)>--O, O<_y<x<_e.
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Suppose also that fsatisfies, for some positive T,

f(t)<_O, ItI>_T.
Then f is absolutely integrable; hence

f(t)= cosxtq(x)dx,

where q(x) is continuous and absolutely integrable, and

,I,(x)>_o, O<_x<_.

Hence

(7)

ff(t)dt>_O._
Proof of the lemma. We have

Then if h is a function of L we may invert the order of integration in

f( )h ( ) at h ( ) dt cos xt dF(x )

to obtain

where l(x)- f_ h(t)cosxt dt. In particular,

f02a( x )(9) f( ) g( at )dt dr(x ) a>0,

where g(t)--{sint/t}-. Since F(x) is nondecreasing in [0,e] we have

(10) Ff(t)g(at)dt+f f(t)g(at)dt>-O for 0<a<e.
T

Butf(t)<O for t> T; so

(11) fitI>rf(t)g(at)dt----flt,>rIf(t)lg(at)dt’
and hence from (10)

(12) fit If(t)lg(at)dt<--f;r/(t)g(at)dt<--frrlf(t)ldt<--2MT
We have

>4 rr(13) g(at)_-- for It[_<-a
Hence

(14)

(0<a<e).

(O<a<e), (a<rr/2T).
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Letting a 0 we obtain

oo

(15)

The cosine transform off(t) then is a continuous function. Thus

(16) f(t)-- cosxtrk(x)dx,

where (x) is continuous. Evidently

(17) q(x) -dF(x)
dx

and

(18) I(x)l dx- IdF(x)l-M<

Also, since F(x) is nondecreasing in [0, e], we have

q,(x)_>0 for O<_x<_e.(19)
Thus

(20) ff(t)dt>_O
and the lemma is proved.

Under the hypotheses of the theorem, we have from the lemma

(21)

wherefbelongs to L and

f(t) fo q(x)cosxtdx,

(22) f(t)dt>_O.

Applying the Poisson sum formula to f(t), we have

(23) 2’r ’ f{(2k+ 1)’)= f(t)dt>_O (O<,r_<r).

Now supposef satisfies

(24) f(t)<_O for ltl-->T, where T<r.

We then conclude from (23) and (24) that

(25) f((2k+ 1)r)=0 for T<_r<_rr and k=O,-+ 1,-+2,...

which, since f(z) is an entire function, implies

(26) f(t)=O,

which contradicts the assumptionf(0)= 1. Thus (24) is false.
However, we can have (24) holding with T--r as shown by the example

(cst/2)2 f0’/r

(27) f(t)--
l_t2/r2

f(t) =- sinrxcosxtdx.
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It remains to prove uniqueness. If fl is any function satisfying the hypotheses of
the Theorem and

(28) fl(t)--<0, Itl_>r,
we must havef in L (by the Lemma), and hence from (23)

(29) fl( --+(2k+ 1)r)--0, k--0, 1,2,. .,
and

(30)

(31)

f(( --+(2k + 1)’) O, k-- 1,2,3,.--.

Alsof(z) is an entire function of exponential type satisfying (cf. [4])

f_lf(x+iy)ldx-o(el ), lim fl(x+iy)-O.
O0 X +___ O0

Hence

(32) lim
y--,+_o f(x + iy)(x + iy)2=0’

wheref is given by (27). It follows from (31) and (32) that

f(x)dz(33)

where C is the contour formed by the lines

x= +--2nr, y= +--2nr.

Assuming in (33) that is not a zero of f, and t:/:0, we have, by the residue theorem,
recalling (29) and (30),

f (o)(34) tf(o’  + tf( )
-0.

f(t)=f(t),
Then sincef(0)=f(0)= we have

(35)
which then holds for all t, sincef vanishes at the zeros of f. This completes the proof of
the theorem.
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EXTREMAL PROBLEMS FOR POSITIVE-DEFINITE
BANDLIMITED FUNCTIONS. III.

THE MAXIMUM NUMBER OF ZEROS IN AN INTERVAL [0, T]*

B. F. LOGAN

Abstract. A function is bandlimited to [-,,,] if it is the restriction to the real line of an entire function
of exponential type _<,. This class of functions includes all functions whose Fourier transforms vanish
outside [-,,, ]. A real-valued function is positive definite if its Fourier transform is nonnegative on the real
line. Such a function is necessarily even. In this paper we consider even real-valued positive definite functions
bandlimited to [- 1, ]. These are functions of the form

f(t)-folcosxtdF(x ), dF(x)>---O,

with dF(x) a bounded Stieltjes measure. We suppose that f(0)= 1. Let N(T) denote the number of zeros,
counted according to multiplicity, in the closed interval [0, T] of such a function f(t). In this paper we show
that

where xll denotes the largest integer contained in x, with equality attaining for T= if, and only if,

(f(t) cos--

and equality may attain in countless ways for nr/2< T<(n+ 1)r/2.

1. Introduction. A bounded bandlimited function f(t), i.e., the restriction to the
real line of an entire function of exponential type h, may have an arbitrarily large
number of zeros in a given interval: e.g.,

sin
f(t)--P2n+l(t )

II 7,=,(1-t2/k
where P2n+ is a polynomial of degree (2n+ 1), say with (2n+ 1) zeros in the given
interval. However, if f(t) has too many zeros (much more than cos,t) in the interval,
then it can be shown that f(t) must be relatively small over the interval. If f is even,
type ,,f(0)-- 1, and satisfies

(1) If(t)l<_f(O), -oo<t<oo,

then the number of zeros in [0, T] has some finite upper bound, depending on XT. It
would be interesting to determine this upper bound, but here we restrict our attention
to positive-definite bandlimited functions (type 1), i.e., functions of the form

f(t)=f eiXtdF(x), dF(x)>O.(2)
--1

We have

(3) f(-t)-f--.
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Hence f can have no more zeros in [0, T] than does its real part; so for the problem at
hand we may restrict our attention to functions of the form (see [1], [2], this issue, pp.
249-252, 253-257).

(4) f(t)=folcosxtdF(x), dF(x)>_O,

where for convenience we assume

(4a) f(O) fodF(x ) 1.

We show the following result"
THEOREM. Let f(t) be any function of the form (4), and denote by N(T) the number of

zeros, counted according to multiplicity, off(t) in the closed interval [0, T]. Then

where [x]l denotes the largest integer contained in x. Equality is attained for T=-,
n- 1,2, 3,..., if, and only if,

f(t)-- cos--
n

and equality may attain in countless ways in case

---< r<(n + 1)--.
Note that for any fixed fwe must have

(5) li- N(T)
T --r’To

i.e., f cannot have, on the average, more zeros than cos t, as is well known. Thus the
upper bound for N(T) cannot be achieved for all T by a fixed function f. We can think
of the extremal functions for [0, T] as gathering the "average allowable" number of
zeros in [0, 2T] and placing them all at the center of the interval.

One approach to the problem is to assume

(6) f(tk)-O, k-1,2,...,n,

(6a) 0</1 <t2 <t <’’" <t T.

If n is sufficiently large, for fixed T one can find (ak} such that
n

(7) acosxtk>O for 0_<x_< 1,

which contradicts the assumption (6) and gives

N(r)_<n- 1.

The difficulty here is in constructing sums satisfying (7) for arbitrary k in [0, T] with
the minimal (unknown) number n. We note from the example

(8) f(t)-- 1"I coshkt, Xk_<l,
k--I
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that f(t,)- 0, k- 1,2,---, n, is possible if we take

Xk=2tk

provided
n

r 1_1.(9) E ?tk-- tk

Thus (7) cannot hold unless

requiring

2t(11) n>,

the worst case being t-o T. The theorem suggests that if (6a) is satisfied, then there
should exist a sum satisfying (7), provided

2T
(12)

This conclusion is probably correct, but here we use another approach to prove the
theorem.

The crux of the proof here is to show that if f(t) of the form (4) has n zeros in
[0, T] then there exists a function f,(t) of the same form which has an n th order zero at
T. Then if

2. Moving the zeros of certain positive-definite functions. Suppose f is a function
of the form (4) with zeros t

O<t <-tz <_t3 <_ <_tn- T.

Then it would be a simple matter to construct f, having an n th order zero at T if
removing the first zero off resulted in a positive-definite function, i.e., if

gt,(t)_ f(t)
1-- t2/t2

were always positive definite. Then we could set

f2(t)-- 1--- gt,(t)---f(t)+ 1---
which would also be positive definite. Then we could iterate the process, moving -+-t2,
the first zeros of f2, to --+ T, etc., to obtain fn with an nth order zero at --+ T. Unfor-
tunately this is not always possible. We conjecture that it is if all the zeros off are real.

Supposef is positive definite and even. We consider

(13) ga(t) -f(t)-f(a)
a2--t 2

and ask: under what conditions is ga positive definite? We have

(14) f( ) cos tx dF(x ) dF(x ) >_ O
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and

(15)

(16)

Thus

ga( ) fo COS tX COS aX

----.i- dF(x).

In order to evaluate the Fourier transform of ga, consider the integral

,(t)--,(t;X,a)--- (sina(X-- w)) coswtdw

cos X cos aX
a_t

(17) fo cost_.--cosa coswtdt -a sin a() w) 0<w<k

O, w>.

We assume for the moment that a> 0. Then

(18) ga( ) COSWtdt- Ga( w )

where

(18a) Ga(W)--da sina(x-w)dF(x), w>_O.

So if a>0 we have

(19) IGa(w)l- a f dF(x)
"0

and

(20) lim Ga(w)- (x-w)dF(x),
a0

which is valid in case

(20a) x dF(x ) <

Now supposef is any positive-definite function of the form

(21 ) f( ) f0Xcos xt dF(x ), dF(x ) >_ O,

where fox dF(x)< o (0<X< ). Then (20a) holds and (20) gives

(22) g(t)--f(O)--f(t)t 2 =2 foxG(x)csxtdx where Go(x) >0._

Now we digress for a moment to give an example of a bandlimited positive-defi-
nite functionfwhere tl is the first positive zero off and

f(t)
is not positive definite.gt,(t)--t?__t2
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We take, using the result (22),

(23) f(t)=A 1-sinXt/Xt +cost A >0
2

where say, -1/2, and A is so large that the first positive zero off(t) satisfies

(24) tl>2rr.
Now f(t) has a spectral gap (1/2, 1), and according to (18a) the cosine transform of gt,(t)
is

 i   (x- lee(xl

" sint(1-w) for1/2_<w_<l,
2t

which according to (24) will be negative somewhere in (1/2, 1). Note that being large
does not in itself prohibit gti from being positive definite for other f(t); e.g.,

sin/t-- aa

f(t)=

Note also from (18a) that if

f(t)=fo’COsxtdF(x ), dF(x)>--O,

andf(tl)- 0 0<t <r, then gt(t)=f(t)/(tE-ta) is also positive definite.
We return now to the question raised in (13). We have the following result:
LEMMA 1. Suppose f( t) is a function of the form

i)

f(t)= (x)cosxtdx

where q(x) is nonnegative and nonincreasing in (0, ) and
ii)

fo,(x ) dx<

Define for a>0
iii)

The/’/

iv)

ga(t)-- f(t)-f(a)aa--t a

ga(t) -2 Ga(X)COsxtdx

where Ga(x) >-- 0 and f Ga(x) dx<. It follows then, iff(a ) O, that

ba-t2

aa_taf(t)

is positive definite for b >- a.
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This lemma, of course, does not give the complete answer to the question raised.
However, the result is sharp in the sense that, if (x) is not required to be decreasing,
we can construct, as in the previous example, a function f for which the conclusion is
false.

We note, since ga(t) is continuous, that f(t) given by (i) must have a derivative for
>0. We have for ga given by (iii)

(26) ga(a) -f’(a) a>0,
-2a

and since ga(t) is a nonperiodic positive definite function, (assuming ga i O)

(27) Iga( a )l< ga(O) f(O) f( a )
2a

Thus forf of the form (i) (f0) we have

(28) if,(a)l< 2 f(O)--f(a), a>0.
a

Proof of Lemma 1. We observe that a nonincreasing nonnegative (x) (0_<x<)
is a convex combination of the extreme functions

(29) Kx(x)_ -, O_<x

O, x>X,

(30)

and hence

th(x) Kx(x)dlx(X),

,(x ) dx- dl(X ),

f0 f0(31 ) f( ) 4(x) cos xt dx
sin
)t d/,(,).

Thus it is sufficient to establish the lemma for

(32) f(t) =fx(t)
sinht

In this case we have

(33) ga(t;X)---

sinXt sinXa
,t a

a2--t 2

and according to (18), the cosine transform of ga is

(34) rrfGa(w; X) ---a sina(x-w)Kx(x)dx
W

2a22
(1--cosa(w--,)),

0,

0_<w_<X,

w>}.
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Thus Ga(w; ) is nonnegative and

2
Ga(w)coswtdt(35) f(t)-f(a) fx(t)d(X)---ga2--t 2

where Ga(w)-f Ga(w;))dlx())>_O and

ao. . (a>O)
qr a 2

Now if f(a) 0, we have

b2-t2 b2-a2

(37)
a2-if( t)=f( t) + a2 t2f( t) --f( t) + ( bZ- aZ)g( t)"

So if b>_a, the function on the left in (37) is the sum of two positive-definite functions
and is therefore itself positive definite. Thus if f(t) is the cosine transform of a
nonnegative nonincreasing function, any pair of zeros (-+a) of f may be moved out-
ward to (-+-b), the altered function being positive definite. This completes the proof of
Lemma 1.

3. Construction o|. We wish to prove the following:
L,MMA 2. Supposef is a function of theform

f(t) fo cosxtdF(x), dF(x)>--O,

fodF(x ) > O,

haing n zeros, counted according to multiplicity, in the closed interval [0, T]. Then there
exists a function f,(t) of the same form haing an nth order zero at T.

Proof. We may assume that the n th zero satisfies

(38) t,--T.
It simplifies the analysis to assume all the zeros are simple, and then let zeros coalesce
to handle the general case. However, the construction of f, depends on the order of the
zero at T. So we assume thatfhas a vth order zero at T (1 <_v<n) and indicate this by
writing
(39) f(t)=f(t).
To simplify the analysis we assume the remaining zeros are simple, i.e.,

(40) 0<t <t2<’’" <tn_<tn_u+l--tn_u+2--’’" =t,- T.

Then f’(t) will have a zero of order (v-1) at T and at least one zero t between the
separated zeros off, i.e.,

(41) <t’ <t2<t.<t3< <t’n_<tn_+
with k T for n-,+ <_k<_n- 1.

Now we wish to make a linear combination of f(t) and

(42) g(t)--
(t --tt)2 2

which will have a zero of order (u+ 1) at T. First we observe that

(43) #(t) =f0 s!nxt (xdF(x) }xt
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which is a convex combination using the measure x2dF(x) of functions sinxt/xt
having nonnegative nonincreasing cosine transforms, as in (31). Hence by Lemma l,
g(t) is positive definite. Also gv is a cosine integral of a function vanishing outside
[0, ], according to (18a). Now we set

(44) fv+ l( ) f(x ) +Ag( )
and determineA so that fv+ has a zero of order v + at T. We have

(45) f,,(T+ S)=a,,S"+ a,,+ ,S"+’ +...,

(46)

(47)

Thus

(48) f+I(T+S)=a,S"+A, (2T)(-,a)S
,)2T2 (t

as S- 0. So choosing

(49) 2 ,T
>0

.-JI-O(S v+l )

gives f+l a zero of order (,+ 1) at T andf+ is a positive-definite function of the same
form as f. We have

T2 2

(50) f+ 1( tk )---Avg.( tk )= 2t,-(t t

and

(51) (--1)’#(tk)>0 fork--l,2,.--,n--,.

Hence, f+ has a zero between each simple zero of f, accounting for n-,-1 zeros,
and then a zero of order ,+ at T; so f+ is a function of the same form as f with (at
least) n zeros in [0, T] and a zero of order (v+ 1) at T. Thus the process can be iterated
until f, is obtained, having an nth order zero at T. This completes the construction of f,
and the proof of Lemma 2.

4. The remoteness of an nth order zero. Now we prove the following:
LEMMA 3. Suppose f( t) is a function of the form

f(t) fo cosxtdF(x), dF(x)>_O,

with fo dF(x)-- 1, having an nth order zero at T(> 0). Then

nTl"
T>_

2

with equality holding if, and only if,

(f(t)-- cos--
n
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(3)

Proof. Suppose first that n--2m is even. We then have

fl x2,cosxTdF(x)_O k-O, 1,. .,m- 1,
--1

2k-Ix sinxrdF(x)-O, k- 1,2,.-. ,m.
--1

Now define

k--1

We have

(56)

4x2 )rr2(2k_ 1):z

(S,,(x)-(xsinx) 1-.r1/2.k

Q(x)>O for O_<x<(2v+ 1)-,
(57) S(x)_>0 for O<_x<_(v+ 1)rr.
and C, and S have no common zeros.Then (52) and (53) imply

(58) olCm_ (xZ ) dF(x ) O,

(59) xr ) x) -O.

Now suppose T<_(2m- 1). Then both Cm_I(xT) and Sm_I(XT) are nonnegative
for 0_<x_< 1, and

(60) Sm_I(XT)+Cm_(xT)>O for0_<x_<l and T<_(2m-1).
So T<_(2m- 1) contradicts (58) and (59).

Next, suppose (2m- 1) < T<mrr. Now Sm_I(XT) is a nonnegative over [O,mr/T]
and positive in the open interval ((m- 1)r/T,mr/T); whereas Cm_I(XT ) is nonnega-
tire over [0,(2m-1)r/2r] and negative in the open interval ((2m-1)rr/2T, (2m+
1)r/2T). It is clear, then, that for any T with (2m-1)r/2<r<mr there is a suffi-
ciently large A (depending on T) such that

(61) ASm_I(XT)+Cm_I(XT)>O for 0_<x_< 1,

which contradicts (58) and (59). This, with the previous contradiction, shows that f(t)
having a zero of order 2m at T implies

Now suppose T= mr. We have

(62)

and

T>_mr.

folSm- l( mrx ) dF(x ) -O

S,,_(mrrx)>_O, 0_<x_<l,

with equality for x- , k-0, 1,..., m. Thus we must have

(63) dE m

( k)-d--x a,8 t--- a,_>0,
o rn
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where ’a,

(64)

1. Then according to (52) and (63)
m

( k ) (coskr)_0,X akP2m-2 m
0

where P2m_2(x) is an even polynomial of degree 2m-2 in x. Then aj can be solved for,
say, in terms of a0 by choosing P2m_2(X) to vanish at m--1 of the m+ points,
(k 4:j, 0). Then with ’ak- 1, the solution is unique. A solution, and hence the unique
solution, is

(65)
ak-- 22m-1 m-k

k-- 1,2,. .,m.

i.e., f can have a zero of order 2m at T=mr if, and only if,
2m

(66) f(t) (cos --m )
The proof of the |emma for odd order zeros is similar, with the roles of S and C

interchanged. E]

5. Proof of the theorem. Let N(T) be the number of zeros, counted according to
multiplicity, in [0, T] of a function f( ) f( t; T) of the form

f( ) folcos xt dF(x ), dF(x ) > O,
(67)

f(0) =/ldF(--x ) 1.
.’o

We may suppose the Nth zero N occurs at T (replace f(t) by f(t.tv/T)). Then,
according to Lemma 2, there exists a function fv of the form (67) having an Nth order
zero at T. By Lemma 3 we must have

(68) T>_N-

(69) N(T)<_

when Ix] is the greatest integer contained in x. Again, from Lemma 3, equality may
attain in (69) for T=n, N(T)= n, if and only if,

(70) f t;-- cos
For nr/2< T<(n+ 1)r/2, equality in (69) may attain, for example, with

(tt) (nr r)(71) f(t; T)- cos-- g(t), --<T<(n+ 1)-n

where

<a<l
2T--

and g(t) is any positive-definite bandlimited function of type
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Another example is

fI <X-<-1(72) f(t; T)-- COSXkt 2T-- n’
k=l

where nr/2<T<(n+ 1)r/2.
This completes the proof of the theorem, if]
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AN INTEGRAL EQUATION CONNECTED WITH THE JACOBI
POLYNOMIALS*

B. F. LOGAN

Abstract. This paper considers the finite convolution equation

(i) fl f(t)k(x-t)dt=g(x),
--!

where the kernel k(t) is of the form

k (t) altl-,(ii)

--l<x<l,

x>O,

x<O.

Here a and b are nonzero real numbers with [al:#[b[, and v<l is not integral. The equation (i) can be
reduced by successive differentiation or by one integration to the case where k(x) is positive and <v< 1,
(v:/=0). We show that in this case the solution to (i), if it exists, is unique. A closed form solution to (i) is
obtained by considering the relation between the real and imaginary parts of the analytic function G(z)
defined by

ei,’fl f(t)(z-t)-dt Imz_>0,(iii) (z)= -where f(t) is assumed to be real valued. Certain moment relations betweenf and g in (i) are derived, leading
to the result

(iv) fl (l__t)B(l+t)aP(n#,a)(t)k(x_t)dt:cnP(na,B)(x), -l<x<l,
-1

where P(’’#) is the Jacobi polynomial and the parameters a and 13 are simply related to a, b, and v in (ii).
Another form of the solution to (i) is obtained by making use of some simple properties of the function

defined for <x< oo by the integral in (iv) for the case n 0.
We discuss a number of other topics, including a conformal mapping characterization of certain

functions G(z) which are representable in the form (iii) with a real-valued functionf(t).

1. Introduction. Finite convolution equations are integral equations of the form

f(x)=f k(x-y)g(y)dy

with a< o. They were considered by Carleman [1] in the case where k(x) is either a
logarithm or a power. Further work on this subject was done by Latta [3], and his
method was generalized by Shinbrot [9]. (See Cochran [2, pp. 301-306] for a discussion
of their work.) The kernel k(t)-} gives the finite Hilbert transform. The integral
equation

f(x):f’ g(Y) dy, -l<x<l
_ly-x

is called the airfoil equation. It was analyzed by Tricomi [14]. (See also [15, pp. 173-185].)
The kernel k(t)-ln[t[ has a closed form inversion formula which Car!eman [1] found
(see [5,p. 203]). Pearson [5] considered a more general kernel k(t)-P(t)ln[t[+Q(t)
where P(t) and Q(t) are polynomials. There is no general solution method known for
finite convolution equations, and most work has been done on equations with kernels
k(t) of a special form.

*Received by the editors April 16, 1982.
Bell Laboratories, Murray Hill, New Jersey 07974.

lit appears as an exercise in Stakgold [11, p. 191].
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In this paper we consider the integral equation

(1.1) f_ f(t)k(x-t)dt-g(x), Ixl< 1,
--1

where the kernel is of the special form

(1.2) k(t)-altl-/bltl-sgnt, Itl>0,
with a and b real and ,< 1. We exclude the simple case2 lal--Ibl. We say the kernel is
of the first type when lal > Ibl and of the second type when lal < Ibl. The corresponding
integral equations will be referred to as the first and second problems, respectively. We
take g to be defined on (-o,) by the extended definition of the kernel, while in the
problem we are only given its projection on (- 1, 1). We exclude the case when , is an
integer, as the equation can then be treated by elementary methods. For v<0, the
equation can be differentiated a sufficient number of times to reduce it to the case
0<,< 1, each differentiation changing the type of the kernel. We will show that the
solution to the equation, if it exists, is unique except when the kernel is of the second
type with 0< v< 1. For this reason we solve the first problem for < ,< (, 4: 0), so
that if given the first problem with -1 <,<0, one need not differentiate the equation
to obtain the case when the solution is not unique.

Shinbrot [10], as an example of the application of his general Wiener-Hopf
method, gave the solution to the first problem for the symmetric kernel, with 0 < ,< 1,
in the form of a series of Gegenbauer polynomials. Here, employing entirely different
methods, we give several forms of the solution of the problem for the general kernel of
the first type (- <,< 1, , 4: 0), one being a series of Jacobi polynomials which in case
of a symmetric kernel are proportional to the Gegenbauer polynomials. So Shinbrot’s
solution is actually valid for 1 < ,< (, 4: 0).

We assume at the onset that f(t) in (1.1) is a function of L, although the extension
to signed measures of the form d/(t), where/ is a function of bounded variation, is no
problem. Also with no loss in generality, we assume that f and g in (1.1) are real-valued
functions. We note that owing to the special nature of the kernel, a bilinear transforma-
tion

l+t l+x
(1.3) t’- x’--

1-t’ 1-x

carries (1.1) into an equation of the same form on (0, ). However, it is more conven-
ient to work with the interval (- 1, 1), and the connection with the Jacobi polynomials
is more direct.

In 2 we standardize the kernels in terms of two parameters a and fl, anticipating
the connection with the Jacobi polynomials Pn’(x), as well as making possible a
convenient identification of g(x) in (1.1) as the real part of a certain analytic function.

In 3 we solve the first problem for < ,< (,v 0) by introducing the analytic
function

--e f(t)(z-t)-"dt, ,-a+ fl+ 1, Imz_>O,(1.4) G(z)-r
where we are given g(x)-ReG(x+ i0) only in the interval <x< 1. The trick then is
to multiply G(z) by an analytic function, viz., (1-z)(1 + z)8, which is real in (- 1, 1)

this case the kernel k(t) vanishes either for t>0 or t<0, and the solution is straightforward.
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and such that the real part of the product

(1.5) F(z)=(1-z (l+z G(z)
vanishes on the real axis outside [1, 1]. We then know the real part of F(z) on the real
axis and F(z)= O(z-) as z-- oo so that we can recover F(z) from its real part on the
real axis and hence recover G(z) from the projection of its real part on (- 1, 1). Then a
certain linear combination T(x) of the real and imaginary parts of G(x) is related to f
in (1.4) by

(1.6)
1
sinr, f(t)(x-t)-.dt-(x),

7/"

which is readily solved for f(t) knowing 7(x) for <x< 1.
In 4 we solve the second problem for 0<v< 1, the interpretation now being that

we know the imaginary part of G(z) defined by (1.4) only in the interval (-1, 1). We
then multiply F(z) defined in (1.5) by v/1- z 2 to obtain

(1.7) H(z)-/1-za F(z),
a function whose imaginary part vanishes outside [-1, 1] and hence we know its
imaginary part on the real axis. The difficulty now is that

(1.8) H(z)-O(1) as z-- o.

In fact,
1 f f(t)dt+O(z_l)(1.9) H( z ) -- -1

asz- o.

The upshot of this is that we can only determine f(t) within a multiple of (1-t)B-l
(1 +t)-1/2. (In the second problem for 0<,<1, the parameters et and /3 satisfy

In 5 we establish the connection of the Jacobi polynomials with the integral
equation. First a result of {}3 leads to the important formula (5.3), which implies certain
moment relations betweenf and g and from which we deduce

(1.10) fl_l (1-- t)t(1 +t)PB’)(t)k’B(x-t)dt- (’)"n! Pn(a’fl)(x),

where k,(x) is the standard kernel with exponent -v defined in 2 and v-a +/3+ 1.
Note that if ct-fl then (1.10) shows P’a)(x) is an eigenfunction of the finite convolu-
tion equation with symmetric kernel

k(t)-k,(t)(1-t2)’,
and eigenvalue (,)n/n !. We note that Rahman [7], [8] has given a 5-parameter family of
kernels for which certain Jacobi polynomials are eigenfunctions. We have not examined
the relation of this kernel to the kernels he constructs.

In 5 we also obtain certain necessary moment conditions between derivatives of g
that must be satisfied, in order for

(1.11) fl f(t)(x__t)mk,(x__t)dt__g(x), -l<x<l,
--1

to have a solution, where m is a positive integer and -1 <a<0, -1 </3<0. Equation
(1.10) leads to a solution of the first problem in the form

f(t)-(1-t)o(1 +t)anPnB’)(t).
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In {}6 an alternate integral solution to the first problem is developed, the key being
the function

(1.12) o(x)=f (l--t)3(1 +t)’k,,13(x-t)dt, -<x<,
--l

which, according to (1.10), is constant in the interval (-1, 1), and as it turns out its
derivative outside the interval is an elementary function. This, and the fact tat k,,(ax)
-a-k,,(x) for a>0, are used to derive a solution that is striking in that it does not
resemble the form of the solution in 3.

In 7 a fairly simple connection is established between solutions of equations with
conjugate kernels k,,(x) and k,,(x) with a common fight-hand member g(x ).

In 8 certain simple linear operator pairs are established for f and its transform g
under the convolution kernel k,,.

In 9 we study the question of which functions G(z) can be represented in the
form (1.4). We show that if an analytic function G(z) maps the upper half plane into a
certain wedge-like region with rectifiable boundary, then it has the representation (1.4)
wheref(t) is real valued. Some examples are given.

In 10 we discuss kernel expansions in Jacobi series such as

(1.13) k,,a(x-t)-,a,P(,",)(x)P,(t).
0

The special case tx-fl of (1.13) is essentially an identity of Polya and Szeg6 [6, Hilfssatz
2, p. 271"

2
x- t[ 2J +-m p(/2,(x)P(m/2,(t).

r ,=o !

R. Askey has pointed out to me that the methods of this paper may conceivably yield
new results in potential theory; cf. [6]. In 10 we also give an expansion involving
Gegenbauer polynomials (for the nonsymmetric kernel).

Finally, in 11 we apply the method of 6 to the solution of

(1.14) fl f(t)log[x-t[dt-g(x), -l<x<l.
--1

As we mentioned before, this equation was considered by Carleman [1]. The form of
our solution bears no resemblance to that of the "analytic function" method and leads
to an interesting identity for the finite Hilbert transform.

2. The standard kernels. We standardize the kernels by introducing the function
analytic in the upper half plane"

--e 2)2-(2.1) K,,t( z ) r

where ,-a +/3+ l, 0-< argz_<r. On the real line we have

lei’("+l/)lx[-, x>0
(2.2) K,0(x)- r

ir(fl+l/-e- )lxl x<O.
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We set

(2.3)
where

(2.4)

K,,#(x ) k,,#(x ) + i/,,#(x ),

sinrr____.____a x x>0,
k,,(x)-

_sinrBixl_= x<0 (v--a+fl+ 1),

,csralxl-, x>0,
k,(x)- _cos,/l/l_ 1<0 (,,-,+/+

For the case a-fl-1/2(v-1), we use a single subscript notation for the even and
odd kernels; viz.,

1 rv(2.6) k’,’(x)=k"(x) rr -(2.7)

From the relation

(2.8)
we have

(2.9)

(2.10)
In particular,

(2.11)

(2.12)

where

(2.13)
(2.14)
Thus if we write

(2.15)

sin
try ixl-sgnx/g-,(x)--/Ux)-7 T

ei’XK,( z ) K,+x,t_x( z )

cos rhk,,a (x ) sin r;k/,, (x ) k,+x,a_x(x ),
sinrXk,,,(x) + cos r)/,,,(x) -/,+x,a-x(x ).

k,a(x) cos -k,(x) -sin -/(x),
/,,,a(x) sin k(x ) + cos -/,,(x )

k=,o(x ) alxl / blxl -sgnx,

(2.16) /,(x) alxl- + ZTIxl-sgn x,
thinking of v fixed, and given lal>lbl for a kernel of the first type and lal<l71 for a
kernel of the second type, we can determine a and fl from the relations

*"(2.17) ba tan tan --,
(2 18) fi rv

tan -/tan
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by solving for g and then using (2.13) and (2.14). That is, for < r< (r =/= 0) we can
make k,a proportional to a given kernel of the first type by solving (2.17) for/ with

</< 1. Since Ib/a[ < for a kernel of the first type we have

for-l<v<land b]<l.(2.19)

Similarly, for < r< (,# 0) we can make/,a propo.rtional to a given kernel of
the second type by solving (2.18) for/, <g< 1, with la/bl < 1. We have

(2.20) I1<11
Then from (2.13) we have

(2.21) 1/ 1"1-"2 <a<------"- I"1

(2.21’) Ivl +2 v <ct< Ivl +2v-
with the same inequalities holding for/3.

for <v< and

under the conditions of (2.19),

under the conditions of (2.20),

Thus we can find a and /3 in the open interval (-1,0) such that k,,t(x ) is
proportional to a given kernel of the first type with <v< (v# 0).

Similarly, we can find a and/3 in the open interval (-1/2,0) such that/,,a(x) is
proportional to a given kernel of the second type with 0< v< 1.

Also, whenever a and/3 are in the open interval (- 1,0), k,,t is a kernel of the first
type with -1 <v< 1, and whenever a and/3 are in the open interval (-1/2, 0),/,t is a
kernel of the second type with 0<v< 1. These statements are obvious from the defini-
tions (2.4) and (2.5). It is easy to see that a kernel of the first or second type with any
exponent can be represented as a multiple of xmka,#(x) where m is an integer and
l<a<0, -1</3<0.
We list here a number of useful relations which are readily derived from the basic

definitions.

(2.22)

(2.23)

(2.24)

(2.25) ka_m,_n(X)-- ( !)mxm+nka,B(x) (m,n integers),

(2.26) ff’a--m,--n( X ) (-- 1)mxm+n]a,(X ) ( rn n integers),

(2.27) l,,a(x)--(--1)mxm+nka+m+l/2,fl+n_l/2(x) (m,n integers)

---xka+l/2,B+l/2(x )

--x-lk_l/Z,B_l/2(x),

(2.28) d
-X ka’fl( x) Plea+ l/2,fl+ l/2( x ) Pkot,fl+ l(X) px- lkot,fl ( x ),

(2.29)
d-X],ot,O(X)--Pkot+l/2,+l/2(X)--Pff,ot+l,(X)----llx-lt, (X)
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d
(2.30) (xx Xmka,fl( X ) ( 1)n ( p-- m )nxm-nka,fl(x ),

(2.31) -xd xmfa,fl ( x ) ( --1)n ( ,-- m),x’m-- nf%,/(x )

where rn and n are integers (n _>0) and

(a)n-a(a+ 1)... (a+n- 1)-(-1)n(-a-n+ 1)n

(2.32)

r(a+n)
F(a)

r(1-a)(-1)" F(_a_n+ 1)

ava-n, --n-l, --n--2,-..

a:/:1,2,3..-,

(a)0= 1.

In the above formulas, a + fl + 1.

3. Solution to the tirst problem, -1 <,<1, (,:/: 0). We have the integral equation
with a standard kernel of the first type

(3.1) f_ f(t)k,/(x-t)dt=g(x)
--1

where a and/3 are in the open interval (- 1,0) and we are given only the projection of g
on (- 1, 1). We assume that f is in LI(- 1, 1), and with no loss in generality, we further
assume that f is real valued.

We introduce the analytic function

(3.2) fl f(t)K,a(z-t)dt-G(z).
--l

G is analytic in the cut-plane where the cut removes the closed interval [- 1, 1]. Here we
restrict z to the upper half plane. On the real axis we have

(3.3)

where

f_’ f(t)K,/(x-t)’dt-g(x)+i,(x)-G(x)
--1

(3.4) f_l f(t)l,#(x-t)dt-,(x).
--1

Putting 2--fl in (2.9) we have (cf. (2.4))

Ix I-sinr,(3.5) cosrflk,(x)-sinrfll,a(x)- -O, x>0,

x<0,

sinr,f f(t)dt--,(x).(3.6) cosrBg(x)-sinrBg(x)--
"- (x_t)

Thus if we knew the projections on (- 1, 1) of both g and g, the problem would be
solved. As we shall see, it is quite simple to determine the analytic function G(z) from
the projection of its real part on (- 1, 1).
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For -1 <v<0, (3.6) can be differentiated with respect to x to obtain a similar
equation with 0<,< 1. Then for 0<,< 1, the solution of (3.6) is simply

d f_ Yv(t)
dt -l<x<l(3.7) f(x)--x (x_t)_

Now the convolution of a function of L with a function of Lp, p_> 1, results in a
function of Lp. Although K,a does not belong to Lp(- o, ) for any p, its projection
on a finite interval belongs to L, for every p satisfying _<p< ,-1 in case 0< ,< 1, and
in case -1 <,<0, any projection of the derivative of K,t belongs to Lp for each p
satisfying _<p<(1 +v)-l. Thus it follows that for 0<v< 1,

(3.8) Ia(x)ldx<o for l_<p<,- and 0<T<.
T

For <v<0, G(x) is continuous and

(3.9) f-__rlG’(x)lPdx<o for l_<p<(l+v) -l and 0<T<o.

For large arguments, it is easy to see that

(3.10) G(z)-K,(z)f f(t)dt+O( )I1/
as z tends to infinity on the real axis or in the upper half plane.

On the real axis, we have

(3.11) G(x)- r(x)ei(’+/2)’ x> 1,

r(x)e-i+1/2, x< 1,

(3.12)
where

(3.13)

where r(x) is a real-valued function. This follows from (2.2) and the fact that f in (3.1)
is real valued.

Now consider the function F(z) analytic in the upper half plane (u.h.p.) defined by

F(z)-W.,(z)G(z)

W,,(z)-(1-z)"(l +z)t

and we take the branch analytic in the u.h.p, which is real in (-1, 1); i.e., on the real
axis we have

(1 -x)’(1 -t-x)t

(3.14) W,,a(x)- II-/l"ll-t-xl#e-i’,
l1 11"[1 / xlae’,

We see from (3.14) and (3.11) that

(3.15) ReF(x)- { 0,

(1--x)"(l +x)’g(x),

-l<x<l,

x>l,

x<-l.

Also, since

(3.16) ro,,( ) wo, ( )- O(Iz Z --’) O0
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we have

(3.17)
We wish now to show that F belongs to Lp on the real axis for some p> 1. This is

sufficient (el. Titchmarsh [13]) to obtain the representations

f_-o ReF(t) dt Imz>0,(3.18/ F(z)-r-- t-z

and

(3.19) ff ReF(t) dtImf(x)-
r x-t

where the last integral is a Cauchy principal value at t-x and is called the Hilbert
transform of Re F(t).

In view of (3.17) it is sufficient to show that ReF(t) belongs to Lp for some p> 1.
Referring to (3.15), it is obvious for -1 <,<0 that ReF(t) belongs to Lp for some
p> 1, since g is bounded and a,/3> 1. We are left to show that, for 0< ,< 1,

(3.20) f’ Ig(t)w,(t)ldt< for somep>l.
-1

We have from (3.8)

(3.211 fl--1
and obviously

(3.22)

where

(3.23)
We have

(3.24)
since a<0,/3<0.

Ig(t)lPdt< for every l_<p<v-1 (0<v<l)

f’ Iw ,a(t)l dt< for every l<p<p-1

--1

-max(-a,-/3).

O+v-a+B+ +max(-a,-fl)< 1,

Since p+v< it follows from HOlder’s inequality that (3.20) holds for every
l_<p<(p+,)-l. To see this, set p-r+(1-r)(p+,)-l, where 0<r_<l, and s-
(p+,)/v with s’s/(s- 1)-(p+v)/p. Then

since

Thus (3.18) and (3.19) are valid, yielding

(3.25) a( z ) f
g( l W,a( )

qri( t- z ) W,l( z )
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(3.26) (x)=

-l<x<l,

dt,

dt, x<- l,

.11 g(t)W,B(t)
dr, x>l,sin

"n’( x-- )l Wa,B(x )l
(3.27) g(x)-

sine/t/" g( ) W,( )
at x< 1.

-l

The first line in (3.26) is all that is required in (3.6). TNs completes the solution of the
first problem for < u< 1.

We note from (3.27) that if g is positive over (-1, 1), then it is positive over

4. Solution of the second problem, 0<< 1. We are given

f’--1
where ,a is a standard kernel of the second type with a and fl in the open interval
(-, 0), and f is a real-valued function in L(- 1, 1).

It follows from (2.29), the differentiation law of the kernel, that

(4.2) f’ f(t)k,.,.(x-t)dt- -(a+)(xg(t)dt+C’oo -1 <x< 1,
--1

where a*-a-, fl*-fl-, and c is an arbitrary constant of integration. Now the
results of the preceding section may be applied to (4.2) since k.,, is necessarily a
kernel of the first type with a* +fl*+ =u*=u-1. So a separate treatment of the
second problem is not necessary. However, it is instructive to see how the method used
to solve the first problem must be modified to solve the second problem directly and
see in another way why the solution is not unique.

Now we suppose we e given the projection on (-1, 1) of the imaginary part of
the analytic function G(z) defined by (3.2). We wish now to multiply G by a function
analytic in the upper half plane wNch is real in (-1, 1) and such that the imaginary
part of the product vanishes on the real line outside [- 1, 1]. Now the analytic function
F(z) defined by (3.12) is pure imaginary on the real as outside [-1, 1], so we can
either multiply or divide F(z) by (1--22)1/2 and obtain an analytic function whose
imaginary part vanishes on the real as outside [-1, 1] and the values of which we
know in (-1, 1). However, dividing F(z) by (1-z2)1/2 may introduce nonintegrable
singularities at -1 and + 1. We could avoid tNs possibility by restricting the (un-
known) function f to a smaller class than Lt(-1, 1) (cf. Theorem 5.51). So without
further restrictions on fwe define the analytic function H(z) by

(4.3)
where

(4.4)
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We observe from (2.21) that a’ and fl’ lie in the interval (0, v).
We have

lmH(x) { 0, ]xl> 1,

W,,,(x)(x), Ixl<l.

Now ImH(x) belongs to Lp for _<p < v-1, since the projection of G belongs to Lp
for suchp and W,,tv is bounded over ( 1, 1). However, we do not have H(z) O(1/Izl),
z o. In fact

(4.6) H( z ) -- - zo

So H(z)-c belongs to Lp on the real axis for some p> 1, and we may apply the
boundary-value representations (3.18) and (3.19) to ill(z)-ic with the results

(t)w.,,,(t)c +f rr(t z)W.,,#,(z)
dt,(4.7) G( z )

W,,,tr(z)

c f’__ ,(t)W,,a,(t)(4.8) g(x)-
W,,a,(x)

+ r(t- x)W,,a,(x)
dt,

where

(4.9) c-- f(t)dt.
q’/" --1

-l<x<l,

The expressions for g and outside [-1, 1] may be readily written down from
(4.7). The relation (4.8) is all that is needed in (3.6) and (3.7).

We see that we can determine the projection of g only within a multiple of
(1 -x)-’(1 +x)-tv and hence can determine f only within a multiple of f0 where f0 is
the solution of the first problem

(4.10)

fl_lfo(t)k,(x_t)dt_ r(1 -x))’(l+x)tr’ Ixl< 1, a’--a/1/2,

i.e., fo is a nontrivial solution to

(4.11) fl fo(t)f,a(x_t)dt_O, Ixl< 1.
--1

From (3.6) and (3.7) we have

dfx-cos/f0()- l(1-t)’(1--t)’(x-t)’-

(4.12) cosrfl
d fO at

+x -t

2a’ cos rrfl
r(1 +x ( 2

l+x

a’+

t#’(1--t)1-
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If in the last line of (4.12) we put t=u((1-x)/2+u)- with O<u< o, we obtain

(4.13)
fo()

and

21 -ra’ COS rfl fo du

r(1-x)’-tv(1 +x)’-’e (u+ 1)1*’

2’-"r() (1 _x)O’-, a’--I

r(’)r(’) (1 +x)

(4.14) f’ fo(t)dt-1,
--1

[x[< 1,

(4.19)

(4.18)

where g>0, X>0, X+g=r< 1, h’-h-1/2, g’-/z-1/2.
Here K(.,.) is the analytic kernel defined in (2.2) and We.,.) is defined in (3.14). We

have

(4.17) K,,#(x)-"i’(’-X’)Kx,,,x).
Thus for/z + X a + fl + v< and > 0, > 0 we have

2’-r() f, (I--t)"-’(1 +t)-’k,B(x-t)dt
1

{sincr(k_ a)} (1- x)-X(1 +x)-,
1

{ sinrra) xl-X]l + xl-t,
_1 {sinrrfl} _xl-Xl +x]-,

21-rr(r) fl (l_t),_(l+t)X_l,a(x_t)dt
1 {coscr(h_a)}(l_x)--(l_x)-,

l(cosr)ll_xl-Xll/xl-g
1

{cos,)l xl-1 +xl-"

--l<x<l,

x>l,

x<-l;

-l<x<l,

x>l,

x<-l.

2-"r(r) f,(4.16) r(x)r(.) _, (1 t)’-’(1 +t)x-’ Kx,,,(x-t)dt- "1 W_x,_(x),

which is in accord with (4.8) and (4.9).
We can also deduce the form of f0 by considering the function analytic in the

upper half plane

(4.15) A(1 z)a(1 z)b(z ’r)c, a+b+c- -2, ab,c>, 1,

where -1 <r< 1. The function belongs to L on the real axis, implying, with the
analyticity, that its integral over (-o, o) vanishes. With the proper choice of A we
obtain a relation of the form (4.11). We obtain the same result a different way in the
following section.

First let us note the following generalization of the previous result.
We see from (4.7) and (4.13) that



INTEGRAL EQUATION CONNECTED WITH JACOBI POLYNOMIALS 281

5. The connection with the Jacobi polynomials. In the first or second problem, if
the integral agrees over (-1, 1) with a polynomial, then the solution, if it exists, is an
elementary function. The solution always exists if the kernel is of the first type with

1 < < ( O) or if the kernel is of the second type with 0< v< 1. In the latter case
the solution is not unique, as we have seen. In the general case, there are constraints on
the polynomials in order for the problem to have a solution. These results we derive by
considering the asymptotic behavior of g(x) as x--, where

(5.1) f_ f(t)k,a(x-t)dt-g(x)
--1

and <a<0, < fl< 0, i.e., k,a is a kernel of the first type with <,< 1.
From (2.4) and (3.27) we have

(5.2) sgnxillf(t)dtlx 1

-#fl_ W,#(t)g(t)
dt 1i;-Ix- 11 Ix+ 11 Ixl>

Then by replacing x by x- and using the fact that a //3+ ,, we obtain

)"(1+ ),fl f(t)dt ll W,a(t)g(t)
dt l<x<l.(5.3) (1-x x

(l--x/) -1 1--xt

(It is worth noting that we know how to solve (5.3) forf or g, given the other.)
Equating coefficients of x in (5.3) we obtain

(5.4) f_l W,,,(t)tng(t)dt=f_l p(t)f(t)dt

wherep(t) is a polynomial of degree n defined by

(5.5) (1-x)(1 -I-x)B oo

=Ep (t)x -l<x<l,
(1-xt) o

Similarly, if we divide both sides of (5.3) by (1-x)(1 + x)B and then equate
coefficients of x ", we obtain

(5.6) l f(t) (P)n lndt____in’ W,(t)q(t)g(t)dt

where qn(t) is a polynomial of degree n defined by

(5.7) (l_x)-(1 +x)-B o

1-xt
=q,(t)xn, -l<x<l, -l<t<l,

0

and (,) is defined in (5.21).
Then to each polynomial P(t) there corresponds a polynomial P*(t) of the same

degree such that

(5.8) f W,,a(t)P,(t)g(t)dt=i P*(t)f(t)dt.

This relation holds for every integrable f and its transform g under the convolution
kernel k,a; i.e., for arbitraryf in L,

(5.9) I1W’#(x)Pn(x)dxf- f(t)k"’(x-t)dt=f-l-If(t)Pn*(t)dt"
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We wish to change the order of integration in (5.9). This can be justified by the
Tone!li--Hobson theorem, which says that if either of the iterated integrals

I dx q)(x,t)dt, I= dt q)(x,t)dx

is absolutely convergent, then both are, and

I1--I2 q(x,t)dxdt,

and the double integral is absolutely convergent. In particular, suppose fL, kLp
for somep (1 _<p _< m), and

(5.10) f f(t)k(x-t)dt-g(x).

Then for h in Lq where 1/2+ we have

(5.11) f_ h(t)g(t)dt- f f(t)l(t)dt

where

(5.12) l(t)- fo h(x)k(x-t)dx,

for we have

If(t)ldt Ih(x)llk(x-t)ldxll flllllhllqllkllp.

So the order of integration may be reversed, i.e.,

(5.13)

Now we let k(x) be the projection on (-2,2) of k,(x) and let h(x) be the
projection on (-1, 1) of W,o(x)Pn(x ). Then for -1 <v<0, k is bounded and h is in

L. For 0<v<l, k belongs to Lp where p=(o+v)/v and h belongs to Lq where
q=(0+ v)/0 with o=max(-a,-fl) (cf. (3.24)). Thus if we integrate first on x in (5.9),
the iterated integral is absolutely convergent, so the change in order of integration is
justified. Thus

(5.14) fi W,,(x)P,(x)g(x)dx_ f f(t).(t)dt_ fi f(t)P:(t)dt
--1 --1 --1

where

f’--1
Since (5.14) must hold for arbitraryfin L, we have

(5.16) _n(t)=--P,*(t), Itl < 1.

Replacing x by -x and by -t in (5.15) and noting that W,a(-x) ,(x), we have

(5.17) fl--1 ,(x)P,(-x)k,(t-x)dx-P(-t), -1 <t< 1.

With tNs special pair off and g in (5.3) we have

(5.18) (1--x)(1 +x)B ’(t)Pn(;t)dt(1-xt =fl W,B(t)Pt(-t)dt_
-xt

--l<x<l.
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Now if we set Pn(-t)-p(t,)(t), the Jacobi polynomial of degree n associated with the
weight function W,,(t), the left side of (5.18) is O(x) as x--,0. Therefore, for that
choice of P,, we must have Pn*(--t)--hnPn(a’)(t). Thus

(5.19) i_ll l/Vo,( )P(n#’)( )k,#(x- t) dt- P(n’#)(X ),

Equating powers of x in (5.18) we have

(5.20) 1WB’(t)P(n’(t) ni tdt-Xn W’B(t)P(’B)(t)tdt
where

(5.21) 1)... r(g+n)
u-a+/3+ 1.

We follow the notation and standardization employed by Szeg6 [12]. We have

(5.22) pnm,(1)--(n+a)-- F(n+a+ l)
n n!F(a+ 1)

(5.23) P’a)(x)-(-1)"Pnt")( x).
Using (5.23) and (5.20) we find

(5.24)

So withf and g related by (5.1) we have

(-l<a<0) (-1</3<0).

We may expand g in a series of Jacobi polynomials and get a series representation of
the solution of (4.1); viz., if

(5.26) g(x) Ea,P’n)(x), -l<x< 1,
0

then

n !an pn(/,a) ((5.27) f(x) E (-)n xlW,(x), -l<x< 1,
0

where

(5.28) a,-h-f--1
and

(5.29)

W,#( )P(’#)( )g( ) dt

hn=--h.(a,n)-h.([3,a)- i--1
2" r(n+a+l)r(n+/3+l)

2n+u ntr(n+)
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We pause here to record some results which follow from (5.4)-(5.7), and (5.17),
namely

(5.30) S (1-t)t(1 +t)"t’k,,/(x-t)dt-A(n"’/)(x),
--1

-l<x<l, a>-l,

where A(,"’a) is a polynomial of degree n defined by

(s.3) ( +)"(-) ,A(,"’a)(t)x" -a+/3+ 1.
(-t) 0

We have

fl>-l, a+fl<0

(5.32) f’-I (1 t)a (1 + t)"B(’/’")(t)k"’l(x-t)dt- "n!(v)" x",
-l<x<l, ct>-l, fl>-l, ,=a+fl+l<l,

where B,(/’") is a polynoal of degree n defined by

(5.33) (1-x)-a(1 +x)-" EBa,,)(t)x,"
--xt

0

Note that the leading coefficient ofA’a is ()./nl and that of Ba’ is unity.
Also note that if we multiply both sides of (5.3) by xP’ () and equate

coefficients of x we obtain

(5.34) f C;")(t)f(t)dt- f P"’#)(t)W,,a(t)g(t)dt

where C(a’") is a polynoal of degree k defined byn,k

(.3) ’e",)() (-)"(1+) n,k a+fl+l.
( -xt) =o

It follows from (5.25) that

(.36) c(,")(t)- (.n n

Returning to (5.19), if <0 (i.e., a+fl<- 1), the equation may be differentiated
with respect to x, usin (2.28) and

(5.7) j xl- 7 (+++

to obtain

.38)

(1- t)t-l/2(1 +t)"-/2p(,-/:,,-I/2)(t)l,,a(x_t)dt

(P)n 1S(aq-l/2,fl+ l/2)(X)2 n! "-

(-l<x<l), ,-a+fl+l<l, --<ct, -<fl,
where P(- ------ 0.We would expect (5.19) to hold over the triangle ( < a, < fl, a + fl<0} since
the integral still makes sense over this extended region. However, it is only over the
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square ( <a<O, 1 < fl<O) that (the projections of) W,, and k,t belong to
complementary Lp spaces for certain p> 1, which fact was used to establish the validity
of (5.25) as well as (5.19) itself. In fact, (5.25) is not generally valid over the triangle as
we can see by rewriting (5.38) as

(5.39) fl_l(l_t)t_(1 +t)"P(-’)(t)k’(x-t)dt- 21 (g)p(,+,)(n- x),

-l<x<l, a>-l, fl>0, a+fl<0 (v=a+fl+l).
Here we have made use of (2.24). Over the triangle conditioned in (5.39), k,# is a
kernel of the second type with 0<v< 1, and for n =0 in (5.39) we have an (f, g) pair
for wch (5.25) fails for n=0 and fl>0. On the other hand, (5.19) is valid over the
larger region. In the Appendix we derive the more general result

1 (l_t)B+r(1 +t)+pB+r,,+s(t)(x__t)k,,B(x__t)dt
--1

(5.40) 2m+r+s( a + fl + m ), (,,#,,,. x),(--1)m+rn[
where r, s, m, and n are integers (n 0), B+ r> 1, a +s> 1, m a B- > 1,
a*-a-m-r, B*-B-m-s, n*-m+r+s+n and P(5 =0.

It is no restriction to assume that -1 <a<0 and -1 <fl<0 in (5.40). The result
(5.39), for example, can then be obtained by putting r=s=0 and m=- 1, using the
relation (2.25),

Incidentally, if we divide both sides of (5.40) by f(1- t)a+(1 + t)+dt and set
r=s, n=O, we obtain, letting r ,
(5.41)

lim 2m-(-- 1)+ F(fl+a+2+2r) (--r,a-m-r
r F(fl+r+ 1)F(a+r+ 1) "2r+m (x) xmka,B(x),

-l<x<l, m-(a+fl)>0, v=a+fl+l, mandrintegers.

Using a,o--ka_l/Z,O_l/2, we have as a special case of (5.40) with r-0, s- 1, m-0,

(5.42)

fl (l__t)O+/Z(l+t)a+/pO+,/z,a+l/Z)(t)a,#(x__t)dt__2,(,;),npl/,O_/Z)(x),
-1

3 3
-l<x<l, a>-, B> 2’ v-a+B+l<l, n-0,1,2,....

Now iff in L and are related by

fl f(t)a,(x_t)dt_(x)
--1

3<< a+<O,-2<<5’ -2
we have from (5.42), using ,(-x) ,,(x),

1 (l_t).+/(1 +t)+/p.+l/,+/(t)g(t)dt
--1

(5.44)
=--2

()n I p(B-l/,-/l
j_ ,+ (t)f(t)dt, v-a+fl+l, n-O, 1,2,...,

nl -1
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over the region in the a-fl plane conditioned in (5.43). The projection of W+ 1/2,fl+ 1/2
and/,t belong to complementary Lp spaces, and the interchange of order of integra-
tion leading to (5.44) is justified. It should be noted that this region includes the region
over which/,a is a kernel of the second type with -2<,< 1, viz., over the square
{--<a<-1/2, --<fl<-1/2} and the triangle (a>-1/2, fl>-1/2, a+fl<0}.

We can see also from (5.44) why, in the second problem for 0<v< 1, we cannot in
general determine f_lfdt from the projection of g. However, if we restrict f to a
suitable class, we can. Suppose then that

(5.45) fl f(t)l /(x-t)dt-g(x)

where a>- 1/2, /3>- 1/2, a+/3<0. Now suppose p(x) is a bounded function and we
consider

f’ q(x)(1--x)-’/2(1 +x)/-’/2,(x)dx
--1

(5.46)
fl tp(x)(1--X)a-l/2(1 +x)-’/2{f f(t)fc.,(x-t)dt} dx;
--1 --1

assuming the integral is convergent. Denoting the integral by I, we have

)-,/( )a-l/Z{ ’lf(t)llfc,/(x_t)ldt} dx(5.47) IIl<cf (1--1 1+1 f
and

(5.48)

and from (2.29)

 1111 -sec k (x)

(5.49) k,(x) cosr
(/3- a) (/3 a)

2 .k,/(x)- sinr
2 /,/(x).

Now assuming that f is suitably restricted so that the order of integration can be
changed in (5.46), we find from (4.18) and (4.19)

(5.50) IIl<_c’f If(t)l(1--t)-#’(1 +t)-’dt

where a’- a+ 1/2, fl’- fl + 1/2. So if the last integral is convergent, the change of the order
of integration is justified by the Tonelli-Hobson theorem, and we have the result:

THEOREM 5.51. Let L("’x) be the class offunctions (f } satisfying

(5.52) fl if(t)l(l_t)_,(1 + t)-Xdt<
--1

where and I are real numbers.
Then iff in (5.45) belongs to L(l’’’) where ’- + 1/2, a’- a + 1/2, we have

(5.53)

fl (1 x (l+x (P)n fl D(,..ot..[t)f(t)dt)a--l/2 )fl-l/2en(a-1/2’fl-l/2)(x)dx-- 2(nf) l*"-’ ’
where v- a + fl + and n O, 1, 2,..., P(2 O. In particular,

(5.54) fl (l_x),_/2(1 +x)/_/Zg(x)dx_O.
--1
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On the other hand, for given ,, if (5.45) has a solution f in L(#’’’) it is unique and (5.54) is
a necessary condition for such a solution.

(The relation (5.53) follows from (5.38), using/,a(-x)--/a,(x) and the as-
sumptionfL(1’’’) which allows the change of order of integration. Also the assump-
tion on f excludes the nontrivial solution f0 given by (4.13) for the homogeneous
equation.)

Now iff and g satisfy

(5.55) fl f(t)(x__t)mka,(x__t)dt__g(x),
--1

-l<x<l, -l<a<0, -l<fl<0,
for some nonnegative integer m, it follows from (5.40) that

(5.56) fl W,a(t)p,,/)(t)g(t)dt_2, (v-m)n fl P(*’"*)(t)f(t)dtn+rn
--1 n! -1

where a* a m, fl* fl- m, v- a+ fl + 1. Incidentally, we have a small theorem in
(5.56):
THOR 5.57. Iff belongs to L(- 1, 1) and

[ f(t)P(’a(t)dt-O forn--m,m+l,m+2,..-
d_--1

where m is a nonnegative integer and ( rn + 1)<a< m, ( rn + 1) < fl< m, then f is
null over (- 1, 1).

For the proof, we observe that the left-hand side of (5.56) can vanish for n--
0, 1,2,-.. only if g is null. But from the relation (5.55) and the solution to the first
problem, g can be null only iff is null.

The interchange of the order of integration leading to (5.56) is justified as before
(we have excluded rn- 1).

In solving (5.55), the equation is differentiated rn times to obtain

(5.58) (--1)m(v--m)mf_ f(t)ka’(x-t)dt- -x g(x),
--1

-l<x<l, -l<a<0, -l<fl<0.
Now a polynomial of degree m- 1 can be added to g without affecting the solution

of (5.58), but g(m)(x) determines f and hence g through (5.55). In other words,
x

g(x)- ffff g(m)(t)dt+r,_,(x),
m

where r,,_ is a polynomial of degree m- which is determined by the relation (5.56)
for n=0, 1,2,m- 1. We can conclude:

THEOREM 5.59. Iff is a solution of (5.58), it is also a solution of (5.55) if and only if
(5.56) is satisfied for n=0, 1,2,.-. m-1. Furthermore, if g agrees over (-1, 1) with a
polynomial of degree n, then (5.55) has a solution if and only if

nm

p(*,*)[(5.60) g(x)
k=0

where a* a m, fl* fl m, n >_ m.

Proof. From (5.58), f(t)-E-mbkp(a’)(t)W,(t), 1 <t< 1. Then (5.60) follows
from (5.40).
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There is an equivalent statement of the first part of Theorem 5.59. Actually, the
explicit solution of (5.58) is not needed in the test since (5.58) implies

(5.61) 2m(l--m)n f_ l(B*,a*)[t)dt-- (--1) m f_ W,B(tG(’a)(t’m)g(m)(t)dt

where g(")(t)-(i)"g(t), and (’a)is a polynomial of degree m+n determined by

(5.62) WB,a( h(B,a)f t. m )ka,B(x- ) dt- 2m (’-m)n p(a*,B*)(

with -l<x<l, -l<a<0, -l<fl<0, u=a++l<l, a*=a-m, *=fl-m, and
m- positive integer. Thus we can state
THOM 5.63. lff is a solution of (5.58), then f is also a solution of (5.55) gand only

(5.64) (1--)mf
-1 -1

for n- 0, 1,2, m- where ’+ is determined by (5.62). (Here we have used the
identity ( 1) ( m) (1 ).)

We note that (5.64) is satisfied for nm for any function g which is m times
differentiable. We have from (5.40), for nm,

(5.65)

W,(t)(1 t2)m (#+"’+) t)dt (-4)m (P)n-m l)(a*,*)[

--I<x<I, a>--l, fl>--l, v=a+fl+l<l, a*=a--m, fl*=fl--m.
So we see that

(5.66) n(’#)(,’m)-- ( )m (n-- m)! (v m)m n-m"n+m - n! (1-t2)mp(+"#+m)(t) n>m.

Also, for n _>m we have

(5.67) W,,l(t)P(’l)(t ) - n - ( Wa+m,+m(t,_ n-m ),
which is a generalization of Rodrigues’ formula (n-m). Then if g is any function m
times differentiable we have from (5.67)

f_l W.,(t)p}.,a)(t)g(t)d
--1

(5.68)
_(1 ) (n--m)] fl Wa+m,B+m(t)p+m,#+m)(t)g(.)(t)dt,- n! --1

n--m

n>_m, a>-l, >-1.

i.e., (5.64) has nothing to do with the integral equation for n>_m.
There is still another equivalent statement of Theorem 5.59. From (5.55) we have

(5.69)
(_ 1),( k ) dt -xv m)g f(t)(x-t) k,/(x g(x)=--g(k)(x)

-1

--l<a<O, --l<fl<O, k=O, 1,2,---m.
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Since
x
gk)(t)dt+Ck

and
x

(5.71) g(x)- ffff gm)(t)dt+rm_l(X),
m

the determination of the rn constants ck, k- 1, 2,... m, is equivalent to determining the
polynomial rm_ by use of (5.64) for n=0, 1,2,.-. m-1. The constants ck can be
determined by applying (5.64) with n-0 to (5.69). We have

(5.72) W,t(t)g’-)(t)dt=f W,#(t)Gka’B)(t;k)g(m)(t)dt,
--1

k- 1,2,3,..- m,

where gk) is given by (5.69) and v=a+fl+ 1. Thus we have:
THEOREM 5.73. The condition (5.64) in Theorem 5.63 may be replaced by the

equivalent condition (5.72).
Explicit expressions for the G polynomials are rather messy for cases other than

given in (5.66). They may be found by expanding the right-hand member of (5.62) as
ak((1-x)/2)k and using a later result (6.52). Alternatively, the fight-hand member
may be expanded as bkPk’/ by repeated application of the formula

(n+a+fl)(n+a+ fl-1) P2’B)(x)Pn(Ot-l’fl-l)(x)-- (2n+ a+ fl)(2n + a+ fl-- 1)

(5.74) + ( n + a + fl--1) ( ot-- fl )
(2n + a+ fl)(2n + ct + fl-- 2)

P-’)(x)

(n + fl --1) ( n +et-- 1) p,2O)(x )(2n+a+fl-1)(2n+et+fl-2)
and then using the basic result (5.19) to solve (5.62).

The perplexing thing about (5.72) is the fact that the integral on the right cannot
be replaced by an integral involving only g(m-k+l) (except for k-1). To see this,
suppose

(5.75) fl f(t)(x_t)mk,B(x_t)dt__gm(X)
--l

and

(5.76) fl f(t)(x__t)m_lk,#(x__t)dt__ g,_l(x)
-l

where m is an integer, m_> 2, and < et < 0, < fl< 0. Now suppose the existence of
functions tp and %,_ such that

(5.77) fl gm(X)qm(x)dx=fl g,,_(x)%,_(x)dx
--1 --1

for everyf in L in (5.75) and (5.76). Then we must have

(5.78) fl q)m(X)(X- t)mka,(x t)dx--f (X)(X --t)m-1 ka,(x__t)dx..
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Now let c be chosen such that

(,5.79) f2l {l)m(X)--CWa’fl(x)) dx-O.

Then setting

(5.80) Om(X)--qm(X)--cW,,(X ), --1 <X< 1,

we have from (5.40) and (5.78)

(5.81)
f_lq)m_l(X)(X--t) ’k.,B(x-t)dx- Om(X)(X--t ) k.,B(x--t)dx

=c2"P-"’"-’)(x), -l<x<l.

Now since f L lOre(X) dx O, we have, integrating by parts,

(5.82) fl Om(x)(x_t),,Zc,a(x_t)dx=f_
--1 --1

where

Om(X)(X-- t)m-lka,(x t)dx

(5.83) Om(x)-(-m)S
x

Om(t)dt.
--1

Hence we have

fl (q)m_l(X)__Om(X))(X__t)m_lk (x-t)dx
(5.84) - C2mP(mB-m’a-m)(x ),
But from Theorem 5.57 we must have

(5.85) CP(mB-m’a-m)(x)--aP(mB_-l’m+l’a-m+l)(x)nt-bP(mB-m+l’a-m+l)(x).
However, according to (5.74),

(5.86)

where/3* -/3- m, a* a m, ,- a + fl + 1. Now for <a<0 and </3< 0, the
leading coefficient of Pk(t* / ’* / ) does not vanish. So for m_>2 in (5.85) we must have
a- b- c-0. Thus we have proved

THEOREM 5.87. If the equation

(5.88) f’ f.(t)(x-t)mka,#(x-t)dt-g(x), -l<x< 1,
--1

where <a<0 < fl< O, m an integer > 2, has a solution fro, then

(5.89) fl fm_l(t)(x_t)-k,l(x_t)dt=g(x),
--1

has a solution fm-1 if and only if

(5.90) fl fm(t)dt_O,
--1

--l<x<l,
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in which case
X

(5.91) fm_l(x)--(m--v) f(t)dt.
--1

6. An alternate solution to the first problem. Let us write

(6.1) o(x) =o(x; a,fl) =f W,( )k,/(x ) at,

l<a<0, -l<fl<0
We have from (5.19)

(6.2) o(x)= 1,

For x outside [- 1, 1] we can differentiate (6.1) and find that

(=a++ lO).

d(6.3) xx o(x)
--’ 2 sin rra

r(+ 1)r(+ 1)ix + 1 i-tt- llx l]--I
r r(+ 1)

v
2v sinrrfl

r(a+ 1)F(/3+ 1)Ix+ 11 -tt-’ -"-’
r(.+l) Ix-ll

x>l,

x<--l.

We can formulate from (6.1)-(6.3) an alternate form of the solution to the first
problem:

(6.4) fl f(t)k,t(x_t)dt_g(x),
--1

-l<x<l, -l<a<0, -l<fl<0, ,--a+fl+lv0.
Let us define for < z<

(6.5) q(r)=f’g(xl(x--zltt(1-x)’dx.
We may interchange the order of integration, putting (6.4) in (6.5) to obtain

(6.6) (p(,) =fl_lf(t)dtflk’(x-t)(x-z)(1-x)’dx"
If in the inner integral we put x (1 + )/2 (1 )u/2 we obtain

flk,(x--t)(x--,)B(1
(6.7)

=ii (1+$2 1--")(1--’)’22 )l )"du._lk,,tt -t- u (1-u (l+u

Then noting that k,,a(ax)--a-"k,,tt(x ) for a>0, we see from (6.1) that

f (l+--2t) --1<’<1lk’(x-t)(x-)(1-x)=dx-o 1--"
(6.8)

Hence

(6.9) (’r)--f f(’)o( l+-2t)dt--1 --Integrating by parts we obtain

(6.10) (’i’)=i f(t)dt+ 2 fl a’( l+r--2t

-I 1-’i" --l 1-
dtft ,f( x ) dx.
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From (6.2) and (6.3) we have

f
,

(6.11) ,{ 1+-2)1_ (1-)/,sinrar(+ 1)r(B+ 1)
2rr(.+ 1)(1--t)+’(-t)"+’

Comparing (6.5) and (5.25) we see that

(.1 f_ (le-(-1.
--1

Hence we have

(6.13)

"r<t< 1,

t<’< 1.

f-_ dtftt f(x)dxr(+ 1)I’(/3+ 1)
sinret

.r(.) (+_t)+’(l_t)t+’’

This convolution equation (Abel’s equation) is readily solved to obtain

(6.14) -,f(t)dt-r(+ 1)F(/3+ 1) x (--iix_ t)
where (x)= fg(t)(t-x)(1 t)dt.

In a silar fason we find

fx (1 +x)a+lr(p) d l (1)--ff(t) dt(6.15) ’f(t)dt- r(+ 1)r(+ 1) (1 + t)"(t-x)-where +(x) f51 g( )(x )"(1 + )o dt. (The connection between (6.14) and (6.15) is
readily seen by changing the variables in (6.4) to obtain f_lf(-t)ka,,dt g(-x). Then
one rdation follows immediatdy from the other.)

By a change of variables we can write

(6.16) (x)--(1--x)u(1--u)g[u+x(1--u)] du,

(6.17) (x)--(1 +x) u 1-u)g(-u+x(!-u))du.

Then with the special pair { g(t) 1, f(t) ,(t)), we have from (6.14) and (6.15)

f] (_,,(+.e_(_x
*lx

_ - (x-,"edx -1 2

=(1--x)B+2f (1-t)--(x-t)dt, 1 <x< 1,

1(l_}B(l+).d=(l+x)+l fx 1+
--1 (l-x)Bd

(.9 ex

=(+xl"*fx(+-’-(-xe, -<x<.

The equations (6.18) and (6.19) are vad for ,B>- (i.e., we may have + 1), and
may be verified by expressing the integrals in terms of hypergeometfic functions and
using transformation formulas for the functions.

If we set

(.0 (x)=o(Xl+C(-xl( +xl
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where

r(+)(6.21) =zr(+ 1)r(B+ 1) _,
we have

g(t)(1-t)"(l +t)adt,

(6.22) f_,fo(t)dt-O.
Now assuming that we may differentiate inside the integrals in (6.14) and (6.15),

using the elementary formulas

(6.23) xd fX_lP(t)(x-t)’dt--P(-1)(x+ +ff,P’(t)(x--t)’at,
fx fxIP’( x)dtd ’V(t)(t-x)adt-V(1)(1-x)+ t)(t-(6.24) x

and (6.16)-(6.21), we obtain for <x< 1"

(6.)

(1- x)B+’(1 +x )’+’ fo’ (l-t)dtfo’Ul(1-u)+ ’g’ {2u 1+ t(x + 1)(1 u)) du

(6.26)

ffo( ) dt

v(v+ 1)[1(1-t)dt lUB(1 U)+ ldu]

(1-x)B+’(1 +x fo (1-t)ldtfo -u)l+’g’ t(1 )(1 )} du),+, lug(1 (1-2u-- -x -u

(+ 1)Iron(1 1U"(1 u )fl+ ldu]

(6.27)

These formulas with (6.1) dearly show that if g agrees on (- 1, 1) with a polynomial of
degree n, thenf(t)/W,(t) agrees on (- 1, 1) with a polynomial of degree n. Equivalent
forms are

x (l_x)t+lF(v) (x_t)"dt f,f(t)dt-- f(iSI(i)fl (1 t)7i (1-s)’+l(s-t)Bg’(s)ds

(l+x)+’r() (t-x)t f,
(6.s)

(-:<.<:).
Now the hypergeometric function satisfies the integral equation (see for example,

[4, p. 5])

(6.9) ("";’;’)-r(x)r(.-x)
Rec>ReX>0, z=/=1, larg(1-z)l<r.
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Applying (6.29) to

_F(n+l+a) ((6.30) ) n!F(a+l) F_-n,n+a+fl+l;a+l;x

:(-1)np(n,a)(-x)
results in

(6.31)

where a-a+T+ 1, b-fl-T- 1, and

(6.32)
f (1 +t)(x-t)VP(,"’)(t)dt

=(l+x)r(+ llr(,++ 1) (,d>

r(n+d+ 1) e (x)

(-l<x<l)

(-l<x<l)

where c a 7- 1, d= fl + 7 + 1. If we set

(6.33) g(x)-(ni P x), l<x<l, n--l,2,,...,

we have from (5.44)

(6.34) g,(x)_r(,+n+- 1)p.(.+,+
2r()n! n- 0(X) (--I<x<I) n--1,2,3,....

Then putting (6.34) in (6.27) we have from (6.31)

(6.35)
r() 1 a+l(F(.+ 1)F(fl+ 1) (l-s) s-t)aU’(x)ds

(1-s)"+lF(n+a+ 1) p(,+ 1,o)(2r(a+l)nl n--1 t),

Then applying (6.32) we obtain for g given by (6.33)

f(6.36) ---lf(t)dt- (l-x)+ (1 +x)"+P1’"+ l)(x),

-lxl,

It follows from (5.67) that in (6.36) we must have

(6.37) fo(t)-(1-t)(1 + t)"P’")(t), <t< 1, n- 1,2,3,. .,
wch is in agreement with (5.19), noting that in (6.20), c=0 for g given by (6.33).

As an example, we solve_
n 2 -l<x<l, n-- 1,2,3,-.-

Setting

(6 39) f(t)--fo(t)+ (- 1)",F(a+n+ 1)

-l<t<l, n-- 1,2,3,-..

n-1,2,3,--.
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we find from (6.27), (6.29), and (6.30),

(6.40) fo(t)d (1-x)/+l(1-+-x) +1
n--a,a+ I)(X )2(,+n) Pn--’
-l<x<l,

Differentiating (6.40) and making use of the identities"

(6.41)
(1--x2)d=-pn-’-’"+l)(x)

dx

n--a,a+ nP(n-n-a,a+((n+ 1)x--n-- 1-2a)P(-, ’)(x)-- 2

n--1,2,3,....

n- 1,2,3,. .,
(6.42) (n+ 1)P-"-’)(x)-P-"-’+’)(x)-aP5-’+’)(x),
(6.43)

(1-31-’X)l:(--n--a’ 2(n+a) n_a,a)(x)+Zpn(_n_a,)(x )"n--’ a)(X) e(n Z’n

n-- 1,2,3,.--,

n-- 1,2,3,. .,
where in (6.43) we have an exceptional case where a reduction of degree occurs, viz.,

(6.44)
F(a+n)

n- 1,2,3,’’"n-a’a)(X)--(--1)n-l D(a’-n-a)(1)--(Pn(Z *n--, (n-- 1)!I’(a+ 1)

we ultimately find

(6.45) f_’ --n--a,a)( (P) (X--1_lWO’(t)Pn t)k,(x-t)dt- n! 2

-l<x<l, -l<a<0, -1</3<0, ,=a+fl+l,
Then from elementary transformations we have

f’ W,a(t)p(nB,_n_B)(t)k ,B(x_t)dt_
(p)n (lq-x)nn! 2(6.46)

--l<x<l, --l<a<O, --l<fl<O, u=a+fl+l,

n--O, 1,2,..-.

n-O, 1,2,-...

Actually, the manipulations leading to (6.45) were suggested by the formal condition
that n- derivatives of the integral should vanish at x- 1"

fl W,(t)P,(t)(1--t)-u-n+l+rdt-O, r--O, 1,2,-..,n-- 1,
--1

which only makes sense for r-n- 1, but suggests that P,-CPn-n-"’).
We note that P-"-’)(x) has the fairly simple explicit representation

(6.47) P-"-’)(x)-(-1)"(a+ 1)n (-- 1)((1 +x)/2) k

k=0 (n--k)!(a+l)k
and similarly

(6.48) Pa’-"-a)(x)-(fl+ 1), (- 1)k((1 --X)/2)k
=o (n--k)!(fl+ l)k
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Thus we find the solution of

(6.49)
-1 o 2 WO’(t)k"’o(x-t)dt

n ()k
0

l--x) k

a 2
l<x<l,

(6.50)
n!. ( 1)k nk()--n--kbk- (n-k)! (a+ 1)k j=0 J ak+j"

7. Connection between solutions of equations with conjugate kernels. There is a
fairly simple relation betweenf andf in

(7.1) fl f,(t)k #(x-t)dt-g(x), <x< 1,

f f2(t)l,#(x-t)dt=g(x), -l<x< 1,(7.2)
J_--1

whenever both equations have solutions.
To see this we introduce the function analytic in the upper half plane defined by

(7.3) F(z)_ f(t)dt
-1 ri(t- z )

Imz>0,

where we suppose initially that f(t) is a real-valued function of L which vanishes
outside [- 1, 1]. We have on the boundary

V(x)=--V(x + iO)=f(x) + if(x)(7.4)
where

(7.5) f(x)=f f(t------) dt
-1 rr(x--/)

We have the reciprocal relation

(7.6) f(x) r(t- x----- dt
and, given only the projection offon (- l, 1) (Hilbert’s problem), the "almost-recipro-
cal" relation

(7.7) f (1-t2)’/zf(t)
dt+ C--(1-x2) -’/2 -l<x<

-1 "if(t--x) "tr

Now consider the function analytic in the upper half plane

(7.8) a(z)- Wo,,(z)F(z)K/,(z-z), -1<’< 1,

where W,, and K, are defined in (2.1), (2.2) and (3.13), (3.14) respectively. We see
that A(x) is real valued on the real axis outside [- 1, 1] and A(z)= O(z2), z --, o. If we
assume further that A is everywhere locally integrable on the real axis, then A belongs
to L on the real axis, so that

_A(t)dt--O,(7.9) f_
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(7.10) Imf? A(t)dt-f’ ImA(t)dt-O,
oo --1

(7.11) fl flW,.(t)f(t)k.,(.-t)dt- W,.(t)f(t)l.,(.-t)dt, 1 <.< 1.
--l

(Here we have used k#,.(x ) k.,#( x) and/#,.(x) -/.,#( x).) Then setting

(7.12) rE(t) W,.(t)f(t),
(7.13) f(t)- W,.(t)f(t),
we have from (7.5) and (7.7) the relations

--l<t<l,

(7.14) f(x)-f W"(x)fE(t)
-1 W,.(t)r(x-t)

dt, -1 <x< 1,

(7.15) fE(x)-f W"’e(x)f(t)- W,,.,(t)r(x-t) dt+cW,,.,(x), <x< 1,

where fl’-fl-1/2, a’-a-1/2 and c is an arbitrary constant whenever W,,,, is integrable
over (- 1, 1).

8. Certain linear operator pairs. Here we assume we are given

(8.1) fl f(t)k.,#(x-t)dt=g(x), -l<x< 1,
--1

where k,,/ is a standard kernel of the first type with <a<0 and < fl< 0, and we
wish to establish certain pairs of linear operators A and B such that

(8.2) g*(x)-(Ag)(x), -1 <x< 1,

(Bf)(x), -l<x<l,
(8.3) f*(x)-- o, Ixl > 1,

(8.4) f’ f*(t)k.,o(x-t)dt:g*(x), -1 <x< 1.
--1

8.1 Integral operators: g*(x)= fg(t)dt. Here we define

--l<t<l,
(8.1.1) T(t)- o, Itl > 1,

where the constant a is chosen so that f_oofodt=O; i.e., in accordance with (5.25),

(8.1.2) f_l
we have

(8.1.3)

and hence,

(g(t)-a)W,(t)dt-O,

(8.1.4)

f? k,,#(t)fo(x-t)dt-g(x)-a, -l<x<l,

o

k.,/s(t)(F(x-t)-F(-t)) dr= g(t)dt-ax, -l<x<l,
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where

(8.1.5) F(x)- fo(t)dt,

and according to (8.1.1), F(x) 0 for I11 > 1. Thus, rewriting (8.1.1), we have

(.. e(l,(x-le= g(-x+
--1

where the constant b is determined, once again in accordance with (5.25), by

(8.1.7) f’,.F(t)dt--f W,#(x)(g(t)dt-ax+b} dx.

Now

and

or, since

fl_ 1F(t) dl_ fl ltfo(t

(g(t)-a) W,/s(t)P[’/s(t)dt-vf P[/’"(t)fo(t)dt,

fl fo(t)dt-O-f’ (g(t)-a} W,/s(t)dt,

t(g(t)-a}W,(t)dt
--1

(cf. (5.6)). Thus the constant b is determined from the projection of g by

(8.1.9) W,,(x) g(t)dt+ Xg(x) a + x+b dx-O
--1 P P

together with (8.1.2). Finally, we have from (8.1.6) and (5.30)-(5.33)

(8.1.10) f f*(t)k,l(x-t)dt=fog(t)dt, -l<x< 1,
--1

(i(,)-a,<,(t) ) dr+ ,o(x) { --a (-n+x) b },,
where

(8.1.11)
f*(x)--

-1
-l<x<l,

and v= a +/3+ 1, and the constants a and b are determined by (8.1.2) and (8.1.9).

8.2. Differential operator: g*(x)- ag(x). If we assume the equation

d
(8.2.1) fl f,(t)k,a(x_t)dt__xg(X),

--l

-l<x<l, -l<a<0, -1

has a solution f*, then as we have seen in the previous section, the equation

(8.2.2) fl f(t)k,#(x-t)dt-g(x), -l<x<l, -l<a<0, -1</3<0,
--1

always has a solution f, the relation being
d(8.2.3) f*(x)-aW,,(x)+-d-x {f(x) W,(x)Pl(x)}, -l<x<l,
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where

(8.2.4) Pl(X)-a(a-fl+x)-b withv-a+fl+l

and a and b are determined by

(g’(t)-a)W,#(t)dt-O,

(8.2.6) f’ (g(t)+ ’(
-1

"g t)--a 1+1) )--,t+b W,(t)dt-O.

That is, if (8.2.2) has a solution f, then (8.2.1) has a solution f* in L if and only if there
exists a polynomial P1 of first degree such that F(t) given by

(8.2.7) F(t)-i(t)( f(t)-- W,(t)Pl(t))
where (t) is the characteristic function of the interval (-1, 1), is the integral of a
function of L I.

This condition then gives an alternate means of determining the constants a and b
in (8.2.4) directly from f.

8.3 Multiplication by x: f*(x)=xf(x). We have the given relation (8.1) between f
and g and seek g* in

(8.3.1)
--1

Then

tf( t)k,B(x- t) dt- g*(x),

(8.3.2) fl f(t)(x-t)k,a(x-t)dt-xg(x)-g*(x), <x< 1.
--1

Differentiating (8.3.2) with respect to x, using xk,a--(v-1)k,t, where v-1-a
+ fl, we have

(8 3.3)
d
-x (xg(x)-g*(x)) -(v- 1)g(x), 1 <x< 1.

Thus

(8.3.4) g*(x)-xg(x)+(v- 1)foXg(t)dt+c, -1 <x< 1.

The constant c is determined by the relations (cf. (5.4)-(5.7) and (5.25))

(8.3.5) il g,(x)Wa,13(x)dx fl tf(t)dt

and

(8.3.6) fl tf(t)dt- l__fl
-1 P -1

+ dr.

8.4. Multiplication by x: g*(x)--xg(x). Once again we are given the relation (8.1),
and now seek f* in

(8.4.1) f’ f*(t)k,a(x-t)dt-xg(x), -1 <x< 1.
--1

We have from (8.3.1) and (8.3.4)

(8.4.2) fl_ltf(t)k,,t(x_t)dt_xg(x)+(v_ 1)foxg(t)dt+c’ -l<x< 1.
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Also, from (8.1.11), we have

(a.4.l f_ ().,,(x-e= g()e,
-1

where

(8.4.4)

f(x)-
-l

-l<x<l,

{ f(t)-aW (t)} dr+ W,(x){ a (a-fl+x)-b}
Thus f* in (8.4.1) is given by

(8.4.5)

f*(xl-xf(x)-(,- llfX (f(t)-aW,,(t)} dt- W,(x)( ,-,

-l<x<l.

ax+b’)
-l<x<l.

where the constants a and b’ are determined by

(8.4.6) f_l {f(t)-aW,(t)} dt-O-f {g(t)--a) W,,(t)dt,

(8.4.7) fl f*(t)dt- f’ tg(t)W,,a(t)dt- f (,t+fl-a)f(t)dt.
--1 --1 --1

Integrating by parts one of the terms in f*, we have

Since Pl’"(t) (, + 1)/2+ (B )/2 we have

(8.4.9) -I(+ 1)t’"(t)dt=(-B)l-’"(t)dt"
So

at+ b’ ) dt.

(8.4.10) f-l"a ’’v2- f- 42-f12at dt (a fl ) a Wfl,( ) dt
P P P

Putting (8.4.10) and (8.4.8) in (8.4.7) we have

(8.4.11) f’ f(t)dt---1 -1

f’ f(t)dt.
--1

or

(8.4.12) b’f,wfl,(t)dt-
Therefore

a-- fl f(t)dt.
P --1

(8.4.13) b’=
a- fl a

and

(8.4.14)
f*(x)-xf(x)-(e-1)f

x

--1
( f( ) aWfl,( ) } dt

_a ((, +)x+,-t} ,o(), -l<x<l,

where the constant a is determined by (8.4.6).
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8.5. f*(x)- ((1- x2)f(x)} + nxf(x). We have from 8.3,

(8.5.1) tf(t)k,,(x-t)dt-xg(x)+(v-1) g(t)dt+Cl,
--l

Iteration of this formula gives

fl t2f(t)k..(x_t)d
--1

(8.5.2) =xg(x)+(, 1)x g(t)dt+ClX

-l<x<l.

/o )+(,-- 1) tg(t)-+-(--1) tg()d+Cl dr+c2,

Hence

fl (l_t2)f(t)k,,,(x_t)dt
--1

(8.5.3) --(1--x2)g(x)--(v 1)xfoXg(t)dt-Clx

--(-1)foX(tg(t)+( 1) fotg(u)du+c) dt-cz,

Now if we differentiate the right-hand side we have to replace (1-t2)f(t) by ((1-
tE)f(t)+Pl(t)W,(t)}, and it is clear that Pl=0, otherwise the derivative of the
quantity in braces could not belong to LI(-1, 1), given that f belongs to LI(-1, 1).
Thus we have

(8.5.4)

d t2il_ldtk=,.(x-t)- ((1-)f(t)}

Soxx {(1--x )g(x)}--2(,-- 1)xg(x)--(,--1) g(t)dt-,Cl, -l<x<l.

Then if we multiply (8.5.1) by , and add it to (8.5.4) we have

(8.5.5) fl f*(t)k,(x-t)dt=.g*(x),
--1

where

d(8.5.6) i*(x)-- {(1--x2)i(x)) +vxf(x)--(1-x2)f’(x)+(v--2)xf(x),

(8.5.7) dg*(x)-- -x {(1--xE)g(x)} +(2--i,)xg(x)--(1--xE)g’(x)--,xg(x).

These formulas are valid provided (1-x2)f’(x) belongs to LI(-1, 1). We note the
equivalent forms:

(8.5.8) f*(x)-(1-x2)/2-xd (l_x2 )1-/2f(x),

(8.5.9) g.(x)_(l_x2)l-,/2 d 2-x (1 -x )’/2g(x).
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More generally, if we set

(8.5.10) *(x)-(1-x)’(1 +x)x d - )x(1-x) (l+x -X/(x)

(1-x2)f’(x) (1-X-I)xf(x) + (Iz-X)f(x)
and

(8.5.11)

where

(8.5.12)
we have

y*(x)- (1- x)-x(1 +x)-__x (1x)dx(1 +x)g(x)

(1-x2 )g’( x ) ( ?+ l)xg(x ) + (l-- ? )g( x)

(8.5.13) f q*(t)k,(x-t)dt-/*(x), -l<x<l
--1

whenever (8.1) holds and (1-x2)f’(x) belongs to Ll(-- 1, 1).
In particular, if f= (1-- x)- (1 +x)x-,/>0, X>0, and/+,-v< 1, then q*(x)

----0 and hence 3,*----0; i.e., g-c(1-x)-X(l+x)-, a result obtained previously [cf.
(4.18)].

We note that the results of this section depend on a and fl only through their sum;
i.e., the results should hold for a kernel of the second type, and indeed they do, since
the only use made of the kernel being of the first type was in finding solutions when
first degree polynomials appeared with g, and these cancelled out in the operation here.

8.6. Weighted Hiibert transform. Here we are given the original relation (8.1) and
set

g(t)W,a(t)
(8.6.1) g*(X)-

wa,#(x) f-1 r(x-t)
dt, -l<x<l.

From (3.26) and (3.4) we have

(8.6.2) f’--1
Now we seek f* in

-l<x<l.

(8.6.3) f’ f*(t)k,,a(x-t)dt-g*(x), -l<x< 1.
--1

But if (8.6.3) has a solution f*, we have seen in 7 that it is given by

f(t)dt(8.6.4) f*(x)- VV,(x)f-, W,(t)r(x-t)
-l<x< 1.

9. Integral representation of certain analytic functions. Suppose G(z) is analytic in
the upper half plane and satisfies

(9.1) lim G(z)-O (Imz >_0),
Z--- OO

and on the real axis

i’(+/2), x> 1,
(9.2) G(x)-

r(x)e_i(+,/2), x< -1,
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where r(x) is a real-valued function, and <a<O, < fl< O, 0< a +/3 + < 1.
Suppose further that for any finite T

(9.3) f" Ia(x)lPdx< l<p<
1 (,-a+fl+ 1).

T P

Then, as argued in 3, G has the representation

(9.4) G(z)-(1-z)-(1 +z)-#f (1-t)’(1 +t)g(t)
dt

"tri(t-z)
where we take the branch of (1 -z)(1 + z)8 that is real and positive in (- 1, 1), and z is
restricted to the upper half plane, and

(9.5) G(x) =-- g(x) + ig(x)
where g and g are real-valued functions. It was shown in 3 that (9.3) implies

(9.6) fl {(l_t)(l+t)alg(t)lPdt<o for l<_p<(v+p)---1

where p max(- a, -/3). Since (1 t)(1 + t)/g(t) is integrable over (- 1, 1) we see
from the representation (9.4) that (9.1) can be replaced by

(9.7) G(z)-O(Izl asz-o.

In fact,

(9.8) G(z)=eir(a+l/2)Z_V(l__z_l)-a(1 +z_l)-#fl (1--t)(1 +t_)_g(t)dt
-1 1--tz

so that we have

(9.9) G(z)-ei(+/2)z- , anz-n
n--O

where the a are real and the sum converges for Izl > 1.
Now we seek the representation

(9.10) G(z)- f? f(t)K,(z-t)dt

wherefis a real-alued function of L, and we recall that

i’(a+ 1/--e 2)z 0 < argz_<r (v-a+fl+ 1).(9.11) K,#(z)- r

Now if (9.10) has a solution f which is real valued, then f must vanish outside
[- 1, ], for we have

--e f(t)(z-t)-dt(9.12) ei’#G(z)-
r

_
and for real x

;(-1/ f- fx--e (t-x)-f(t)dt,(9.13) eirG(x)
’n"

sinrvf (x-t)-f(t)dt.(9.14) ReelinG(x)

3Without this requirement the solution to (9.10) is not unique since the Fourier transform of K,,t
vanishes on a half line.
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Similarly

(9.15)

and for real x

(9.16)

(9.17)

f(t)(z--t) dte i"G(z)-- -
fie-i"" m(t_x)-,f(t)dt+ f(t)(x-t)-’dte-i"G(x)- : -x -sinrVfx(t-- x)-f(t) dt.Ree-i’"G(x)-

Now by supposition (9.2), Reei’rOG(x)=O for x< 1, and Ree-i’G(x)=O for x> 1.
It follows from (9.14) and (9.17) thatf(t)=0, Itl > 1. Thus if (9.10) has a (real-valued)
solution f, it is determined by

(9.18) f f(t)k,(x-t)dt-g(x), -l<x< 1,
--1

and from (9.13) and (9.17), using the fact thatf(t)=0, It]> 1, we have

(9.19) fx f(t)dt- fx (x -t)-lgl(t)dt

where gl(t) Reei’G(t)=cosrflg(t)-sinrflg(t), and

(9.20) fxlf(t)dt-- fl(t-- x)-lgz(t) dt,

where g2(t): Ree-i"G(t) cos wag(t) +swag(t).
Now if gl or g2 is a function of bounded variation, we may write, respectively,

(9.:1) f(x)-f (-t)"-dg(t), l<x<l,
-1-0

(9.22) f(x) +0(t-x) ag(t) l<x< 1.

Then fwill belong to Lp for p<(1--g)-. It is not necessa, of course, for g or g
to be functions of bounded variation in order for (9.18) to have a solution f in L. We
note that the convolution kernels in (9.19) and (9.20) can be written as the convolution
of two kernels of the same form with exponents whose sum is -2; i.e., for 0<e<u we
have

fx(9.23) f()- ax r() .__(x-t)-lg3(t)dt
d f.

_
(9.24) f(x)-- dx r(e) (t-x) g4(t)dt

where g and g4 (depending on e) are given by

F(g) x (x_t)__g(t)dt(. g(xl r(;=il _,
r()

__
(. g(xl-

r(- (-xl g(le.

Hence, if for some e (0< e< ), g or g4 is a function of bounded variation, f will belong
to L for 1 p<(1-e)-. The condition, however, that gl or g be a function of
bounded variation is simply intereted in terms of the mapping properties of G();
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i.e., if G maps the upper half plane one-one onto the interior of a simply connected
region with a rectifiable boundary, then G(x), and hence gl(x) and g2(x), are functions
of bounded variation. Thus we can state the following theorem after one more observa-
tion concerning the positivity of f.

Suppose -1 <a< and g(x) is nondecreasing in (-o,a) and g2(x) is nonin-
creasing in (a, o) (Recall that g(x) 0 for x< 1, and g2(x) 0 for x> 1.). Then we
see from (9.21) thatf(x)>0 for <x<a, and from (9.22) thatf(x)>0 for a<x< 1.

THEOREM 9.27. Suppose <a< O, < fl< O, and 0< < 1, where a + fl + 1,
and G(z ) is an analyticfunction which maps the upper halfplane one-one onto the interior

of the region depicted in Fig. 1 where 0 is the origin and the image of z--; the straight
line segment OA is the image of (-o,- 1) and makes an angle (fl + 1/2)r, measured
positively in the clockwise direction, with the real axis OR; the wavy line AB is a simple
rectifiable curve and is the image of (- 1, 1); the straight line segment BO is the image of
(1, o) and makes an angle (a + 1/2)r, measured positively in the counter-clockwise direc-
tion, with the real axis OR, and hence makes an angle ,r with OA. (The arrows on the
boundary correspond to increasing x in G(x ), o <x< .)

B

0
R

P
FIG.1.

Then (7( z ) has the representation

iaf_--e f(t)(z-t)-dt, Imz>O, 0_< argz_<r,i) G(z)- r

wheref is a real-valuedfunction given by (9.21) or equivalently by (9.22), and

ii) fl [f(t)lPdt<oo for l_<p<(1-v) -1.
--1

Furthermore, from (5.25) we have

iii) fl (l-t)"(1 +t)P(,’l(t)g(t)dt (v)., i P(,’")(t)f(t)dt,

n--O, 1,2,-.-,

where g(x) Re G(x).
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Now suppose further that there is a point P on AB cf. Fig,. 1) which is the image of,
say, x=a (-1 <a< 1) such that gl(x)=--Reei’/G(x) is a nondecreasing function of x for
x<a, and g2(x)=--Reei’G(x) is a nonincreasing function of x for x>a. Then

iv) f(x)>0,

Example 1. The function G(z)=(/1-z2 +iz)", where 0<v< and we take the
branch of v/1-z 2 analytic in the upper half plane and positive in (-1, 1), maps the
upper half plane one-one onto that sector of the unit disk with vertex angle vrr which is
bisected by the positive real axis; i.e., in Fig. a- fl- 1/2(v- 1), and AB is the arc of a
circle of radius 1. We have

(9.28) G(x ) ei(), <_x <_ 1,

where 0(x ) arcsin x ( < 0< ),

(9.29)
e- --x--

where x- >0. Thus G has the representation

(9.30) a( ) f
where according to (9.21), f is given by

x>l,

x<--l,

Imz_>0, 0_< argz_<r,

(9.31) ,)- f_, (x--t) v-l d-’ {sin(vO(t))+ --r ) dt
or

COS llx Mx

)
O fD q’l"(9.32) f,(-- cosq0)- v

(cosx-cos

We have the representation of the Gegenbauer polynomials (cf. [4, p. 224]):

21-"F(n+2v) ),_,fo cos((n+v)x) dx
(9.33) C(cosq)- ; (sinq0 v>0

n!(r(e) (cosx- cos)
i--;’

It follows that

.{r(.))(9.34) f,(x)- --;-7) (1-x) -1 <x< 1.

Example 2. Let G(z) be the analytic function which maps the upper half plane
one-one onto the interior of the triangle depicted in Fig. when AB becomes a vertical
straight line segment at a unit distance from the origin. Then G(z) has the representa-
tion

(9.35) G( z ) f f( )K,/(z- ) dt
-1

wheref is the solution of

(9.36) f’ f(t)k,a(x-t)dt-1,
--1

--l<x<l.
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Therefore, as we have seen,

(9.37) f(t)-(1-t)(l+t), -l<t<l.

Examples and 2 are special cases of some important formulas we give below.
From (9.33) we can deduce that

(9.38)

f 21-F(n-k-2t’)(--i)n (l--z2 d-iz}(1--t2)-l/2C,(t)ei""/E(z-t) "dt-
7I" --1 n !(n+,)(F(,)}

n+r

0<v<l, 0<_argz_<r,

(1 -t2 )-l/2C(t)k,/(x- t) dt

21
cos (,+n)sin-lx-(n+fl-a)- (- l_<x_<l)

n!(n+u)(F(v)) 2

where u-a+/3+ 1,-1/2 <,< 1, < sin-1 x_< .
In connection with the second example, we have, from (5.19), (3.3), and (3.25),

fl (l_t)t(1 +t).p,)(t)K,a(z_t)dt
--1

(v). /’, (1-t)’(1 /t)#e(n’#)(t)dt(9.40) n! Wa,#(z) J--I ri(t-z)
-l<a<0, -l<fl<0, ,--a+fl+l, -1<,<1, Imz_>0.

On the real axis (z-x / i0), the integral on the right is interpreted as a Cauchy
principal value for <x< 1, and K,t(z) and W,a(z) are defined by (2.1), (2.2) and
(3.13), (3.14), respectively.

Now Szegt [12,p. 95] gives the following representation of the Jacobi function of
the second kind:

_.( (l-t)"(1 +t)(9.41) Q(n,a)(z) (z- 1) z+ 1) j__ P(,/)(t)dt
z--t

where z is in the complex plane cut along the segment (-1, 1). The principal branch,
single valued in the upper half plane, is taken to be real valued on the x axis for x> 1.
In our notation, then,

-1 ei’ fl_l (1-t)(1 z-t+t)#P(’l)(t)(9.42) Q(’/)(z)- W-a(z) dt Imz>0._

Comparing (9.42) and (9.40) and recalling that K,a(z)-e z we see that

(9.43) fl (l_t)t(1 +t),p(a,,)(t)(z_t)_dt_ 2(,)n Q(,a)(z)
-1 n!

!mz_>0,-l<a<0, -l<fl<0, -1<,<1, u--a+fl+l,

(9.39)

for if we apply (9.21) we obtain (9.33) after a change of variables. In fact, (9.38) is valid
for 1/2 < ,< 1, which can be shown from the general formula (A.7) in the Appendix.

If we multiply (9.38) by ei’(+(1-/) and take the real part we obtain
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where on the real axis (z x + i0) we take

(z_t)-_ [x-tl
e-i’lx-t x<t.

Equation (9.43) appears to be a new integral representation of the Jacobi function of
the second kind. At least it is not found in the standard reference works.

It is interesting to note that if a function F(z) analytic in the upper half plane has
the representation

(9.44) F(z)- fl f
-1

(t)dt

where

f(x)[ ReF(x)_>0 for -l<x<l,
0 for x> 1 and x< 1

(and hence F(z) is zero free in the upper half plane with - _<argF(z)_< ), then with
suitable smoothness conditions on F(x), e.g., bounded variation, {F(z)} has the
representation

,,_ fl L(t)dt, 0<r_<l(9.45) {F(z)} -1 z-t

10. Kernel expansions. A formal expansion of a function f(t), -1 <t< 1, in
Jacobi polynomials {pX,)} (> 1,/> 1), written

(10.1) f(t) anPnXa’)(t)
n-0

is obtained from the orthogonality relation

(1-t)x(1 + t)PX’)(t)PmXa’)(t)dt

0

r(,+n+l)r(t+n+l)
n!F(h+g+n+l)

2x+g+l

h+g+2n+l

(m=/=n)

(1-t)x/2-1/4(1 + t)’/2-/alf(t)l dt

So in (10.1) we have
(10.3)

h+/+2n+ n !F(X+/+n+ 1) rl (1-t)x(1 + )’pX,’)( )f( ) dtan= 2x+t’+1 I’(X+n + 1)r(tt+n + 1) J-_l
assuming the last integral is convergent.

Szegi) ([ 12, Chap. IX]) discusses the convergence of (10.1) and gives the following
useful comparison theorem.

EQUICONVERGENCE THEOREM (SZEGO). Let f(t) be Lebesgue measurable in [-1, 1]
and let the integrals

f_(1-t)x(1 +t)’lf(t)ldt,
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exist. If Sn( t ) denotes the n-th partial sum of (10.1) and on(cos 0 ) the n-th partial sum of
the Fourier (cosine) series of

(1- cos0)X/z+/4(1 +cosO)/z+l/4f(cosO),
then for < t<

lim -(S-(t)-(1-t)-x/2-1/4(1 +t)-/z-/40n(t)}-0
n--) oo

uniformly in + e <_ <_ e where e is a fixedpositive number, e< 1.
For f(t)=(x-t)mk,a(x-t) and X=fl+r, /z=a+s, where re, r, and s are in-

tegers, m-a-fl>0, formula (5.40) shows the coefficients a in (10.1) to be polynomi-
als in x. We have

(10.4)
(x-t)mk,#(x-t)

(--1)re+r2m-v (X+#+2B+ 1)F(h+/z+n+ 1)F(v-m+n) (x,,)(/au(,*,t*)(,.n*r(v- m) 0 I’(X+n + 1)F(t+n + 1) P x)

(--l<x<l)
where X=fl+r> 1,/z=a+s> 1, v=a+fl+ 1, m-v> 1, a*=a-m-r, fl*=fl-
m s, n* m+ r+ s + n --> and P(_ 0 (r, s, m are integers).

Now if F(O) belongs to L(-r,r), then Fn(0 ), the nth partial sum of the Fourier
series for F(/9), may be written

1 ,r sin((n+ 1/2)(0-))
d(10.5) fn(O )- f f(p)

-, sin 1/2(0- qo)

and then

(10.6)

Hence, if

f-_ F(O)-F(P)sin{(n+l)(o )}dpF(O)-Fn(O)= ,sin(0-p)/2 -P

(10.7) f_]F(O)-F()sin(0-)/2 d<
o,

then

(10.8) lim {F(O)-Fn(O)}=O,
n--- oo

since, by the Riemann-Lebesgue lemma, the Fourier transform of a function of L
tends to zero at infinity.

Thus from SzegiYs theorem we see that the partial sums of the series in (10.4)
converge to the left-hand member (so we can replace by =) for <x< 1, < < 1,
4 x. Also the series will converge for x (x 4:__+ 1) provided rn v> 0.

In order to apply the theorem for x- 1 we require

(10.9) fl (l_t)x(1 +t)(l_t)m-,dt<o
--1

and

(10.10) fl (l__t)x/2_l/4(l__t)t/2-1/4(l__t)m-udt< o,
-1
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i.e., since> 1, we need

(10.11) X+m--,>l and --+m-,>-l.
So if (10.11) is satisfied the partial sums of the series (10.4) converge to

(x t)mka,(x t) for x 1, < < 1. An analogous statement holds for x if ?
in (10.11) is replaced by .

Further information about the nature of the convergence can be obtained from the
asymptotic formula (cf. [4, p. 216])

cos[(n+a+b+l) ’(l+2a)]
(10.12) P’)(cos0) 2

0-
+ O(n-3/2)

sin - cos -uniformly for e <0_< rr e (0 < e< rr) and

(10.13) F(n+a) =n_b[ +O(n_)r(n+b)
Thus for the coefficient in (10.4) we have

(10.14)
(X+/x+2n+ 1)F(,++n+ 1)F(u-m+n)

r(X+n+ )r(+.+ 1)
2 --1

nm_ {l+O(n )}, n -- (x)

and hence for <x< 1, < < 1, the series (10.4) converges (diverges) with

A cos n(p +B sin nT(10.15) ]
m--,+l I)--COS X--COS It,

n

so the series converges absolutely for m-u>0 (-1 <x< and -1 <t< 1). Also we
have

(10.16)
P(na,b)(1) (a+ 1)n F(n+a+ 1)

n! F(n+ 1)I’(a+ 1)

P(na’b)( 1)--(--1)" (b+ 1)n F(n+b+ 1)
n! F(n+ 1)F(b+ 1)

Now setting x-- in (10.4) we have

(10 17) u(’*’t*)(1)- r(n+a+s+ 1)
"’* r(m+r+s+n+l)F(a-m-r+l)"

Then using (10.12) we find the series in (10.4) converges for x= and -1 <t<
provided only the second condition in (10.11) is satisfied. But what it converges to we
are not sure in case the first condition in (10.11) is not satisfied. This difficulty arises
when

lim f (1--t)x(1 +t)PX’)(t)(x-t)mk,,(x-t)dt
x-*l-- --1(10.18)

f- x ), (x,) (1 (1 )dt.4: (l-t) (1 +t Pn (t) --t)nka, --t
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When the first condition in (10.11) is not satisfied, the integral on the right in (10.18)
does not exist. However, the limit in (10.18) does exist (under the conditions given with
(10.4)). The implication of (10.18) is that the kernel xmka,B(x) is of the second type
(changes sign) and rn (a + fl + 1)< 0.

We can obtain a rather simple expression for the partial sum of the series in (10.4)
for t= x. Denoting the nth partial sum by S(X’)(t,x) we have

(10.19)
S(,X,)(t,x) fl (1-s)x(1 +s)"IX’)(t,s)(x-s)mk,B(x-s)ds

--1

where the conditions in (10.4) are satisfied and
n

I(X’)(t,s) (hg(X,l)}-lP(kX’)(t)P(X’(s)
k=O(10.20)

and

P(X’l)(t)P(nX’l)(n+l s ) Pn("l)(t)P (X’)[n+l \ s )
tins

2x++l r(+.+l)r(k+X+l)hg(X,/x)- 2k+X+/x+l !r(+x+.+ 1)
2-x-" (n+ 1)F(n+X++2)

Cn= n+X++2 r(n+X+ 1)r(n++ 1)"
Now in case m (a + fl + 1) > 0, we have

x)-c.f (1--s)a(1 +s)"(P’")(.+,,x)P’")(s)
(10.21)

(--l<x<l)

-,--P(nX’P’)( x, n+l \ ka,fl(X__S)dS.
Then from (5.40) it follows that

(10.22)

S(nh,p,)(X,X)__(__ l)m+r+12m+r+s_lCn( (u--m+n! 1). p(X,)[x(.+,,B.+l)(X)n+, k

(v--m+ 1).+1 (x,.)(x)p.+l,.+l)(x)}(n+l)! Pn

where the parameters are defined in (10.4) and (10.20). Equation (10.22) actually holds
for m (a + fl + 1) > 1. To see this we multiply (10.19) by (x t) and write, in an
abbreviated notation,

(10.23) fl (. }(x__t)(x__s)mka,a(x__s)ds__(x__t)SnX,)(t,x), -l<x< 1.
--1

Then we note from (10.10) and (5.40) that

fl (.)(t__s)(x__s)mka,o(x__s)ds
--1

(10.24) --(--l)m+r2m+r+SCn{ (--m)np(X’)tt)P(*’B*)(x)

(v--m)n+l(n+l)! P(nX")(tP(*’B*)t.*+1 ,x)}, -l<x<l.
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Adding (10.23) and (10.24) we obtain

f_l {. }(x__s)m+lka,B(x__s)ds
-1

=(x-t)SnX,(t,x)+( 1)re+r2m+r+s

(10.25) C.{ (’-m)’P(X’)tu(’*’*)(X)n!
(
(n+ 1)! e ’)(t,...+, J’

-l<x<l.

Then differentiating (10.25) with respect to x we have

(m+ 1-v)SnX’(t,x) ((x-t)SX’(t,x)}

(10.26) +(-1)m+r2m+r+s--C,{ (’--m)n+l p(x,)g h l(a* + l,O* + l)(x )n! n+l \ lXn*--I

(/)--m)n+2 (x,)(t)p(g*+,a*+)(x)}(n+ii! e.
and hence

a s,.(t,x)(-m)S(X’)( t,x ) + (x- )-x

(10.27) -(-1)m+r+12m+r+s-lCn( (P--m)n+ln! n+lt(h’)(t)la(a*+l’fl*+l)(X )

(l’--m)n+2
(n+l)!

which is valid for m- ,> 1, and therefore (10.22) is valid for rn- ,> 1. As a special
case (rn r s 0) we have

(10.28)

=o k!hk(a,fl) Pk x) x)

2n+v+ r(.+ 1)F(B+ 1) (a+ 1). (fl+ 1).

--l<a<0, --l<fl<0, u--a+fl+l.
The polynoal on the fight is evidently even, since P"’o)(-x)-(-1)Pff’"(x);

i.e., p,O)(x)pa,-)(x) is an even function of x.
Also, as a special case of (10.4), we have

(10.29)
2-F(+ l) ’1.,(-t)- r(7 )r(+ ) Z(o ] (-+ )n (+) e’")(t)e"’)(),
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where -l<x<l, -l<t<l, -l<a<0, -1</3<0, r=a+fl+l (x#t unless u<0).
The question of extending the validity of (10.29) is a matter for further study. It can be
shown that it remains valid for a and/3 in the open interval (-m- 1, -m) where rn is a
positive integer.

Another interesting expansion in the Gegenbauer polynomials is obtained from
(9.38). The orthogonality relation for these polynomials is

0 (m=/=n),
(10.30) f’ (1-t2)-’/2Cf,(t)C,(t)dt r2’-r(n+2r)

--1 (n--m)
n!(v+n)(r()}2

We can rewrite (9.38) as

(10.31) fl (l_t2)-l/2C(t)(z_t)-dt
--1

r2’-’r(n+2r)( i/1 z2) ’+"

n!(v+n)(F(r)}2
z- 0<r<l.

Here z may be any point in the complex plane cut along (-1, 1). The correct corre-
spondence between the branches is established by taking on the real axis (z- x+ i0)

-_(Ix-tl -, x>t,(z-t)
e-ilx-tl x<t,

l1 --X2I 1/2,
1--Z2

--il --X2I 1/2,
d-ill--x2l 1/2,

-l<x<l,

x>l,

x<-l,

,)-r<_arg(z-il-z2 <_0, l_<x_<l,

arg -i

_
O, x>l,
-r, x<-l.

Then with this correspondence of the branches we have

(10.32)

)-"- O<r<l, -l<t<l
n=O

(z#t),

and thus

(10.33) 2"] C(,)cos{(n+r)cos-1
n--0

-l<t<x<l,

-l<x<t<l

(10.34)

(0<cos-x<rr), (0<r<l),

2 C,(t)sin{(n+,)cos-’x}-
O,

.=0 (sinrr)lx- tl
-l<t<x<l,

-l<x<t<l

(0< cos-l x<rr) (0<r< 1),
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2p
(10.35) C,(t)sin((n+v)cos-x-ra)-k,a(x-t),

n--0

-l<x<l, -l<t<l, x=/=t (0<cos-x<r), r--a+fl+l, 0<,<1.

We note that (10.32) and hence (10.31) can be obtained from the generating
function of the Gegenbauer polynomials:

(10.36) (1-2wt+w2)-- E c (t)w Iwl< ,
n--0

It is a relatively simple matter to discuss the convergence and extend the validity of
(10.32), since by a change of variables z- 1/2(w+ w-1) we obtain (10.36).

Now the function F(w; t)=--F(w)=(1-2wt+w2)-, where _<t_< 1, is analytic
for Iwl< and has singularities at w-t-+-x/1-t 2 For u< 1, F,(ei) belongs to L on
the unit circle provided < < 1. It is easy to see that the partial sums given by

n

(10.37) C,(t)eik-- f’ F(ei) sin((n+ 1/2)(0-q0))
dtp

k=o 2r _, sin(0- q0)/2

converge to Fm_(ei) for ei=/=t+--i/1-t 2 -1 <t<l, ,<1, with convergence also for
ei--t+_i/-t 2, -l_<t_<l, provided r<0. Now in case t=+l, the singularities
coalesce and we have to replace r< by ,< 1/2 in the preceding statement.

We should note that the condition ,=/=0 in (10.36) arises from the fact that C is
conventionally normalized differently for r=0 and so is not given by the generating
function (10.36). However, if we agree to take C(t)=--O for n> and C0(t) 1, then
(10.32) is valid for ,< 1, the series converging for -1 < < 1, z # t, and converges for
v <1/2 in case t- +-- 1, z =/= t. The series converges absolutely for ,_< 0, _< t_< and
Iz-iv/1-z21< l.

11. A problem of potential theory. The equation arising in potential problems

(11.1) f, f(t)loglx_tldt_g(x),
--1

-l<x<l,

is usually solved in series form using the relation

(11.2) _lflr_,(1-t2)-/2T"(t)lglx-tldt-(log2,Tn(x)’ -l<x<l,

n=0,

n =/= O,

where T is the Chebyshev polynomial of the first kind. The relation (11.2) can be
derived from our formula

rr fl--cos (1-t2)Pn’)(t)lx-tl dt- (P)n(11.3)
r _, n! P (x), --l<x<l

where v-2a+ by subtracting from the kernel Ix-tl and the corresponding
quantity from the right-hand side (i.e., 0 for n >_ and

r(a+ 1) r
cos - for n--0),F(a + 3/2)

then dividing by , and taking limits as ,--, 0.
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From (11.1) and (11.2) we obtain

T(t)f(t
(11.4) f_’ (l-x2) ’/2Tn(x)g(x)dx

_
fl )dt,

-1 (log2) f’,f(t)dt, n4=0.

Equation (11.1) is also frequently solved by the "analytic function method" similar
to that of 3. Here we wish to point out that the method of 6 may also be applied to
solve (11.1).

It is convenient to work with

(11.5) f, fo(t)log(x_t)dt_go(x)
--1

f0(t)=f(t)-a(1 -t2)-’/2
where

(11.6)

(11.7)
with the constant a chosen so that

(11.8)

i.e., in accordance with (11.4),

go(x)--g(x)-alog2,

f’ fo(t)dt-O,
--1

(11.9)

We have

-l<x<l,

a---- f(t)dt=(rlog2) (1--t 2) l/2g(t)dt.
q’g --1 -1

(1 1.10) _if, (l_t2)-l/21og[x_tldts(x),
7r --1

Clearly, s(x) is continuous (comparable to a convolution of functions in complemen-
tary Lp spaces) and according to (11.2)

(ll.ll) s(x) =log2,
Then

(11.12] s’(x) =0,
and

-l<x<l.

-l<x<l,

x>l,_1 ,(1_t2)-1/2 dt -(x2 1) 1/2

(11.13) s’(x)-
r-1 x-t (X 2 1)-,/2 x<-l.

Now we assume that f0 in (11.5) belongs to L so that the projection of go on
(-1, 1) belongs to Lp for every finite positive p. Thus for -1 <-< we may define
qo(’r) by

(1 1.14) q()- fl(x--’r)-l/2(1-x)-l/2go(x)dx.
Then we may replace go by the integral in (11.5) and interchange the order of integra-
tion to obtain

(11.15) qo(r)--f K(r,t)fo(t)dt
--1
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where

lf ,r( --4

(11.16) __lfl_7/’ --1

(x-r)-1/2(1 x)-’/210glx tl dx

(1 u2 )- /210g

2t-l-r)2 +s=log
-z -z

Then if we set fo( t ) f
_

fo(u)du in (11.15) and integrate by parts we obtain

(11.17) p(.)__ f" dt ft fo(u)d
--1- --1

and hence

x /1--x d x q(t)dt(11.18) f_ io(t)dt f_"ll" dx lx-t
Thus we obtain the solution to (11.5).

We may write, by a change of variables,

(11.19) (t) fo 1/2( -1/2u- l--u) go((1--t)u+t} du,

and then if g is differentiable,

q’(t) fo --1/2 l/2gu (I--u) ’((1--t)u+t) du

(11.20) l_f,(1--x g’(x)dx,
1-t t x-t

and hence, since (- 1)--0,

x il--x x p’(t)dt(11.21) i f(t)dt- S_
--l ql" 7X-- t

Thus if g is differentiable

(11.22) --1 S_l f(t) dt-g’(x) --l<x<l
--I x--t

and we know the solution (fro--0) if it exists, is given by

71-t2g’(t)dt
f_(11.23) f(x)

rV/1 x2 -I x-t

Hence, comparing (11.21) and (11.23), we have the identity for the finite Hilbert
transform

(11.24)

fl /1--t2 g’(t)dt
x-,
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We can verify (11.18) by showing that it holds for

--1Tn(X ) l<x<lfo(x)= Tn(X)( 1 _x21 1/2 g(x)-
n

We have

22n (n !12(11.25t T,(x)- P-/z’-I/2)(x),

n-l,2,...

(11.26)
d n 22" "(n)2,/9(1/2
dx Tn(x) nUn-l(X)- (2n)!’"-I "/2)(x)

So from (6.31) we have for g’(x)- U_ l(x), <x< 1,

(11.271 q/(t)--
/1 x

U,-l(x)dx-
/x-t

and from (6.32)

(11.28)

Then

(11.29)

2/1-+-x U,,_,(x).
n

fo(t)dt- /1-x2 Un_l(X)- sin(ncos
-1 n n

Therefore

(11.30) fo(X)_ cos(ncos-ix) Tn(x)

(0_< cos- x_<-).

-l<x<l,

which agrees with (11.2).

Appendix. Here we derive equation (5.40) by evaluating the integral

(A.1) f(t)k,,a(x-t)dt-g(x),

for <x< 1, where

(1 + t)x(1-t)t’, <t< 1,(A.2) f( )
O, otherwise.

For X and/, sufficiently large the nth derivative off will belong to L and we have

(A.3)

d d

f(n)(t)k,#(x-t)dt
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where

We recall that

X* *,X*)(f")(t) (--2) m!(1--t)’*(1 +t) P" t),
--l<t<l, /* =/--n> 1,

1
sinralx[ x>0

(A.5) k,(x)- r (,-a+fl+ 1),
sin rfllx -, x< 0

X* =)-n> 1.

and here the only restriction on a and fl is a + fl <0. We can express the integral in
(A. 1) in terms of hypergeometric functions using

(A.6)

We have

(A.7)
g(x)=--

fltb_( _t)c-b--(1 _xt)-adt_ F(b)F(c-b) F(a b" c" x).r(c)"0

Now we use the identity

(A.8)

F(a,b’c’x)- F(c)F(c-a-b) F(a b’a+b-c+ 1" l-x)r(c-b)r(c-a)

+(l_x)__r,c,r,a+b-ct t
F(c-a c-b’c-a-b+ 1" l-x)r()r(b)
0<x< (a +b- not an integer)

to write

(A.9)

( ’/x
F --/,X+l;X+2-v; 2

l-x)r(x+2-,)r(1 +_) F -, X+ .-+,.r(x+.+2-.)r(-.) 2

+ ( ._1 (2 ?)?Xi? F X+,+2-..-.;2-,+,;

Then applying the identity

(A. 10) F(a,b; c;x)-(1-x)-a-bF(c-a,c-b; cx)

l-x)2

v- 4 integer.
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to (A.9), we obtain

(A.11)

F --/,X+I;X+2--v; 2

_(_ l+..x2 F()t+/,+ )F(1-v)
F v,v--)t-1;

2 2 r(-)r(x+ 1)

F( -),/,-q- 1;/x-v+2; v-/ :/= integer.

Then substituting (A. 11) in (A.7) we have

(A.12)
1g(x)=-- sinra2

1) ( l--x)’(}(27-7- --3 F v, v--/-- X-- 1; --/ +v; 2

sinrra(l_x),-,+,2xr(1--)r(v----1) (-- T(Z- F -X,,+ 1;,-v+2;

lsinr/i(1-x)"-+’2xr(l+t)r(1-) ( )--- F(/+2-) F -X,/+l’/x-v+2", 12x
v-/. =/= integer.

In order to combine the last two terms in (A. 12) we use the identity F(z)F(1-z)
rr/sin rz. Thus

sin rrt(A.13) F(-/x) --r(l+t*)
rr

rr(A.14) r(,-,- 1)-
sinr(v-) r(+ z-v)

or

(A.15) r(,-,-1) sinrr/, r(1
r(-,) sin

Using (A.15) in (A.12) and combining the last two terms we obtain the factor

sinrrasinrr/ -sinrrfl- sinvrrsin(/x-fl)rr,
sinr(v- t) sin rr(v-/)(A.16)

and hence

(A.17)

g(x)=-- sinra2,+x+,_.F(1 .+,)r(x+ 1) F u v-/x-X-l"-/,+v"
rr r(x+t,+2-v) 2

+ sinvr(_ sin(t-fl)r ).-.+ F(1 +t)F(1-v)
rrslnrr(v--/,) (1--x 12X

r(t,+2-v)

F(’-)k,/+ 1;/-v+ 2; l--x)2
v-/ =/= integer.
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Then setting/ =/3+ r, X a + s, where r and s are integers and/- u 4 integer (i.e., a 4
integer) we have, noting that F(a, b; c; x) F(b, a; c; x),

fl (1 /)flWr(1-r-t) or+s" "t%,x-t)dt
--1

(A.18)
=--sinra2r+,F(r a)F(a+s+ 1) F -r-s u" a+ l-r

rr F(r+s+l) 2

where r and s are integers, fl + r> 1, a + s> 1, a + fl<0 (hence r+ s_> 1), a 4:
integer, v a + fl + ( <x< 1).

We note that in case r+ s 1, the right-hand side of (A. 18) vanishes (- <x< 1).
Now

(A.19) r(n+a+ 1) F(-n,a+b+n+ 1" a+ 1"
1--x tn!r(a+ 1) 2 !

and

(A.20)

Hence,

(A.21)

ql" r+lr(r-lr( +a-r)- sinr(r-a) =(- 1) sincra

fl (l__t)O+r(l+t)a+Ska,o(x__t)dt__(__lr2r+sp(,_r,O_S)(x) (--l<x<l)] r+s
--1

where r and s are integers,/3 + r> 1, a + s> 1, a +/3<0 (hence r+ s _> 1), P(_ 0,
a integer. Now in case a is an integer, we have from (A.7)

a+s(1--t)#+(1 +t) k.,#(x-t)dt
--1

(A.22) sin fl(1- x)-"2"+ r( + r+ 1)F(1-v)
F(r-a+ 1)

F(--s,B+r+l;r--+l; l-x)2 (-<x<

where r, s, and are integers, B+ r> 1, + s 0, + B<0 (hence r+ s 0), + B
+ 1. Since r>-l-B, and +B<0, it follows from the fact that r and are integers
that r-0. So the expression on the rit in (A.22) is a polynoal of degree (r+ s)
in x. From (A. 19) we have

(A.) f(--s B+r+ 1" r-+ 1" l-x}_ (+s)r(r-+ 1)};,,_S(x ); (+
Then we can write (A.22) as

(1.24) 1 (l )B+r(1 +l)+Sk,B(x_)d
-1

2 sin.. a+r(B+r+ ) F(1-)(+s)(r+s)
--l<x<l,

with the conditions in (A.22). Now if r=, we have

sinBr(B+ r+ )r(1 )- sin(- lr()r( -(-.
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So (A.21) is valid for a r. In case r-a >_ 1 (r and a integers), we have (cf. Szegi3 [3, his
formula (4.22.2)])

r(r+fl+l) (x-1)r-,, (r+s)!(A.25) I( a q- fl -+- 1) 2 P(ar+-sa’fl-s)( x ) ( s -- a) Pr(--s-r’fl-s)( x ).

We find then that (A.23) agrees with (A.21) when a is an integer. Therefore:

(A.26) Equation (A.21) is valid with the condition (a =/= integer) removed.

Now, if in (A.21) we replace fl by (fl-m) and r by (r+m), where rn is an integer,
using the fact (cf. (2.25)) ka,#_m(X)=xrnk,a(x), we obtain

(A.27) fl (l__t)#+r(l_k_t)a+s(x__t)mka,fl(x__t)d
-1

=(- 1)r+m2r+s+mp(a,b) [rn+r+s,X)
whr r, sand m are integers,/+r>-1, +s>-1, +/<m (hnce m+r+s>-1),
P’ =0, a--r-m, b-/-s-m. Now if in (A.27) w suppose that

/+r>n-1, +s>n-1,

whre n is some nonngatiw integer, w can apply (A.3) and (A.4) together with

(A.28) ( d_x Pk(a’b)(x ) g--n( a-’l- b-l" k-’l- ) p(a+n,b+n)(k_n X)

to obtain

(-2)"n!f’ (1--t)c(1 +t)dpc’d)(t)(x--t)mk,,/(x--t)dt
(A.29)

----(--1)r+m2r+s+m--n(at-- l--m) P(P’q)m+r+s- n(x ) (-- <x< 1)

where c=+r-n> l, d=a+s-n> 1, p=a-r-m+n, q---s-m+n,
m, and r,s,m,n are integers (n_>0) (hence m+r+s-n>_n-1) and P--0. Finally,
replacing r by (r+ n) and s by (s+ n), we have

fl (l__t)B+r(1 +t)a+Sp(nB+r,a+s)(t)(x__t)mka,#(x__t)d
--1

(A.30)
__(__ 1)m+r2m+r+ (a-b[-+- 1--m)n (a.,t.)(X) (-- <x< 1)

where/3+r>-l, a+s>-l, a+/3<m, n*=m+r+s+n, a*--a-m-r,
-s, and r,s,m,n are integers (n_>0) (hence n*>_n- 1) and P=0.
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6-FRACTION EXPANSIONS OF ANALYTIC FUNCTIONS*

L. J. LANGE

Abstract. In this paper a i-fraction is defined to be a finite or infinite continued fraction K of the form
1- bo-ioZ + [ -l(dnz/(1-8,z)), where bo,d,,C (complex numbers), d, :/:0, and 8 is either 0 or for
each n. is said - be regular if d,+= for each k such that i,-- 1. An extensive investigation of these
8-fractions is made from the points of view of their correspondence to power series, their convergence
properties and their capacity to represent analytic functions. Five basic theorems are given dealing with the
correspondence between 8-fractions and power series of the form L0-1 + ClZ+ C2Z2-t It is shown, for
example, that (a) there is a unique regular 8-fraction corresponding to each power series L0, and (b) L0

represents a rational function in a neighborhood of z-0, if and only if, its corresponding 8-fraction
terminates. Seven convergence theorems involving &fractions are given. The first such theorem, which ties in
Poincare’s theorem on finite difference equations with continued fractions, gives information on the conver-
gence behavior of the sequence (Bn(z)/B,,_(z)} of ratios of approximant denominators of when both
sequences {d,,) and {8) converge. Three of the convergence theorems are concerned with what are called
(p, q) limit periodic i-fractions of types (1,1) (1,2) and (2,1). Many explicit 8-fraction expansions are given for
a variety of classical analytic functions and asymptotic series, along with considerable information about the
regions of validity of these representations. For example, it is shown that

z z z/3 z/3 z/5 z/5 z/7 z/7 z/9tan z
l--z+l+ 1- + + 1- +""

is valid for all z 12. A method of successive extensions is used in obtaining these expansions, and Poincar6’s
theorem plays an important role in establishing the regions of validity.

Introduction. By a i-fraction we mean a finite or infinite continued fraction of the
form

dlZ d2z d3z(1.1) bo-oZ+1-1z+ 1-62z+ 1-3z+’’’’

where b0 and the d are complex constants, dn:/:0 for n_>l, and the 6 are real
constants restricted to the values 0 or 1. We adopt the convention that the -fraction
(1.1), and all of its approximants, have value b0 at z: 0. We say that the -fraction (1.1)
is regular if d+= for each k such that i-- 1. We choose the name i-fraction for the
continued fraction (1.1) because of the binary "impulse" nature of the sequence (n)
and the analogies, therefore, with the i ’s in the Dirac delta function and the Kronecker
delta symbol. We are led to this investigation of i-fractions, and their connections with
analytic functions, in our quest to find an answer to the following question: Is there a
class @ of "simple" continued fractions

a (z) a (z)
(1.2) bo(z)+b(z) + b2(z ) + b3(z ) +""

having the following desirable properties?
(a) The elements an(z) and bn(z) are polynomials in z of degree _< 1.
(b) (R) contains the class of regular C-fractions

C1Z C2Z C3Zc+---+ + + .... c,,C, Cn:/:Oifn>_l.
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(c) Given a power series

Loco+lZ+C2Z2q-c3z3-+ ..., cnC Co=/=O
there exists a unique member K 0

(R) such that K 0 corresponds to L0, i.e., the Mac-
laurin series of the n th approximant of K 0 agrees termwise with L0 up to and including
the term C,n)Z), where k(n)-o

(d) If L0 represents a rational function in a neighborhood of z=0, then its
corresponding K 0

(R) terminates.
(e) Let us say that K (R) corresponds to a function f(z), analytic at z =0, if K

corresponds to the Maclaurin series of f. Then for many classical functions, analytic in
a neighborhood of the origin, explicit and useful formulas can be obtained for the
elements a(z) and b(z) of the continued fractions in (R) corresponding to these
functions.

(f) Much information can be given about the convergence of the continued frac-
tions in (R) that correspond to functions which are analytic at the origin.

(g) In many cases, at least "some" of the approximants of the continued fraction
K (R) corresponding to a power series L0 are in the Pad table for Lo.

The C-fractions of Leighton and Scott [13], the T-fractions of Thron [26], and the
P-fractions of Magnus [14], [15] all essentially meet requirement (c), but each of these
classes fails to meet one or more of the remaining requirements. The C-fractions in
general do not meet requirement (a), and the regular C-fractions above do not meet
requirement (c). For example, it is known that there is no regular C-fraction corre-
sponding to + z. The T-fractions essentially meet requirements (a) and (f), in addi-
tion to (c), but they do not meet (b), (d) and (g). The P-fractions have a close
connection with the Pad table of a given power series L0, but they fail to meet
requirements (a) and (b), among others. The class of general T-fractions, studied by
Waadeland [31], [32] and others, essentially contains our class of 8-fractions, but, to
date, this general class has been studied more from the interpolation point of view, i.e.,
more from the point of view of their connections with two-point Pad tables for
meromorphic functions. Closely related to the general T-fractions are the M-fractions
studied by a number of authors [2], [17], [18]. For thorough treatments of the subject of
correspondence and the properties of many kinds of corresponding continued fractions,
including the ones just mentioned, we refer the reader to the excellent, new and
up-to-date book on continued fractions by Jones and Thron [9].

We offer the class of regular i-fractions as our candidate for an answer to the
question posed above. It is easily seen that these continued fractions satisfy (a) and (b).
In 2 we give five basic theorems dealing with the correspondence between 8-fractions
and power series. It follows from Theorems 2.1 and 2.4, respectively, that requirements
(c) and (d) are satisfied if (R) denotes the class of regular 8-fractions. The proof of
Theorem 2.4 turns out to be considerably more complicated than the proof given by
Perron [21, p. 111] of the corresponding result for C-fractions. To further illustrate
property (d), we offer the following three examples of unique finite regular 8-fraction
expansions of rational functions:

(1.3) l/z

(1.4) l+z

(1.5) 1-+-z

z z z2-(1- z) +T_T+T
Z Z Z Z Z Z3--(1-z)+
z z z z z z z z4= (1--z)-k-(l-z) + (l-z)/ 1-14- + (l-z)+ 1-1"
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In 3 we hope we meet requirement (f) with our 6-fractions by offering seven
convergence theorems involving these continued fractions. Using Poincar’s theorem on
linear homogeneous difference equations, a version of which we state in Theorem A, we
are able to say quite a bit in Theorem 3.1 about the convergence behavior of
(Bn(Z)/Bn_l(Z)). Here Bn(z ) denotes the nth denominator of (1.1). Theorem 3.3
essentially states that the 8-fraction (1.1) with b0-- converges to an analytic function
in a neighborhood of z--0, if the sequence {dn} is bounded. It follows from Theorem
3.4 that the i-fraction (1.1) converges to a meromorphic function in the unit disk Iz.l < 1,
provided only that lim,_. d,=0. In [}3 we also introduce the concept of a (p,q) limit
periodic 8-fraction. Theorems 3.5, 3.6 and 3.7 are very useful convergence theorems for
limit periodic 8-fractions of types (1,1), (1,2) and (2,1), respectively. We found Theorem
3.5 to be particularly applicable in [}4. The various techniques used in the proofs of
these convergence theorems can be used to obtain further results of this type. For other
recent results involving limit periodic continued fractions, we refer the reader to the
work of Thron and Waadeland [27], [28], [29] and to the work of Gill [6], [7].

In [}4, we demonstrate that the regular 8-fractions meet requirement (e) by the
many examples we give of such continued fraction expansions of classical analytic
functions. We use a method of repeated extensions along with frequent equivalence
transformations to derive many of these expansions. We display several techniques for
establishing the validity of these representations. A powerful new technique, based on
Poincarr’s theorem, allows us in many cases, to establish convergence of a i-fraction
over the whole complex plane (except for poles and cuts) to the analytic function to
which it corresponds. Our examples also demonstrate that (p,q) limit periodic be-
havior is quite common in the expansions of classical functions. It is surprising to this
investigator that, in all of the regular i-fraction expansions given in 4, the i, in the
partial denominators of these expansions are 0 for n_>2. We remark in passing that,
gathered in the proofs of the theorems of [}4, are a large part of the known continued
fraction representations of various types for classical functions, analytic at the origin.
Also relevant is a paper of Hayden [8] giving other results dealing with continued
fraction approximations to functions.

Finally, we assert that the regular -fractions meet the remaining requirement (g),
not yet considered. However, the only justification for this assertion that we give is to
point out the following: The class of regular 8-fractions contains the class of regular
C-fractions, and the latter have known connections with the Pad6 table (see [9, p. 190]).

We refer the reader to Jones and Thron [9, Chapt. 2] for the basic definitions,
formulas and properties of continued fractions that are employed in this paper. Other
valuable reference books on the subject of continued fractions are those by Perron [21]
and Wall [33].

2. Correspondence. We follow the work of Jones and Thron [10], or [9, 5.1] on
sequences of meromorphic functions corresponding to a formal Laurent series, in
introducing the basic definitions and notation for this section. We call

L cmzm -+- Cm+ Zrn+ "+- Cm+2Zm+ 2 -t Cm::fi:O m_>0,

where the cm are complex numbers, a formal power series (fps). L=0 is also called a
(fps). We define a function 2 on the family of all such power series L as follows:

,(L): ifL:O, X(L):m ifL==O.

If f(z) is a function analytic at the origin (i.e., analytic in an open disk containing
z--0), then its Taylor series expansion about z--0 will be denoted by L(f). A sequence
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(Rn(z)} of functions, where each Rn(z ) is analytic at the origin, will be said to
correspond to a (fps) L at z--0 if

lim (L-L(R,))=c.

If (Rn(z)) corresponds to a (fps) L then the order of correspondence v of Rn(z ) is
defined by

pn= k(L-L(Rn)).
Thus if (Rn(z)) corresponds to L, then L and L (Rn) agree term-by-term up to and
including the term z.- . Finally, a continued fraction

bo(z)+ K
n:l bn(2 )

is said to correspond to a (fps) L if its sequence of approximants corresponds to L.
THEOREM 2.1. For every formalpower series

Lo + cz+ C222 -[-

there exists a uniquely determined regular &fraction

dlZ d2zK=1-0z+1-iz + 1-i2z +
such that K corresponds to Lo.

Proof. We define a sequence {Ln} of power series each with constant term as
follows: If L0 1, choose L and define the &fraction K by K 1. If L0 and
c =/=0, choose i0--0 and d =c. If L0 and c --0, choose 8 and d 1. Then

Lo- 1-8oz+dzL), where L’- +c’z+c’z2+ ...,
and we define

L L---o- + c,z + c1,2 Z2 -[- c1,3 Z3 --[-

If Lo,L,...,L are defined and have constant term 1, then we define Ln+ in the
following manner: If Ln 1, choose Ln+ 1. If Ln and

Ln= + Cn,lZ + Cn,2 Z2--[-

choose n 0 and dn+ Cn,l if Cn, =:/fi: O. Otherwise, if Cn, O, define

8n=l and dn+=l.
Then, if L 1, we have

L,- -8,z + dn+ zL*
In this case, we define

, , 2whereLn* l+cn, z + cn,z z +’".

+ Cn+ 1,1 z ’{- Cn+ 1,2 z2 -Ln+ L,

Hence, it follows by induction that L is defined for all n_>0. It is easy to see that if
Ln for some n then Le for all k>_n. If this should happen, let rn be the least
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value of n such that L =-- 1. Then we have

L(dk+lZ)
O<_k<_m-1,Lk--L(1--kZ)+ Lk+l

where dk+l-- if 8k 1.
If we set ak(z)=dkzvaO and bk(z)-- 1--8kz, then it follows from [10, Thm. 2] that

Lo-L(1-oz+
and K corresponds to Lo if

dlZ dm-lZ dm2
1-1lz +’"+ 1--m_lZ--

dlz dm_l z dmzK- 1-8oZ+ 1_81+...+ l__Sm_l z +--i"-
In the remaining case, where L for all n, we have shown that there exist sequences
(i5 } and (d}, where dk O, 15k 0 or 1, and dk+ if 15 such that

L(dk+lz)
k_O.Lk L(1--6kZ)+

Lk+l
Again, if we set ak(z)=dkz and bk(z)= 1--Skz, it follows from [9, Thm. 2] that K
corresponds to Lo, where

dlZ d2zK= 1-8oZ+1-Slz+ 1-82z+’’’"
With this our proof is complete.

THEOREM 2.2. Each finite -fraction
dlZ dn_l z dnzKn=1-oZ+1-Slz + ""’+ 1--Sn_lZ .Af_

and each infinite -fraction
dlZ d2zK ioZ+1-lz + 1-2z +’’"

corresponds to a uniquely determinedpower series

Lo + ClZ + C2 Z2 .qt_

The order of correspondence vk of Ko is k+ 1, and Vk of [ is k+ if 0 <--k< n and o if
k>_n.

Proof. Let the sequences {Rn(Z) } and {Sn(z)} of functions, analytic at the origin,
be defined by

_A*n(Z)Rn(z)--An(z) O<k<n )----(z)Bn(z )
n>0 Sk(z ) A(z) Sk(z k>n

where A.(z)/B.(z) is the nth approximant of K and A*k(Z)/B(z ) is the kth ap-
proximant of K,. Since

Rn+,(z)-Rn(z)=

and Bn(O =-- 1, it follows that

(- 1)"did2... dn+l Zn+l
Z )t n+ l( Z )

Un--,(L(Rn+l)-L(R.))--n+ 1- o
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monotonically as n . Also

k d k+l(--1) dd2" k+Z

0 if k>_n.

Hence, in this case,

{k+l ifk<n,
lk--(L(Sk+ l) --L( gk)) if k>_n,

and again limk_o v- . Thus we have met the requirements of [10, Thm. 1] and our
theorem follows immediately from this result.

TrIOM 2.3. (A) Two regular infinite 8-fractions

--o+K and -+= 1- = 1-
correspond to the same power series

Lo= +Cl+C+
ifand only if

-’, k>_O, d-d, k>_l.

(B) A regular infinite -fraction K* and a regular finite -fraction
dl2 dn-lZ dnz,,= -o +1-+’"+ 1-,_z +

correspond to the same power series Lo ifand only if-, O<_k<_n-1, -1, k>_n,

d-d, <_k<_n, d- l, k>_n+ l.

(C) A regular finite -fraction K, and a regular finite -fraction

1-+’"+ 1-*_1z+
correspond to the same power series Lo if and only if

n-m, -, O<_k<__n- 1, d-d’, <_k<_n.

* _>0 denoteProof. We prove part (A) first. Let A,,()/B() and A/B () for all n
the n th approximants of N and N*, respectively. Suppose K and K* correspond to the
same power series L0. Then 0 , for if not, consider

A A dlz d’z
B B’ 1-1z 1-1z

By Theorem 2.2, (Lo L(A1/BI )) .(Lo L(A’/B’)) 2. Hence

d +8’-8o- d’-0.
Since 8-8oV0, either/’- and o-0 or 8o- and id’-0. But then either d-0 or
d’-0; neither of which can happen. If K and K* still are not identical, let , be the
smallest value of n for which one of the conditions

dnd*n n*n
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is satisfied. From the fundamental formulas we obtain

and

A Av_ (-- 1)V-ldld2..-dv_d,z"

Since dk d, $k 8c, Ak--Ak, Bk* Bk,* k<_ v 1, it follows that

A B.A* ( -1) d d2 d z ( dBv B*d )
=(--1)"-’d,d2... d,,_,(d,,-d* )z"+

From Theorem 2.2 we have that the order of correspondence is v + for both Av/B.
*and A./B Therefore it follows from the last equation that

and

(-- 1)V-ldld2 dv_ld,,zv+l

With the aid of this result we obtain

By+ B_t_ By+ ;--O O* B* B_t_

(-1)Vdl" dv+lzV+lov+lOv At- ( Avov A ) -1-
(-- 1) "+ ldl- d.d.*+ zv+I

B-t- By*

-(-1)(d,... dv)(dv+l-v+*-dv*+l)zV+l +

Again, since L(Av+l/Bv+) and L(A*v+t/Bv*+l ) agree in powers of z up through
2+ it follows that

dv+ v+ v* dv*+

By an argument similar to the one used to show 60-8’, it follows that 8,-8* and
d,+ d*+ . Thus we have shown that d- d* and v- 8*, contradicting our assump-
tion that at least one of these equations fails to hold. Hence, if K and K* correspond to
the same L0, they must be identical and our proof of part (A) is complete.

To prove part (B) it is sufficient to prove that K* corresponds to L0-L(K n), for
then by part (A) any other infinite i-fraction corresponding to L0 is identical to K*.
Let Ag/B,, O<_k<_n, denote the kth approximant of K n. Then Ak/Bk=A/B.,
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0_< k_< n 1. With the aid of the fundamental formulas [21, p. 1], it is easily verified
that

A,+m__A,+(Pm/Qm)A,-
B*,+m B,+(P,,/Qm)B.-,

where A,/B,- K, and Pm/Qm is the rn th approximant of

--z--
1-z+l-z+l-z+

Since Po--z, P-z2 and Pm--Pm_(1--Z)+ZPm_2 for m_>2, it follows by induction
that

m>_O.

It is also easy to see that Qm(O)- for all m_>0. Now

A*,+m ___A, A,+(Pm/Qm)A, A,
B*

Hence

Pm(-1)ndl...dnzn
Qm( Bn-- Pm/Qm)Bn- l)

=(-1)n+m+dl...d,zn+m+l + ....

X[L(A*+m/B*+,)-Lo]-n+m+ - asm o.

This, coupled with the fact that

Ak

guarantees that K* corresponds to Lo.

-c, O<_k<_n-1,

With the aid of parts (A) and (B), we are now in a position to prove part (C). By
part (B)

K*- 1-8z+dtz d*.._z d*..z z z

1-6z +’"+ 1--*m_Z + l--Z+ l--Z+ l--Z+""

corresponds to L(K*) and

dz dn_iz dnz z zK= 1-8oZ+1-lz+’’’+ 1-1._lZ+l-z+l-z+l-z+""

corresponds to L(K,). Since we have assumed that L(K*m)-L(K,)-Lo, it follows
from part (A) that K is identical to K* and therefore our assertion in part (C) is true.

THEOREM 2.4. A power series

Lo- + c1z qt_ c222 _[.....

is the Taylor series about the origin of a rationalfunction
+az+ +a.zR(Z)-
+b,z+ +bzm
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if and only if there exists a finite regular 6-fraction
dlZ dn_lz dnzK= 1-80z+1-81z+’’’+ 1-8._1z+

such that K corresponds to Lo.
Proof. Let the degree of any polynomial P(z) be denoted by/;. We shall prove the

above theorem by mathematical induction, where our n th induction statement is that
all rational functions of the form P(z)/Q(z), where P(0)-Q(0)- and max(/;, 0)-n,
have a 8-fraction expansion of the type asserted in the theorem. If n--0, then
P(z)/Q(z)--1 and we have only to choose K= 1. If n-1, then we have only to
consider the three types of rational functions R l(z) + az, R2(z) 1/(1 + bz), or
R3(z) (1 + az)/(1 + bz), where a 4: 0, b 4: 0. The desired 8-fraction expansions for R
and R 2 are clearly

az bz bz
+-]- and --]- +-]--,

respectively. If a--b in R 3, choose K--1; otherwise, the desired expansion for R is
easily seen to be

+ (a-b)z bz
+1"

Now assume that our theorem is true for all rational functions R(z)-P(z)/Q(z)
satisfying P(0)-Q(0)-I and max(/,)-k for some k, O<_k<_n. Let Ro(z)-
Po(z)/Qo(Z) be an arbitrary rational function satisfying P0(0)-Q0(0)-I and
max(Po, Qo)-n+ 1. To complete our proof we shall show that either Ro(z)- 1, in
which case we choose K- 1, or Ro(Z) can be expressed in one of the following six
forms in a neighborhood of z-0:

dlZ(a) Ro(z)- +R,(z----
dz d2z(b) Ro(z)--1++ RI(Z

z z z dz(c) R0(z)-(l-z)+l-z+"’+ l-z+l+Rl(Z )’
a-2 terms

dlZ z z z dzz(d) R0(z)-- +l-z+ l-z+’"+ 1-z + + R(z)
a2-2 terms

z z z dlZ dzz(e) Ro(z)-(1--z)+l-z+’"+ 1-z + + + R(z)
a-2 terms

z z z dlZ z z z dzz(f) Ro(z)-(1-z)+ l-z+’"+ 1-z+l+l--z l-z+’"+ 1--z+l+Rl(Z)’
a-2 terms a2-2 terms

where d 4:0, d2v0 are complex numbers, a>_2, a22 are positive integers, and
Rl(z)--Pl(z)/Ql(Z ), where Pl(0)-- QI(0)- and max(Pl, Q1)<_n.

We introduce a formula that we shall need in the course of our proof. If

(2.1) r(z)- + az----
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where a q:0, a is an integer _>2, and H(z) is a rational function satisfying H(0)-1,
then in a neighborhood of z-0 it is easy to see that

z az(2.2t F(z)-(1-z)+--(_az,_, +H(z)
Now let

Po( z)
Ro(Zl-Qo(z )

If Ro 1, then

Po(0) Qo(0) 1, max(/o, 0o) n + 1.

alza._.__.R(z)- 1-
R,(z)’

where alva0, a is a positive integer and R(z)=Qo(z)/Q(z), Q(0)=I and
alZ’Q(z)-Po(z)-Qo(Z). We note that

Ol--<max(/;o-a,, Oo-a,)_<max(/;o 1, 0o-1)_<n.
Suppose a- 1. Then if max (0o, Ol) -<n, Ro(z) is in the form (a). Otherwise, suppose
max(Q, Q) n + 1; then

alz a2 za2Ro(Z)- 1-+
1+ R2(z )

where a2=/=0, a2 is a positive integer and R2(z)=Ql(z)/Pl(Z ), where azzaZPl(Z)--
Qo(z)-Q(z) and Pl(0) 1. We have

/61 <--max(00-- a2,01 a2 ) --< max(00 a2,/60-- al a2) _<n.

Thus Ro(z ) is of the form (b) if a_ 1. If a> 1, then by repeated use of (2.1) and (2.2)
we can write

alz z z z (1)a2-1
a2zRo(z)=l+l-z+ l-z+’"+ 1-z + +Hz(z)+R(z )

a2-2 terms

where

We write

a2--1
O2(z)-- E (--11k+lZa2-k

k--I

Hz(z) + Rz(z)-R3(z),
where R3(z) Pz(z)/Pl(Z) with Pz(z ) Q(z) +P(z)Hz(z ). We note that P(0)
and

/;2<max(0,, if, +a2- 1)_<max(0o,/o) l_<n.

Hence in this case Ro(z) is of the form (d).
Now suppose a > 1. Then by repeated application of (2.1) and (2.2) we obtain

z z z ( 1) a’-I alz
+_...+ + +
a-2 terms
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where

al--1
HI(Z)- E (1)g+ -kZOO|

k=l

We set Hi(z) / RA(z)-R4(z ) Q2(z)/Ql(Z), where Q2(Z)-- Qo(z)+ l(Z)H(z). Also,
Q2(0)- and Qzmax(Qo, Q+a- 1)max(Qo,Po- 1). If max(Qo, Q)n, then
Ro(z) is of the form (c). Otherwise,

z z z (1)"’-I
al Z a3 Za3o(Z)- l-z+ l-z+’"+ 1--z+l+ +Rs(z )’

-2 terms

where Rs(z)-Ql(z)/P3(z ), a3z"3P3(z)-Q2(z)-Ql(Z), P3(0)-1, a3@0 a is a posi-
tive integer and

/3-< max(02-a3, 1-a3)-<max(0o-a3,/3o-

If a 1, Ro(Z ) is of the form (e). If a3> 1, then

Ro(z)-l-z/
z z z

l--z+"’+ 1--z +1+

al-2 terms

where

( 1) |-1 alz

z z z (1)3-’
a3z

,I--z+’"+ 1-z+l+H3(z)+Rs(z)’
a3-2 terms

Ot

g3(z)-- E (--1) k+l
k-1

Now H3(z)-P3(z)/Q3(z ) with a3za3Q3(z)- Ql(z)-P3(z), Q3(o)- 1, and

O3_<max(0- a3,/3-a3) _< max(Oo,/So) l_<n.

Hence Ro(z ) is of the form (f). Since we have now covered all cases our proof is
complete.

THEOREM 2.5. A regular infinite &fraction

K- 1-oZ+ K
n= i""--nZ

corresponds to the Taylor series expansion about z 0 of a rationalfunction
/alz+ +a.z"R(z)-

l+blz+ /bmz

if and only if there exists an integer N>_0 such that n if n >--N and d, if n >_N+ 1.
Proof. By Theorem 2.4 there exists a finite &fraction

dlZ dn_l Z dnzK,-1-6oZ+1-lz +’"+ 1-._lz +
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such that K, corresponds to L(R(z)). Then by part (B) of Theorem 2.3, the infinite
-fraction

K- 1-6oZ+dz
dn_lZ dnz z z

1-8z +’"+ 1-3,_z + l-z+ l-z+ l-z+""

also corresponds to L(R(z)). By part (A) of the Theorem 2.3 any other infinite
6-fraction corresponding to L(R(z)) must be identical to K, so we have our desired
result.

3. Convergence. We shall need the following theorem, a version of which was first
given by Poincar6 [25] in 1885.

THEOREM A (Poincar6). For n-1,2, 3,..., let D be a nontrivial solution of the
homogeneous linear difference equation

(3.1) Dn-bnDn_l+anDn_2,
where

lim a,- a, lim b,- b.

Let the roots x and x2 of the characteristic equation

(3.2) x2-bx-a-O
satisfy

(3.3)
Then

where xk is one of the roots of (3.2).
To fix the ideas of his method of proof Poincar6 sketched the proof of a similar

result for third order linear difference equations. Perron [22], [23], [24] gave extensions
of Poincar6’s theorem and proofs for the general n th order case through three separate
papers, the first two of which appeared in 1909 and the last in 1921. Treatments in
English of the theorems of Poincar6 and Perron on finite differences may be found in
the books of Gel’fond [5] and Milne-Thomson [19] on the calculus of finite differences.

An immediate application of the Poincar6 theorem to the theory of i%fractions is
the following result:

THEOREM 3.1. Let

(3.4) bo-8oz + K
n= -,z

be a -fraction satisfying

(3.5)

Let

lim dn- d, lim 8,-0.

Rd- -.t>_ ifdvO, Rd--C ifd-O.

For z Ra let v/zd+ 1//4 denote the square root with positive real part.
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(A) If zRd and if Bn(z denotes the nth denominator of (3.4), then

gn(Z)
lim

B, (z)
where x( z ) is one of the two values

2-

(B) If condition (3.5) is replaced by
0

(3.6) lim a,-d=/=O, ]an-al<_---, 8nO, n>_ l,
n.-+ oo

and if z H(O,M,d), where 0<0< 1, M>0 and

H( O M, d ) {z [z[- z + ----d <-
O } { z [zl<--M }

then

(3.7)

(C) Finally, if

and if Izl <_ M, then

B(z) 1lim Bn_l(Z)----k- zd+-.

lim dn- 0, Idnl<- 4M’ n 0, n >

Proof. The nth denominator B, of (3.4) satisfies the recurrence relation

Bn- (1- tnZ )Bn_ + ZdnBn_2

Since lim._o(1-nz)= and lim._ o d,,z=zd, it follows from Poincar6’s theorem that
(h.(z)}, where h.(z) B,,(z)/B,,_ (z), converges to one of the two roots of the quadratic
equation

(3.8) x2-x-zd--O,
provided these roots have unequal moduli. It is easily seen that this is the case if and
only if z R d. Hence (A) is true.

To aid in verifying (B) we set the roots of (3.8) equal to X l(Z) and x2(z) where

zd+- and (z( ) d+

We have that Ix(z)l>lx2(z)[ for all 7.Rd and therefore for all zH(O,M,d), since
H(0, M, d)cRd. The latter inclusion is easily verified after observing that the boundary
of H(O,M,d) consists of an arc of a circle and an arc of a hyperbola whose axis
contains the cut omitted from Rd. Thus it follows from part (A) that h(z)xl(z) or
h,(z) x2(z) as n o. Under the additional assumptions in (B), we shall show that
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limn_oh,(z)=x(z ) by showing that (hn(z)} cannot converge to x2(z ). In fact we
shall show by induction on n that Ih,(z) Xz(Z)] _> D(z)/2, where

D( z )= IXl(z)]-Ix2(z) [> 0.

Since, Bo(z) B( z ) 1, we have

D(z)Ih ,( z ) x( )1= I ( )[-Ix,( ) >.---.
Furthermore,

4 -- x+zd+-
and it follows from the assumptions of part (B) that

DZ(z)
for all n_> 1.

Now assume {h,(z) Xz(Z)l ->D(z)/2 for some n. Then

dn+ Z[.+,(z)-(z)l= 1-x(z)+.(z )

x(z)+ d"+zh.(z)

Ih.(z)-xz(z)[/ IXz(Z)l
Ix,(z)lD(z)/2--DZ(z)/4_D(z)

D(z)/Z+[xz(z)[ 2

and our induction argument is complete.
Part (C) is proved in a similar manner. We first note that x(z)= and Xz(Z)= 0

in this case. Via Poincar6 (Theorem A) it is true that h,(z) 0 or h,(z) as n .
We shall show that [h,(z)[ for all n 1, so that h, 1. Here

and, assuming Ih,(z)[ ,
d,, 1- 1-2d lzl> -2+,

This completes the proof of the theorem.
The following theorem is an adaptation to -fractions of some convergence results

given by Jones and Thron [10] dealing with sequences of meromorphic functions.
TheOReM 3.2. Let the infinite &fraction

dlZ dzzK=1-0z+1-6z + 1-62z +
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correspond to the power series

Lo + cz+ c2z2 _]L_

Let D be a domain containing a neighborhood of the origin. Then:
(A) K converges uniformly on every compact subset ofD if and only if its sequence of

approximants {An(z)/Bn(z)} is uniformly bounded on every compact subset of D.
(B) If K converges uniformly on every compact subset of D, then f(z)=

lim,_A,(z)/B,(z) is analytic in D and Lo is the Taylor series expansion off(z) about
.---’0o

(C) Two infinite subsequences of approximants of K which converge uniformly on
every compact subset ofD converge to the same analytic function in D.

Proof. Parts (A) and (B) follow immediately from [10, Thm 4’]. Part (C) may be
established as follows: Let (f,,(z)) and (f,,(z)) be two subsequences of approximants
of K which converge uniformly on every compact subset of D. Since each of these
subsequences corresponds to L0, it follows from [10, Thm. 4’] that limk_ofn(Z)= Fn(z )
and limk_of,,(z)--F,,(z), where F,(z) and Fm(z ) are analytic in D and have the
property that L0 is the Taylor expansion of each about the origin. Since D is a domain,
it follows from the identity theorem for analytic functions that Fn(z)= Fm(z ) for all z
in D.

The next theorem shows that a 6-fraction converges uniformly in a neighborhood
of the origin to an analytic function if (i,) is an arbitrary sequence of zeros and ones,
provided only that the sequence {d,} is bounded.

THEOREM 3.3. If the coefficients d of the infinite i-fraction

satisfy the inequality

K- 1-80z+ K
n--1 ’"1 --n Z

O<[dnlM,

then K converges uniformly in the disk Izl_<(v/1 +M+)-2 to a function f(z) which is

analytic in the interior of this disk.
Proof. With the aid of an equivalence transformation, K can be written in the form

K- 1-8oZ+ K
n--1

where for each n, E,(z) is one of the three functions
Z Z

Z

provided z # 1. If Izl r, 0 < r< 1, then

(l_z)2

from which we also derive

Izl

Izl Izl 
1-Izl

r
_< and

(1--r)2

since I1 z > -Izl.

r

(1-r)2

(1--r)2
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We impose the further restriction on r that it satisfy the equation

r

(l_r)2 aM"

We solve this equation for the value of r in the interval 0<r< to obtain

r-(I+M+v) -:z.
By the convergence neighborhood theorem in Jones and Thron [9, p. 108], Perron [21,
Satz. 2.25, p. 64] withp2=--2 or by Wall [33, Thm. 10.1, p. 42], K converges uniformly if
IdnEn(z)l <- 1/4. Since the latter inequality is satisfied whenever Idol-<M and Izl _<(/1 /M
+vr)-2, the uniform convergence is established. It is clear, therefore, that K con-
verges uniformly on every compact subset of Izl<(v’l /M/vr)-=. It follows from
part (B) of Theorem 3.2 that f(z) is analytic in this disk, and our proof is complete.

By further restricting the sequence (dn) in Theorem 3.3 we can say the following:
THEOREM 3.4. Let K oz + K

__
(dnz/(1 nz )) be a 8-fraction such that

lim d,-0.
n oo

Then K converges to a function f(z) which is both meromorphic in the open unit disk
D(0, 1)-{z, Izl <1} and analytic at z-O. The convergence is uniform on every compact
subset ofD(O, 1) which contains no poles off(z).

Proof. By an equivalence transformation K can be put into the form

where

K- 1-0z+
dz/(1 -z) n=2(En(7)/1 )

+

dnz n>_2.En(Z)--(I--n_IZ)(1--nZ)
Clearly, each E,(z) is analytic if Izl < 1. It is also easy to see that for each M satisfying
0<M< there exists an nM such that IEn(z)[-< 1/4 for all n _> nM and Iz[ _< M. Thus, by
the convergence neighborhood theorem referenced in the proof of The6rem 3.3, a tail

of K converges uniformly to a function F() on II_<M if m>_n. By Theorem 3.2,
F(z) is analytic in the disk <M and F(0)= 0. The remainder of the proof will not be
given here since, after making the above observations, it is very similar to the proof
suggested by Jones and Thron for [9, Thm. 7.23, p. 275].

The remaining theorems in this section deal with the convergence of &fractions
having certain convergence criteria imposed on the sequences {d} and { }. As part of
this investigation we introduce the following definition. We shall say that a -fraction

bo-oZ+ K, 1- 8,, z

is (p,q) limit periodic if there exist positive integers p and q such that

lim dpv+k--Dk, k-0, 1,. .,p-
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and

lim qu+m--’mm, m--0, 1,. .,q-- 1,
P--> O0

where each A, is 0 or and the D are numbers in the extended complex plane. Thus,
in this setting, limit periodic regular C-fractions are in the class of (1, 1) limit periodic
i-fractions. It is not our intention in this paper to make a complete study of the
convergence behavior of (p,q) limit periodic -fractions. However, as part of an
introductory investigation illustrating some techniques that might be employed in a
more complete study, we give in Theorems 3.5, 3.6 and 3.7 useful convergence criteria
for the (1, 1), (1,2) and (2, 1) cases, respectively. Before we state these theorems, it will
be convenient for us throughout the remainder of this paper to introduce here the
symbol R[ ct] for the ray from ct to o in the direction of ct defined by

(3.9) R[a]:(at:t>_l), a=/=O, aC.

We note here also that in the next section we will give many examples of (p, q) limit
periodic ;-fraction expansions for analytic functions.

THEORE 3.5. Let K oz + K=(d,z/(1 8,z )) be a 8-fraction satisfying

lim d,= d, lim , =,,
where d is a complex constant and i is either 0 or 1.

(A) If d= --O, then K converges to a function f(z) which is both meromorphic in the
complex plane C and analytic at z--0. The convergence is uniform on every compact
subset ofC which contains no poles off(z).

(B) If d= 0 and i 1, then the conclusions are the same as in (A) with C replaced by
the puncturedplane C ( }.

(C) If d4:0 and i O, then the conclusions are the same as in (A) with C replaced by
the cutplane C-R[- 1/(4d)].

(D) If d4 0 and 6-- 1, then the conclusions are the same as in (A) with C replaced by
any domain D such that 0 D and D CC-Ed, where

Ed= (z: [Z--z--1/z]/(4d)[O, 1]).
If d is real, then Ed is a subset of the set made up of the real line and the unit circle. If
d-- 1, in particular, then Ed is the unit circle.

Proof. Let

g-(z’l-iz-0}V z"
(1-Sz)

z[-,-1]

and let D be any domain (open connected set) in C satisfying
0D and DE:

It is sufficient to prove the above theorem for the interior TO of T, where T is an
arbitrary connected compact set such that TCD and 0 T. Since D contains no
points of E, it follows that the roots x(z) and x(z) of the quadratic equation

X2--(1 z)x dz O

have unequal moduli if z D. Thus, since TCD and T is compact, there exist constants
0, Cl, and C2 (0< 0< 1, C > 0, and C2> 0) such that

[x2(z)[--<O and
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for all z T. Hence, we have met the hypotheses of Perron [21, Satz 2.42, p. 93], so
there exists an integer v0 such that the continued fraction

K -1-8.z+ K
m=v+l --SmZ

converges uniformly on T if v_>v
0. If P,(z) and Q,(z) denote the n th numerator and

denominator, respectively, of K,, then from the determinant formula we have

Pn+,(z) P,(z) (-1)nzn+lH,+’ld,+k n>_O.
Qn+l(2) Qn(2) Qn(z)Qn+l(2)

Therefore,

X L
Qn+l

-L -n --n/

and hence by Theorem 2.2, or by Jones and Thron [10, Thin. l, p. 4], there exists a
power series

L,- + Cz+ C2z2 +
to which K, corresponds at z-0, the order of correspondence being n/ 1. Each
approximant of K is a rational function analytic at the origin since Qn(0) for all
n>0.

Also, since K converges uniformly on T, it converges uniformly on every compact
subset of TO to a function F(z). By [10, Thin. 4’, p. 15], F(z) is analytic in TO and L is
its Taylor series expansion about z-0. Now let Ak and Bk denote the kth numerator
and denominator, respectively, of the original continued fraction K. Then for n >0

Av+n__Av-l(Pn/Qn)+zdvA,,-2
Bv+n Bv-l(Pn/Qn)+zdvBv-2"

For z TO let

f(z)- lim A+"-Av-IF"(z)+zdA-2-

Since the numerator and denominator functions of the last expression for f(z) have no
common zeros and since the denominator is not identically zero in To (it is equal to
at z=0), it follows thatf(z) is meromorphic in T. Using the facts that (Pn(z)/Qn(z)}
converges uniformly to F,(z) on compact subsets of T, 0 To and that B,_ (z)F,(z)
+zd,B,_2(z does not vanish at z=0, it is not difficult to verify that {A(z)/Bk(z))
converges uniformly to f(z) on pole free compact subsets of T. The fact that f(z) is
analytic at the origin follows from Theorem 3.3. After choosing d,,D and E ap-
propriately for each of the four cases in the statement of the theorem, our proof is
complete. Part (A) also follows from Jones and Thron [9, Thm. 7.23, p. 275] dealing
with general T-fractions.

THEOREM 3.6. Let K 8oZ + Kn= l(dnz/(1 8nZ, )) be a &fraction satisfying

lim dn- d,

where d is a complex constant, and either

lim 82n-- 1, lim 82 0
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or

lim 2n- 1, lim 2 0.

(A) If d=0, then [( converges to a function f(z) which is both meromorphic in

C-{ } and analytic at z--0. The convergence is uniform on every compact subset of
C { } which contains no poles off(z).

(B) If dvO, then the conclusions are the same as in (A) with C- } replaced by
C -Ea, where for real values of d the set Ea is given by

(a) l_4d,1 if d<O, (c) [1, o)if d--,

] ( ](b) 1, 1-4d
if0<d< (d) -o, 4d-1 ZJ[1,) ifd>,

and where, if Im(d)re 0, Ed is the arc of the circle with center + id/21Im(d)l and radius
d/2[Xm(d)l containing, the three points 1, 1/(1 4d) and 1/(1 d), the first two as
endpoints of the arc.

Proof. By an equivalence transformation [ can be put into the form

dlZ/(1-8z) d2z/(1-8,z)(1-62z) d3z/(1-82z)(1-6aZ )K= 1-0z+ + + +""

provided z va 1. Thus, in view of the conditions on the sequence (6n}, for u large enough
a tail K, of K is of the form

K d,w d,+ lw d+2W
+ + + ....

where w=z/(1-z). If limn_o d,=0, then for each integer M> we have by [9, Thm.
4.55, p. 131] that there exists an integer u such that K converges to an analytic
function of w for ]w[<M, the convergence being uniform on each compact subset of

Iwl<M. But this implies that K, converges to a function F,(z) which is analytic for
z DM, where

DM- (z" Iz--1/(1-M-)]>M-’/(1-M-2)),
and that the convergence to F,(z) is uniform on compact subsets of DM. It is easy to see
that each compact subset of -{ ) is contained a region DM for some M> 1. Note,
also, that 0 DM and DM for all M> 1. Now that we have established the analyticity
and uniform convergence of a tail of [ on appropriate sets, the assertions in part (A)
that K converges to a meromorphic function f(z) in -{ 1) (uniformly on pole free
compact subsets) can be established by arguments similar to those used in the proofs of
[9, Thm. 5.14, p. 182] and Theorem 3.5. The fact that f(z) is analytic at z=0 follows
from Theorem 3.3. This completes the proof of Part (A).

To prove part (B), where lim_ d,,=d=/:O, we again look at the tail [ of [
above for v large enough. Let S be any compact connected subset of C-Ed such that
S, the interior of S, contains the origin. Then, under the linear fractional transforma-
tion w=z/(1-z), S maps onto a compact connected subset T of C-R[-1/(4d)] in
the w-plane such that w=0 is in the interior To of T. It is not difficult to verify that Ed

is the image of the ray R[- 1/(4d)] under the inverse transformation z=w/(1 + w). By
[9, Thm. 4.56, p. 132] the continued fraction

K _dw d,+lw du+2w
w + + +""
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converges in TO to an analytic function of w, and the convergence is uniform on
compact subsets of T. It follows that K,, with w--z/(1-z), converges in So to a
function F,(z) which is analytic in So and that the convergence is uniform on compact
subsets of S. Now that we have established that K has analytic tails on sets of the
form So if d0, the remainder of the proof of part (B) is similar to that suggested for
part (A).

THEOREM 3.7. Let

be a &fraction satisfying

K- 1-oZ+ K
n--1 --Sn z

lim d2. %, lim d2 + Ol, lim t 0,
n-- o n- o no

where oo and o are complex constants and oo o. Then K converges to a function f(z)
which is both meromorphic in C-El%, o] and analytic at z-O, where

E[Oo,O]-E U E2,

el- z-
oOOl_(%+o)w/2

[-,-1[,1

E-(1) if 6n- for some n >_ and otherwise.

The convergence is uniform on every compact subset of ,--E[oo,ol] which contains no
poles off(z). The "cut" E[ o0, Ol] is a portion (bounded away from z O) of a circle or a
line passing through the origin plus possibly z as an isolatedpoint.

Proof. It is sufficient to prove the theorem for z in the interior TO of T, where
0T and T is an otherwise arbitrary compact connected subset of C--E[o0,Ol]. If

--2nz v 0 for all n >_ 1, then by [9, (2.4.24), p. 42] the even part of K is given by

(3.10)

where

a})( z ) d,z(1 82z ),

b(o)( z ) + K
n=l b(nO)(z)

a(2>(z) dzd z2(1 4z),
a(.>(z) -d2n_2d2n_lZ2(1- 62n_4z)(1--2nZ), n>_3,

b(o)( z) 1-oz,b)(z)- (1-,z)(1-62z) + d2 z,

b(n)( z [(1- 2n_2Z )(1-t2n_ lz ) -k- d2n_ lz] (1- 2nz ) + d2nz(1- t2n_2Z ),
If 1-6n+ zvaO for all n_> 1, then by [9, (2.4.29), p. 43] the odd part of K is given by

+

where

a(nl)(z) -d2n-ld2n22(1- 2n_32)(1- 2n+ 12), 2,

bl)(z)- [(1 6o z)(1 i z) + d z]/(1 1z),

bl)(z)-[(1-62,_lZ)(1-82,z)+d2,z](1-82,+z)+d2+z(1-82_lZ), nl.
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Since limn_. ,,- O, there exists an integer n o such that for all n>__n o

a(z ) d2n_2d2n_ z2,
and

a(n’)(z) -d2n_,d2nz2,
Thus, for z T,

and

b,()(z) + (d2,_ + d2)z

b’)( z ) + ( d2n + d2n+l )Z.

lim a)( z lim a’)( z o0o,z
2

lim b)(z) lim b’)(z)- +(%+o,)z,

where in each case the convergence is uniform on T.
If zC-E[oo,ol], then l+(o0+ol) zv0 and the roots xi(z ) (i= 1,2) of the

quadratic equation

x2-[1 +(Oo+O,)z]x+ooOiz:-O
have unequal moduli, where

2 1--(--1 1--
)

i-- 1,2.
(1 -F (Oo+a,)z

The symbol - denotes the square root with positive real part. Hence, since TCC-
E[o0,ol] and T is compact, it follows, as in the proof of Theorem 3.5, that there exist
positive constants , C1, C2 such that

c, I =(z)l

Therefore, by [21, Satz 2.42, p. 93] there exists ,_>n o such that both

and

(3.13) bl)+ a(1)(z)

converge uniformly on T (and therefore on each compact subset of T) to functions
F(z) and Fl(z), respectively. Let R(z) and R(z) denote the nth approximants
of (3.12) and (3.13), respectively. Then

n+l

so by [10, Thm. 1, p. 4] each of the continued fractions (3.12) and (3.13) corresponds at
z 0 to some power series of the form

L(0- +cz+cOz+ ..., i-O, 1,

respectively. Thus by [10, Thm. 4’, p. 15], the functions FO(z), i=0, 1, are analytic in
T and L( is the Taylor series expansion of F about z=0. Now that we have
established the analyticity of the tails F(z), arguments similar to those given in the
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proof of Theorem 3.5 can be used to prove that the continued fractions (3.10) and
(3.11) converge to meromorphic functions f(i)(z) (i---1,2), respectively, in T, the
convergence being uniform on compact subsets of To containing no poles of the
functions. Heavy use is made of the facts that 1-6nzvaO, dnvaO, and the denominators
of these continued fractions do not vanish at z =0. But the even and odd parts (3.10)
and (3.11) of the original continued fraction K correspond at z =0 to the same power
series L0 that K does. Thus, since (by Theorem 3.3) K converges to an analytic function
f(z) in a neighborhood N of the origin and since To contains such a neighborhood, it
follows from Corollary 4.1 and [10, Thm. 4, p. 15] that()(z)=L(1)(z)=f(z) for zN,
and f can be continued analytically in To except for poles. This completes the proof of
our theorem.

4. Expansions. We shall make repeated use in this section of the following known
result on extension techniques for continued fractions. It is essentially Perron [21, Satz
1.7, p. 16], where a justification is also given.

THEOREM B. If the approximants of the continuedfraction

are An/B,, then one can insert the approximant

Bk--PBk_

between A,_I/Bk_ and A,/B, and leave all others the same by replacing the section

ak ak+l
bk+bk+

of (4.1) with the section

a, p ak+ /p
b-p+ 1--(bk+l+ak+l/p)"

This modification can be applied infinitely often to obtain the following continuedfraction

Pio a /Po 01(4.2) (b-P)+--- (b, +al/Oo-O, ) +
whose approximants, respectively, are

a2/Pl P2
(bz+az/pl-P2) + +""

Ao- Po Ao A PlAo A A2- p2A1 A 2

B0 Bo’ B-plBo’ B1’ B2-P2BI’ B2’

The continued fraction (4.2) or any other continued fraction derived from (4.1) by the
section changing or approximant insertion process described above is called an extension of
(4.1).

We shall also make heavy use of equivalence transformations of continued frac-
tions in this section. For a thorough discussion of equivalence transformations, the
reader is referred to Jones and Thron [9, 2.3] and to Perron [21, 2].

We are now ready to give, through a series of theorems, i-fraction expansions for a
variety of classical analytic functions as well as considerable information about the
regions of validity of these expansions.
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and

THEOREM 4.1. The regular i-fraction expansions of tan z and tanh z are given by

tan z
z z z/3 z/3 z/5 z/5 z/7 z/7 z/9
1-z+l+ + + +’--

z z z/3 z/3 z/S z/S z/7 z/7 z/9tanhz-
1-z+l- + + + +

These expansions are valid everywhere in the complex plane.
Proof. According to [12, p. 122], the following representation for tanz is valid

everywhere in the complex plane except at points which are poles of the function

Z Z 2 Z 2
2
2 Z 2

(4.3) tanz
1-3-5-7 2n+l

By letting the p, in Theorem B take on the values of z and -z it is easily seen that the
continued fraction (4.3) can be extended to the continued fraction

Z Z Z Z Z Z Z Z Z Z
(4.4) 1-z ....
which by an equivalence transformation can be put into the form

z z z/3 z/3 z/5 z/5 z/7 z/7 z/9(4.5) l-z+]-+ 1- 4- 4- 1- 4-""

The continued fraction (4.5) is a (1, 1) limit periodic 8-fraction satisfying

lim d,- 0 and lim /n-- 0.

Also, its 2nth approximant is the nth approximant of (4.3). Hence, it follows from
Theorem 3.5 that (4.5) converges to tan z everywhere in C except for poles.

From [12, p. 123] we obtain

Z Z 2 Z 2

(4.6) tanhz--
4- 5 4-’"4- 2n4- 4-""

valid everywhere in C except at the poles of tanhz. By extension, (4.6) becomes
Z Z Z Z Z Z Z Z(4.7) 1-z +]-- +]---+]---+ ]-

which is equivalent to

z z z/3 z/3 z/5 z/5 z/7 z/7(4.8) l-z+]--1 + + +
The even approximants of (4.8) are the approximants of (4.6), so again by Theorem 3.5,
(4.8) converges to tanhz everywhere this function is defined.

THEOREM 4.2. (A) If F(z) is Dawson’s integralfunction

F(z) e-Z2fo e dt,

then the regular 6-fraction expansion of F, va#d everywhere in C, is given by

(4.9)

where for n >_

z z d3z d4z. dszF(Z)-l-z4---(/ 4- 4- 4-’"’

(-- 1)’n 2nn )
d4(4.10) d4n_l:-d4n-- d4n+2-- q-l:

(4n- 1)4"-I
(-- 1)n4

(4n + l) ( 2nn )
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and

4V-./r
(4.11) Id4n-l[ 4n- Id4"+21 4n+ 1"

(B) If E( z ) is the modified error function defined by- 22 U2E(z)--eZerf(z)-e foe- du,

then the regular 3-fraetion expansion of E, valid everywhere in C, is given by

Z z dz dz dz(4.12) E(z)-I z+-i-+ + + +’"’
where for n >-

dn--dn_l-d4n_ and dn+l---dn+2-d4n+2.
(C) If C(z) and S( z ) denote the Fresnel integrals defined by

C(z)-- cos(t)dt and S(z)= sin(t)dt,

then the regular -fraction expansion of e-(C(z)+ iS(z)), valid everywhere in 12, is
given by

7_. 7_. d3Z d4Z d5Z(4.13) e-t,C,z,+iS, + + +’"’
where for n >_

d4,--1 d4, id4n-1 and d4,,+ d4n+2-- d4n+ 1"

Proof. According to McCabe [16], the function F(z) in part (A) can be represented
by the continued fraction

z 2z 4z 2 6z 2 8Z 2

(4.14) Fz)---(+z 3 5 + 7- 9 +’"’

and the expansion is valid everywhere in the complex plane. We mention here, also,
that Dijkstra [1] has given a certain .continued fraction expansion for a generalization of
Dawson’s integral function. By an equivalence transformation, the continued fraction
(4.14) can be put into the form

z 2z/3 4x/35(4.15) F(z)--]-/
By extending (4.15) we obtain the -fraction

(4.16)
z z 2z/3 2z/3 (4/2)(z/5)
1-z+l- + +

6z2/5 7 8z/7 9
+

(4/2)(z/5) (2 6)(z/7) (2 6)/4(z/7)
+

(48/26)(z/9) (48/261(z/9)(2610,/48)(z/11)
+

(2610/48)(z/11) (4812/2610)(z/13)
+ /
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It can be shown that (4.16) is the same as the continued fraction (4.9), where the d are
given by (4.10). It follows from the asymptotic formulas (4.11) (which were determined
with the aid of Stirling’s formula) that

lim d,-0.

Also, the 2nth (n_>0) approximant of the continued fraction (4.9) is the nth approxi-
mant of (4.15). Thus it follows from Theorem 3.5 that (4.9) converges to F(z) at all
points z (3, and our proof of part (A) is complete.

The expansion for E(z) in part (B) is derived in a manner similar to that for F(z)
in part (A). A simple change of variables computation will show that

E(z)- -iF(iz)
so, using the expansion (4.15) for F(z), we obtain

z 2z2/13 4z2/35 6z/57 8za/79(4.17) E ( z ) --(_ + +

The 6-fraction expansion (4.12) for E(z) given in part (B) of our Theorem is an
extension of (4.17), and its even approximants are the approximants of (4.17).

To prove part (C) we make use of the following known (see [9, p. 209]) continued
fraction expansion for the confluent hypergeometric function (1; c; z), where c
{0,- 1,-2,-3, ...}:

z/c z/c(c+l) cz/(c+l)(c+2) 2z/(c+2)(c+3)(4.18) (1; c; z) =-]-_ + +

(c+ 1)z/(c+ 3)(c+ 4) 3z/(c+4)(c+5)
+

By making a change of variables in [9, (6.1.41), p. 208] it is easily verified that

Using this formula and the continued fraction (4.18), which represents (1;c; z) for all
z (3, we obtain

(4.19)

e-iz( C( z ) + iS( z ))

z 2iz2/3 (2/32/5)(iz2) (2/52/7)(3iz/2)
1+ +

(2/72/9)(2iz) (2/9 2/11)(5iz/2) (2/11 2/13)(3iz 2)
/ /’-’"

The continued fraction (4.13) is an extension of (4.19), and the 2nth approximant of
(4.13) is the n th approximant of (4.19). Since the coefficients d in (4.13) tend to zero as
n , it now follows from Theorem 3.5 that this continued fraction converges every-
where to the function e-iz2(C(z)+ iS(z)). With this our proof is complete.
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THEOREM 4.3. If Jn denotes the Besselfunction of nth order, then the regular &frac-
tion expansion ofJm/Jm_ 1, m >_ 1, is given by

(4.20)
Jm(z) _z/2m z z,/4m(m+l)

Jm_l(Z) 1--z / 1/ /

z,/4m(m+3) z/4m(m+3) mz/(m+4) mz/(m+4)
+ +
dlZ d2z d3z d4z
l-z+ + + + ....

where d 1/2m, d.- and (for n>_ 1)
m

(4.21) d4n-l=-d4n 4m(m+2n-1)’ d4n+2--d4n+l-m+2n"
This expansion is valid everywhere in the complex plane.

Proof. From Khovanskii [12, p. 133] we obtain

z/4m(m+l) mz/(m+2) mz/(m+2)

(4.22) Jm(Z) =z/2m z2/4m(m+ 1) z2/4(m+n)(m+n 1)
Jm_l(Z)

and the expansion is valid for all z C. The continued fraction (4.20) is an extension of
the continued fraction (4.22). If gn(Z) denotes the n th approximant of (4.20) and if
An(z (Bn(z)) denotes the numerator (denominator) of the nth approximant of (4.22),
then it is not difficult to verify the relations

where

A.(z)
and gzn_l(z) -An(z)-O’zAn-l(z)

m
O2n= 4m(m+2n--1) 02n-l--m+2n--2 n>_l.

We have g2n(z ) An( z )/Bn(z) Jm( z )/Jm- 1(z) everywhere as n oe. Also, the coeffi-
cients d in (4.20) have the property that limn dn-0. This along with Theorem 3.5
guarantees the validity of (4.20).

The expansion (4.23) for log(1 +z) in our next theorem is just an equivalent
version of a well-known expansion (see, for example, [12, eq. 4.2, p. 110]). It is included
here for the sake of comparison and completeness and to help derive the new &fraction
expansion for log(1 + z2). The &fraction (4.24) has an interesting feature in that it is
(4,1) limit periodic with limnd4n_l-limn_d4n_2-0 and limn_d4n+l
limn_ d4n- c. In the proof of Theorem 4.4 we employ for the first time a technique,
based on Poincar6’s theorem, for establishing the convergence behavior of (4.24).

THEOREM 4.4. (A) The regular &fraction expansion for log(1 + z) is given by

z z/l2 z/23 2z/23 2z/25 3z/25(4.23) log(1 + z) --i- + + + + +
3z/2 7 nz/2(2n- 1) nz/2(2n + 1)

/ +’"+ + +""

The expansion is validfor all z C-R[- ].
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(B) The regular 8-fraction expansion for log(1 + z 2) is given by

(4.24)
z z/1 z/1 z/2 z/2 z/3 .z/3log(1 +z2) -z+-
1- + 1- + +

2z/2 2z/2 z/5 z/5 3z/2 3z/2
+ + +

z d2z d3z d4z-z-+--
1+ + + + ....

z/7 z/7
+

where

n
(4.25) d4n-I-- -d4n-2--2n- d4n+l-- -d4n---
The expansion (4.24) is validfor all zC- {R[-i] O R[i]}.

Proof. From expansion (4.23) we obtain

(4.26)
z 2 z2/12 z2/23 2z2/23 2z2/25log(1 + z 2 ) --]- + + + +

3z2/2 5 3z2/2 7 nzZ/2(2n- 1) nz2/2(2n+ 1)
+ + +"-+ + + ....

valid if zC-R[-1] or, equivalently, if zC-{R[-i]OR[i]}. By an equivalence
transformation, (4.26) can be put into the form

(4.27)
Z 2 Z 2 Z 2 Z 2 Z 2 Z 2

log(1 +z2) i +(f/l) +Y+ (2-f2) +Y+ (2/3)
Z 2 Z 2 Z 2 Z 2 Z 2

+ 7 + (2/4) + 9 + (2/5) + 11 +""

Z 2 Z 2 Z 2

b + b2 + b + ....
where b2n_ 1-2n- and bn-2/n. We extend (4.27), using pn--z in Theorem B, to
obtain the continued fraction

Z Z Z Z Z Z Z
(4.28) z +-]-_ b-- + ]-- b-- +-]-- b7+-]

where the b are given above. The 8-fraction (4.24) is now easily obtained from (4.28)
by an equivalence relation. It remains to investigate the convergence of (4.24). Let
An(z)(Bn(z)) denote the n th numerator (denominator) of the continued fraction (4.26),
letf(z)=A,(z)/B(z), and let g,(z) denote the nth approximant of (4.24). Then

An(z)-(z/bn)A,-(z)g2n+(z)--fn(Z) and g2n(Z)-- B,,(z)-(z/b,,)B,,_(z)
n>_O.

Hence, for n _>0,

(4.29) Ig4,+z(z)-fz,+(z)l

and

(4.30) Ig4n( Z ) fz,( Z )[--

Iz/bzn+ IfZn+ 1( Z ) f2n( Z )l
I(B2.+ l(z)/B2n(Z)) -z/b2,+ 11

Izl lf=.( z ) fz._ ,( z )[
I( ( Z ,( z )) zl
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Let a,(z), n >_ 1, denote the n th partial numerator in (4.26). Since (4.26) is limit periodic
with lim,_a,(z)-z2/4 and since B,(z)-B,_(z)+a,(z)B,_z(Z), it follows from
Theorem A that {B,(z)/B,_(z)} must converge to one of the two roots x(z) and
x2(z) of the equation

2Zx2-x--T O,

provided

It is easily verified that [x(z)l=/=lx2(z)l if z2C-R[-1]. In particular, if z is a
nonzero real number, then lim,_B,(z)/B,_(z)-(1 +V/1 +z2)/2, since the other
choice is negative and therefore not possible. Clearly, (4.24) converges to 0 if z-0, so
let us assume now that z4:0. Thus, if zC- (R[-i] U R[i]) and noting that b2n+l
and b2,0 as n--, , it follows from formulas (4.29) and (4.30) that the expansion
(4.24) converges to log(1 + z 2). This completes our proof of Theorem 4.4.

The expansion (4.31) in our next Theorem is easily derived from a well-known
continued fraction expansion originally due to Lagrange (see [12, p. 102] or [21, p.
152]). Thus our proof of Theorem 4.5 shall concentrate on justifying the new 8-fraction
expansions (4.33) and (4.34) over the region indicated. Murphy [20] has given various
continued fraction expansions for (1 +z2)-1/2. We deal with the functions (1 +z2) for
all , satisfying 0< ,< 1.

THEOREM 4.5. (A) Suppose v is any real number satisfying 0< ,< 1. Then the regular
6-fraction expansion of (1 + z), validfor all z C R ], is given by

(4.31)

(l+z)-l+ vz
1+

(1-v)z/2 (l+v)/6 (2-,)z/6 (2+,)z/10
+ + +

(3-v)z/10 (n+v)z/(4n+2) (n+ 1-,)z/(4n+2)
/ +’"/ / /"’"

In particular,

(4.32) (l+z--l- z/2 z/4 z/4 z/4
+ + + +’""

(B) The regular i-fraction expansion of (1 + Z 2)v (0< P< 1), valid for all z C
(R[-i] J R[i]}, is given by

Z CIZ CIZ C2.__.Z C2Z C3Z C3Z(4.33) (l+z2) (1-z) +-]-_ + ] + + -+’"’
where, if B(x,y ) denotes the beta function and n>_ 1,

(n) B(n+,,1-)
0 if0<’<

C2"-- 2n -(- ;)-
c if-<,<l

1) B(n+ l-v,v)
c.,-- - B(n+v,l-v)

as n,

if <,<
asn.
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In particular,

(4.34) z z/2 z/2 z/2 z/2
+ +

Proof. After substituting Z 2 for z in (4.31) we obtain

(4.35)

(1 +z2)- 4-
,z 2 (1-,)z2/2 (1+,)z2/6 (2-,)z2/6 (2+,)z2/10

+ + + +
(3-/,,)z 2//10 (n+t,)z2/(4n+2) (n + ,)z2/(4n + 2)

+ +"’+ + +""
By an equivalence transformation, this continued fraction can be put into the form

Z 2
2
2

2
2

(4.36) +-+ b-- + b- +’" "’
where b- 1/u and

(2n+ 1)(l-v)... (n--v)
b2n__

2v(1 +v)... (n--1 +v) (n_> 1).

With the aid of the functional relations

F(x+l)-xF(x) and B(x,y)-F(x)F(Y)
r(x+y)

where F(x) is the gamma function, the following formulas for the b. can be obtained:

(4.37) b2n-1 2n--l.) B(n-v,u) _2B(n+,,1-,)
n B(n+,, 1-,) b:n B(n+ ,, ,) (n_> 1).

Using Theorem B with pn--z (n_>0), we extend (4.36) to obtain

(4.38) Z Z Z Z Z Z Z(1-z)+T_+T_b-+-i-- b-+T
which, after an equivalence transformation and after setting Cn= 1/bn (n >_ 1), becomes
(4.33). Let A,(z)(Bn(z)) denote the nth numerator (denominator) of (4.35), f,(z)=
A,(z)/Bn(z ), hn(z)=B,(z)/Bn_(z ), and let gn(Z) denote the nth approximant of
(4.33). Then, for all n_>0,

g2n+l(Z)’-fn(Z)

Hence,

(4.39)

and

(4.40)

and gzn(Z)- A,(z)-zc,A,_,(z)
Bn(Z)__ZCnBn_I(Z)

ig4n(Z)__fzn(Z)l= IZCz.llfz.(Z)--fZn-,(z)l
[hn+,(z)-ZCznl

[g4n+2(z)--f2n+l(Z)]= IZCZn+’llfZn+’(z)--fz"(Z)l
Ihz.+,(z)-ZCzn+,l
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The continued fraction (4.35) is limit periodic because its partial numerators converge
to z2/4, and the roots xi(z ) (i- 1,2) of the associated quadratic equation

2

X2--X --0

have unequal moduli if zC-(R[-i]toR[i]). Therefore, it follows from Theorem A
that (h,(z)} must converge to x(z) or Xz(Z ) if z is in this region. We have that Cn-- 1/2 if
,-1/2, and with the aid of Stirling’s formula it can be verified that

lim C2n_ -0()) if O<u< -<u<n-- oO

and

(1lim c2,- (0) if 0<,< <u<n--

We are now in a position to establish the convergence behavior of (4.33) asserted in
part (B). By convention, the continued fraction (4.33) converges to if z-0, so let us
now assume that zv0 and zC-{R[-i]to R[i]}. Then, using the convergence prop-
erties of (cn} and (hn(z)} established above, it follows that the right sides of (4.39) and
(4.40) converge to 0 as n- . Hence, since limn_fn(Z)--(1 + z2)", it follows that

lim g4n(z)-lim g4n+2(Z)-- lim gzn+(z)-(1 +z2)
no no n-o

and our proof is complete.
THEOREM 4.6. (A) The regular i-fraction expansion of (arcsinz)//1-z 2 valid for

all z C {R[- tO R[1 ]}, is given by

(4.41)
arcsinz z z (12)z/3 (12)z/3 z/5 z/5

1-z+l+ +

(34)z/7 (34)z/7 z/9 z/9 (56)z/11 (56)z/11
+ + + 1

d d2z d3z
l-z+ + + ....

where d d2 and

d4n_l_ _d4n
(2n-1)(2n)

d4 _d4n+4n- +2- l=4n+ (n_>l).

(B) The regular 6-fraction expansion of (arcsinhz)/v/1 +z2 valid for all zC-
{R[-i]U R[i]}, is given by

(4.42)
arcsinhz z _z (12)z/3 (12)z/3 z/5 z/_5

1-z+l- + +

(3 4)z/7 (3 4)z/7
+

d d2z d3z
l-z+ + + ....

z/9 z/9 (56)z/11 (56)z/11
+ 1 +
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where d d2 and

(2n- 1)(2n)
d4n+ __d4nd4n--d4n-1-- 4n-1 2-- +1-4n+1

Proof. From [9, formula 6.1.20, p. 203] we obtain

arcsinz z X2z2 2z2 34z2 3X4z2 5X6z 2

(4.43)
l_z2 =-- 3 5 ------ 1-

(n>_l).

valid for all z2- {R[- 1]U R[1]}. The continued fraction (4.43) is equivalent to

arcsinz z 12z/13 12z/3 5 3 4z/5 7 3 4z/7 9

d_z2
(4.44)

5X6z/9 11 5X6z2/ll X 13

The continued fraction (4.41) is obtained by extending (4.44). If fn(z) An(z)/Bn(z)
and gn(Z) denote the n th approximants of (4.44) and (4.41), respectively, and if
h ,( z ) B,( z )lB,_ ( z ), then

(4.45) gz,(Z) =f(z) and

where

g2n--1( Z )--
An( ZI --ZCnAn-1( Z )
Bn(Z --ZcnBn_i

(2n- 1)(2n)
c2n-- 4n-1

n_>l, c2+1 4n/l’
n_>O.

From (4.45) we derive

(4.46)

and

(4.47)

ig4_,(z)_f2,(z)l-- [zllfz"(Z)--fzn-+/-(-z)l
I(hzn(Z)/Czn) zl

Ig4n+,(z)--f2.+,(Z)l-- IZC "+lllfZn+ (z)--fzn(Z)l
Ih2n+l(Z)--ZC2n+,l

Since the partial numerators of (4.44) converge to -z2/4, it follows from Theorem A
that {h,(z) } converges to one of the roots of

Z 2

X 2 X --I- -. O

if zC-{R[- 1]tOR[1]}. By an argument similar to that given in the proof of Theo-
rem 4.5, it follows that the right sides of (4.46) and (4.47) tend to zero as n--, z if z =/= 0.
So if z is in the above region and z =/= 0, it follows that

lim g4n_l(Z)-lim g4n+l(Z)--lim g2n(Z)-lim f(z) arcsinz

Clearly, (4.43) is valid when z 0. This completes our argument for part (A).
Since the proof of part (B) parallels the proof for part (A) we shall not present it

here. However, we do give below the key continued fractions involved in the derivation
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of (B). From [12, p. 121] we obtain

arcsinhz z 2z2 2z2(4.48)
/1 + z 2 + 3 + 5

(2n- 1)(2n)z 2 (2n- 1)(2n)z 2

+ 4n- + 4n +
which after an equivalence transformation becomes
(4.49)

arcsinhz__z l2z//13 12z2/35 34z2/57
l+z2 + + +

34z2/79
+ +’""

The continued fraction (4.42) is an extension of (4.49), and it has the property that its
2nth approximant is the nth approximant of (4.49).

We feel that the continued fraction expansions given in our next theorem are
especially interesting. This is partly because they are examples of convergent (4, 1) limit
periodic -fractions having the property that the four subsequential limits -+ 1,/r and
--+ rr/4 of the sequence (d,) are finite and transcendental.

THEOREM 4.7. (A) The regular 6-fraction expansion of arctanz is given by

z z d3z d4z ds__z(4.50) arctanz-l-z+-i-+ 1 + + 1 + ....
where (for n >_ 1)

(4.51)

(4.52)

--> aS rl--->d4n -d4n-1 (4n-1)42"-t r(4n-1) r

42n ’n’n
d4n+2 -d4n+l 2 4n+ 4

(4n + 1)[( 2nn )]
This expansion is valid for all zt?,-(R[-i]UR[i]} except possibly at z-(r/4-
1/r)-.

(B) The regular -fraction expansion of arctanhz is given by
2 2 C 2 C4 Z C5 2arctanhz-
1-z+l+ + + + ....

where ( for n >_ 1)

C4n_ --C4n--d4n, C4n+2-- C4n+l d4n+2
with d4n and d4n+2 defined by (4.51). This expansion is valid for all zC-(R[-1]t3
R[1]} except possibly at z =(r/4+ 1/r)-1.

Proof. The following known representation of arctanz is taken from [9, p. 202]:

2 122 2 222 2 322 2 42Z 2

(4.53) arctanz--
1+ 3 + 5 + 7 + 9 +"-’

valid if z 12- (R[-i] U R[i]). The continued fraction (4.53) is equivalent to

z 12z2/13 22z2/3.5 32z2/57 42z2/79(4.54) arctanz
1+ 1 + 1 + 1 + 1
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The continued fraction (4.50) is derived as an extension of (4.54) as follows" Let an(Z),
n- 1,2,. ., denote the n th partial numerators of (4.54). Then (4.50) is identical to

al(z) pl(z) a2(z)/ol(z) p2(z) a3(z)/P2(z)
1-pl(z)+ -1-p2(z)+a2(z)/pl(z)+ -1-p3(z)+a3(z)/p2(z)+ ....

where {tan(z)) is defined by

_an+l(Z)p,(z)--z, pn+l(Z) p=-=, n> 1.

The formulas (4.51) for the coefficients {dn} of (4.50) and their asymptotic behavior
can be derived from the above process with a modest amount of algebraic manipulation
and Stirling’s formula. The continued fraction (4.50) certainly converges to arctanz
when z=0, so from now on in our convergence investigation we assume z4:0. Let
fn(z)=An(z)/Bn(z) denote the nth approximant of (4.54), gn(Z) the same for (4.50),

(4.55) [g4n_l(z)-f2n(z)l )d4nzllfzn(Z)-fzn-l(Z)l n 1,
Ih2n(z)__d4nz

and

(4.56) Ig4n+,(z)-f2n+l(z)l= Id4n+zZl)fzn+l(z)--fzn(Z)l n>
Ihn+l(z)--d4n+2Zl

The partial numerators an(Z ) of (4.54) converge to z:Z/4 as n. Therefore, by
Theorem A, (hn(z)) converges to one of the two roots of

2Zx-x -0

if z C-(R[-i] U R[i]}. These roots are

+1 + z 2

2

where - denotes the square root with positive real part. In particular, if z is real, it is
easy to see that limn_hn(z)-(1 +/1 +z2)/2 (since the other choice is a negative
number). The sequences (d4nz } and (d4n+zZ) converge to z/r and rz/4, respectively.
We now see from (4.55) and (4.56) that the sequences (g4n_l(Z)} and (g4n+l(Z)} will
converge to arctanz in any region (fn(Z)} converges to this function, provided h zn(z)
z/r and hn+ l(z)-,-,rz/4 as n . Thus we investigate the roots of the equations

l+l+z2 l+l+z2
Z Z

and =--.
2 4 2 r

The only possible candidates for roots of the first set of equations are

2.140922923.z 0 and z
r

We have already disposed of the case z-0. For the second value of z above we obtain

and hn(z)-Bn(Z)/Bn_l(z ). Then g2n(Z)=fn(Z), n--O, 1,2,. .,



3156 L.J. LANGE

so for z-(vr/4- 1,/r)- it follows that

lim (h,(z)-d4,+az)-O.

Therefore, unfortunately, our methods do not allow us to decide the convergence
behavior of (4.50) for this value of z. The only possible roots of the second set of
equations above having z/r on the right side are z-0 and z--(rr/4-1/r)-1. But
(h2n+l(Z)-d4n+2(z)) converges to a nonzero limit at z- -(r/4- 1,/r)-, so that the
continued fraction (4.50) converges to arctanz at this point. Thus

lim gn(z) lim f,(z) arctan z

over the region indicated in part (A) of our theorem.
The proof of part (B) will not be given since it parallels the proof of part (A). We

give only the continued fraction representation of arctanhz from which the &fraction
(4.52) can be derived by an extension. Making use of the fact that arctanhz=-i
arctanh (iz) and employing (4.54), it follows that

z 12z2/13 22z2/35 32z2/5X7 42z2/7X9(4.57) arctanhz--
1-

valid if zC (R[- 1] U R[1]).
The extension process used to derive the 3-fraction expansion for the function

I3(z) in our next theorem is more complicated than in the previous examples. The
expansion we give is nonregular. We were unable to determine a general formula for
the coefficients of the regular &fraction expansion for this function. Our investigations
seem to indicate that such a formula would be extremely complicated. The (6, 6) limit
periodic &fraction (4.58) in our next example is our first example of a &fraction
expansion of an analytic function in which infinitely many of the 6n’s are not 0.

THEOREM 4.8. If I3(z)--fdt/(1 + t3), then a 3-fraction expansion of I3(z) is given
by

Z Z Z z/b2 z/b2 z(4.58) I3(Z)-l-z/l-zt-i-/ +l-z-
z/b z z/b4 z/b4 z z/b

+ 1-z+l+ +l-z-

where for n- 1,2,...

(4.59)
(6n+l) [ h 3k+l

b-l, b2"+=(3n+l)2 g= 3k

2 (6n+ 1)
(3n/ 1)2

z/b3

z/b
+ l-z+ ....

F(n+4/3)
F(4/3)F(n + 1)

2

--O(n-/3),

k=l 3k (6n+4) F(n+4/3) O(nl/3)"

The representation (4.58) is valid for all z such that z C-R[- 1], or equivalently, for
all z C. {R t3 R o U R o2 }, where o is a nonreal cube root of 1. The continued
fraction (4.58) is a nonregular (6, 6) limit periodic &fraction.

Proof. According to [9, p. 203]

(4.60) 3223 4223 622 722
7 + 10 + 13 + 16

(3n)223 (3n 4- 1)2z3
+’"+ 6n+l + 6n+4
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and this representation is valid for all z such that z C-R[-1]. With the aid of
well-known equivalence transformations it can be shown that the continued fraction
(4.60) is equivalent to

(4..61)

z 12z3/4 32z3/4)<7 42z3/710 6z3/10)<13 72z3/1316I3(z) -i-/ / / / /

(3n)2z3/(6n 2)(6n + 1) (3n+ 1)2z3/(6n+ 1)(6n +4)
+---+ + + ....

which in turn is equivalent to

Z Z Z Z(4.62) I3(z) -+ b-- + b-- + b4 /
....

where the b are given by (4.59). We now use a method of repeated extensions to derive
the continued fraction (4.58) from the continued fraction (4.62). First, we extend (4.62)
to obtain

Z Z 2
2 Z 2 Z Z Z 2 Z 2 Z Z

(4.63) z +T- b-+T- bT+T-4+T-bT+T
Let A,,(z) (B,,(z)) denote the n th numerator (denominator) of (4.62). Then the ap-
proximants of (4.63) are given by

A1-2A0 A A2-z2A1 A2 A3-A2 A A4-z2A3 A4

BI--ZBo’ BI’ B2-z2B1 B2 B3-zB2 B B4-z2B3 B4
We relabel these approximants as

Pl P2 P3 P4 P5 P6 P7 P
QI Q2 Q3 Q4 Q5 Q6 Q7 Q8

respectively, and we assume that corresponding numerators and denominators are
equal. Next, we extend (4.63) to obtain

(4.64)
2Z Z Z Z Z Z Z Z Z

1-z+l-z+l+b2-z+ -b+ l-z+ +b4-z
2Z Z Z

+ -bs+l-z+ ....
whose approximants are

e e-ze e2 e3 e4 e ’6-z’ ’6 e P8 ’9 ’o-Z’9
QI’ Q2-zPI Q2’ Q3 Q4 Q5 Q6-zQ5 Q6 Q7 Q8 Q9 Qlo-ZQ9

We relabel these approximants by

N1 N2 N3 N4 N5
D 32 D D4 N5

respectively, as we did in our first extension above. Finally, we extend (4.64) to obtain

(4.65) Z Z Z Z Z Z Z Z Z

l--z+ l--z+ +b2- + 1-z-b3+ l-z+

Z Z Z Z

+ b4-1+ l-z-b5 + ....
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whose approximants are

NI N2 N3 N4+zN N4 N5 N6 N7 N8 N9+zN8 g
9 Nlo Nil

D1’ D2’ D3’ D4-+-zD3’ D4’ D5’ D6’ D7’ D8’ D9q-zD8’ D9’ DlO’ Dll’
The continued fraction (4.58) is obtained from (4.65) by an equivalence transformation.
Let g,,(z) denote the n th approximant of the continued fraction (4.58). Then, through
keeping track of the relations between approximants in the extension process above, we
are able to say that

(4.66)
A(z)

g6n(Z)--Bg.n(z )
A2,,(z)+z(1-z)A2n-l(Z)

g"-= .(z)+z(-z)._,(z)

g.+( ) ( z )A.+ ( z ) +za.(z )
(1 ).+( ) + z.(z )’

g6n_l(2)__A2n(Z)- r2A2n-l(2)
B2n(2)-z2B2n_l( r-)

g6n+l(Z)- A2n+l(Z)-zA2n(Z):.+(z)-z.()
A2n-l(Z)

g6n+3(Zl-B2n_i7 i
Hence, in particular, g3,,(z)=A,,(z)/B,(z)I3(z) as no if z3C-R[-I]. Let
f,,(z)=A,,(z)/B,,(z) and let h,,(z)=B*n(z)/B*_l(z), where B*(z) is the nth denomina-
tor of (4.61). Then, with the aid of (4.66) and the fundamental formulas for continued
fractions, we obtain

Ig6n+l(Z)--f2,,+l(Z)[-- Izllf2"+l(z)--fen(Z)l

g6.+ =( z )-f=,+ 1( z )l-
z 2/!-1 z )11_f__n_+._ !_z.) _--_f_ n_(__z.).
I.+ lhn+ ,( z +zV( z )l

ig6._z(z)_f=.(z)l- g(1 -z)/bznllf,,(z)-fzn_l(Z)l
Ih.( z ) +z( z)/.

The continued fraction (4.61) is limit periodic because its partial numerators converge
to the limit z3/4 as n . Therefore, by Theorem A, the sequence {hn(z)} converges
to a root of the equation

whose roots are

+1 + z

if (- denotes the square root of (1 + z 3) with positive real part. Thus lim_ h,(z)= 0
only if z=0 when z is any complex number satisfying z C-R[-1]. Clearly, (4.58)
converges to 0 at z 0 as desired, so assume now that z 4:0 and z C-R[- ]. Then,
since b2,+ --, 0 and b,-, o as n--, o, it follows from the last four formulas above and
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the convergence behavior of (h,(z) } that the sequences (g,(z) } and (fn(z) } converge
to the same limit 13(2). This completes our argument.

In attempting to find a regular 8-fraction expansion for the function

14(2)-- 14-/4’
which is a generalization of arctanz as is 13(z), we ran into the same difficulties as we
did for 13(2 ). However, we were able to find a regular -fraction representation for
2214(z). This expansion, which surprisingly to us turns out to be (8, 1) limit periodic, is
given in our next theorem. This example also leads us to believe that, for certain classes
of functions, regular i-fraction representations can be found for practical variations of
these functions, if not for the functions themselves.

THEOREM 4.9. Let 14(z) fd dt/(1 + 4) and let E4(z) z214(z). Then the regular
6-fraction expansion of E4(z) is given by

Z 2 z/b z/b z z z/b2(4.67) E4(z ) -z4-
1-z+l+ +1--1-

where for n- 1,2,...

(4.68)

z/b2 z z z/b z/b z z
+ -1+1+ +1-1--

z z z/b z/b z z z/ 6
-1+1+ +1-1-

z/ 4 z/ 4
+

(8n+l) [fi4k+l] 2 (8n+l)
b- 1, b2n+

(4n+ 1)2 4k= (4n+ 1)2

z/b 

r(n + 5/4) ]21) -(n-’/2)’

and

(4.71)

4224/5 X 9 5224/9 13 8224/13 17
+ + +

(4n)2z4/(Sn--3)(Sn+ 1) (4n+ |)224/(8n---1)(8n---5)
+’"+ +

__Z Z 4 Z 4

E4(z) +b+ b+’"’

(4.70)
Z 24/5E4(z)--i-+

92z4/1721
+

b2_5 b2n+2_(8n4- 5)[ fi 4k 2

k:l 4k+l -(8n+5) r(5/4)r(n+ 1) 2

r(n+5/4) -O(nl/2)"

The expansion (4.67) is valid for all z such that z 4 G-R[-1], i.e., for all z such that
ZC-- [,.j4k= R[0t’], where 0-(1 +i)//. The 3-fraction (4.67) is (8, 1) limit periodic.

Proof. Using [9, formula 6.1.19, p. 203] we obtain

Z 24 4224 5224(4.69) E4(z) --i- +--+ 9 + 13

822 4 92Z 4 (an)224 (4n+ 1)2z 4
+ 17 4- 21 +’"+ 8n+l + 8n+5 + ....

and this representation is valid for all z such that z4C-R[ 1]. The continued
fraction (4.68) is equivalent to each of the continued fractions
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where the b, are given by (4.68). As in the proof of Theorem 4.8, we use the method of
repeated extensions to arrive at the -fraction (4.67). We extend (4.71) by choosing
O0 z, O, z2 (n _> 1) in Theorem B to obtain

Z 22 22 22 22 22 22 22(4.72) z +-]-_ b-- +-]-- b-- +-]-- b- +-]---4+""

We then extend (4.72) and arrive at
z z z z z z z z

(4.73) -z+
1-z +T+-+T-T-b+T

Z Z Z Z Z Z Z Z Z Z

l+l+b3-1+l-l-b4+l-l+
Z Z Z Z

+ bs-l-l-b6+..
The continued fraction (4.67) is derived from (4.73) by the appropriate equivalence
transformation. Let A(z)(B(z)) denote the n th numerator (denominator) of (4.71),
and let g,(z) denote the n th approximant of (4.67). Then

(4.74) gs.-,(z) -A2-z(1 +z)X2"-- gs.+3(z)
B2.-z(1 --[-- z )Bzn_

A2n+I+Z(1-z)A2
B2n+l+Z(1-z)O2n

g8.( z )
X2. zA2.-,

g8.+4( z )
A2.+ ,- Z2A2.

B2n-- zZBzn Bzn+ z2Bzn
XZn(1-z)+z3Azn_l
B.(1 z ) -+- z3B2n_ B2.+ 1(1 + z) z3Bzn

A2n+lg8n+6(Z)--B2n+
Now let f.(z)-A.(z)/B.(z) and h.(z)-B*(z)/B*_l(Z ), where B*(z) is the nth de-
nominator of (4.70). Then

It follows that, if m- 1,0, or 1, then

(4.75)

where

[gg.+.,(z)-fz.(Z)[--

Zt_l(Z)-z(l+z ), to(Z)--z 2, tl(Z)--l_ z,
and, if m- 3, 4 or 5, then

(4.76)

where

Z
t3(z )--z(1-z), t4(z)-z 2, ts(Z)- +z
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The partial numerators of (4.70) converge to z4/4 as n o, so for all z such that
z 4 C-R[-1] it follows from Theorem A that {hn(z)) must converge to one of the
two numbers (1-+-V/1 /z4)/2. We note that neither one of these numbers is 0 unless
z-0, but for this value of z, (4.67) is clearly valid. It follows from (4.74), (4.75), (4.76)
and the limit behavior of the bn(bzn-’* o and b2n+l0 as n--, o) that

lim gs,+m(Z)- lim fn(z)-E4(z), m--I,0,.-.,6.

Hence, our representation (4.67) is valid as asserted.
In our next theorem we give a new continued fraction representation for the

function exp(z -) that turns out to be a regular i%fraction with all of its partial
denominators equal to 1. The proof that the corresponding -fraction for exp(z 2)
converges to exp(z 2) everywhere demands a new twist not employed in our previous
examples.

THEOREM 4.10. (A) The regular 8-fraction expansion of exp(z), valid for all z C, is
given by

z z/2 z/6 z/6 z/lO z/lO z/14 z/14(4.77) exp(z)- +-
1-- + + + /"’"

(B) The regular -fraction expansion of exp(z2), validfor all z C_. is given by

(4.78)
z z/1 z/1 z/2 z/2 z//3 z//3exp(z2)-(1-z)/-]-- / / 1- / 1-

z/2 z/2 z/5 z/5 z/2 z/2 z/7 z/7
+ + + +

z/2 z/2 z/9 z/9 z/2 z/2
+ + + +-’-

=(l-z)+ 1(
n--!

where for n 1,2,...,

(4.79) d- 1, d8n-4-- d8,- 4n

d8n-6 4n- 3 d8n-3 2’ d8" 2

d8"-5 4n- 3 dsn-2 4n- d8n+ ---The -fraction (4.78) is (8, 1) limit periodic.
Proof. It is well known that the following representation for exp(z) is valid for all

zC"
Z Z Z Z Z Z Z

(4.80) exp(z) + 1-2+3-2+5 2+2n+1

Two sources giving this expansion are [9, p. 207] and [12, p. 113]. The representation
(4.77) is easily derived from (4.80) by an equivalence transformation, which may be
found in [21, p. 124]. By replacing z by z 2 in (4.80) and using another equivalence
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transformation we have for all z C that

(4.81)

where

Z 2 Z 2 Z 2 Z 2 Z 2 Z 2 Z 2

exp( z 2 ) +--+(-2)+(-3)+ 2 + 5 +(-2)+(-7)+""

=1+ K
n--1 -n

(4.82) bz.- (- |)n2 and b2n_l- (- l)n-l(2n 1), n_> 1.

We extend the continued fraction (4.81) (using Theorem B with Pn =Z) to obtain the
continued fraction

o ( z) where C2n_ l- and 2n--bn.(4.83) (1-z)+ K (-1)"-’
n C

The regular -fraction

z z/b, /,, z/b z/b /b z/,
(4.84) (1-z)+-i-- + 1- + +
where the b are given by (4.82), is equivalent to (4.83). It is easily verified that the
continued fractions (4.84) and (4.78) are identical. Let g,,(z) denote the n th approxi-
mant of (4.78) and let A,,( z )( B,,( z )) denote the nth numerator (denominator) of

z 2 z2,/2 z2/6 22/6 z2./10 z/lO(4.85) exp(z2) +--1- + + +""

derived from (4.77) by replacing z by Z 2.
Then (iff,(z)-A,,(z)/Bn(z) and h,,(z)-B,,(z)/B,,_l(Z)),

A,,(z)-(z/b,)A,-l(Z)
g2n+l(Z)=fn(Z) (n>_O), and g2,,(Z)- B,(z)_(z/b,-_i( (n_>l).

Hence,

(4.86)

(4.87)

(4.88)

(4.89)

Ig8n(Z)--f4.(Z)]= IZ/2llf4"(z)--f4n--(Z)l
Ih4,,(z)-z/2l

igg,,+2(z)_f4,,+,(z)[__ Iz/(4n+
Ih4,,+,(z)-z/(4n+

[g.+(z)-f.+(z)[=
Ih4.+2(z)/z/21

[z__/(4n +
3)1

The sequence of partial numerators of (4.85) converges to 0 as n--, o. Therefore, it
follows from Theorem A that limn_o h,(z)=0 or 1. Unfortunately, for arbitrary z, we
do not know how to determine whether {h n(z)) converges to 0 or 1. Hence, we cannot
employ expressions (4.87) and (4.89) above and the technique we used in the past to
determine the convergence behavior of {g8,+z(z)} and {gsn+6(Z)}. Therefore, we use a
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different approach here and investigate first the convergence of a tail of (4.78). Let

K- K .--4+,n

where the coefficients of z are given by (4.79). Then the odd part K* of K is given by

z z2/Z(4n-1) zZ/Z(4n-1) zZ/Z(4n+l) z/Z(4n+l)K*.= --+ 4-

zZ/Z(4n + 3) zZ/Z(4n + 3) zZ/Z(4n + 5) zZ/Z(4n + 5)
+ + +""

Suppose Izl _<M(>0) and choose n in K* large enough such that

M2

2(4n- 1)-4
It follows from the convergence neighborhood theorem (see [9 p. 108]) and Theorem
3.2 that K*, converges uniformly on the set [z _<M to a function F,,(z) that is analytic
on [zl<M. Now let G,, denote the mth approximant of K,, and let Nm(z)(Dm(z))
denote the nth numerator (denominator) of K*. Then

Nr,,(z)--zds,,-3+z,,Um-t(z)Nm(z)
and Gzm(Z)-Dm(z)__zdsn_,+zmDGz’+’(Z)-D,,,(z) l(Z)

with the aid of which we obtain

Nm(z) Izdsn-+2llNm(z)/Dm(z)-Nm-,(z)/D-,(z)l(4.90) Gzm(Z ) Dm(z ) I(Dm(z)/Dm-l(Z))-zd8n-3+Zml
If we let H,(z) D,,(z)/D l(Z), then Hi(z) and it can be verified by induction
that

4n-1 4n-1
IH2m+l(Z)-ll<_2[4n+2m_l] and IH2m+2(z)--ll214n+2m_l]

provided z satisfies Izl<_M. Hence, we can now say that limm_ Hm(z)= 1. By splitting
(G2m(z)} into four subsequences as we did for {g2m(Z)} and by using (4.90), it can be
seen without too much difficulty that lim oo G2m(Z) lim Nm(z)/Dm(z) F,,(z) if

Izl<M. Thus given an arbitrary positive number M there is a tail of (4.78) which
converges to an analytic function F, on Izl<M. By the convergence neighborhood
theorem [9, p. 108] applied to (4.78), we have, in particular, that (4.78) converges
uniformly on the set Izl _<1/2. Hence, by arguments similar to those used in the proof of
Theorem 3.5, the &fraction (4.78) must converge to exp(z 2) in a neighborhood of the
origin and, therefore, to exp(z 2) throughout Izl <M. Since M was arbitrary, our proof is
complete.

We now give a brief discussion of some connections between certain associated
continued fractions and 8-fractions. An associated continued fraction is a continued
fraction of the form

klZ k2z2 k3 z2 k4z2(4.91) 14-
+llZ-- +12z-- 4-13z-- 4-14z .....

where k =/=0, k- 1,2,.... Jones and Thron [9, {}7.2] and Perron [21, {}25] give thorough
treatments of these continued fractions in their books. A number of the i-fraction
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expansions of analytic functions already given in this section were derived from associ-
ated continued fraction representations of these functions of the type where --0. So,
we concern ourselves here with the case where 14=0, i-1,2,-... Then by extending
(4.91) we obtain

(4.92)
klZ llZ k2z/ll

1++ +
(12-k2/11)z

+
(k3/(12-k2/ll))Z (13-k3/(lz-k2/ll))z

+
(k4/(13-k3/(12-k2/ll)))z (14-k4/(13-k3/(12-k2/ll))) 7-,

+ +
provided also that none of the coefficients of z in the partial numerators of (4.92) are
zero. It is interesting that these coefficients are finite continued fractions themselves.
The continued fractions (4.91) and (4.92) are equivalent in the sense that they corre-
spond to the same power series at z--0. If we let a 0,/3-- 1, a-- + c, b- 1- c, where
0<c< 1, in the example given by Perron [21, p. 261], and if

(4.93) Lc(Z)_l+log +(l+c)z ]1-t- (1 -c)z
we arrive at

kz k222 k3 Z2(4.94) Lc( z ) ++z- +z- l+z

where

(p 1)2 c2(4.95) k-2c and kv- (2,-1)(2u-3)’
,_>2.

Using the techniques of this section and the convergence results of the preceding
section, particularly Poincar6’s theorem, we can say the following:

THEORFM 4.11. The regular -fraction expansion of the function Lc(Z ) defined by
(4.93) is given by
(4.96)

k,z z kzz (1-k2)z (k3/(1-k2/1))z (1-k3/(1-k2/1))zLc(Z)-l++1+ + + +
(k4/(1-k3/(1-k2/1)))z (1-k4/(1-k3/(1-k2/1)))z

+ + + ....
where the kv are given by (4.95). The representation (4.96) is valid for all zC-
[- 1/(l-c), 1/(1 +c)], where c satisfies 0<c< 1.

In our next theorem we give two examples of a regular 8-fraction corresponding to
a divergent asymptotic series connected with the Laplace transform of a certain func-
tion. As we shall see, though the series diverges, the corresponding 8-fraction converges
to a function that can be used in the evaluation of the Laplace transform. Before we
give these examples, let us recall that the Bernoulli numbers B are defined by

(4.97)
ex- 1-- -.

n=O
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giving, in particular, Bo- 1, B---1/2, B2k+l--0 (k> 1), B2-, B4=- 3--6, B6=2, and
B8-- 30.

THEOREM 4.12. (A) ff
x x/(l+1/2) x/(l+1/2) x/(1/2+1/2) x/(1/2+1/2)(x)- -x+-1- + +

x/(k+1/4)x/(+1/4)
+

then K(x) converges for all x <_ O,

K(x) E Bz(2x),
k=l

and

1K(1) foe_St(_l+tcotht)dtS S

where B2k is the 2kth Bernoulli number defined by (4.97).
() f

(s>0),

x x x 2x 2x 3x 3x
v,*x--x+-

1-1+1- + +
4x 4x 5x 5x
+ 1-1+1 .....

then K*(x) converges for all x <_ O,
o B2 (22kK*(x),--, E --k--1

and

1)(2x)2

K*(-1) (s>0)
S

where again B2k is the 2kth Bernoulli number.
Proof. Recently, Frame [4] proved that the continued fraction

X 2 X 2 X 2

B(x)-_+1/2 + 1/2+1/2 + 1/2+1/4 +...

corresponds to the divergent power series Ek=B2,(2x)2k, where the Bak are Bernoulli
numbers. The following relation is also given in [4]:

(4.98) B e-"[1-tcotht]dt (s>0).
S S

We extend the continued fraction B(x) to obtain
x X X X X X X(4.99) -x+$_ k+k +$_ ++k +$_ +k +$

The continued fraction K(x) in part (A) is obtained from (4.99) by an equivalence
transformation. It will be convenient for us now to write B(x) in the equivalent form

(4.00) o(z)-/( +) z/(+)(+) z/(k+k)(+)
+ + +--"
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If f,(x) and g,(x) denote the n th approximants of (4.100) and K(x) respectively,
and if D,(x) denotes the denominator of f,(x), then

(4.101)
gZn+(x)--f,,(X) and Igz,(x)-f,,(x)l- Ixllfn(x)-L-,(x)l

I(1/n+ 1/(n+ 1))(Dn(x)/D,_,(x))-x
n_>l.

X2 X2 X2 X2

K(x)--]-+ 1/2 + +...+ +
The continued fraction K*(x) is derived from K(x).

To give some indication of how complicated the formulas can be for the coeffi-
cients of the regular 6-fraction corresponding to the Maclaurin series of a much used
analytic function, we close this section with an informal and somewhat incomplete
discussion of what happens in the case of sinz. Recently, Dzjadyk [3] gave the associ-
ated continued fraction representation

Z dl z2 d2z2 d3 z2 d4z2(4.104) sinz
1+ + + +

where

7 11 551
d-, d2- 60’ d3-980’ d4- 19404’

and where the general formulas given for the dn are so complicated that we choose not
to repeat them here. Another important claim made in [3] is that none of the d,’s is 0.

where

Since D,,(x)/D,_ l(X) _> for all real x, it follows from (4.101) that

Ig2.(x)-L(x)]-<lf.(x)-L-,(x)],
provided x< 0. Hence from this inequality and (4.101), we have that

lim g,(x)= lim f,(x)--B(x)

for all x< 0. The fact that (1/s)K(- 1/s) is the Laplace transform of + coth now
follows immediately from (4.98), after we note that B(x)--B(-x). This completes our
argument for part (A). The proof of part (B) is similar to the proof for (A), so we give
only a sketch of how K*(x) and it corresponding series can be derived. An equivalent
form of the following representation can be found in Wall [33, p. 369].

(4 102) e-"tanhudu -z---- z- - z-
/ 1/2 / 1/2 / 1/4 /’""

By expanding e-ZUtanhu into a power series in u and then integrating from 0 to
term by term one gets the series

o B2k (22k 2k(4.103) --1)22kz
k=l

After setting z 1/x in (4.102) and (4.103) we arrive at

B2k )22 -- (22k- 1)(2x k K(x),
k=l



t-FRACTION EXPANSIONS OF ANALYTIC FUNCTIONS 867

Before we proceed further, let us introduce the following sequences (,} and (q+} of
Hankel determinants: Given an arbitrary sequence (%} of complex numbers, let 0-1,
q- l, and

C C2 C,

C2 C3 Cv+

C C,+ C2

(v-l,2,-")

C2 C C,

C C4 C,+

C C,+I C2v--2

(v-2, 3,’").
Thus q, and q+ are determined once we specify (%}. According to [9, Thm. 7.13, p.
242], the associated continued fraction corresponding to the Maclaurin series of a
function analytic at z- 0 is unique. On the basis of this result, the claim d =/= 0 for all n,
and Satz 3.11 of [21, Satz 3.11, p. 120] (applied to +T sin) we assert that the d, in
(4.102) are given by

ln+ l(/)n--
d2n.._ n-t-ln(4.105) d2n (l)nn ln .+. flkn

n >_ 1,

where {c, ) is defined by

__(-1)n-(4.106) c,,_(2n_ 1)!,
n_>l.

After extending the continued fraction (4.104), under the assumption that its coeffi-
cients are given by (4.105), we obtain the regular -fraction

Z Z blZ blZ b2z b2zKz 1-z-t-i-- + 1- +

where

and, in general,

b3z b3z b4z b4z
1 + +

7 11 3857
b-, b2- 10’ b3- 686’ b4-2178

b2"-’= (q,,): b2"- (4’,,+,)2’
with { c, } defined by (4.106). Then

K "2z
,,=o (-2-r 1)!

sin z.

n_>l

We have not attempted to determine the convergence behavior of K.
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A NOTE ON A MULTILINEAR GENERATING FUNCTION
FOR THE KONHAUSER BIORTHOGONAL POLYNOMIALS*

H. M. SRIVASTAVA

Abstract. It is observed, in the present note, that a multilinear generating function for the Konhauser
biorthogonal polynomials Y(x; k) and Z(x; k), which is the main result of a recent paper by K. R. Patil
and N. K. Thakare [SIAM J. Math. Anal., 9 (1978), pp. 921-923], does not hold true as asserted in the
literature. The corrected (and slightly improved) version of this result is given and its relationship with an
obvious special case of a known multilinear generating function (due to H. M. Srivastava and J. P. Singhal
[Acad. Roy. Belg. Bull. C1. Sci. (5), 58 (1972), pp. 1238-1247]) for a certain class of generalized hypergeometo
ric polynomials is indicated.

For the Konhauser biorthogonal polynomials Y(x; k) and Z(x; k), Patil and
Thakare [1] gave the following multilinear generating function"

(1)

--eXA(r-(a+l)/k-m)(l+X) E a+,+l+ x

t=0 k A(r+ 1)/k

.[ a+k+l+
k

+m; (1 /fl) ,..-,(1 +fir)

YUl yrSUr

s&+ s&+

i:1

where ,I’2" denotes a confluent hypergeometric function of n variables, and (X)n
F(X + n)/F(X). Their derivation of (1) was based rather heavily upon the differential

operator

d
(2) Ox,x=xk(X+xDx), Dx---x
where h is a constant. In our attempt to give a direct proof of (1), without using the
differential operator 0x,x, we were led to the interesting fact that the multilinear
generating function (1) does not hold true as asserted by Patil and Thakare [1 ]. Indeed,
in terms of a hypergeometric function of r/ variables (see Srivastava and Daoust [2,
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p. 454]), we are thus led to the multilinear generating function

(3)

hi,. .,nr-- 0
(m+ n, +... +n) Y+,,, +... +.(x; k) -( "- -nli=1

a + 1 ) Xm-rm -(or+ 1)/k
"---k--- e

[ [m+(a+ 1)/k’l/k,1,..., 1]"
F:O;...;o:1; ;1 I [(a+l)/k’l/k];

;"’; x Yf’U y/u, )[1 / fl’s] ;--’; [1 "21-r:Sr] Allk A S

whose special case, when si-s, i-1,...,r, differs markedly from the Patil-Thakare
result (1) with, of course, t replaced trivially by a-X. Formula (3) is the corrected (and
slightly improved) version of the erroneous result (1).

Since Sl,...,s are (by definition) positive integers, the multilinear generating
function (3), with k- 1, can be derived easily as a special case of a known result [3, eq.
(24), p. 1244] with x replaced on both sides by x/, and ,. We omit the details
involved.

It may be of interest to remark that the only situation in which the right-hand side
of (3) can be expressed in terms of the confluent hypergeometric xI, function occurring
in (1) is when k-s1-... =st--1, in which case (3) at once yields, for the Laguerre
polynomials L(,)(x) Y,(x; 1)-Z(x; 1),

ni ’,Yi) u
(m+nl +... +nr)It(a).m+nl + ..+ nr(x)

nl,...,nr=O i=1 (1 +fli),,

(4) -a--m-- I1+--(+ 1)e A, -t-m+ 1;aq- 1,fl, + 1,... ,r-i- 1;

X YlUl YrUr]Ar
or, equivalently,

(m+n, +... +n )IL(,.’)+ +,r(X) ni
nlq-..-

i=1 (1 /3i

--eXA-ra-m-1 E (Ot+[+ l)m X

t=o 1! --a+l+m+ fl + l," ",flr+ l, YlUl  rUr]
where Z is defined with (1).
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The multilinear generating function (4) is due to Srivastava and Singhal [3, eq. (5),
p. 1239] who proved it in two different ways; it was this result of Srivastava and
Singhal [3] which Patil and Thakare [1] had set out to generalize for the Konhauser
biorthogonal polynomials Y(x; k) and Zff(x; k).

Finally, we remark that the errors in the derivation by Patil and Thakare [1, p. 922]
are due, for example, to a misinterpretation of a well-known hypergeometric generating
function for the Konhauser polynomials Z(x; k) and several improper uses of such
operational formulas as

(6) Ox",x{x’} --x+knkn( ’nt- )k ,’ n-0,1,2,--.,

which is an easy consequence of the definition (2).
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RECIPROCAL POWER SUMS OF DIFFERENCES OF ZEROS
OF SPECIAL FUNCTIONS*

S. AHMED" AND MARTIN E. MULDOON

Abstract. We derive formulas for sums of the form

(m,j= 1,2,3, -.),

where (zk} is the (finite or infinite) sequence of (complex) zeros of an appropriate solution of a second order
linear differential equation. In special cases our results reduce to some of those obtained by T. J. Stieltjes, F.
Calogero, S. Ahmed, M. L. Mehta, K. M. Case and others.

1. Introduction. Recently there has been a renewed interest in results concerning
sums of the form

(1.1) S,n,j-E’(zj-zk) -m,
k

m-- 1,2,..., j 1,2,..., where {zk} is the finite or infinite sequence of (complex) zeros
of an appropriate solution of a second order linear differential equation. Here and in
what follows the prime on a summation sign indicates that the singular term (k =j in (1.1))
must be omitted. In the case m--1 such results were discovered for zeros of various
polynomials by Stieltjes [20] (see also [22, pp. 140-142]) and were related by him to the
interpretation of these zeros as equilibrium positions for certain one-dimensional elec-
trostatic problems. A typical and very simple example is the set of equations

Xj, j--1,...,n
k=l

for the zeros of the Hermite polynomial H,(x).
F. Calogero [9] initiated a study of the corresponding relations for zeros of the

Bessel function Jp(x) in connection with a study of integrable many-body problems,
and corresponding results for a host of other special functions have been given in a
series of papers by Calogero, S. Ahmed and M. Bruschi. Ahmed et al. [4] have
summarized a good deal of this work and have connected it with the theory of certain
matrices having integral eigenvalues. Some of the results have application to finding
bounds for zeros of special functions [5], [6], [1] while others are used in the study of the
asymptotic density of zeros of orthogonal polynomials [11], [12] and in the study of the
monotonicity of the zeros with respect to certain parameters [21 ], [22, pp. 123-124].
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The sums (1.1) are closely related to formulas (the so called "sum rules") for sums
of the form

see [5], [91, [101, [13], [141.
There have been two attempts to unify results on sums such as (1.1) for various

special functions. M. L. Mehta [19] has given a procedure for finding the sums Sm,j
(m--1,2,... ) successively and K. M. Case [13], [14] has discussed these and other
sums in more detail for solutions of

(1.2) g2(x)y" + g(x)y’ + go(x)y=O.
All of Mehta’s and most of Case’s results are concerned with polynomial solutions, and
the coefficients in (1.2) are supposed to be polynomials of low degree. In the case where
the solutions are entire functions rather than polynomials the method introduced in [9]
and described in [4] and the method used by Case [13], [14] involve delicate questions
concerning the validity of certain interchanges in the order of summation of double
series. While there is no doubt as to the correctness of the final results, it is by no
means clear to us how all of these interchanges are to be justified.

The purpose of this paper is to re-examine the derivation of sums of the form (1.1)
and

where the zj. are zeros of an appropriate solution of a differential equation

(1.3) y" + P(z)y’ + Q(z)y-O,

having a singularity at a. In the case of several singular points it is only in exceptional
circumstances that an entire solution of (2.1) exists. Nevertheless, our general results
can be used to obtain most of the earlier results known to us on the sums (1.1). Our
method is based on the introduction of the function yj(z) and the exploitation of its
relation to y(z) given in (2.7) and (5.12). This shortens many of the earlier arguments
and avoids the problems, referred to above, concerning the interchange of orders of
summation.

2. The sums SI,j, Here we suppose that y is an entire function which satisfies

(2.1) y"+P(z)y’+Q(z)y-O

where P and Q are meromorphic, and that y has simple zeros at the nonzero points
z,z2,.... We suppose that none of the z’s coincides with a singularity of P or Q and
that

(2.2)

We remark that, in some cases, (2.2) will be guaranteed by the forms of P and Q; see,
for example [16, Thm. 4.6.3, pp. 137-138] together with [23, 8.22, p. 249]. We suppose,
further, that y has a Weierstrass product representation given by

(2.3) y(z)-eg(z) -[ _z
k-- 7-,k
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where

g(z)-nlogz+h(z),

n being a nonnegative integer and h an entire function. We introduce the functions

(2.4) yj(z)-eg(z) II 1-
z

z--7 j-l,2,.-..
k4=j

Thus

Hence,

and

(2.6)

This shows that

y’(z)- -z]-’)(z)+ (1-z ))’(z)z

y,,(z)--2zf lyj(z)+ (1- z--)z Y (z).

(2.7) y"(zj___) 2
yJ(z2)

On the other hand, if we differentiate (2.4) logarithmically (this is justified, e.g., by
[18,pp. 14-15]) we get

(2.8) y}(z)__ (z--zk)- +g,(z),
y (z)

whenever the right-hand side has meaning, and

Comparing this with (2.7) we get

g’(

Y"(zY)_g,(zy)(2.9) S,,= y’(zj--Y
From (2.1) we have

so (2.9) gives finally

y"( z) + P( zi)y’( z)-O,

(2.10) S,,j= P(z9 )-g’(zj).

In the important special case where g(z) is constant, this becomes

S,,= -P( z2 ).
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3. The sum ,(z,-a)-. We suppose now that the hypotheses of 2 hold and that
a is a singular point of the differential equation (2.1) such that the functions g’(z),
g"(z) and Q(z)/P(z) have finite limits as z- a. Logarithmic differentiation of (2.3),
justified by 18, pp. 14-15], leads to

y"(z)
y(z) E -X

k

In the neighbourhood of z- a, the differential equation (2.1) may be written

ytt yt( ( z- )-+ (z- z ) -O.

Letting z - a we get

lim (z- a)P(z){ X (a- zk)-’+ g’(ct)) + lim (z- a)Q(z)-0
Z-*Or k Z--) t

or

(3.1) ’ (Zk--)-1- lim
Q(z) +g’(a).

z- oP(z)
In case g(z) is constant this becomes

(Zk--a)-’--lim Q(z)
z-. P(z)"

4. Some spedal eases. We suppose now that equation (2.1) has n singular points,. .,, and that

e(z)=Po(Z)+ pi(z-ai) -1,
i=1

i=1

where P0 and q0 are entire functions and piv0, i-1,...,n. It then follows from the
differential equation (2.1) that no simple zero of y can occur at one of the ai. The other
assumptions of 2 are supposed to hold here. We see that the results (2.10) and (3.1)
become

(4.1) X’ (zj--Zk)-’-- -,
,(2Po(Zj)--- pi(zj--ai) --g zj) j 1,2,

k--I i=1

and

(4.2) X (zk--a,)-l--q’-+g’(ai), i--1,...,n.
k=l Pi

An example in the case of one singular point is provided by the function

y(z)-F(p+ 1)2pz-p/2jp(zl/2)-
=1 Zk
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which satisfies

-lyy"+(l+p)z y +z -0

so that (4.1) and (4.2) give the result of Calogero [9]

E’ (zj-zg) -1= 1(1 /p)z-f’2
k--I

and the well known

] z-’-[4(1 +p)]-l.
k=l

Ahmed and Calogero [5] have considered the function

j--l,2,...

(z)--P/2y(z)-(p+q)  r(p+l)

and noted that

p( z) =y[( p2- q2 )z]
satisfies (2.1) with

P(z)-(p/ 1)z--(z 1) -, -Q(z)--(p-q)(p+q+2)z- +-(q-p)(z-1)
We suppose that p>- 1, so that by Dixon’s theorem [24,p. 480], p has only simple
zeros (other than x-0) and so doesn’t vanish at 1. Now

y(z)-2(p+q)-r(p+ 1)2pzl-(p+q)/2 d-d- (zq/2Jp(Zl/2))dz

so y is an entire function of order 1/2 and the Hadamard factorization theorem [23, p.
250] shows that if the zeros of q(z) are z, z2,. ., we have

II
k--I

Thus the results

], (zk_zj)-l_ -i-(P+ l)z-l +-(1-zj)
k--I

E 1---! (p+q+2)(p--q)
j=l

4 p+l

and

E(zj 1) -’-1-(p-q)
j=l

j-1,2,-..,

of [5] follow from (4.1) and (4.2). We have not considered the case ,_< 1, but it seems
likely that the results can still be gotten from our general results in this case.
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The results of this section are applicable also to the Lam6 equation in algebraic
form 15, p. 56]"

(4.3)
dZA 1(1+ )dA hk-:Z-(n)(n+l)XA 0dx----+- x-1 - +

x-k-2 4x(x- ll(x-k-21
With the notation of [8, Chapt. 9] we let Zl,...,z be the zeros of the Lam6 polynomial
EN(z) of the first species. We get, from (4.1) and (4.2),

(4.4) -’ Z;I Ar- ( Zj + ( zj- k-2) j= l,. ,m,
/=1

m h
(4.5) E zj

1__

2’
j=l

(4.6) E (zj--1) -l=n(n+ 1)k2-h
j=l 2(1 -kz)

and

(4.7) (zj-k-:) l=hk: n(n+l)k2

j= 2(1-k)

The result (4.4), in a different notation, is given by Arscott [8,Exer. 13, p. 233], who
bases it on the work of Stieltjes [20]. The sum rule (4.5) was noted by Case [14]. Of
course (4.5), (4.6), and (4.7) may also be found by examining the series expansions of
the appropriate solution of (4.3) about the points 0, and k-2 respectively.

Our general results may, of course, be applied to other solutions of the Lam6
equation. They may also be applied to the generalized Lam6 equation [17, p. 496].

5. Higher order sums. Here we consider the sums

(5.1) S,,,j-- E’ (zj--zk) (j,m--1,2, ).
k--I

with the notation and assumptions of 2. Our principal result expresses Sm, in terms of
a determinant involving the coefficients in the equation (2.1) and their derivatives.

THEOREM 5.1.

Sin,j- [(m-1)!]-’ ( det[ ar,( zj ) r,s= l, ,m
-[- ( --1)mg(m)( zj ) }

where

ar,s(Zj)--

(s+ 1) As+l(zj), r-- 1,

(s-r+2)-l(s-1)A 2(zj) l<r<s+l
r 2 s-r+

1, r--s+l,
O, r>s/l.

andA P, B2 Q,

A,+I =A2A.+An+B,. Bn+ B2An+B n-2,3,---.
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COROLLARY. For the first few values of m, this implies

S,,j (zj z) l=--P(zj)-g zj)2k=l

3So-3 ]’ (zj-zk)-2-
k--I

:
’( 3g"+P

8S,j-8 E’ (z-zk)-3-P(z)P’(zj)-P"(zj)-2Q’(zj)-4g"’(z2),
k=l

etc.
Remark. Mehta [19] has a result (for polynomial solutions only) which gives Sin,J.

implicitly in terms of determinants involving the coefficients in the equation and their
derivatives.

Proof of Theorem 5.1. We have

(5.2) Sm,j-Sm,j(zj)
where

(5.3) Sm,j(Z)-- E (Z--Zk) -m,
k=l

and this gives

(5.4) Sn,j(Z ) --mSm+,,j(z),
Now we introduce the notation

#n)(z)Wn(Z)-

Clearly, we have

(5.)

m--l,2,....

Expanding the determinant by its last column we get

ws(z ), r--l,

r 2 Ws--r+l(Z)’ <r<s+ 1,

1, r-s+l,
0, r>s+l.

(5.6) (--1)m+lAm,j(g)--Wm(Z) "- 2 (-- Wm_k_l(Z)A j(2)
k=o k k+,

Next we show that

Atm,j(Z )- --Am+l,j(Z ), m-l,2,-.-.

where

W Wn+ W W

We define a sequence of determinants Am,j(z) (m- 1,2,... ) by

Am,j( z ) det[ otr,s( Z )] r,s= l,. ,m,
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Equation (5.7) clearly holds for m--1. We suppose that it holds for m-1,...,N-1.
We wish to show

(5.8t ,(z) +,,(z 1.
We have, from (5.6),

N--2

AN,j WN.__ (_l)tC+l N
WN_k_lAk+l,j

k=0(5.9)
N--2

+
=0 k WN--A+’"

We use (5.5) in the first term and the first sum on the right-hand side here. In the
second sum we use our inductive hypothesis that (5.7) holds for m 1,..-,N- 1. Some
standard manipulations with series and binomial coefficients then show that the right-
hand side is (- 1)NAu+ ,j.(z). Thus (5.8) holds and (5.7) has been proved.

Next we have

(5.10) (n-- 1)!Sn,j(z)--An,j(z)+ (- 1)ng(n)(z), n-- 1,2,.

This is clear for n- 1, and for the other values it follows from the recurrence relations
(5.4) and (5.7) satisfied by Sm,j(Z ) and Am;j(z ) respectively.

In order to prove the theorem it remains to show that etr,s(zj.)--ar,s(z), i.e., that

(5.11) ws(z)-(s+ 1)-A+(z), s-1,2, .
In order to see this, we recall (2.5) and (2.6) and remark that successive differentiation
gives

y(")(z)- -nzf#"-)(z)+ 1 -z )#’)(z), n-1,2,..-,z
and so

(5.12) w(zj)-(s+ 1)-’ Y(S+l)(zg)
y’(z)

On the other hand, successive differentiation of (2.1) leads to

(5.13)

Comparing (5.12) and (5.13) we get (5.11), so the proof of the theorem is
complete. U]

Theorem 5.1 may be applied to all of the examples considered in [}4. In this way,
for example, we get the results of Calogero [10] on sums of the form (5.1) for zeros of

6. Confluent hypergeometric and related functions. In the foregoing it was as-
sumed that

(6.1) E[zjl-,<,
and this was necessary in order to be able to deal with

)H _z
k= 2k
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and related products. This precludes results on functions whose zeros grow too slowly
in modulus for (6.1) to hold but for which

(6.2)
Of course we cannot expect to get results of the kind considered in 2 and 3 for such
functions, but one may still expect to get results of the kind considered in [}5. Indeed
Ahmed [2], [3] has discussed these questions for the zeros of the confluent hypergeomet-
ric function Fl(a, c; z) by starting with sums of the form

j=l

which are clearly convergent under the assumption (6.2), and going on to find the sums
(5.1) for m=2,3, . Here the results of [2], [3] are put in a more general setting.

We consider an entire function y which satisfies (2.1) and whose zeros are such
that (6.2) holds. Otherwise the assumptions of 2 are supposed to hold. We suppose
that the resulting Weierstrass representation of y has the form

(6.3) y(z)-eg(z) I-I 1-
z

k=! -k
where g(z) is as in [}2. In analogy with [}[}2 and 5 we let yj. be the corresponding product
with the factor (1 z/zj) omitted, i.e.,

(6.4) yj(z) eg(Z)e z/zj 1-[ 1---z e
k-- 2k

We have

(6.5)
yj(z) o

y (z)
=z +z; +g,(z).

4j

The formula for yj’/yj is

(6.6)
yj’(z) [ yj(z) ] Eyj(z) y(z)

+g"(z),

which is just (5.10) for n-2. The relation between the derivatives of y and yj. is (5.12),
the same as before.

It is then easy to see that Theorem 5.1 holds provided we interpret S, as

k--I

the other S,,, having the same meaning as in [}5.
We now take

Y(Z) -e-az/c 1F,(a c’, z)

where a and c are chosen so that the zeros of this function satisfy (6.2). For this it is
sufficient that a be complex and c real, but c not be zero or a negative integer; see
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[7, footnote 3]. We can show y is an entire function satisfying (2.1) with

and

P(z)- (2a- c) +cz
c

Q(z)-a(a-c)
2

-1

1-
Z eZ/Zy(z)-

:, z-7
where {zg} are the zeros of Fl(a,c;x ). Thus, -,_c-2a c(2 )-’(6.7) x +x X-(X--Xk) (2C----- xj. j--1,2,....

k--i

(6.8)

This agrees with the result obtained in [2]. Moreover, for the first few values of m,
Theorem 5.1 gives

lZx ]’ (Xj--Xk) -2- --x+Z(c--Za)x--c(c+4), j--1,2,---,
k=l

(6.9t 8x] E’ (xj--Xk)-3--(c--2alxj--c(e+2),
k=l

etc. in agreement with [3, (6), (7), etc.].

Acknowledgments. We thank Professor B. D. Sleeman for pointing out that the
result (4.4) occurs in reference [8]. We are grateful to a referee for comments leading to
a more accurate title and introduction.
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INEQUALITIES AND APPROXIMATIONS FOR ZEROS
OF BESSEL FUNCTIONS OF SMALL ORDER*

ANDREA LAFORGIAt AND MARTIN E. MULDOON*

Abstract. LetJ,k and C,k denote the k th positive zeros of J,(x) and of the general cylinder function C,(x)
respectively. Using a result of A. Elbert (Studia Sci. Math. Hungar., 12 (1977)), pp. 81-88 on the concavity of
j,, as a function of v, we prove various inequalities for this function. We find the first three terms in the
power series expansion of c,, as a function of v and give the numerical values of the coefficients in the case of

Jl.

1. Introduction. For v_>0, we usejrk and c,,k to denote the kth positive zeros of the
Bessel function J,(x) and of the general cylinder function

C,(x) cos aJ,,(x) sin aY,,(x),
where a is fixed, 0_<a<rr. In particular, if a:0, c,,k--j,,,. The definitions may be
extended to negative values of v in such a way that c,k varies continuously with v,
c 0 when v a/rr- k and on the interval

--k<v<--k+ 1,

ck is the first positive zero of C(x); see [11, p. 508], [2]. The general behaviour ofL
and c as functions of u may be seen from the graphs in [11, p. 510].

Our first purpose here is to prove some inequalities for j,k which are particularly
sharp for u close to 0 and which extend or complement some of those already known
[3], [4], [6], [7]. Our second purpose is to find the first three terms in the power series
expansion of c, as a function of v. In particular, we find

(1.1) J,,,=Jo + 1.542889743 v-0.175493592 p2+O(p3),
where the coefficients have been rounded off in the ninth decimal place. Such results,
useful for very small v, can be thought of as complementing those of F. G. Tricomi
([10]; see also [8, Exer. 6.4, p. 408]), e.g.,

(1.2) jvk--V+akVl/3+bkv-l/3+O(v-1), V-->C,

which are useful for large v.

2. Lower bounds for j,. Our chief tool here is a result of . Elbert [2] which
asserts thatj,k is a (strictly) concave function of v for -k<v< c. The graph of such a
function lies above each of its chords. Considering the chord joining (0,j0k) and
(N,jm,) we get

(2.1) J,k >J0k+ V( jNk--jo, )IN,
If we take N 1/2, this gives

(2.2) J,>Jok + 2v(krr-jo,),

0<v<N.

O<v<-
2’
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which improves the lower bound

>,rr ( 1)(2 3) j,k---+ k - r O <_ u <_-
given by H. W. Hethcote [3, p. 73]. In fact, since it becomes exact at 0 and 1/2, (2.2) gives
the best lower bound forLk which is linear on (0, 1/2).

Letting N in (2.1) and taking account of (1.2), we get

Lk_>j0,+ ,, 0<,<.
But the function

Lk--Jok-- ’
is concave and nonnegative on (0, ) and hence cannot vanish there unless it is
identically zero. Thus we have, in fact, for k- 1,2,. .,
(2.4) L>j0+ ,, 0<,<.

This is an improvement on the inequality

found by R. C. McCann [6]. Recently, McCann [7] used a different method to prove
(2.4) in the case k- 1. We remark that the asymptotic formula (1.2) shows that (2.4) is
the best lower bound which is linear in v and valid on (0, z).

Next, we consider the chord joining the points (-k, 0) and (0,j0) on the graph of
Jk as a function of v. The concavity of the graph gives

(2.5) 2,>Jo+ J0, -k<,<0.

Finally, the graph of the function L, lies above the chord joining (-1/2, (k-1/2)r)
and (1/2, kr ) leading to

a result given in [4, p. 219] which extends the range of validity of (2.3).
The interval of validity of (2.4) cannot be extended to negative values of v, but one

can get linear lower bounds for various intervals (a, ), -k<a<0. The best linear
lower bound for the interval -k<v< is easily seen to be

jk’>V+k, -k<v<.

3. Upper bounds forint,. Here we need the formula [11, p. 508]

(31)
dj,,k r )J,,( z )

j,,( z )
Y,,( z )

d,---J"* Y,,(z) O, 0,

But [8, p. 243]

(3.2)
%J(z) ],

,:0
--rY(z)-

and [11, p. 76]

(3.3) Yo( Jo, )- 2[ rjo, J[( Jok)]-’-- 2[ rjo, J,( Jok)]-’.
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Thus

(3.4)
v=0

From Elbert’s concavity result [2] we see that the graph of ilk lies below its tangent at
(0,j0k). This leads to the inequality

dj
k< v< c2k <--Jk + v

=0’
with equality only for v= 0. In view of (3.4), this gives

(3.5) jvk<Jok+P[JokJ?(Jok)] -1 --<P< P0

Finally, the concavity offik shows that the function

+
increases with v, 0<v<. In particular, we have

leading to

(3.6) ilk< 1) -v-- [jokg2(jOk)] + k’n’, v >--.
It is clear that the concavity ofjvk can be used to find many other inequalities. We

have given only what appear to be the simplest ones.
In [5] it was shown that fi2k is convex on a certain interval vk<v< and conjec-

tured that it is in fact convex on 0<v<. If this is indeed the case it would imply
further inequalities forfi. Thus, for example one is led to conjecture that

(3.7) fizk<j+2v[k2rr2-j], 0<v<-.
4. An approximation for zeros of Bessel functions of small order. Our main theo-

rem here applies to zeros of C(x). It is specialized to the zeros of J(x) and-Y(x) in
Corollaries 4.1 and 4.2, and numerical results forj are given in 5.

THEOREM 4.1. Let

.2
(4.1) M(x)--- {Jo(X) + Yo(X) }.

Then, for each fixed k l, 2,...,

(4.2) Ck Cok + a lk p + a2kv + O( V3 ),
where

(4.3) al= 2c0kM(c0)
and

(4.4) a-2CokM(Co)[M(co)+cokM’(co)]

4 c’ J’(x)
3v:z p2 v=O,x=co
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COROLLARY 4.1. For each fixed k 1,2,. .,
J, =Ak+ OllkP .qt_ Ct2k p2

_
O( p3 ),

where

and

a2k_ [2 j3okj( jok )] r
__

JokJl3( Jok )] Y.(J’o)

+ [2J,{o] -’ 2_L._)
p2 v=O,x=jo

COROttAR 4.2. Let yk be the value taken on by Ck when a=/2. (Thus, for v>O,
yk is the kth positive zero of Y(x).) Then, for each k= 1,2,. .,

y.=yo+l..+&.+o(,’). -+o.
where

2

and

f12k---YkJCYk)---y62kJaCYk)J’CY’)---Y’J(Y’) 3v 2
=O,x:yo

Proof of Theorem 4.1. Nicholson’s formula [11, p. 444], with v 0, may be written
in view of (4.1), in the form

(4.5) M(x)- Ko(2xsinht)dt, x>0.

We have [11, p. 446]

(4.6) M(x ) + xM’(x ) Ko(2x sinh t) tanh2 dr,

We also have [11, p. 444]

(4.7) J(x) OY(x)_ Y,(x) OJ,(x)
v v

x>O.

_4 fomKo(2x sinh )e-2vt dt

and [11, p. 508]
dc, 2c,,,Ko(2C, sinht)e 2"t dt.(4.8) dv Jo

Differentiation of (4.8) and integration by parts lead to

[][dc]foKo(2Cosinht)tanh2tdt(4.9) d2cvl 2
odr2 =o

4c0 tKo(2Co sinh t)

x>O,
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Elbert [2, (16), p. 87] has this in the case c,k =jk; it is clear that his method applies in
the more general case. It follows from (4.7) that

(4.10) J(x) oZY(x--)-O,2 Y(x) 02j(x--)=8fotKo(2xsinht)e-Ztdto,2 r
x>0.

Now since c is analytic in , [11, p. 507], the expansion (4.2) holds with

a,- [dc] -0-2cf0K(2cksinht)dt’
using (4.8), and this is easily seen to give (4.3), on using (4.5). Next,

d2cvk
azk--- dr2 .-o"

Using (4.9) and the result just found for ak gives

a_-2coM(co) Ko(2cosinht)tanhtdt

2Cok tKo(2Co sinh t) dr.

We now use (4.6) and (4.10) to get (4.4).
The corollaries follow easily from the theorem on using (4.1), the Wronskian

formula for J(x) and Y(x) 11, p. 76] and some simple recurrence relations.
An alternative proof of Theorem 4.1 (at least in the case of the zeros of J(x)) may

be based on the results of F. G. Tricomi [9] on approximating zeros of functions for
which asymptotic expansions are known.

5. Numerical results forj. Corollary 4.1 shows that

Jl--Jo "q- Ol l’ -4"- 211
2 "q-" O( I3 )

where

and

[jo,j,2(jo,)] -’

a:’-[2j3’j(J’)]-’ r ]- [J0,J(J0 )]-lYe( J0, ) + [2J( J0 )]-’ ’D 2J(x)
012 ’=0,x--jm

The values of j0 and J(J0)-- -JD(Jo) needed to evaluate a are found in [1, p. 409].
For a21 we need in addition to evaluate Y(Jo) and

v=O,x=jm

For the first of these we use the series expansion of Yl(X), while for (5.1) we use [11, p.
61]

(5.2) OJ(x)
k--0

[k!F(+k+ 1)]-’. log --b(,+k+ 1)
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and its consequence

(5.3)

k--0

Using (3.2) leads to

(5.4) 2Jr(x)
)p2 v=0,x=j!

- [k!F(v+k+ 1)]-’[q2(v+k+ 1)-p’(v+k+ 1)].

2 log( J01 --1-)[jo,J,(jo,)]

()+ 2 (k !)-2[q2(k+ 1)-q/(k+ 1)].

Here q(x)-F’(x)/F(x) so that to compute the sum of the series in (5.4) we may use
[1, pp. 258-260]

(n+ 1)--p(n)+1, 6(1)--
n

q./.2
+’(n+ 1)--+’(n)

n2 +’(1)-----.
By means of straightforward calculations we are led to the numerical values in (1.1).
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TOTAL POSITIVITY OF MEAN VALUES
AND HYPERGEOMETRIC FUNCTIONS*

B. C. CARLSON" AND JOHN L. GUSTAFSON"
Abstract. The weighted power mean of two positive variables is strictly totally positive (STP) if its order

satisfies o < <0, and its reciprocal is STP if 0< < o. The reciprocals of the logarithmic mean, Gauss’s
arithmetic-geometric mean, and the Schwab-Borchardt mean are STP. The hypergeometric R-function
R_,(fl, fl’:x,y), x,y>O, which is equivalent to 2Ft with argument 1-x/y, is STP if a, flfl’, and fl+fl’-o
are positive. With weaker restrictions this function is represented in a new way as a convolution. Higher order
positivity is discussed for some other hypergeometric functions, including incomplete elliptic integrals.

1. Introduction. A real-valued function f(x,y) of two real variables is said to be
strictly totally positive (STP) on its domain of definition if every n n determinant with
elements f(xi,yj), where xl<x2<. <x and yl <y2<-.. <Yn, is strictly positive for
every n= 1,2,.-.. If the determinants are strictly positive for n 1,2,- .,r, then f is
said to be strictly positive of order r (SPr). The principal reference for the subject is
Karlin [6], who writes STP in place of SPr and sometimes STPo for STP. Many
applications to statistics, mechanics, and differential equations arise from the circum-
stance that a totally positive function is the kernel of a variation-diminishing transform.

We refer to [6] or [7, Chap. 18] for more precise statements and proofs of several
basic facts:

(1.1)
(1.2)

(1.3)

(1.4)

e xy is STP for x,y real [6,pp. 15-16].
If both g and h are strictly increasing functions, or if both are strictly
decreasing, and if F(x,y)=f(g(x), h(y)), then F is SP if f is SP [6,p. 18].
If g and h are strictly positive functions, and if F(x,y)=g(x)f(x,y)h(y), then
F is SP if f is SP [6, p. 18].
If f(x,y)= fzg(x,z)h(z,y)do(z), where o is a positive o-finite measure on Z
and the integral converges absolutely, then f is SP on X Y if g is SP on
XZ and h is SP on Z Y [6, pp. 16-17].

To these four rules we add two more"

(1.5) If (1.4) is modified so that either

:/’ h(z:y_) do(z)f(x,y) Jz g(x,z)
do(z)

or f(x,y)
g(x,z)h(z,y)’

(1.6)

then f is SP2 if g and h are SP2. This follows from [6,Eq. (2.5)] and the
observation that a, a2, a2, a22>0 implies that the 22 determinant with
elements ao. is strictly positive if and only if the 22 determinant with
elements 1/ai is strictly negative.
If a>0 then (x-+-y)-a is STP for x,y >0.

Apparently (1.6) is new except for the case a- [6, pp. 149-150], which dates back
to Cauchy and demonstrates that all minors of the Hilbert matrix are positive. The

*Received by the editors October 19, 1981.
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proof of the general case follows from the integral representation of the gamma
function [2, Ex. 3.2-3],

(x+y)-r(a)= t-e-(X/’&,

(x+y)- fO XZeZye do(z),

where do(z ) ( z)a- dz/F(a). The proof is completed by using (1.1) and (1.4).

2. Power means. The weighted power mean [4, p. 13] of order is defined by

(2.1) Mt(x,y)-[wxt+(1-w)yt] /t, t=/=O,

where x,y>0 and 0<w< 1.
THEOREM 2.1. If 0<t< then 1/Mt(x,y) is STP for x,y>O. If -<t<0 then

Mt(x,y) is STPfor x,y>O.
Proof. It follows from (1.6) and (1.2) that [wxtq-(1-w)yt] is STP if a>0 and

t:/:0. Assuming 0<t< o and putting a= l/t, we conclude that 1/Mt(x,y) is STP. If
-re<t<0 we put a=-l/t.

Note that the geometric mean, Mo(x,y)= xWy-w, is not STP because the rows of
the relevant determinants are proportional. The possibility of proportional rows like-
wise keeps M and M_ [4,p. 15] from being STP, although the determinants are
nonnegative.

If a>0 and c>_O, (x+y-+-c) is STP for x,y>O by (1.6) and (1.2). Hence the
weighted power mean of several variables, [Ewix[] /t, has the positivity properties of
Theorem 2.1 in any two of the variables if the others are held fixed.

3. Iterative means. If x,y>0 let Xo--X and Yo--Y and consider three separate
iterative processes in which x and y, approach a common limit as n

(3.1) Xn+--x,,+(XnYn)1/2, yn+--y,,+-(XnYn)1/2, Xn,Yn--->L(x,y),

(3.2) Xn+l=’(Xnnt-yn), Yn+l--(XnYn)1/2, Xn,Yn--+M(x,y),

(3.3) x,+--(x,+y,), Yn+l--(Xn+lYn)1/2, x,,ynS(x,y ).

Here L is the logarithmic mean, M is Gauss’s arithmetic-geometric mean, and S is the
Schwab-Borchardt mean. The reciprocal of each has an integral representation [1 ]:

(3.4) L(x,y------ -R-l(l’l;x’y)-lnx-lnyx-y
1- (112),(3.5) M(x,y--’---R_/2 -,- ;x ,y2

( ) { -x ) arccos(x/y), x<y,1 2 2_ (y2 2-1/2

(3.6) S(x,y)--R-/2 -’ 1;x ,y
(x2-y2)-/2arccosh(x/y), x>y,

The iterative process converging to S was proposed but not published by Gauss in 1800 (for more details see
[1]). Schwab [9, pp. 103-107] published it in 1813 and Borchardt in 1880. We thank Professor I. J. Schoenberg
for reference [9].
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where

(3.7)

It follows from (1.4) and (1.6) that R_,(fl, fl’;x,y) is STP for x,y>0 provided fl, fl’>0
and 0<a<fl+ fl’. Use of (1.2) completes the proof of the following theorem:

THEOREM 3.1. The reciprocal means 1/L(x,y), 1/M(x,y), and 1/S(x,y) are STP

for x,y>O.
The means M and S are the best-known members of a family of twelve iterative

means Lj(x,y) constructed by letting

(3.8) x,+=f(x,,y,), y,+=f(x,,y,), ivj,

where

(3.9)
)1/2f,(x,y)---(x+y), f2(x,y)--(xy

f,(x,y)-- x
2 f4(x’Y)-- Y 2

For each of the twelve choices of and j, 4:j, the common limit of x and yn as n
is Lij(x,y ). For example the Schwab-Borchardt mean S is L14. In each case a suitable
negative power (- 1/2 or or -2) of Li (see [1]) is an R-function (3.7) with a, fl, fl’
such that it is STP. The mean L also is essentially a member of this family, as one sees
by replacing each variable in (3.1) by its square.

4. Hypergeometric functions. The R-function (3.7) is a homogeneous variant of
Gauss’s hypergeometric function [2, 5.9]:

(4.1) R_(fl fl,. x,y)=y_ ( x)
If b is a k-tuple of real numbers and x a k-tuple of positive numbers, an extension of
(3.7) to several variables is [2, (6.8-6)]

(4.2)

k

R_a(b,x ) (Xi+z)-b’do(z),

F(a+a’)
do(zl-F(alF(a, za’-ldz, a’- E bi--a, a>0, a’>0.

i--1

The R-function has other representations that define it when a and a’ are not positive.
THEOREM 4.1. Let a,a’,b,...,bk be real numbers and assume a+a’--Y=lb and

aa’b. bk vO. Let xi>O, i-- 1,...,k. For some andj consider R_a(b,x ) as a function
of x and x, all other components of x being fixed; i.e., define f(xi,x9)-[(xi,xg)
R_a(b,x)]. If k>_2 and a,a’,bi, bj>0, then f is STP. If k-2 and exactly one of a, a’,b,
b2 is negative, then l/f is SP2. If k>2 and a,a’>O, then l/f is SP2 ifbb<O whilefis
SP2 if bi<O and bj.<0.
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Proof. In those parts of the theorem which assume a, a’ >0, we may use (4.2) and
define a sigma-finite measure

dOl(Z )- I-[ (Xm+Z)-b"do(z).
mi,j

If b, bj>O then (1.6) and (1.4) imply that f is STP. If b<0 then (x+z)-b is the
reciprocal of a function that is STP and therefore SP2. Hence the last sentence of the
theorem follows from (1.5), as does the next to last sentence in case exactly one of b
and b2 is negative. The remaining case, when exactly one of a and a’ is negative while b
and b2 are positive, follows from [2, (5.9-20)] and (1.3).

Theorem 4.1 has interesting applications to elliptic integrals. For example, the
perimeter of an ellipse [2, (9.4-5)] with semiaxes a and fl is P(a, fl)- 2qrR/2(1/2,1/2; a2, f12),
and hence 1/P(a, fl) is SP2 for a, fl>0. The symmetric incomplete integrals of the first
and third kinds [3],

RF(X,y,z)--R_l/2 -, -,- ;x,y,z R.(x,y,z,p)--R_3/2 , , -, l;x,y,z,p

where x,y,z,p>O, are STP in any two variables when the others are fixed. We may
choose z= by homogeneity and tabulate RF(X,y, 1) with rows and columns of the
table labeled by increasing values of x and y, respectively. If the table is regarded as a
matrix, all its minors are strictly positive. Similar remarks apply to the integral of the
second kind, Ro(x,y,z)-R.(x,y,z,z)-R_3/2(1/2, 1/2,- x,y,z ).

Theorem 4.1 implies that 1/Rt(fl, fl’;x,y ) is SP for x,y>0 provided fl, fl’>0 and
either t>0 or t< -/3-fl’. We ask now whether the SP2 property can be strengthened to
STP or at least SP for some r>2. Because of [2,(5.9-21)] and (1.3), 1/Rt(fl, fl’;x,y ) is

SP if and only if 1/R_#_#,_t(fl, fl’;x,y ) is SPr. Hence it suffices to consider the case
t>0.

If fl, fl’>O, it is not hard to show that 1/Rt(fl, fl’;x,y ) is STP for x,y>O in
certain special and limiting cases. If t--1 we use [2,(6.2-2)]. For any t>0, as fl+fl’
tends to 0 or o with fl/fl’ fixed, we use [2, (6.2-17), (6.2-18)]. (The cited equations are
valid also for nonintegral n.) Some additional special cases in which 1/R is STP if > 0
will be exhibited in 5.

Nevertheless, a numerical example shows that 1/R2(1/2,1/2;x,y ) is not SP3. If
(x,x2,x3)=(1,2,3) and (yl,Y2,Y3)=(lO0,200,300), the 3)<3 determinant with ele-
ments 1/R 2(1/2,1/2; xi,yj) has the value 1.7 10- 20. More generally a complicated alge-
braic expression for the 3)<3 determinant with elements 1/R2(fl, fl’;xi,Yj) shows that
the determinant will be negative for fixed positive fl< if x3/y (or y3/xl) is suffi-
ciently small.

We conclude that if t>0 or t<-fl-fl’, then 1/R is sometimes STP and some-
times not even SP but always SP_ if fl, fl’>O. Some further examples in which it is or is
not STP will be discussed in the next section by using the properties of P61ya frequency
functions.

Since the weighted power mean (2.1) of order is the limit as c0+ of the
hypergeometric mean [Rt(cw c-cw; x,y)] l/t, it is natural to ask whether the reciprocal
of the latter is STP if c>0 and t> -c. In general it is not. For instance, if (Xl,X2,x3)
(1,2,3) and (y,y2,y3)=(lO0,200,300), the 3)<3 determinant with elements
1/[R2(1/2,1/2;xi,Yj)] 1/2 has the value -8.1 10-15.

5. Pblya frequency functions. A measurable real-valued function f defined on the
real line is called a strict P61ya frequency function (SPF) if f(x-y) is STP. (Some
authors require f to be integrable, but if f is SPF then eeXf(x) is integrable for suitable
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real c [8,p. 341].) Iff(x-y) is SP thenfis called SPF. A function is SPF2 if and only if
it is strictly log-concave on the real line [8, p. 337].

For example, if fl, fl’>O and 0<a<fl+fl’, then R_,,(fl, fl’;e2x, eZY) is STP for
real x and y by Theorem 4.1 and (1.2). Since R_ is homogeneous of degree -a, we
have

R_a(/,/’ e2X, e2Y ) e-aXe-aYR_a( fl, fl’ eX-y, ey-x ).

It follows by (1.3) that R_(fl, fl’; eX, e-) is SPF.
For another example, the Gegenbauer polynomial [2, (6.7-21)] of degree n is

r(2+n) Rn(v v’e e-X).(.1) C"(cshx)- r(2)r(n+ 1)

If ,>0 and n--1,2,3,. ., it follows from Theorem 4.1 that 1/C,(coshx) is SPF and
C[(coshx) is strictly log-convex. The same is true for the Gegenbauer function defined
by (5.1) with any real n>0 and ,>0.

To see whether 1/C, is SPF, we shall use a theorem of Schoenberg [8, p. 349] with
strictness conditions added by Karlin [6,p. 357]. Only an abridged version of the
theorem will be needed. A measurable real-valued function f defined on the real line is
SPF if its bilateral Laplace transform exists in an open strip containing the imaginary
axis and has the form

(5.2) f_e-SXf(x)dx-q(s--, q(s)-Ceas i=,II (1-]-ais)e-a,s

where C>0, the ai and 8 are real, Ea converges, and ,lail diverges. Conversely, f is not
SPF unless the reciprocal of its bilateral Laplace transform is entire.

For example, if fl, fl’>O, -a<Res<a, and a-2fl<Res<2fl’-a, then

f’ e-SXR_,( [3, [3, eX, e-X ) dx

2r(/)r(’)r()r(+,-)

as one finds by taking e as a new integration variable to obtain a Mellin transform,
substituting (3.7), and changing the order of integration. The representation of F by an
infinite product shows that (5.3) has the form (5.2). This was expected, since the
conditions of validity imply 0<a</3+ fl’.

Since the product of the Laplace transforms of two functions is the transform of
their convolution, (5.3) suggests a new way of writing the hypergeometric function (4.1)
as a convolution:

2--’R_,( fl, fl’ eX, e-X ) ff(-i--7) -sech(x- )et’-t)t(secht )#+t’-’dt’

where Ilmxl <r/2, Re/3>0, and Re/3’ >0. These conditions of validity can be verified
by putting e2t-(1-u)/u to obtain Euler’s representation. Equation (5.4) is particu-
larly attractive if /3 and fl’ are equal, as they are for Legendre and Gegenbauer
functions [2, 6.8].
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We can now investigate further the higher order positivity of 1/R t, t>0. For
example,

e-sxdx rrsin( r)’t+l
(5.5) f -t<Res<t.Rt(1;1;eX’e- ) 2sin t+l 7t+l
This result follows from (5.3): observe that [2, Ex. 5.9-13]

(t+ 1)sinhx
R_t/(t+ 1)(1,1; ey, e-y ), y- + 1)x.

Rt(1,1;eX, e-x) sinh[(t+l)x]
The representation of the sine function by an infinite product shows that (5.5) has the
form (5.2). Hence 1/Rt(1, 1;eX, e-X), t>0, is SPF and 1/Rt(1, 1; x,y), t>0, is STP for
x,y>0.

Another example, in which the Laplace transform can be evaluated by using [2, Ex.
6.10-12, (4.2-4)] after taking e as a new variable of integration, is

f e-Xdx _-22’F(t+slF(t-s)(5.6)
eX,e_X) F(2t)o R - t, - t;

where -t<Res<t and t:/: 1,2,3,.... Since this has the form (5.2), the condition
e-X0<t:/:1,2,3,-.. ensures that 1/Rt(1/2-t,1/2-t;e x, ) is SPF and 1/Rt(1/2- t, 1/2- t; x,y )

is STP for x,y>O. The same is true of 1/Rt_ t(1/2- t, 1/2- t; x,y ) with the same conditions
on t,x,y (see [2, Ex. 6.10-12]).

Despite the preceding special cases (as well as the cases mentioned near the end of
4) in which 1/Rt, t>0, is STP, a final example suggests that this state of affairs may
be the exception rather than the rule. If fl, fl’ are real and flfl’(fl + fl’+ 1)>0, then
[2, (6.2-4)] yields

e-SX dx r ,) [ _ff_.( fl + ) ] S/4 sin( sO/2)
R(fl;--,ieX,e_xl--(fl+fl (tan0)[/3,1(;7+-i) sin(srr/2)

where -2<Res<2, 0<0<rt/2, and tanO=[(fl+fl’+ 1)/tiff’] /. If r/0- 3, 4, 5, .,
all zeros of sin(sOl2) are cancelled by zeros of sin(srr/2). Then (5.7) has the form (5.2)
and 1/R(fl, fl’; e, e-) is SPF. (The case/3--fl’--1 coincides with the case t--2 of
(5.5).) In particular, by (5.1), 1/C(coshx) is SPF if ,/(u+ 1)--cos(r/m), m-
3,4,5,.... On the other hand, if 0<0<rr/2 but 0 does not have one of the listed
values, the reciprocal of the Laplace transform is not entire and 1/R(fl,fl’; x,y) is not
STP. The numerical example in 4 shows that it is not always even SP3.

Other interesting examples of sign regularity properties of hypergeometric func-
tions are contained in [10].
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ON ELEMENTARY METHODS IN POSITIVITY THEORY*

J. GILLIS,t B. REZNICK AND D. ZEILBERGER

Abstract. We give a short proof of a result of Askey and Gasper [J. Analyse Math., 31 (1977), pp. 48-68]
that (1-x-y-z +4xyz)- has positive power series coefficients for fl_>(l-3)/2. We also show how
Ismail and Tamhankar’s proof [SIAM J. Math. Anal., l0 (1979), pp. 478-485] that

(l-(l-X)x-)y-Xxz-(1-X)yz+xyz) (0_<)_< l)

has positive power series coefficients for a: implies Koornwinder’s result that it does so for a :> 1.

1. Introduction. Given a multivariate polynomial P(xl,.. ",Xn) and a real fl, it is
of interest to know whether P-# has only positive terms in its power series expansion.
Szeg/5 [6] proved that this was the case for P-(1-x)(1-y)+(1-x)(1-z)+(1-y)
(1-z) and fl_>1/2, and Askey and Gasper [2] established positivity for P- 1-x-y-z
+4xyz and fl_>(lv/]ff 3)/2. A fascinating account of the history of these problems up
to 1975 is given in Askey’s monograph [1].

Koornwinder [5] used deep methods to establish the positivity of the coefficients of
[1--(1--))x--)y--)xz--(1--)yz+xyz]-/ for 0_<_< 1, fl_> and that of [1-x-y-
z-u+ 4(xyz +xyu+xzu+yzu)- 16xyzu] -/. Later, Ismail and Tamhankar [4] (see also
[3]) gave elementary proofs of Koornwinder’s results in the special case/3= 1. In {}2 we
are going to show how Ismail and Tamhankar’s results for/3= imply Koornwinder’s
results for fl> and in {}3 we give a short proof of Askey and Gasper’s [2] result.
Finally, in 4 we conjecture that for n_>4, (1-(Xl+ ...-]--Xn)-q-n!Xl’’’Xn) -1 has
positive coefficients.

2. Operations that preserve positivity of coefficients.
PROPOSITION 1. Suppose that a(xl,.. ",Xn_) and b(Xl,.. ",Xn_l) are polynomials.

If (i) (a-bxn)- has positive coefficients and (ii) a has positive coefficients for all
a> O, then so does (a- bxn)-for all fl >_ 1.

Proof. By hypothesis (a- bxn)-1_ E(br/ar+ 1)x has positive coefficients, imply-
ing that for every r, br/a+ has positive coefficients. Since (fl)r/r!-fl(fl+ 1)---
(f + r- 1)/r! is positive and al-a has positive coefficients, we see that

(a-bxn)--al-# E ([)r br

r--0
r! a r+l

has positive coefficients.
By taking a-1-(1-3k)x-Xy, b-Xx+(1-X)y-xy (0_<1) it follows that

Ismail and Tamhankar’s result that [1-(1-))x-)y-?xz-(1-))yz+xyz]-/ (0<_2
_< 1) has positive coefficients for fl- implies Koornwinder’s result that it does so for
_>1.

PROPOSITION 2. If [a(x,y)--b(x,y)z] and [c(x,y)-d(x,y)z] have positive

coefficients (a>0) so also does [a(x,y)c(z, u)- b(x,y)d(z, u)]-.
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Proof. (a- bz) al-’Y[(a)r/r!](br/ar+ )z and (c- dz)
cl-’,[(a)r/r!](dr/cr+ 1)zr have positive coefficients. Thus for every r, both al-’br/ar+l
and cl-adr/r+l do and, hence, does (ac)l-’brdr/ar+ lcr+l and finally does

(ac)l-a E (Or) brd
r ar+ lcr+

( a(x,y)c( z, u)- b(x,y)d( z, u)) -’.

Take a(x,y)= 1-x-y, b(x,y)=x+y-4xy, c(z,u)- 1-z-ud, d(z,u)--z+u-
4zu. The hypotheses of Proposition 2 are satisfied (for a_> 1) by virtue of the above
discussion, (with ,-1/2, x 2x, y 2y). Thus, we have an elementary proof of Koorn-
winder’s [5] result that [1-x-y-z-u+4(xyu+xyz+xzu+yzu)-16xyzu]-" has
positive coefficients for a_> 1.

3. A short proof of a result of Askey and Gasper. It follows from the above that
(1-x-y-z+4xyz)- has positive coefficients for fl_>l. Askey and Gasper [2] ex-
tended this result to fl_>(1(-3)/2. This can be obtained quite simply by an extension
of a method used in [3].

Suppose that fl>(lf-3)/2. Write R- 1-x-y-z+4xyz, it is readily seen that

-x -(l+2z) X -x y -ff-y + Z -z + fl R-t+2 y -ff-fy Z -z R

+lybzc above, compare coefficients of xaybz c, and setSubstitute R - D,+ 1,b,cx"
a a- to get

aD,,b,c-(a+b-c+ fl- 1)Oa_l,b,c-}-2(a--b+c--2-+-fl)Oa_l,b,c_l.

Now, by symmetry, it is enough to prove positivity for a>_b>_c. The coefficients of the
above recurrence are positive if a>_b>_c> and the result will follow by induction if

Da,a, -->0 for all a. Now

D,,,, fl ( fl + ) ( fl + 2a- 2) ( fl + 2a- l.z)- ( fl + 2a )
4t- -1- a-

But (fl + 2a- 1)(fl + 2a)- 4a2: f12_/3 + 2a(2fl- 1) increases with a since fl- 0.56 > 0.5
and Dl,l,l--fl(fl2+ 3/3-2)>0, so the result follows.

4. Does (l-(xl+--" +Xn)+n!x’"x,,)- have positive power series eoeffi-
dents? We have already mentioned Askey and Gasper’s result that (x +y+ z) +
4xyz]-l has positive power series coefficients. We are interested in An, the largest A for
which (1-(x + +Xn)+Ax"" x,)-1 has nonnegative coefficients. Since the coef-
ficients of x... x, in the above expansion is n!-A,, we must certainly have A,<_n!.
We conjecture that for n__>4, A,--n!. It may be seen that A,_>(n-1)!, i.e., that
[1-(x + +x,)+(n- 1)!Xl... x,]- has positive coefficients. The reason is that
the coefficient of x1... x" in the above expansion has combinatorial significance,
namely, it is the number of words with a l’s,- -,a, n’s such that no substring of n
letters which ends with the letter "n" can be a permutation (e.g., with n--4, the six
words 1234, 1324, 2134, 2314, 3124, 3214 are not allowed as subwords) (see Zeilberger
[7] for details).

Let us state:
PROPOSITION 3. Let (1--(X + +Xn)+nlX Xn)-l--Aa,,.. .,.x’ x,". If

Ar,...,r>__O for all r, then A,,t...,>O for all (al,-..,a,)N".
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The proof is rather long and we omit it here. Note that

A<.) (-I)
j(rn-(n-I)j)!(n!)j

r, ,r
j--0 (r--j) vnJ

and it would therefore suffice to show that this binomial sum is positive. This has been
verified by computer for n-4 and <r<220. In this range A(4) increases monotoni-r, ,r

cally and appears to have exponential rowth. This supports our conjecture.

Acknowledgment. Many thanks are due to Gilad Bandel for his programming.
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LEGENDRE TYPE POLYNOMIALS UNDER AN
INDEFINITE INNER PRODUCT*

ANGELO B. MINGARELLI? AND ALLAN M. KRALL:

Abstract. The polynomials which are orthogonal with respect to the indefinite inner product

lf(x)g(x)-ax+-f(1)g(1)+ f(- 1)g(- 1)( f,g):

with a<O are shown to span the Pontryagin (Krein) space generated by the inner product. The polynomials
are eigenfunctions associated with a selfadjoint, fourth order differential operator.

Introduction. In a recent article [2] it was shown that the Legendre type polynomi-
als

t,/21 (--1)k(2n--Zk)’(a+ n(n-1) t-2k
2

2"k’(n-k)’(n-2k)’k--O

which satisfy a fourth order differential equation of the form

ly-X,,y, n-0,1,..-,

n-2kX

where

ly-((x2- 1)2y")" +4((a(x2- 1)- 2)y’)’
and

X,- San+ (4a+ 12)n(n-11 +an(n-l)(n-Zl+n(n-l)(n-Zl(n- 31
are orthogonal with respect to the Stieltjes measure +, given by

2
x_<-l,

X

2
lx.

The polynomials have a number of additional properties associated with orthogonal
polynomials. In particular it was shown that

Sl+ p:<)(x)dq,,_o + (n-l)(n) )( (n+ 1)(n+2))/(2n-t-1)--1--1 2
a+

2

that the set (P)-0 spans the Hilbert space H generated by +, and that gives rise to a
selfadjoint operator in H.

The purpose of this article is to show that when a< 0 and is not the negative of a
triangular number, + generates an indefinite inner product space K, which is a
Pontryagin (Krein) space [1] with rank of positivity 2, the polynomials {P())-0
spanK, and gives rise to a selfadjoint operator A. For a brief discussion of these
spaces we refer the reader to [4], see also [1, Chap. IX].
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When c is negative triangular, there does not exist a polynomial P() exactly of
degree n for each n-0, 1,-.., and the space K is degenerate. When c=0, K is also
degenerate.

The polynomials. We assume that for some N>0

N(N+ 1) (N- 1)N
2 2

so that a is not the negative of a triangular number. We then note that the polynomial
P(")(x) is exactly of degree n and that the formulas lP() X,P() and

2
t+

2 /(2n+ 1)

still hold [2]. Since

c+(n+l)(n+2) > (n+N+Z)(n-N+l)>O2

when n _>N- 1, and

a+(n 1)(n)> (n+N)(n-U-1)>O

when n >_N+ 1, we have

j-0,. .,N-2,

(Pj(), Pj{))>0, j--N--1,N,
<0, j-N+I,’"

If we let K be the indefinite inner product space generated by (., ) then K admits
a Hilbert majorant given by

[f,g]-f’ f(x)g(x) dx+-f(1)g(1)+ f(-1)g(-1).
--1

By [1, p. 89], K=K+@K@K-, where K+ is a positive definite subspace, K is
neutral, and K- is negative definite.

LEMMA 1. K-- (0). (K-K+ @K-.)
Proof. If f is in K, then f is orthogonal to all of K. In particular, f is orthogonal to

x", for all n-0, 1,.... An argument similar to that found in [2] shows f=0. Thus
K= (0), and K--K+ K-. El

Now let

P+- span(P2)" <P’),P2’’ ) >0),
P- span( P(’" P(),P(’

and let P--P+ @P-.
LEMMA 2. K--P+ 3P-.
Proof. By [1, p. 104] P is orthocomplemented in K. If f is in p_L, then by the

argument of Lemma 1, f=0. Hence K=P+ @P-. El
THEOREM 1. K is a ( nondegenerate decomposable) Pontryagin ( Krein space spanned

by {P(’)}=o, and K=P+ @P-.
COROLLARY. Iff is in K, then

f= X c,V( ),
n=0
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where

Ctl

The differential operator. While the differential expression is formally selfadjoint,
the boundary value problem

ly--y,

8ay’(1)-ky(1), -8ay’(--1)--)y(--1),
which is required to show symmetry in Green’s formula, involves )-dependent boundary
conditions. Consequently it is convenient to express K in a slightly different form in
order to fully exhibit the full role played by - 1.

We denote by the indefinite inner product space L2( 1, 1)(R)(R), where for
)v and G-(g(x),g g_l)v inF-(f(x),fl,f-

a
(F,O)= f(x)g(x)-dx+-f,-ll+-f_lg_l.

It is evident that K is isomorphic to . The operator A is defined as follows"
)r satisfying:Let Da consist of those elements Y=(y(x),y y_

1. y is in L2( 1, 1),
2. y’, y", y’" exist and y’" is absolutely continuous,
3. ly exists almost everywhere and is in L2( 1, 1),
4. y =y(1),
5. Y-l--Y(-1).

We then define A by setting

AY= ly(1) 81y’(1)
ly(- 1) -81y’(-- 1)

Green’s formula establishes that A is symmetric. Further, an argument similar to

that in [3] establishes"
THEOREM 2. A is selfadjoint in (.
THEOREM 3. The spectrum of A is real and discrete. It consists only of eigenvalues;

o.(A)-
Proof. Let Y, (P(, )(x), a, ( 1)"a)v, n 0, 1,.-.. Then for F in ,

F-ECnY
n--O

where C,- F, Y)/Y,, Y);. Thus if we attempt to solve (A-XI)Y-F, with

Y-,B,Y,,
n--O

we find B,-C,/(h-h,). When hh,, n-0, 1,. ., Yis in and is represented by

Y-n=O Jt--X,
Thus when (X)__0, (A -XI)- exists, and X is in the resolvent set.
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In a similar way we can also establish
THEOREM 4. For Y in DA, AY-Y,__oX,CYn, where C-{Y, Yn)%/{Yn, Yn)%. Fur-

ther Y is in DA if and only ifo 2
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LINEARIZATION OF THE PRODUCT OF ASSOCIATED LEGENDRE
POLYNOMIALS*

RUPERT LASSER"
Abstract. The linearization coefficients for the associated Legendre polynomials are found in a suffi-

ciently explicit form so their nonnegativity can be proven.

The linearization problem for an arbitrary orthogonal polynomial sequence (Pn(X)}
is the problem of finding the coefficients b(m, n, n +m k) in the expansion

2m

(1) P,,(x).P,,(x)-- b(m,n,n+m-k)Pn+m_k(X ),
k=0

where m<_n (see [2, Chap. 5]). We shall present a solution for the associated Legendre
polynomials which can be defined by means of their recurrence relation:

2

(2) pn+,(v;x)__xp,,(v;x)_ (n+v p,,_l(V;X)
)24(n+v

where we assume that u>-1/2 (see [5, Chap. 6, 12] or [3]). We prefer to use monic
polynomials, i.e., P,,(x)=x"+ .... Thus our notation differs from that in [3] and [5].
Pn(0; x) are the Legendre polynomials, and for vN the polynomials Pn(v; x) are their
numerator polynomials of order u (see [5, p. 87]). In 1878 F. Neumann [6] and J. C.
Adams [1] found the linearization formula for the Legendre polynomials (compare [2,
(5.5)1).

Now fix v>-1/2. Our method of proof is induction, where we use the following
recurrence relation for b(rn, n, n + m k ), m< n:

b(m,n,n+m-k)-O fork-l,3,...,2m-1, b(O,n,n)- l,

b(1,n,n+ 1)- 1, b(1,n,n-1)- (n+v)2
4(n-+- v)2--

and for rn 2, 3,

(3)
b(m,n,n+m)-1, b(m,n,n-m)-b(m-1,n,n-m+ 1)b(1,n-m+ 1,n-m),
b(m,n,n+m-2k)--b(m-1,n,n+m-1-2k)

+b(m-1,n,n+m+ 1-2k)b(1,n+m+ 1-2k,n+m-2k)
-b(m-2,n,n+m-2k)b(1,m-1,m-2)

for k-- 1,2,--. ,m- 1.
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Institut liar Mathematik der Technischen Universittt Mtinchen, Arcisstrasse 21, D-8000 Mtinchen 2,

Federal Republic of Germany.

403



404 RUPERT LASSER

One can easily deduce (3) from the associativity of the product (Xem_l(X))en(X)
X(Pm_I(X)Pn(x)). First we calculate certain auxiliary constants c(m,n,n+m-2k),
m_< n, which are defined recursively in a similar way"

c(1,n,n+l)-l,

and for m- 2, 3,.

c(m,n,n--m)--l,

(4)

c(1,n,n-1)-b(1,n,n-1)

c( rn n n m ) b ( rn n n rn )

c(m,n,n+m-2k)-c(m-1,n,n+m-1-2k)

+c(m-- 1,n,,n+m+ 1-2k)

c(1,n+m+ 1-2k,n+m-2k)

(m--l)2

for k- 1,2,---,m- 1.

Further denote

-c(m-2,n,n+m-2k)

(1/2)m2m__l’3"5 2m--1
m! m!

4(m-- 1)2--

(u+ 1/2)m2" (2u+ 3)’" 2m-- 1)
(v+ 1)m (V+ 1)m

(a)m--a(a+l)...(a+m--1), (a)o-- 1.

PROPOSITION 1. For m, n N, m <-- n, k O, 1,. .,m the following identity holds"

c(m,n,n +m- 2k)- Bm-kBkAn-kAn+m-2k(2n -t- 2m-4k+ + 2,)
BmA,A,+,,_k(2n+2m-2k+ +2,)

Proof. The assertion follows immediately for k-0 and k-m. Now we shall use

induction on m. Let 2<_m<_n and k {1,2,...,m-1}. By the induction assumption
we obtain

c(m n n +m- 2k
(m-k)(2m-1)(u+n+m-2k)

BmA,A,+m_ (2m-2k-1)m(,+n+m-k)

k(2m 1) (2, + 2n 2k+ 1)(, + n +m 2k+ 1)
(2k- 1)m(u+ n k+ 1) (2, + 2n + 2m 2k+ 1)

(m-k)k(m-1)(2,+2n-2k+ 1)(2,+2n+2m-4k+ 1)
(2m--2k-1)(2k-1)m(v+n-k+ 1)(,+n+m-k)
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Now a direct computation shows that the first term minus the third term in the above
brackets is equal to -(m-k)(,+n-2k+ 1)/(m(2k- 1)(u+n-k+ 1)). Thus

c(m,n,n+m-2k)

Om-kBkAn-kAn+m-2k
BmAnAn+m-k

k(2m-1)(2t,+ 2n-2k+ 1)(,+n+m-2k+ 1)
(2k-i)-m--(--n-----i-(J.-Sr--n+2m-2k+ 1)

(m-k)(,+n-2k+ 1)(2,+2n+2m-2k+ 1)
(2k-1)m(v+n-k+ 1)(2t,+2n+2m-2k+ 1)

Om-kOkAn-kAn+m-2k 2(v+n-k)2+(2m-2k+ 3)(v+n-k)+(2m-2k+ 1)
BmA,,A,,+,,,-k (,+n-k+ 1)(2v+Zn+Zm-Zk+ 1)

Bm-kBkAn-k4n+m-2k (2,+2n+2m-4k+ 1)
BmA,,An+,,,-, (2, + 2n + 2m 2k+ 1)"

Define the constants Rm,k, m [%1U (0), k-0, 1,. .,m by

R,,,0- if mN U (0), Rm,m--O if m N,

R (m-2k+ 1)2
m’k--Rm-l’k+Rm-2’k-1 4(m-2k+ 1)2- -b(1,m-l,m-2))

(m-2k+ 1)2+
4(m-Zk+ 1)2-

(Rm-’’--R"-2’’-) if k- 1,..-,m- 1.

THEOREM Let m, n 1, m <_ n. Then

m

Pm(t’;x)’Pn(’;x) . b(m,n,n-k-m-2k)Pn+m_2(’;x),
k=O

b(m,n,n+m-2k)-
min(k- 1,m- k)

j=O
Rm,jC(m- 2j, n,n +m- 2k ) + Rm,

where Rm,j is defined in (5)above and c(l,n,n+ l-2k) is calculated in Proposition 1.
Proof. Obviously the assertion holds for k-0 and k-m. Define in addition to (4)

c(m,n,n+m-2k)-O for k, k>m. Then the three-fold recurrence formula of (4)
holds for each k . Thus it is sufficient to prove

k-1

b(m,n,n+m-2k)- R
j=0

m,jC(m-- 2j, n,n+ m-- 2k) + Rm,k, k-1,...,m-1.
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We use induction on m. By the induction assumption and (3) one obtains

b(m,n,n+m-2k)
k-1

R,_,jc(m--1--2j, n,n+m-- 1-2k)+Rm_,,
j----o

k--2

+ ., Rm_,jc(m-l-2j, n,n+m-l-2(k-1))
j=0

c(1,n+m--1-2(k-1),n+m-2k)
+Rm_,.,_,b(1,n+m-1-2(k-1),n+m-2k)

k-2

Rm_2.jc(m-2-2j, n,n+m-Z-2(k-1))c(1,m- l,m-2)
j=0

--Rm_2,k_c(1,m--l,m--2)
=s+$2,

where

S
k_2 [Rm_l,j c(m- l-2j, n,n+m- l-2k)
j=0

+c(m--1--2j, n,n+m-- 1-2(k- 1))

c(1,n+m-1-2(k-1),n+m-2k)

-c(m-2-2j, n,n+m-2-2(k-1)) (m-2j-1)2

4(m-2j- 1)2-
k-2

+ (Rm_,,j-Rm_2,j)c(m-2-2j, n,n+m-2-2(k-1))
j=0

(m--2j-- 1)2

4(m--2j-- 1)2--
k--2

j=O
m_2,jc(m-2-2j, n,n+m-2-2(k-1))

(m--2J--124(m--2j-- --1 -b(1,m-l,m-2))
and

S2--Rm_.k_(c(m--1-2(k-1),n,n+m-1-2k)

+c(1,n+m- l-2(k-1),n+m-2k))+R,,_,,-Rm_2,,_

(m-2k+ 1)2
-t-Rm-2’k-1

4(m-2k+ 1)2- -b(1,m-l,m-2)).
(m-2k+ 1)2

4(m-2k+ 1)2-
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Now by (4) and c(m- 1- 2(k- 1),n,n/m- -2(k- 1))- we see that

S2--Rm_l,k_lC(m--2(k--1),n,n/m-2k)
(m-2k/ 1)2+

4(m-2k+ 1)2-
(Rm-l’k-l--Rm-z’k-1)+Rm-l’k

( (rn-2k+ 1)2 )+Rm-2’g-I
4(m-Zk/l)2-1

b(1,rn-l,m-2)

--Rm,k+Rm_,k_c(m--2(k--1),n,n+m-2k).
Further, by (4)

k--2

S1-- E Rm-,,jc(m-2j, n,n+m-2k)
j-O

k-I

/ E (Rm-I,j-I--R
j-I

(m--2j+ 1)2m-2’J-1)c(m-2j’n’n+m-2k)
4(m-2j+ 1)2-

( (m-2j+ 1)2 )-b(1,m-l,m-2)m_2,j_lc(m 2j,n,n+m 2k)4(m_2j+l)2_l
k--1

+ R
j--1

Thus b(rn, n,n+m 2k) SI /S2 Ej=0k-1R m,jc(rn--2j, n, n+m-2k)+Rm,k, and the
theorem is proved completely.

We shall show that Rm, is often equal to zero.
PROPOSITION 2. Let rnN. Then Rm,k-O for k-[m/2]+ 1,. .,m, where

[m]_{l if m--21,-- ifm--21+l.

Proof. Assume that the assertion is valid for all positive integers not greater than
m- 1. If rn-21, then Rm,k--0 for k (l+ 1,...,m) by (5) and the induction assump-
tion. If m-21+ 1, then Rm,k--0 for k (l+ 1,...,m) again, where we use in addition
that rn- 2k/ 1-0 for k-I+ 1. U]

Our formula is simple enough to deduce that the coefficients b(m, n, n + m-2k)
are nonnegative if v_>0. This fact is very important (compare [2, Ch. 5]).

COROLLARY. If >_ 0 and

Pm(V;x)’P,(v;X)-- b(m,n,n+m--2k)P,+m_2kd(;x),
k=0

then b(rn,n,n+m-2k)>_O.
Proof. We have to prove that the constants Rm,k, k- 1,- .,[m/2] are nonnegative.

We shall again use induction on m. Let m >_ 2. Since v >_0 we have

b(1,rn- l,rn-2)<_ (m-l)2 (m-2k+l)2

<"

)2
for k-

m

4(m-1)2-1 4(m-2k+l -1 "’ -Thus it is sufficient to prove that R l,k-1--Rm-2,k-1 0" Using (5) again this follows
if Rm_2,k_2--Rm_3,k_2>O. Continuing in this fashion we see that Rm_l,k_ --Rm_2,k_
is the sum of nonnegative numbers. This completes the proof of the corollary. U]

--m-ldkRemark. Denoted n2/(4n 2 1) b(1,n n 1). ThenRm, k_
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Finally we point out that our nonnegativity results do not follow from the general
theorem of Askey [2, Thm. 5.2] for any value of u. This differs from the situation in [4],
where Askey’s theorem was applied to many associated continuous q-ultraspherical
polynomials.
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POSITIVITY OF THE POISSON KERNEL FOR THE
CONTINUOUS q-ULTRASPHERICAL POLYNOMIALS*

GEORGE GASPER" AND MIZAN RAHMAN:

Abstract. Rogers’ [Proc. London Math. Soc., 24 (1893), pp. 117-179] bilinear generating function for the
continuous q-Hermite polynomials

where (q; q),,-(1-q)(1 _q2) (1-qn) an.d (a; q)o =(1-a)(1-aq)(1--aq2) ..., is extended to the con-
tinuous q-ultraspherical polynomials C,(x; fllq) and used to give conditions for the positivity of the Poisson
kernel for these polynomials. Related bilinear generating functions are also considered.

1. Introduction. The continuous q-ultraspherical polynomials Cn(x;fllq), which
can be defined by the generating function

(1.1)
(tei;q)(te-i;q)

( te’’, q) ( te-’’, q) :o’ C(x; [3lq)t", Itl< 1, Iql< 1,

where x-cos0 and (a;q)-(1-a)(1-aq)(1-aq2) were introduced by L. J.
Rogers in his work [12]-[14] on the Rogers-Ramanujan identities, and have recently
been studied by Askey and Ismail [2] and Bressoud [5]. Rogers [11] showed that the
continuous q-Hermite polynomials (in the notation of [2])

H (xlq ) -(q; q)nCn(X; 0[q)

where (a; q)n- (1 a)(1 aq)... (1 aq ), have a bilinear generating function of
the form

(1.2)
(t2;q)

i(tei(O+q); q)o(tei(O-q); q)12
H (csOIq)H (csq lq)t

n=0 (q; q),

which is a q-analogue of Mehler’s formula for the Hermite polynomials. For Mehler’s
formula see SzegO [16, Problem 23] and Watson [17], and for some recent proofs of (1.2)
see Bressoud [4] and Carlitz [6], [7]. Our main aim in this paper is to derive an extension
of (1.2) to the continuous q-ultraspherical polynomials and then use it to prove that the
Poisson kernel (2.1) for these polynomials is nonnegative for 0_< fl < 1, < q< 1,
-1 <t< 1, -1 <_x,y<_l and for some other cases. In addition, a related generating
function is considered, and a new transformation formula for a certain 43 basic
hypergeometric function is derived.
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2. Extensions of (1.2). First observe that from the orthogonality relation [2, (6.6)]

f ,Hn(xlq)H’(xlq)l(e’;q)12 dx _2r(q;q),,6m
(l_x:)l/2 (q;q) ,n

it follows that the right-hand side of (1.2) is a positive multiple of the Poisson kernel for
Ho(xlq) (and thus this kernel is clearly positive for -1 <t,q< 1). Now observe that
since [2, (4.3)]

c.(x;Blq)Cm(X;BIq) (e2i;q)m
( [3eZi q )

2

(l--x2) 1/2 hn(jSIq )

for </3< with

(fl2;q)(q;q) (q;q),,(1-[3q")
hn(fllq)-2ri;q)(flq;q) (fl i-ii--the Poisson kernel

(2.1) e,(x,y;/3lq ) ] h(Blq)C.(x;/3lq)C,(y; Slq)t
n--0

is a positive constant multiple of the sum

(2.2) K,(x,y;BIq)

-o (q; q).(1-Bq") C.(x; Blq)C( y; Biq)t

and so in looking for an extension of (1.2) we are led to look for a formula for (2.2)
which reduces to (1.2) when/3--0.

In analogy with the Watson type formula techniques used in Bailey [3], Gasper [8]
and Rahman [9], one would expect to be able to use a special case of the Watson type
formula in Rahman [10] to derive the desired extension of (1.2). Unfortunately, this
approach led to computational difficulties which forced us to look for another tech-
nique. The technique employed here is essentially a modification of that used by Carlitz
in [6, p. 366] to prove (1.2).

Setting x-cos0, y cosq and using [2, (3.1)]

c.(y;Blq)- k (;q)m(;q-)-n-mei(n-2m)+
m=0 (q; q)m(q; q),,--m

and the inversion of Rogers’ linearization formula [2, (4.19)]

min(m, n)

Cm+n(X;[lq)-- 2
j=O

a(j,m,n)Cm-j(x; fllq)C-j(x; /3I q),
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where

(/; q)m+n( q q)m( q; q)n
a ( j, m n ) ii i--" q)m(fl; q),

we find that

(q-m-nj-2 q)j(1--q2j-m-n-2)(j-I q)j
(q; q)j.(1--q--m--ni--2)(ql--m--ni--I q )9

E (q; q),(1-iqn) ei(n_2m)
o (Bi-qii7-) t"C,(x;Blq) (;q)m(fl;q)n-m

m--O (q; q)m(q; q)n-m

=E
m,17>0

tm+n q; q )m+n (1- qm+n )( q )m ( q )n ei(n-m)+Cm+n(X" /31q),(2; q)m+n( fl)(q; q)m(q; q)n

tm+nei(n-m)qCm_j(x; lq)Cn_(X; /3lq)

-(-"i)m+n(ql--m--n[--l; q)j.(q; q).,(i --q------:/---] i 1-/3) V

m, 17,.j 0
tm+n+2Jei(n-m)Cm(X lq)C.(x; /3lq)

(;q)m+n+2J(q-m-n-2j-Z;q)J(-l;q)j(1--q-m-n-2)(1--qm+n+ZJ) { 2 )jz- ]---------- ii - (1 -5----]-" Si-] --,i --( ;q)m+17+j(q (q,q) --q--

=E
r17,17 >0

tin+hei’n-m)+ (_i. q),+, ( __qm+n) Cm(x" Blq)Cn( x"/lq)

43
iqm+n, q, +(m+n)/2- q, +(m+n)/2-, --1

q(m+n)/2VU q(m+n)/2- i 2ql +m+n

where a r+ lr basic hypergeometric series is defined by

r+l b ," ,b
q,z (a’;q)k(a2;q)k’’’(ar+l;q)kzk

k=o (qi-k-(ii-)-k-’’(br;q)

whenever the series converges. Now use the transformation formula

(2.3) 43 ]_ (t; q)(aq; q) b,tb;q,tb
(tb; q)(abq; q) 21 tq ;q,aq

q, flt]
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which is proved in 3, and the decomposition

( fl2q; q)m+n 2 qm+n
(flZ;q)m+n 1-fl 2 1-} 2

to obtain

K,(x,y;lq)

(t2; q)o(flq; q)o ?> tm+nei(n-m)qCm(X; Blq)C(x; Blq)
( -fl-t -q 3 -(-TZ-q ; q ) m, _0

(fl2q; q)m+n [ fl, flt2
21( ,q)m+n qt

q flql +m+ n]
(t2;q)(flq;q)o (;q)(t2;q)a(flq)
()}; q){); q) j=o (q;qi-i-i

2 (tqJe-iq)mcm(x; fllq) 2 (tqJei+)nCn(x;/]q)
m=O n=O

__f12 E (lqj+le-N/)mCm(x;/3lq) (’qj+leiq’)nfn(X;
m=O n=O

Hence, by (1.1), we have the following extension of (1.2)

(t; q )o( flq; q )ooK,(x,,;/lq)--(t2; qi7( /5
(tei(++); q)o(tei(-+); q)o ]2(tei(O+qO; q)o(tei(-qO; q)o

(2.4) E (;q)j(tZ;q)J(q)J (tei(+q);q)j(tei(-q);q)J
j=O (q;q)j(qt2;q)j (fltei(O++);q)j(fltei(-+);q)j

(tei(+q); q)j+,(tei(-+); q)j+,
( fltei(+q’); q)+ ,( tei(-*); q)2+

Since

1(1 fltq.iei(+q) )(1 fltqJei-*) )12- f12[(1 -tqJei(+/) )(1 tqJei(-/)

(1-- )(1-- flt2q2j ) [1 + fl + flt2q4+ fl 2t q2J-- 2fltq(cos( O + / ) + cos( O--/ ) )

(1 ,8)(1 flt2q’) fltqJei(-/)[2-k- fill tq2ei(++)12
and

1-flt2q2j-(1-flt)
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we can also write (2.4) in the following equivalent forms

(t2;q)(fl;q)
(qt2;q)o(2;q)

( fltei(+qO; q) ( fltei(-qO; q)
(tei(+q’); q)(tei(-qO; q)

(t2;q)(B;q)
(qt2;q)(2;q)

"f (t2;q)(q B;q)(-q;q)!!q)
j=o (q;q)(;q)(- BV;q)(qt2;q)

q,tb]
(t;q)(aq;q)o [b,tb(tq;q)(abq;q) 2’1 tq ;q,aq

(t;q) Iq/b’aq(tq; q)o 2)1 abq
q’ tb

(t; q)(aq; q) [tb/q,q(tb/q) 1/2, -q(tb/q) 1/2, b/q
(tb q)(ab" q) 4q3

(tb/q) 1/2/, -(tb/q) ,tq

and (2.3) to obtain

a,qv/-, -q-,b-1

(2.8) 4qa
f,--d,abq

flt q/flt 2 q(flt 2 fl, te i(O+’l’) te-i(o+),tei(O-qO, tei(q-0)

81#7 fl, fl, qt 2, flqte-(+*, flqtei(O+*),fltei(+-), fltei(O-)
q, Bq

2

(t2;q)(fl;q) (flqtei(+);q)o(flqtei(-);q)
(2.6) +fl (BqtZ;q)(B;q) (qtei(+q);q)(tei(-);q)

fl, Vt qt 2, flqte-i(++), flqtei(++), flqtei(+-), flqtei(O-+)

A simpler formula than (2.6) can be derived by using the Heine transformation
[1,II1

lab ]_(az;q)(b;q)o [c/b,z(2.7) 20 ;q,z (z;q)o(c;q) 201 az
;q,b
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which, when used in place of (2.3), gives

(tZ;q)(flq;q) (fltZ/q;q)J(q(fltZ/q)l/2;q)Kt(x’Y; filq)-
( fl;i-i(-2-; q) .=0 (q; q)(( flt-2----Ui/q) ;q)

(2.9)

q(fltZ/q) 1/2 ;q)j(fl/q;q)j
(ritZ/q)1/2 ;q)j(qt2;qlj

(flq)J X (tqJe-i+)mCm(x;
m=O

(tqJei)nCn(x;lq

(tZ;q)([3q;q)
( fltZ; q)( flZ; q)

fltei(+q); q)o tei(-*); q)
(tel(++); q)(tei(-+); q)

fit/q, q( flt/q ) /2 q( flt2/q ) /2 fl/q, tei(O+qO
87

(fltZ/q)1/2 _(fltZ/q),/2 qt 2 te_i(o++)

te-i(o+,), tei(O-6), te(q-o)
Bte(O++), Btei(_o), Btei(O_+)

q, Bq

Moreover, this a7 series is very well-poised and hence can be transformed via the
formula

[ a,q,-q,b,c,d,e,f a2q]8*7 , ,aq/b, aq/c, aq/d, aq/e, aq/f
q

bcdef

(2.10)
(aq; q)o(aq/ef; q)(a2q2/bcde; q)(a)q)/bcdf; q)

( aq/e; q) ( aq/f; q)(a2q2/bcd; q) ( aq2/bcdef; q)

/2,aq/cd,aq/bd,aZq/bcd, q( aZq/bcd ) ,/2, q( aZq/bcd )1
8*7

(a2q/bcd),/ (a)q/bcd),/2 aq/b aq/c

aq/bc e f aq ]aq/d, aZqZ/bcde, aZqZ/bcdf
q’ 7-f

which is the limit case of [15, (3.4.2.4)], to yield

(2.11)
K,(x,y;Blq)

(tZ;q)(fl;q)o
( flqt; q) (/32; q)o

( fltei(+q); q) ( flqtei(-+); q)
(tei(+/); q)(tei(-q’; q)o

/2,__q(t )1fit 2 q( flt 2)1 2 /2,fl, qtei(O+q) qte i(+q),tei(-qO, tei(+-O)

8*7
(t2)l 1/2/2, (fit 2) qtZ, flte_i(o+40 fltei(O+q),flqtei(q_o) flqtei(O_,)
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Notice that from both (2.6) and (2.11) it is clear that Kt(x,y;fllq) and hence the
Poisson kernel Pt(x,y;[3[q) are positive if 0_</3< 1, <q< 1, <t< and _<

x,y_< l.
The above methods can also be employed to derive other bilinear generating

functions. But here we shall only point out that since, as above,

=n (q;q)’ c(x. Blq)C(y.lq)t.L,(x,y;/3]q) (;qi

(2.12)
m,n>_O

tm+nei(n-m)qCm( x; lq)Cn(x; lq)

and, by (2.3),

B-, Bqm+"(i’q)m+n
2’1 2q,+ +n(2.q)m+ fit 2,q,

2
B- Bq
B2ql+m+n

;q,flt2]
(2.13)

(t2;q)o(qm+n;q)o
fltZ; q)( flZqm+"; q)

Bt2/q q( Bta/q) /2
"43

_q(Bt/q ) /2,
/, (t/q) ,tflt2/q) 1/2 2

q, flqm+n]
it follows, as in the proof of (2.9), that

L,(x,y; fllq)- (tZ;q)(;q)
fltZ; q)o( flZ; q)o

(tei(+/); q)(tei(-4); q)
(tel(++); q)(tei(-/); q)

(2.14)
t2/q,q(t2/q)/2, ,/2 +/) +q)q( t2/q , tei(O te -i(O

"87 (flt2/q)’/a (t2/q)/2, 2 /) tei(O+/),te-i(O+

tei(-+)’tei(+-)
fltei(/-o), fltei(O-/)

q, fl

which is clearly positive if 0_<fl< 1, <q< 1, <t< and _<x,y_< 1. Analo-
gous to Bailey’s proof in [3] of his formula for the Poisson kernel for Jacobi polynomi-
als [3,(2.3)], formula (2.14) can also be used to prove (2.11).

3. Proof of (2.3). Letting f(t) denote the left-hand side of (2.3) and using the
decomposition

aq2j- qJ / q(1 aq.j),
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we find that

f(t)--t(b-l)
abq2qbl

aq, qb-
abq2

q, tb + 2
aq,b-abq

Application of (2.7) then gives

f(t)= t(b- 1)(tq; q)o(aq; q)o
( abq )(tb; q)(abq 2; q)

bq tb
tq

;q,aq + (tbq; q) (abq; q) 211 tq
q’ aq

(tq;q)o(aq;q)o {t(b-1)2q(tb;q)o(abq;q)o
bq, tb
tq

;q,aq +(1-tb)2q
tq

q aq

(t;q)o(aq;q)o
(tb; q)o(abq; q)o 2rkl

b,tb
tq ;q,aq

since t(b- 1)(bq; q)j(tb; q)j+(1-tb)(b; q)j(tbq; q)j=(1- t)(b; q)j(tb; q)j, which com-
pletes the proof. VI

4. Additional observations. In 2 we pointed out that the positivity of the Poisson
kernel Pt(x,y;  lq) for 0</3< 1, <q< 1, <t< 1, <_x,y<_ follows from
(2.11). It is clear from (2.9) that Pt(x,y;fllq) is also positive when -l<q<fl<0,
l<t<l and l<_x,y<_l.

If -l<fl<0 and l<t<l, then

gt( O, +,j, fl, q) -I1 fltqJei(-q)12+ BI1 tqJei(+/)[
2

>11 +BI2+BI1 + ll2-B2+6B+ --gl(r,O,O,fl,q) >0

if and only if fl>23/2- 3 =0.1715728 .-.. Hence it follows from (2.5) that

(4.2) p,(x,y; Blq)>_o, <_x,y<_ l, -l<t<l,

when 23/2- 3<_/3<0 and -1 <q<_0. This result is the best possible in the sense that if
-1 </3<23/2-3 then, by (2.5) and (4.1), (4.2) fails to hold for q=0 and hence by
continuity, for sufficiently small negative q. Unfortunately, if flq<O then the term
(flq)J in (2.5) alternates in sign and so it is not clear from (2.5) when Pt(x,y; fllq) is
nonnegative in this case.

Since the ultraspherical polynomials are limits of the continuous q-ultraspherical
polynomials, explicitly

CnX(X) lim Cn(X qXlq ),
q-,l-
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it is natural to look at the corresponding limit case of formula (2.11). If we apply the
transformation formula (2.10) to (2.11) to get

(4.3)
gt(x,Y; fl]q)

-’(1--t 2) (tei(O+g,); q)([3qtei(+g,); q)
( tei(+g,); q) ( fl2qtei+g,); q)

2
( flqtei<-g,); q)
( tei-g,); q)

/2, _q( tel< ) ,e2iO,fle2ig,,q,2tei(O+g,),q(2tei(O+g,))l 2 O-k-g,) 1/2

"8q7
( [32tei(O+g,) ) l/2, ( fl2te

replace fl by qX and use the fact that

we obtain the known formula

fl qtei(+g,)
flqtei(O+g,),fl2

q, te-i(+g,)_
(zqa-; q) =(1--2) -a,

q (z,q)

(4.4)
lim Kt(x,y;qXlq)
ql-

n=0 X(2X3 CnX(X)C)(Y)ln

_1. 7_.t [x+,x.(l_2tcos(O_q)+t2) x+l 2F1 2X
4t sin 0 sin+

1-- 2t cos( O--/ ) +

2 (X+ 1)/2, (X + 2)/2. 4t 2 sin2 0 sin2 +
(l_2tcosOcosq+t2) x+l 2F1 X+1/2 (l_2tcosOcosq+t)

where (a)n a(a + 1)-.- (a + n 1), and we used the quadratic transformation

(4.5) 2F1 a’b [a/2,(a+l)/2(z)2]2b
z (1 z/2) 2Vl b+1/2 2-z

The right-hand side of (4.4) gives the well-known result that the Poisson kernel for
ultraspherical polynomials is positive for > -1/2 when <t< and <_x,y<_ 1.
Since the polynomials C,(x;fllq) are orthogonal with respect to measure which is
absolutely continuous on (-1,1) and has point masses at +--(fll/2+fl-1/2)/2 when
<fl<q-l/2, 0<q< 1, this suggests the conjecture that Pt(x,y; fllq) should be positive
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for l<fl<q-/2, O<q<l,--l<t<l when x,y(-(fl/z+fl-’/2)/2}U[-1,1]U
((fll/2 + fl-/)/2}. Observe that by setting e-i- fl 1/, y-(ei+ e-+)/2-(fl’/2 +
fl-/2)/2, it follows from (2.11) and the summation formula [15, (3.3.1.4)] that

(4.6)
Kt(x, ( fl,/2 + /3- ,/2 )/2; fllq)

(tZ;q)(;q)
( flqtZ; q)( fl2; q)

(’/2tei; q)(3/2qtei; q)(3/2te-i; q)(’/:Zqte-i; q)
-’/2teiO; q)(’/2tei;q) ( l/2tei; q) ( -,/2te-iO; q)

fit z q( fit 2 ), /2, q(flt 2 ) ’/, /3, /3- ’/2qtei -/te-i ]
6b5

(fit 2)1 2 /2, qt 2 fl 2te_ fl /2qtei0/2, -(fit )’ 3/ io
q’ 1

=(1-t) (/2qtei; q)(/qte-i; q)
(i;q)(-’/2te-g;q)

which, via analytic continuation, proves the coNecture when x[-1, 1] and y=(fl/2
+ fl-1/:)/2. Similarly, it follows that the coNecture is true whenever x or y is one of
the points m(fll/2+fl-/2)/2. Thus it remains to prove the coNecture when x,y
[- 1, 1]. What seems to be needed is a basic analogue of (4.5) which can be applied to
the 8 series in (4.3).

R. Askey suggested that limit cases of the formulas for Kt(x,y; Blq) and L(x,y; B[
q) in 2 could also be obtained as integral representations by using the q-gamma
function

(q; q) (l_q)-zFq(z)-(qZ;q)
the q-integral

1f(u)dqu-(1-q) 2 f(qn)qn
n=O

and the limits

lim Fq(z ) F( z ), lim f( u; q ) dqU ’f( u; 1) du,
q 1- q 1-

for suitable functionsf(u; q) wheref(u; 1)=limq flu; q). In particular, from (2.11)

K, (x,y; qXlq ) (1 t2)Fq(2A) z
_

rq(X)rq(a 

.( uX-’(uq; q)(t2uq; q)(1-t2uqx)(4.7) Jo (uqX;q)(t2uqX;q)

(tuqXei(+q); q)(tuqX+lei(-+); q) ](tuqei(O+q); q)(tuei(O_/); q) dqu
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and on letting q 1- we obtain

(+x)!(4.8) E: yXi2 C2(x)C2(y)t

(1-t)r(2x)
Fz(x )(1 2t cos( 0++)+ 2 )

.[1 UX-1(1 --U)-l(1- t2u))k-l(1-t2u)du
Jo [, ;-i; ;;i cos 0 + ,q

which is quite different from Watson’s integral representation in [18, p. 292].
Similarly, it follows from (2.9) and (2.14), respectively, that

(4.9) n (n + h )n C(x)C(y)tn

-(-t:)r(2x) f0’ ua(1-u)X-2(1-t2u)X--2!l-t2-u-2)du
-r(x+ 1)r(x-1) [(l_2,ucos(O+O/)+;-2ii;_2tucos(O_/)+t2)] x

for X> 1, and

n!
(4.10) , Cff(x)Cff(y)t"

n--0 (2)n

r(zx)f01 uX_21(_l__--_)xA(_l--t2u)X-l(1--t2u2)du___
-ri) [(l_2tcos(O++)+;;i?i--2ucos(O_+)+,)]

for X> 0.
Formulas (4.9) and (4.10) can also be proved directly by using the following rather

strange looking limit cases of (2.8) and (2.13):

(4.11)

a, l+a/2,-b ]_ (1-t)F(a+b) folua(l__u)ti-2(l__tu)b-2(l__tu2)du’F2 a/2,a+b+l
;t r(a+)r(b-)

when Itl<l, a>-l, b>l; and

[ r(a+b)f01 --1 (1-tu) (1-tu2)dua,-b "t ua (1 U) b-1 b--1(4.12) 2F a++’ r(a)r(b)
when It[< and a,b>O, which are easy to prove directly and have the important
property that a and b are separated inside the integrals.
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SOME ASYMPTOTIC ESTIMATES
FOR HIGHER ORDER AVERAGING

AND A COMPARISON WITH ITERATED AVERAGING*

JAMES A. MURDOCK

Abstract. Asymptotic estimates for classical higher order averaging are obtained on intervals of length
greater than O(1/e) when some of the averages vanish. These results are compared with results of Persek
using iterated averaging, and the classical methods are found to be more powerful.

1. Introduction. We shall be concerned with the n-dimensional system of differen-
tial equations

(1) 5c=ef(x,t,e):ef(x,t)+e2f(x,t)+ d-nfn(X,t)-l-en+li’n+l(X,t,e)

where f is 2r-periodic in and e is a small positive real number. For such systems the
traditional nth order averaging method, as described for instance in Perko [2], yields
approximate solutions which retain accuracy O(en) on time intervals of length O(1/e).
It is of interest whether one can "trade off" some of this accuracy for validity on a
longer time interval; that is to say, we may ask whether the same approximate solution
retains the decreased accuracy O(en-) on the expanded time interval of length
O(1/e+j) for certain integers j. Our first theorem ([}2) asserts that this is true for
j=0, 1,...,1-1 if the n th order averaged system corresponding to (1) begins with the
term of order fl, in other words takes the form

(2) ,:elgl(g)q q-ngn(g ).

The proof involves no new methods.
Persek [3] has defined a method which he calls "iterated averaging" which under

certain conditions approximates system (1) by a system of the form

(3) Z-h(z).

He then proves that solutions of (3) approximate those of (1) to order O(e) on an
interval of length O(1/fl). It is evident that (3) has the same form as (2) in the case
n--1, although it is not clear a priori whether the function h constructed by Persek
coincides with the classical gt in this case. Nevertheless Persek’s estimate of the accu-
racy of (3) coincides with our estimate for (2) if n--l and if j is taken to be l- 1. This
prompts a comparison between gz and h t, which we carry out in 3 for the case l-2.
Briefly the result is that g2 and h 2 coincide when both are defined, but that the
defineability of h 2 depends upon a hypothesis which is unnecessary under the tradi-
tional method. Thus Persek’s result is (at least for the case l= 2) a special case of ours
(in 2). For 1> 2 it would be tedious to compare h and gt but it is again apparent that
gt is always defined (and thus equation (2) exists provided that gl through gz_ vanish),
whereas h is defined only if h through h t_ vanish and in addition a further condition
is satisfied, which does not correspond to any condition in the traditional theory.

*Received by the editors November 13, 1981.
Department of Mathematics, Iowa State University, Ames, Iowa 50011.
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2. Asymptotic estimates. It is shown in the classical theory of averaging that there
exists a coordinate transformation

(4) x=u(y,t,e)=y+eu(y,t)+
2r-periodic in and carrying (1) to

(5) y=egl(y)+ +eg(y)+e+R+(y,t,e).

The transformation (4) is not unique and is usually normalized either by requiring that
the average of each u vanish, or by requiting that each u vanish for t--0. The latter is
called the stroboscopic method and has the advantage that (4) reduces to x=y at t-0
and at all stroboscopic times t---2rr, 4rr,.-.. Associated with (5) is the truncated
system

(6) --egl(Z)+... ff-engn(Z)

which is wholly autonomous. Let x(t, e), y(t, e), z(t, e) denote solutions of (1), (5), and
(6) defined in an interval 0_<e_<e0 whose initial conditions are related by x(0,e)--
u( y(O, e), O, e) and y(O,e)=z(O,e); note that in the stroboscopic case this reduces to
x(O,e)--y(O,e)= z(O,e). The classical method of averaging proposes to construct from
z(t) an approximation to x(t). Since z(t) ought to be close to y(t), and since y(t) is
related to x(t) by (4), in view of the fact that (4) is assumed to hold at 0, x(t) should
be well approximated by u(z(t, e), t, e), an expression which is called the improved nth
approximation to x(t). It turns out, however, that there is no loss in asymptotic
accuracy if the term of order n in (4) is omitted in forming the approximation (it must
not be omitted, of course, in transforming (1) into (5)). Therefore the nth approximation
to x(t) is defined by

(7)
where

X( t, e) f( z( t, e), t, e),

THEOREM. Under the above hypotheses there exist positive constants c and co such
that x( e) X( e) <- Co en for O <_ <_ c/e and O <- e <- eo Under the additional hypothesis
that g through gt- vanish, so that (6) takes theform (2), there existfor eachj--O,...,l- 1
positive constants cj such that Ix(t, e)- s(t, e)l <_c2e-for O<_t<_c/e +J.

Proof. We prove the second assertion. The first, which is classical, is included by
taking l= 1,j-0.

Let K be a closed ball centered at x(0, 0) of radius R sufficiently large that x(0, e)
and y(0,e)= z(O,e) are contained in the concentric ball of radius R/2 for 0_<e_<e0.

Since K is compact there exists in view of (1), (2) and (5) a constant M such that dlyl/dt
and dlzl/dt are less than Me for 0---e_< e0 as long as y and z remain in K. Since lYl and
Izl must drift by at least R/2 from their initial positions in order to leave K, and since
in time they can drift at most Malt while in K, it follows that there exists a constant
c>0 such that y and z remain in K for 0_< t<_c/d. Hence on this interval (the longest
considered in the theorem) one may use, for all functions of y and z, their upper
bounds and Lipschitz constants on K.

Letting O -[Y(t, e) z(t, e) one immediately finds from (2) and (5) Lipschitz con-
stants LI,...,L and a bound B such that dp/dt<_(etLt+ +enLn)P+en+B. Solving
this linear differential inequality with initial condition t9 0 yields t9 -< en+ B3- l(et_ 1)
where --etZl+... +enL. Estimating the factor et- 1 requires some care. The
tempting answer et- --O(3t)--O(dt) is correct for the time intervals with which we
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are concerned, but this requires proof. Namely ex- 1-x(1 +x/2! + )-x(x) and
hence for x in any bounded interval there is a constant k such that ex- _< kx; if x-8t
and O<_t<_c/e and 0<e_<e0 then x is bounded and et- 1 <_kSt. (On longer intervals
et- can approach infinity faster than 8t.) Since 8-1_ O(1/d) we have p--O(en+lt)
as long as y and z remain in K, that is, at least on the interval O<_t<_c/d. It follows
that on any interval O<_t<_c/el+j,j--O, -,l- 1, one has ly(t,e)-z(t,e)l- p- O(en-J);
that is, this quantity is bounded by a constant times en-j for O<--t<--C/el+j and 0_<e_<e0.
Now using the Lipschitz constant for u on K one finds Ix(t, e)- u(z(t, e), t, e)l-
lu( y( t, e), t, e)- u(z( t, e), t, e)l O(en-j) on the same interval. But

lu(z(t,e),t,e)-X(t,e)l -lu(z(t,e),t,e)-(z(t,e),t,e)- O(en)

for all time; adding the last two estimates proves the theorem. Q.E.D.
In the proof it is seen that the final term in the transformation u is unnecessary in

constructing X(t) because the error committed by leaving it out is of the same order as
the error already present. By the same reasoning we see that for j>0, where the
possible accuracy is at most O(e-J), we may omitj additional terms from u in forming
X. In particular, in the case n-l, j-l-1, it is not necessary to use u at all and we
obtain

COROLLARY. I4en (2) reduces to 2-e#g#(z), there exist positive constants c and co
such that Ix(t, e) z(t, e)] < coe for 0 <_ < c/d.

This form of the theorem is the one most directly comparable to the work of
Persek. The comparison is carried out in the next section.

3. Comparison of two averaging methods. In order to calculate g2(z) it is necessary
to recall how (4) and (5) are constructed. It is clear a priori that any transformation of
the form (4) carries (1) into a system of the form

(8) j--egl(Y,t)+ +eng,(y,t)+e"+lRn+i(y,t,e).
From (1), (4), and (8) one calculates that thef ’s, u ’s, and g’s are related by

(9)

U
O-t (Y’t)--fl(Y’t)--gl(Y’t)’

0u2 (y,t)- ( ---,,-",,0fl0Ul )at f2+,.,.,, ul-- ,,..,. gi +gz(y,t)

with similar equations for the higher u,’s. (Briefly, to obtain (9) differentiate (4), insert
(5) and compare this with the result of inserting (4) into (1).) It is clear that (9) admits
solutions for u and u2 which are periodic in if and only if the right-hand sides have
zero mean value. Now to achieve (5) the gi must be independent of t; thus (9) dictates
that gl(Y) must be the average of f(y,t) and g2(Y) must be the average of the
expression in braces.

We wish to consider the case in which the averaged system takes the form (2) with
/=2. Thus we now assume gl(y)=0, which is to say that the average of fi(y,t)
vanishes. In this case ul(Y,t)=ftaf(y,s)ds with a arbitrary (a=0 gives the strobo-
scopic method). Inserting this into the expression in braces and averaging gives the
following formula for g2, in which the dependence upon the choice of a is made
explicit"

1S02{ Ofl(10) g2(y,a)---- f2(Y,tl+-y (y,t) (y,slds dt.
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Persek’s function h2(z) is defined as follows in our notation (compare his/7(2),
[3,p. 416]). First assume the average of f(y,t) vanishes, as we have done above. Next
define

(11) H2(z,,)-- f2(z,t)+y (y,t) (y,s)ds dt.

If the latter expression is independent of ,, it is defined to be h2(z); if it is not
independent of ,, h2(z) is not defined.

Now it is clear that the bracketed expression in (10) is periodic in t, since we have
assumed that f has zero mean value. Therefore fo’ in (10) may be replaced by
for any . The only remaining difference between (10) and (11) is that a in (10) is
replaced by in (11). Thus we see that

(12) H2(z,z)=g2(z,,).
Thus the sole difference between Persek’s average (for n 1= 2) and ours is that Persek
must assume (11) independent of z, whereas the corresponding quantity a in (10) enters
as an arbitrary constant and requires no additional assumptions. It is clear that the
assumption that (11) is independent of is a very strong assumption and one which
gains no advantage.

With regard to higher order terms the following situation obtains. Our g is always
defineable, and is not unique but rather depends upon the choices of integration
constants in solving for u. On the other hand h is only defined if two conditions are
met: hi,...,hk_ must be defined and vanish, and a certain function Hk(Z,z) (which
Persek calls (k)) must be independent of r. The presence of the latter restriction
indicates that there are likely to be many cases in which (2) takes the form ; et&(z)
and yet (3) cannot be formulated. It seems reasonable to conjecture (based on the case

2) that h exists precisely when gt is unique (i.e., independent of the choices made in
u) and that in this case h.=gt. Proof of such a theorem, if true, would involve
notational difficulties but might be attempted (if it were considered important) by the
use of the operators constructed by Musen [1] for use in averaging methods, based
upon a formula of St. Faa de Bruno.
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A NONLINEAR PROBLEM ARISING
FROM COMBUSTION THEORY: LllqAN’S PROBLEM*

S. P. HASTINGS? AND A. B. POORE*

Abstract. The differential equation y":yexp(ax-y), limx_ =-0 and limx_, --0 for 0>0dx dx

governs the thin reaction diffusion zone in many diverse problems in combustion theory. This problem with
0-1 is known as Lifihn’s problem and continues to arise through the use of large activation energy
asymptotics in the study of various combustion phenomena. The main issues for this problem are those of
existence and uniqueness which we establish for each positive a and 0.

1. Introduction. Activation energy asymptotics has been firmly established as an
effective analytical technique for dealing with the Arrhenius rate function exp(-q,/T)
(3’ is the activation energy and T, the temperature) which is present in many partial
differential equations which govern chemical processes in combustion and chemical
reactor theory. The idea of using large activation energies and matched asymptotics on
combustion problems was popularized by F. A. Williams [11 ], although the paper of W.
B. Bush and F. E. Fendell [3] appeared earlier. An explanation of the method and
applications to many diverse problems can be found in the book by J. Buckmaster and
G. S. S. Ludford [2] or in the extensive literature of which a small representation is
given in the references [1]-[5], [7]-[11].

In a typical application the use of large activation energy asymptotics renders an
intractable nonlinear problem tractable in certain regions of the problem, whereas the
solution over the entire region of consideration is obtained by connecting the "outer"
solutions by using matched asymptotics. Fundamental to this matching is, in many
cases, a nonlinear differential equation which governs the (thin) reaction-diffusion zone
(internal or boundary layer) and whose solution is critical to the overall analysis of the
combustion phenomenon under investigation. Although many such problems arise, a
problem which has a demonstrated permanence and continues to arise is Lififin’s
problem. It first appeared in 1974 in Lififin’s paper on counterflow diffusion flames [8].
Since that time, this problem and minor variations have been found to govern the (thin)
reaction-diffusion zone in such problems as the burning of monopropellant drops,
detonations and fast deflagration waves [9], the flame-front region problem studied by
W. B. Bush and S. F. Fink [4] and the nonadiabatic tubular reactor [7].

A slight generalization of Lifihn’s problem as it arises from matching is to establish
the existence and uniqueness of a solution of

(1)
dEy_

yex-y, lim
dy dy

x- +o
-0, lim -0

dx 2 2 x--o dx

where 0>0. Lifihn’s problem corresponds to 0-1. A second formulation of this
problem which is more appropriate for the flame-front region flow problem studied by
W. B. Bush and S. F. Fink [4] is

(2)
d 2y x-y lim y 0, lim

dy
0

dx 2 -ye x + o x o dx

for positive a and 0.
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The goal then of this work is to establish the existence and uniqueness for both
problems (1) and (2) for all positive values of a and 0. In fact, the two solutions are the
same. The outline of the argument is given in the next section followed by the proofs in
3.

2. Outline of the argument. Let y(x; Xo, fl) denote the solution of the initial value
problem

ax-y(3) y"--ye Y(Xo)- y’(xo)-fl,

where a>0. (The initial condition y(x0)= could be replaced by y(xo)=yo for any
Yo (0, ].) For each fixed x0 we first prove that there exists a fl such that y’(x; x0, fl) 0
as x + oe. This is accomplished by the first showing that the two sets

g- (fl’y(x;xo,fl)-O for some x>x0}
and

R- {fl’y’(x;xo,fl)>O for some x>x0)
are nonempty, open and disjoint subsets of R, the reals. By connectedness of the reals,
there is a fl in the complement of R toR. The corresponding solution y(x;xo, fl) is
then shown to have the desired decay properties as x + o. The existence and
uniqueness of this solution is the content of

THEOREM 1. For each a>0 and arbitrary x0, there exists a unique solution y(x; xo)
of

(4) y,, x-y y,--ye Y(X0)-I 0 asx +o.

Furthermore, y 0 as x - + .
To obtain the existence of a solution of problem (1), we let y(x, xo) denote the

unique solution in Theorem and define

L,: {xo:Y’(X;Xo)<-O for some x<x0}
and

e }.L2- xo’Y’(X;Xo)>-O+ for somex<xo

Again these sets are shown to be nonempty, open and disjoint. The x0 in the comple-
ment of L tO L2 yields a solution of (1). Thus, we have

THEOREM 2. Let y(x; Xo) denote the unique solution of problem (4). Then for each
a>0 there is an xo such that limx_ +oy’(x;xo)--0 so that this y(x;xo) is a solution of
problem (1).

Given existence we next establish
THEOREM 3. For each a>0 and 0>0 the solution of problem (1) is unique and

limx_, +y-0.
We observe that Theorem 3 implies that the unique solution of problem (1) is in

fact a solution of problem (2). What is more, if y is a solution of problem (2) for
positive a and 0, then 0-limx_ +ooy(x)=y(xo)+ fx dy/dd implies limx_ +oody/dx
---0. Thus we have the equivalence of the two solutions. This observation is stated in

THEOREM 4. For positive a and 0 the unique solution of (1) is the unique solution of
(2).

The proofs of Theorems 1, 2 and 3 are given in the next section.
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3. Proofs. The first goal is to show that the sets R and R2 are nonempty, open
and disjoint subsets of R. That R is nonempty is contained in

LEMMA 1. For each a>0 there exists a B such that for every fl<_B, the solution of(3)
has a zero which is greater than xo. Thus the set R is nonempty.

Proof. First observe that ye-y< for all real y and consider the problem z"- 1/2e ’x,
z(x0): 1 and z’(xo):7 which is uniquely solvable by

z(x)-
2a2 (eX-ex) +1+ 3’---de (X-Xo).

Let 3,*(Xo) be the unique value of 7 for which z(x) has a single zero. Then 7 >7*(Xo)
implies that z has no zeros and ,<,*(Xo), that z has two zeros (note that -/*(Xo) is
negative and is defined by Z(Xl)--z’(xl)--O, where x is the single zero). For fl_<y*(Xo)
consider the two problems

eX, otx--yz - y -yeZ(Xo)- 1, Y(X0)- 1,

z’( xo ) fl, y’C xo ) fl.

If d(x)-z(x)-y(x), then d"- 1/2e’X-1/2ye’X-y>o and d(xo)-d’(xo)-O. Thus d(x)
_> 0 or z(x) _>y(x) as long as y(x) exists. Let x be the first zero of z(x), which exists
since fl_< ,*(x0). If the solution y(x) exists on xo, x], then y must have a zero at some
point of [x0,xl]. If the maximal interval of existence of y for x>xo is [x0,b ) where
b<_xo, then y- / oo ory -oo as x b-0 since 1/2ye ’x-y is continuous everywhere [5,
p. 17]. But y is bounded above on [xo,b) by z(x) so that y-oo which implies the
existence of the zero. Let B-7*(x0) in the statement of the lemma.Q.E.D.

We next show that any solution of (3) with/3R is strictly decreasing.
LEMMA 2. Let flR. Then dy/dx(x;xo, fl)<O for all x>_xofor which the solution

exists. Thus the zero of this solution is unique.
Proof. Any solution of y"-1/2yex-y satisfies y"y>O except at y-0. Hence y

cannot have a positive maximum, a negative minimum or an inflection point except at
y-0. In particular, if y vanishes, say initially at Xl>X0, then y’<0 on [x0,x). Also,
y’(x)< 0, for if y -y’ 0 at x 1, then y --= 0 by uniqueness. Thus y’ < 0 for x just to the
right of x and must remain negative thereafter since y can have no negative minimum.
Q.E.D.

With these two lemmas we now prove
LEMMA 3. The sets R and R 2 are nonempty, disjoint and open subsets of, the reals.
Proof. Lemma implies R is nonempty and any/3_>0 is in R. Lemma 2 implies

that any solution y(x;xo,fl) of (3) with /3R cannot have a positive slope which
implies the disjointness of R and R2. That R 2 is open follows from the continuity of
the solution with respect to the initial data and the strict inequalities. To show that R
is open, observe from the proof of Lemma 2 that flR is and only if y becomes
strictly negative. This implies the result. Q.E.D.

We now proceed with the proof of Theorem 1. Since R and R 2 are nonempty,
disjoint and open subsets of the reals, connectedness of the reals implies the existence
of a fl, say fl*, in the complement of R U R2- Let y* denote the corresponding solution.
Since fl* R [R2, 0<y*< and -* <0 for all x>_xo for which y* exists. But the
boundedness of y* implies [5, p. 17] that y* exists on Xo, + o). Now limx_oy* exists
and is nonnegative. If it is positive, -(x)-[3* + fifo 1/2y*e’X-Y* dl becomes positive as
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x+ a contradiction to fl*R2 Thus limx_y*-0. Also, d_>0 and -<0dx

implies limx_ exists. If it is negative, then

x dy*

Xo
asx +,

so that fl* R l, a contradiction. Thus y* and tend to zero as x + oe.
To prove uniqueness and thus complete the proof of Theorem l, suppose problem

(4) has two solutions, Yl and Y2 with y(xo)>y(xo). Since 0<yi< 1 on Ix0, oe) and
ddy(ye-Y)>O for 0<y< 1, it follows that y >y as long as y >y2. Since Yl >Y initially
(at Xo), it is clear that Yl-Y2 and y-y are positive and increasing on (xo, ), which
contradicts the assumption that y and y tend to zero as x- + o. This completes the
proof of Theorem 1.

The next goal is to show that the sets L and L are nonempty, disjoint and open
subsets of the reals. To establish openness we shall make use of:

LEMMA 4. Let y(x; Xo) denote the unique solution ofproblem (4) as given in Theorem
1. Then y’(xo; x0)-(x; Xo)]x=xo depends continuously on xo.

Proof. If y’(xo; Xo) does not depend continuously on Xo, then there is a sequence
(nj} converging to some :o such that (y’(nj;nj)) does not converge or has a limit
distinct from y’(:o;o). Let flj=y’(nj;nj). We next show that (flj) is a bounded
sequence.

For each xo let ,*(Xo) denote the number defined in the proof of Lemma 1. Note
that ,*(Xo)<0 and ,*(Xo) is continuous for all xo. Also, from the definition of ,*(Xo)
and the comparison argument of Lemma 1, v*(nj)<_flj<O. Continuity of ,*(Xo) and

nj ---) 20 implies {j) is bounded. Hence some subsequence ( flJk } converges to / =/=

y’(2o;2o) by our assumption that Lemma 4 is false; otherwise, limsupflj=liminfflj=
y’(2o,2o). Let y(x;xo,) denote the solution of (3) with fl-fl. We now show
limx__.+y’(x;xo,)-O.

If not, then either y’(Xl;Xo,)>O for some x>xo or y(x:;Xo,)<O for some

x2>xo. Consider the first case. For sufficiently large k, y’(x;njk)>O as well since

n-20. But then limx_ +y’(x; nj)::O, a contradiction. A similar absurdity occurs if
Y(Xz;Xo,)<O.

Thus we have two distinct solutions of problem (4) at xo- :o, namely y(x; :o) and
y(x; xo, ). But this contradicts Theorem 1. Hence y’(xo; Xo) must depend continuously
on xo. Q.E.D.

We now establish
LEMMA 5. The sets L and L2 are nonempty, disjoint and open sets of the reals.
Proof. To show that L is not empty, we showy’(xo;Xo) -0 as Xo +. If this

is not the case, then there is an M>0 and an arbitrarily large xo with y’(Xo;Xo)
_> -M. Since y" > 0, y_> M(x-xo) on, say, xo_< x_<xo + -M- Hence y >_ 1/2 and
y">1/4exp(-1/2+cx) on [X0,X0+LM]. Integrating this shows that for large xo,

y’(Xo+z-;Xo)>_O, which is impossible. Thus L is not empty. A similar argument
shows that y’(xo;Xo)O as Xo-, so that y’(xo;Xo)--ae"X>-O for large nega-
tive xo. For such an xo continuity implies y’(x;xo)>-O+ze for some x<xo.
Hence L2 is not empty.

To establish the disjointness of L and L2 we first observe that if xo EL l, then
y’(x;xo)<-O for all x<_x<xo for some x. If xoL2, y’(x;xo)-- e"x>--O for
some Xz<Xo. But (y’(x;xo)-e"X)<_O for all x implies y’(x;xo)--e de-
creases as x increases or increases as x decreases. Thus, y’(x; Xo)- e"> -0 for all
x<_x2, and xo cannot be in both L and L_.
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That L and L_ are open follows from the continuity of y’(x0; Xo) with respect to
xo (Lemma 4) and the strict inequalities used in the definition of L and L2. Q.E.D.

Given Lemma 5, connectedness of the reals implies the existence of x0

R2) and a corresponding solution y(x; Xo) as described in Theorem 1. Now y’(x; Xo)>_
-0 since xoL and y’(x;xo)<_-O+ e since XotiL for all x<_xo for which the
solution exists. Thus 1-O(x-xo)<_y(x;xo)<_ 1-O(x-xo)+1/2(e"X-e"x) so that y is
bounded on every finite interval. Thus, since the differential equation is continuous for
all x and y, this solution may be continued [5, p. 17] to (-oe, oe). Furthermore,
-O<_y’(x;xo)<_-O+e’x implies limy__oy’(x;xo)--0 for a>0. Therefore, this
y(x; xo) is a solution to problem (1). Having thus completed the proof of Theorem 2,
we turn to uniqueness.

If y is a solution of problem (1), then y>0 and y’<O on (-m, oo) and y-+0 as
x + oe. Suppose there are two solutions y and Y2. We can assume that yl(0)<y2(0)
and if yl(0)--y2(0) then y(0)<y(0). Hence we can assume y <y on some interval
(0, e).

Let

where

Q,(x)- (Y[(X))2-K(y(x))e
2

for i- and 2,

K( y ) foYk ( u ) du and k(u)-ue-’.

Then Q(x)=y[[y;’- k(yi)eX aK(yi)e"x so that

Q;(x)- -aK(yi)e’x<o.

Next we establish
LEMMA 6. Q(0)-<Q2(0).
Proof. Suppose Q(O)>Q2(O). Since k(u)>0 for u>0, K(y)>0 for y>0 and

from (5), Q’l > Q; as long as yl <Y2 and, in particular, on some interval (0, e). Suppose
there is some smallest x0>0, where y(xo)-y2(Xo). Then Q>Q2 and Q’>Q; on

(0,x0). Hence Q(xo)>Q(xo). Sincey{(x0) and y(z(Xo) are negative, y{(xo)<y(z(Xo), so

Y >Y2 on some interval (Xo-,Xo), which contradicts the definition of x0. Hence
Yl <Y2 on (0, z). But this implies Q>Q2 and Q>Q’2 on (0, m). To obtain a contradic-
tion we show that Q and Qz must both tend to 0 as x . Let y denote either y or Y2
and Q, the corresponding Q or Q. Now y and y’ approach zero and we must show
that K(y)e"x-o. Using Hospital’s rule we find that it is sufficient to prove that
ye-Ye 0; i.e., that y" --,0. Clearly limx_ infy"-0 for otherwise y’ + m. Thus, if
the result is false, there is an e>0 and a sequence {xn} of local maxima of y" such that
xn--, m and y"(x,)>_e. By differentiating y"- 1/2ye-y+x twice and using y0, y’ --,0,
we see that y(iV)(x,)>0 for large n, so that x, could not be local maxima of y". This
proves the lemma. Q.E.D.

Now let vi(x)=yi(-x) and Pi(x)-Qi(-x) and consider x[0, ). Then Pi’(x)
Q(-x) aK(vi(x)) exp(- ax). Also, by Lemma 6, P(0)-< P2(0). Furthermore,

191 >/)2 if and only if P>P. Finally, v (0)_< v(0).
If v(0)-v2(0) (y(0)=y2(0)), then v’(0)>v;(0)>0 since we assumed y{(0)<y(0).

However, this contradicts P(0)-<P2(0), so P <P2 on some interval (0, e). Furthermore,
P( <P as long as t) < 192.
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Suppose there is a first x0>0 with VI(Xo)--V2(Xo). Then P(xo)<P:z(Xo) implies
v’(Xo)<V(Xo), contradicting v<v2 on (0,Xo). Hence v <v2, P <P2 and P(<P: on
(0, ). Since -y’(- x) v(x) 0 as x- +, it must eventually be the case that
-K(v)<-K(v2) or v >v, again a contradiction. The assumption that there are
two solutions is untenable, and the uniqueness is established.

Acknowledgment. The second author wishes to express his appreciation to K.
Kirchgassner for his stimulating and insightful discussions of this problem.
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NONLINEAR EIGENVALUE PROBLEMS ON INFINITE INTERVALS*

PETER A. MARKOWICH AND RICHARD WEISS

Abstract. This paper is concerned with nonlinear eigenvalue problems of boundary value problems for
ordinary differential equations posed on an infinite interval. It is shown that--under certain analyticity
assumptions--a domain in the complex plain can be identified, in which all eigenvalues are isolated. A
common way to solve such problems is to cut the infinite interval at a finite point and to impose additional,
so-called asymptotic boundary conditions at this far end. The eigenvalue problem on the finite interval
obtained this way can be solved by an appropriate code. In this paper suitable asymptotic boundary
conditions are devised and the order of convergence, as the length of the finite interval converges to infinity,
is investigated. Exponential convergence is shown for well posed approximating problems.

AMS-MOS subject classification (1980). Primary 34B25, 34D05, 34B05, 34P30

Key words, spectral theory of boundary value problems, asymptotic properties, asymptotic expansion,
nonlinear eigenvalue problems

1. Introduction. This paper is concerned with nonlinear eigenvalue problems of
the form

(1.1) y’-tA(t,))y, <_t< o0, a> 1,

(1.2) B(h)y(1)-0,

(1.3) yC([1,])" *yC([1,o)) and lim y(t) exists

where y is an n-vector and A(t, ,) is an n n matrix. Equation (1.1) has a singularity of
the second kind of rank

A solution of (1.1), (1.2), (1.3) is given by a pair (,y), /C such that y0
satisfies (1.1), (1.2) with ,-/ and (1.3). Eigenvalue problems on infinite intervals occur
frequently in quantum mechanics and in fluid mechanics, when the stability of laminar
flows over infinite media is investigated (see Ng and Reid (1980)).

De Hoog and Weiss (1980a) and Markowich (1982a) treated linear eigenvalue
problems on infinite intervals, i.e., A(t,)=Ao(t)+ ,A(t), Ao,A C([1, o]) and B()
--= B. It was shown that all eigenvalues , of this linear eigenvalue problem, for which the
matrix A(o,?)-Ao(o)+,A(o) has no eigenvalue on the imaginary axis, are iso-
lated, if not all ,C are eigenvalues. Moreover if A()-0 there is an infinite
sequence of eigenvalues ’i with I,i[- o. De Hoog and Weiss (1980a) also proved that
the spectral subspaces are finite dimensional.

The first goal of this paper is to show the generalization of the isolatedness
statement to nonlinear eigenvalue problems of the form (1.1), (1.2), (1.3). We assume
that B(?), A(t, ,) are analytic in ? q f, where f is the domain in which A(, ?) has
no eigenvalue on the imaginary axis. The analyticity is supposed to hold for all

1, o] and A(t, ,) is jointly continuous in 1, o] f]. The number of rows of the
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matrix B(,) is assumed to equal r_, which is the sum of algebraic multiplicities of all
eigenvalues of A(o,) with negative real part for 2.

The second goal of this paper is to investigate the approximating eigenvalue
problems

(1.4)

(1.5)

(1.6)

X(r-t’A(t,X)xr, <-t<-T, T>>I,

B(h)xr(1)=O,

S(X)XT(T)=O
where S() is a suitably chosen matrix with r+ n- r_ rows.

The main question arising here is to determine which matrices S(,) lead to
convergence of the eigenvalues and eigenfunctions of these approximating problems to
the eigenvalues and eigenfunctions of (1.1), (1.2), (1.3) as T- . A class of matrices
S(,) which implies exponential convergence will be identified. The convergence results
are the generalization of the results obtained by Markowich (1982a) for linear eigen-
value problems. As Markowich pointed out, there is not always (even in the case of a
linear eigenvalue problem) an obvious way to choose the suitable S which is indepen-
dent of . However, there is an intrinsic way (see Keller (1976)) to set up an "asymp-
totic" boundary condition S depending (nonlinearly) on X. Therefore these "finite"
eigenvalue problems are, even in the case of a linear "infinite" problem, nonlinear.

This paper is organized as follows. In 2 nonlinear finite-dimensional eigenvalue
problems are discussed; 3 is concerned with the case when A is independent of t; in [}4
this restriction is dropped, and [}5 contains examples illustrating the theory.

2. Finite dimensional nonlinear eigenvalue problems. Let A(X) be a k k matrix,
holomorphic in some domain f c C. A value/ 2 for which the linear equation

(2.1) A()-0, 4:0,

has a solution is called an eigenvalue and is a corresponding eigenvector. Let detA(h)
be the determinant of A(?). Since (2.1) holds if and only if detA(/)-- 0, it follows from
the identity theorem of holomorphic functions that either all 2 are eigenvalues or
every compact subset of 2 contains at most finitely many eigenvalues.

Let e (0,e0] be a real parameter and B(?, e) be a k k matrix, holomorphic in
for all e (0 ,e0], with

(2.2) lim sup IIB(,,e)l]-0 for all A compact, A
e--*0

where II-II denotes some matrix norm. Now consider the perturbed nonlinear eigen-
value problem

(2.3) 4:0.
Since

c(x, =(A(X) +B(X, 0,

(2.4) lim det C(,, e) detA(X),
e0

we may employ standard perturbation results for zeros of holomorphic functions. Let/
be a root of order s of detA(?) 0, 0 be a neighbourhood of/ and

(2.5) b(e)=supldetA()-detC(,e)l.
E0
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Then we get
THEOREM 2.1. (i) When e is sufficiently small there are precisely s eigenvalues

#l,,. .,l of (2.3) near l (counting multiplicities) and they satisfy

(2.6)
(ii) The mean

(2.7)

satisfies
(2.8)

Its{- tl_< const, b(e)/, j-,-.. ,s.

1/-/1-< const, b (e).

The perturbation statement for the eigenvectors is weaker.
THEOREM 2.2. Let enO as n z and let , be a sequence of eigenvectors of (2.3)

(with norm one), each of them belonging to a ti, for i-1,...,s. Then there is a
subsequence. which converges to an eigenvector of (2.1) with norm one and

(2.9) inf
IN(A(I))

II - -<const. b(e.)l/s

N(A(Ix)) denotes the nullspace ofA(l).
A proof can be found in G. Vainikko (1976, Chap. 4).
In the case of a linear eigenvalue problem A(h)=--A-hI, we get a stronger

perturbation result for eigenvectors if the algebraic and geometric multiplicity of the
eigenvalue/ is equal to one. Therefore we define:

DEFINITION 2.1. The eigenvalue/x of (2.1) is called simple if/ is a zero of order one
of detA(,) 0.

It is easily seen that/x is a simple eigenvalue of (2.1) if and only if det(A()+
rA’())=0 has a zero of order one at --0. This again holds if and only if =0 is an
eigenvalue of geometric and algebraic multiplicity one of the generalized linear eigen-
value problem

(2.10) (A(/x) + rA’(/))j 0.

We have
THEOREM 2.3. Let I be a simple eigenvalue of (2.1), a corresponding eigenvector of

norm one. Then:
(i) for e sufficiently small there is a unique eigenvalue ! of (2.3), and it satisfies

(2.11) I/-/xl-< const. Idet C(/, e)l;

(ii) for every I there is exactly one eigenvector l (with norm one) of (2.3), and this
eigenvector satisfies
(2.12) I1- [1-< const.ldet C(/, e)[.

Proof. The equations

(2.13) 11  11=
where I1" indicates the Euclidean norm in C g are a nonlinear system of equations for
(/,). The Fr6chet derivative of the unperturbed problem (e--0) at (/,) is given by
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the matrix

(2.14) 57" 0

which is nonsingular because/ is simple. (i) and (ii) follow in a straightforward way by
applying the techniques of Keller (1975) and Vainikko (1976,Chap. 4). Here 0 shrinks
to the point .

We conclude this section with a result on holomorphic families of projections.
THEO 2.4. Let P(k)" C C be a family ofprojections, holomorphic for f.

Then:
(i) for any pair (, 2) f there is a nonsingular n n matrix Q(h, 2 ) such

that

(2.15) P()-Q(,z)-P(,2)Q(,2);
(ii) P(t)C is isomorphic to P(2)Ckfor all t,2f;
(iii) Let r-rankP(). Then there is a kk matrix of rank r, holomorphic in f,

whose columns span P( )C k.
Proof. (i) follows from Kato (1966) and (ii), (iii) follow easily from (i).

3. Nonlinear constant-coefficient eigenvalue problems. We consider

(3.1) y’-tA(Tt)y, <_t< o, > 1,

(3.2) B(,)y(1) 0,

(3.3) y C([1, oe ])
where A(X) is an n n matrix.

The analysis for these problems will outline the approach for the more complicated
case, when A is also a function of the independent variable t. We assume that A, B are
holomorphic in some domain in the complex plane and that there is a domain
so that A(A) has no eigenvalue v(Tt) with vanishing real part when , Gf. Then, for all
h f, A(X) has a fixed number of eigenvalues with negative real part, which we call r_,
and a fixed number of eigenvalues with positive real part, which we call r+ (r+ + r_ n ).
Now we take a compact subset A c f. Then there are two closed rectifiable curves F+,
F_, completely in the right and left half planes respectively, so that for all h A all
eigenvalues of A(A) are enclosed by either F+ or F_.

Now let

fr (z-A(?t))-ldz rankP+()t)-r+(3.4) P+ (,) -- +

fv (z-A(?t))-’dz rankP_(X)-r_

be the total projections onto the direct sum of invariant subspaces associated with
eigenvalues of A(X) with positive and negative real parts, respectively.

From Kato (1966, Chap. 2) we conclude that P+, P_ are holomorphic in A, the
interior of A.

The general solution of the problem (3.1), (3.3) is

( t’+l )(3 6) y(t )t)-exp A(X) P_(X) Ca+l
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Theorem 2.4(iii), implies that there is an n r_ matrix V(A) of full rank and holomor-
phic in A which spans P_(,)C n. Using V in (3.6) and inserting into the boundary
condition (3.2), we obtain

(3.7) F(X)r/-- B(X)exp(A(X) ) V(X)I’/- 0, tC

assuming that B(X) is an r_Xn matrix. Every pair (,r/), r/v0 which solves (3.7)
determines a solution of the eigenvalue problem (3.1), (3.2), (3.3) by

(/a+l )(3.8) y(t,/)-exp a+l A(/)

Our assumptions guarantee that F()t) B(X)exp(A(X)/(a / 1))V( ) is holomorphic in
A, so we obtain from 2:

THEOREM 3.1. Let B(X ) be an r_ n matrix holomorphic in

are eigenalues of (3.1), (3.2), (3.3) or eery compact subset of f contains at most a finite
number of eigenvalues. If is an eigenalue of (3.1), (3.2), (3.3), the dimension of the
nullspace is between and r_.

Now we approximate the eigenvalue problem (3.1), (3.2), (3.3) by finite interval
problems:

(3.9) x=tA()xr, l<_t<_T, T>> 1,

(3.10) B(X)xr(1)-O,

(3.11) S(X)xr(T)-O
where S(X) is an r+ n matrix. Choices of S()t) will be discussed later.

We write the general solution of (3.9) as

a+ A(A) V(,)/_ +exp a+l A(,) W(A)/+

where the columns of the n r+ matrix W(X) span P+(X)t2 and are holomorphic in
A. The use of (3.12) in (3.10), (3.11) yields the nXn block system

(3.13)

F(X, T)( -)/+
B(,)exp, A(X))a+l V(X)

S(X)exp A(,) V(,)a+l

B()k)exp( 1- T’+l )a+l A(X) W(X)

By (3.7) we conclude that

(3.14) detf( X, T)= detr() ). det S( ) W( , ) + c(X, T)
holds, where

(3.15) Ic(X,r)l--<const. exp i A(X) W(X). S(X)exp a-it_lA()) V())
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Let u_(h) be the largest negative real part of the eigenvalues of A(X) and let v+(X) be
the smallest positive real part of the eigenvalues. Then (3.15) reduces to

(3.16) Ic(X,r)l<_const.(X,o)exp (_(X)-+(X)+0)--g-i-
where const.(X, 0) is bounded when X varies in a compact set and O> 0. Now we prove
the convergence theorem.

THEOIM 3.2. Let the r+ n matrix S()t) be holomorphic for )t f and assume that
det S(X)W()t) :/: 0 for )t . Let # f be an eigenvalue of (3.1), (3.2), (3.3) of order s,
i.e., detF()t) has a zero at )t=t of order s. Then there are exactly s eigenvalues
#r,’",Ir (counting multiplicities of the zeros of det F(X, T)) for T sufficiently large in a
sufficiently small neighbourhood of I, and for all O>0 there is a constant depending on 0
such that

T.+ )(3.17) max I/--/l_<const.(o)exp (,_(#)--,+()+)
i= l(l)s S(+i)

Ta+l )(3.18) [r-1const.(o)exp (v_()-v+()+O)
where r 7Z=). Let xr be an eigenfunction belonging to one of the s. Then

(3.19) yeN,inf Ilx -yllt , rlconst.(o)exp (-()-+() +0) s(a+ ])
where N, denotes the nullspace of (3.1), (3.2), (3.3)for X-.

We denote f [a,bl--maxte[a,b] f(t)ll forf C([a,b]), a<bN.
Proof. All statements follow immediately by regarding (3.13) as a perturbation of

the eigenvalue problem

(3.20) B(X)exp( A(X) )
s(x)w(x)

-0

(which is equivalent to (3.7)) and by applying the Theorems 2.1 and 2.2.
Now we discuss a possible choice of S(X). Let the rows of the r+ n matrix Se())

span the range of (P+(X))r (the superscript T denotes transposition). Then the asymp-
totic boundary condition

(3.21) S,( 2t )XT(T ) -O
fulfills the assumptions of Theorem 3.2. Moreover,

(3.22) P+(X)exp a.-T+-i-A(X) V(X)=0, ,a,

holds. Therefore, when using the boundary condition (3.21), the (2.1) portion of the
matrix in (3.13) vanishes for all T and the approximate problems (3.9), (3.10), (3.11)
reproduce the eigenvalues and eigenfunctions of the problem (3.1), (3.2), (3.3)
exactly.

4. General nonlinear eigenvalue problems on infinite intervals. We consider the
problem

(4.1) y’-tA(t,)t)y, 1 <--t< , > 1,
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(4.2) B(X)y(1) =-13,

(4.3) yC([1, ])
where A(t,) is an n n matrix holomorphic for ? in some domain q and every fixed
[1, ] and continuous in [1, o] q. Also B is holomorphic in q. We assume that

there is a domain cq, so that the matrix A(o,X) has no eigenvalue ,(X) on the
imaginary ards for X ft. As in 3 we take any compact subset A c fl and construct the
projections P+ (X), P_(?)

(4.4) P+(X)-- (z-A(oe,X)) &, rankP+(X) =r+,
+

(4.5) P_ (X) ----- (Z--a((x), k))ldz, rankP_(,) =r_.

The contours I’+, F_ are chosen as in 3. We set

(4.6) q(t, X)- exp(A(_.[m,X) at+l)
and define the operator Ha :C([ 8, m]) C([, c]) for 8_> by

(4.7)
(Hxg)(t)-(t,X) P+(2t)dp-l(s,)t)sg(s)ds

f8+rk(t,,) P_(X)rk-’(s,,)s"g(s)ds

so that Hxg C([ 8, ]) is a particular solution of the problem

(4.8) y’=tA(,t)y+tg(t), t>_8, gC([8, ]).
An analysis of Hx can be found in de Hoog and Weiss (1980a, b). P+, P_ are
holomorphic in A for every (fixed) [i, o] and continuous for [1, ]. Then it is
easy to show that (Hxg(-, ))(t) is holomorphic in A for every fixed [, ]. From
de Hoog and Weiss (1980a, b) we conclude that

(4.9) IIn ll C(X )
where C(X) is independent of (for G: C([a, b]) C([ a, b ]) we denote by IIGIIta,b the
operator norm induced by II-II t,b)"

Now we show that C(X) remains bounded when X varies in compact subsets
KCA. From (4.7) we derive

(4.10)

where

(4.1 la)
(4.1 lb)

max IlF+(t,s,X)llds+ F_(t,s,X)llds
t[i,]

F+(t,s,5,)=s(t,2t)P+(X)rk-’(s,X), tA,
F_(t,s,5,)=srh(t,X)P_(2t)rk-l(s,t), tA,

hold. Obviously, F+, F_ are holomorphic in A for fixed s,t. We transform A(o,5,) to
its Jordan canonical form J(o, ,):

(4.12)
and assume that J(o, X) has the block structure

(4.13) J(z,X)= diag(J(X ),J(h))
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where the r+ r+ matrix J(,) contains all eigenvalues with positive real part and the
r_ r_ matrix J(,) contains the eigenvalues with negative real part for all , f.
Defining the diagonal projections

(4.14) D+-diag(Ir/,O) D_ diag(0, It_ )
we have

(4.15) P+(,)-E(X)D+E-I(X), P_()-E(X)D_E-I(X), t",

[

(4.16a) F+(t,s,X) --sOtE(k) exp o-+-1 (t’+l--s’+l)) 0 E-I()
0 0

(4.16b) 0 exp Jg(X)+l (t+-s+l) E-I(X)

Each entry of F+, F_ is a sum of the form

(4.17) f(t,s,A)-s" 2 a2(A)exp vC(X)(t"+ a+l ta+l a+l)Ji
i:

"+1 -s ) ( -s

where v() are the eigenvalues ofJ(), and v (X) are the eigenvalues ofJ(X). The
integers Ji satisfy 0 Ji (r+ 1) and 0Ji (r- 1) respectively, a ? (X) is a sum of
products of elements of E(A ) and E- (A).

Now we take a compact subset KCA. It follows from Kato (1966) that E(A),
E-(X) can be chosen boundedly in =K-:l(z) where the z are points at
wch eigenvalues v(A) change algebraic or geometric multiplicities and (z) stands
for a sufficiently small neibourhood of zi. Also J(A) is bounded in . Without loss of
generality we assume that none of the zi’s lies on the boundary 0K, since, if that
happens, we can choose a larger compact set 3K, so that {Zl,.- .,z} = . By
(4.11) the entries f(t, s, A) are holomorpc in K; therefore, they take their maximum
at the boundary OK. The coefficients a(A) and the v(A) are bounded on OK and
therefore

maxlf(t,s,X)[

r.s" max a2(X ) max exp
XOK Oir, + i -s ) .It a+li

j= l(l)rx

where c{ nx0Rev (A), c maxx0Rev (A) hold. Therefore we get

(4.19a)

maxlle+(, ,x)ll Cl(g) " max exp
XK 0ir+

and

(4.19b)

malle-(’’X)llc(g)x or_max exp

where 0<c+ -min=(+c, 0>c_-max=(l_c and Oin.

and hence
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Using (4.10) and the estimates derived in Markowich (1983, 1), we get

(4.20) max Ilnxllt,,  _< c(g )
,K

where C(K) is independent of .
We rewrite (4.1) as

(4.21) y’=t"A(oc,A)y+t"(A(t,A)-A(o,X))y.
Setting

(4.22) G(t,X)=A(t,X) -A(o,X),
we get from (4.21)

(4.23) y(t)=q(t,X)V(h),l+(HxG(.,X)y)(t), 1C

where V(X) is as in 2. The assumptions on A(t,X) guarantee that there is a _> 1,
8 8(K), such that

(4.24) for allXK

where K is any compact subset of A and C(K) is the constant defined in (4.20). Then

(4.25) max IIHaG(. X)llt,l<1
,K -2

This implies that I-HAG(.,): C([8, ])-, C([ 8, ]) is nonsingular for all , K and

(4.26)
holds, y is defined for [8, o] and all h K. The series expansion of the n r_ matrix

q_ ( t,?t ) ((I-- HaG (. ,)t )) V( X ))( )(4.27)
is given by

(4.28) q_(.,X)- (naa(.,?k))it(.,X)V(X)C([, oQ]), g.
i=0

The partial sums q,(__(t, X) of this series are holomorphic in X/for all fixed , m].
Because of (4.25) we get

(1(4.29) 2 max I1,( ,x) v(x)llt ,o  .
i--0 XK

Since q(t,X)V(,) is continuous in both variables, the partial sums are uniformly
bounded on K and so q_(t,,) is holomorphic in , for /, and for all fixed

i, ]. By continuation k- (t, ,) is holomorphic in ,/ for all fixed 1, o].
Inserting (4.26) into the boundary condition (4.2) we obtain the finite dimensional

eigenvalue problem

(4.30) F(X) 1---- B(X)q_ (1, X)rl 0, rice’-

where B() is assumed to be an r_ n matrix. Given now any compact subset 0 c f we
choose A,K such that AD K, /D 0. So F() is holomorphic in 0 and Theorem 3.1
holds for the problem (4.1), (4.2), (4.3). Therefore, excluding the trivial case, all
eigenvalues in fl are isolated and the dimension of the nullspace is between and r_.
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Now we prove the asymptotic estimate for 6_(t,X):

(4.31) max 1[6- (t, X)[[_< const, exp max Re v/- (X) + p
0

i= l(l)r_

where 7 (X) are the eignvalues of A(,X) ith real part less than zero, and 00 is
arbitrary but sufficiently small so that the exponent has negative sign.

If there is one (or more) of the singularities (z,. .,) of E(X) on the boundary
00, take a larger set 0 such that 0c0, 0c and ,.- .,) 00 . Then e
derive as in (. 18):

(4.32) max,(,X)g(x)llconst.exp max Re;(X)+0 +1X0
i= l(1)r_

The necessity to add p>0 in the exponent comes from the possibility that 0 ght have
to be changed to # as described above and from the possible occurrence of powers of

It+-s+l A sufficiently small change and the continuity of the eigenvalues assure
that p is arbitrarily small.

Using (4.7), (4.11) we have

(4.33)
max I1( na(. ,X )(. ,X )(X )) (t)

X0 X0

+ maxle_(,s,X)llmaxll,(s,x)g(x)llds.
XO

Now (.19), (.2) can be used to bound the fight-hand side of (.). 0 has to be
substituted for K in the definition of c, c. Since 0, the estimate given n
Markowich (1983, 1, Thm. 2.3) can be used, and

(4.34)

max II( HxG(’, X),(., X )(t))II

-<cnst" max]lG("X)llt’lexp((x0 x00max Reu/- (X)+O
i= l(1)r_

t+ )a+l

follows. Repeated use of (4.34) and (4.28) gives (4.31)
As in 3, we investigate the approximating finite eigenvalue problems

(4.35) x-tA(t,X)xr, <_t<T, T>>I,

(4.36) B(h)xr(1)-0,

(4.37) S(X)xr(T)-O

where S(X) is a suitably chosen r/ n matrix whose entries are holomorphic in f.
Rewriting (4.35) as

(4.38) x=tA(c,X)xr+ t’G(t,X)xr, <--t<--r,

where G(t,) is defined as in (4.22), we set

(4.39) xr=(t,X)V(X)rl_+(t,X)rk-(T,X)W(X)rl+ +(Hx,rG(.,X)xr)(t )
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where the columns of the n X r+ matrix W(A), which can be chosen holomorphic in A,
span the range of P+(X), and Hx,r C([ i, T]) C([i, T]) is defined as

(4.40) Hx,rg=Hxgr
for g C([8, T]), _< 8-< T, where

(4.41) gr(t) {g(t), 8<_t<_T,
g(T), t>_T,

has been set.
Given a fixed eigenvalue X-g of (4.1), (4.2), (4.3), we take a compact subset

KCA with g K and conclude from (4.20)

(4.42) max Ilnx,rllt,,rl_<max Ilaxlitn,l_< C(K ).
XK XK

Therefore there is a fixed $-i(K)> such that

(4.43) max IIH , G(. 2’

and so (I-Hx,rG(.,X))-I exists for all XK as an operator on C([8, r]). We get from
(4.39):

xr= (I- Hx,rG( ,)k))-1,(. ,X ) V( t )4--
(4.44)

+ (I-Hx,TG( t))--11( X)*-- l(z, X) W(I,
on [, ]. The analyticity of

(4.45a) rq_(t,X)-((l-Hx,rG(.,X))-(.,X)V(X))(t),
(4.45b) r,+(t,X)-((I-Hx,rG(.,X))-l,(
in 2, for 8, T follows as the analyticity of q_ (t, X).

The n r_ matrix rq_ and the n r+ matrix rq+ respectively satisfy the equa-
tions

(4.46a) r/_(t,X)-(Hx,rG(.,X)r_(.,X))(t)-q(t,X)V(X),
(4.46b) r/+(t,,)-(Hx,rG(.,X)r/+(.,X))(t)-rk(t,,)rk-l(T,X)W(X).
Similarly to de Hoog and Weiss (1980a) we derive some properties of rtk_, r6+. From
(4.27) and (4.46a) we get

(4.47) + ,X)#_),
and therefore we get by regarding G(.,X)tk_(.,)t) C([6, T])

(4.48)
rg’- (" ,X ) --+_ (-,X) (I- Hx,ra ( ,X))-’(Hx,r-Hx)G ( ,X),_(. ,X ) C([ 8, T l)-
Obviously for g C([ 8, T ]) and [8, T]

((Hx,r-Hx)g)(t)-(t,x)frP+(X)-(s,X)s"(g(T)-g(s)) ds

(4.49)
=(t,,. )qb-l( T,. )P+ (,)l(T,. )

P+(X)-(s X)s g(T)-g(s))ds

=k( t,X )rk- ’( T,X ) W( X )y( g, T)
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with ,/( g, T) Cr+. So
((Hx,r-nx)G( ,X )q_ (. ,Tt ))( ) q( t,k )q- ’(T,X ) W( X )r

where 1"r is an r+ r_ matrix. From (4.46b) and (4.48) we derive

(4.50) rq_(.,X) =q_(.,X) + rq+(. ,x)rr.
Therefore the matrix [k_(t,X), rq+(t,X)] has rank n for all t[8, T] and is a funda-
mental matrix of (4.35).

Instead of using (4.44), we can write the general solution of (4.35) as

(4.51) xr=q_(t,X)n_ + rq+(t,X)n+.
For the following we need an estimate for rq+(., X). From (4.45b) we obtain

max Tq+ (.
(4.52)

_< const, max I[G(. ,X)q(. ,X)q-(T, X)W(X ) ][I,rl.
Using similar analyticity arguments as above it is easy to check that the right-hand side
of (4.52) can be estimated by

(4.53) w(T, ,)- const,
tel,,Tlmax (maxIlG(taG0 )t)]lexp ( a+--O, (,+, T,,+, ))

where g(O)-minxeoo,i=l(l)r+ Ret+ (X) and O>0 is arbitrarily small.
Obviously limT_. w(T, )=0 and we get after continuation to [1, T]

(4.54) lim
T

uniformly for X 0.
Now we evaluate (4.51) at the boundaries 1, T, substitute into (4.36), (4.37) and

obtain the n-dimensional nonlinear eigenvalue problem

(4.55) F(X,T)

Interpreting (4.55) as a perturbation of

(456) [ B()k)q_(1,X) 0

0 S(X)W(X)+o(T,,) l-0,
we get with F() =B()q_(1, X)
(4.57) det F( h, r ) det F( )(det S( ) W(X ) + o( T, X ))

where

(4.58)
uniformly for h 0.

Io(T,)t)[--,0 as T o

Assuming that S(X)W(X) is nonsingular, we obtain by dividing through
det S(2t)W()+ o(T, ) and by applying the perturbation arguments of {}2:

THEOREM 4.1. Let the r+ n matrix S(,) be holomorphic for 2t f and assume that
detS(X)W()k)v0 in f. Let If be an eigenvalue of (4.1), (4.2), (4.3) of order s, i.e.,
det F(X) det B(X)+_ (1,) has a zero order s at l. Then there are exactly s eigen-
values lxr, ,lr (counting multiplicities of the zeros of detF(X, T)) for T sufficiently
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large in a sufficiently small neighbourhood S, of I, and

(4.59) max IIdr-t]<const.(o)(w(T,()))l/exp((v_(#)+O)i-- l(l)s

T+ )
where v_(ix)-- maxi= l(l)r_
trarily small. Also

Rev-() and w(T,x) is defined in (4.53) and p>0 is arbi-

(4.60) Ta+l )[r--txl<const.(p)w(T,x())exp (v_ (/) +p)--
holds where ftT--Y.i=IT Let xr be an eigenfunction belonging to one of the Ix’’s. Then

(4.61) T+I )inf [[xr--y[[t, rl<_const.(p)(w(T,x(ff,)))l/exp (v_(/)+p)
y N,

holds where N, denotes the nullspace of (4.1), (4.2), (4.3)for --I.
These convergence results are the extension of the convergence results for linear

eigenvalue problems given in Markowich (1982a). The orders of convergence obtained
there hold without any change for nonlinear problems.

A possible choice for S(A) is given by (3.21), i.e., the rows of the holomorphic
r+ n matrix S(t)- Sp(,) span the range of (P+(,))7" (the superscript T denotes
transposition). This choice reproduces eigenvalues and eigenvectors exactly in the case
that A does not depend on t. However, in the general case this does not hold anymore,
although in some important cases the asymptotic boundary condition Sp(X)xr(T)=O
implies a faster order of convergence than given in Theorem 4.1. Assume that A(t,2t)
decays algebraically or exponentially:

(4.62) A(t,,)=A(oo,,)+O(tVe-a(t)) for t o

uniformly in compact subset KC f where /R and a(t)>0 is a real function such that
tve-a(OO as t c. Then since Sp(,)q(T,,)V(A)=--O, we get from (4.46a)

IIs (X) -(T,X)II--IIs (X)(HxG ( ,x )q_ ( ,, ))(T )II
_< const. Tre-a(r exp max Re, (X) + 0

i=l(1)r_ 0+

This follows from the estimates given in Markowich (1983) applied to (4.27). In this
case the right-hand side of the estimate (4.59), (4.61) given in Theorem 4.1 can be
multiplied by (TVe-a(r))/s, and the right-hand side of (4.60) can be multiplied by
TVe-a(r).

Now we consider the case of simple eigenvalues of (4.1), (4.2), (4.3). Since we only
defined simple eigenvalues for finite dimensional nonlinear eigenvalue problems, we
give

DEFINITION 4.1. An eigenvalue/xf of (4.1), (4.2), (4.3) is called simple if the
corresponding nullspace is one dimensional, say it is spanned by the normed vector y,
and if the problem

(4.63) v’-- t’a( t, t )v- tAx( t, l )y( ),
(4.64) B(#)v(1) + Bx(/)y(1) -0,

(4.65) vC([1, ol)
has no solution.
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Now we show
THEOREM 4.2. The eigenvalue I of (4.1), (4.2), (4.3) is simple if and only if I is a first

order zero of det F(X) 0.
Proof. Since y is an eigenvector corresponding to the eigenvalue g ,

y( t, l )

_
( t, lX )

holds for some C r_. Obviously

yx( t, l ) ff-ff- /- ( l )

is a particular solution of (4.63), (4.65). So the general solution of (4.63) is

v( ) /_ ( t, l )fl +yx( t, t, ), tiGE
Inserting into (4.64) gives

B(#)+_(1,g)fl- -(B(g)+_(1,g) +Bx(g)6_(1,g))
or

F(#)fl- F(/,).

This equation is unsolvable (for fl) if and only if the generalized linear eigenvalue
problem (F(/,)+ Fx(/,))l=0 has =0 as an eigenvalue with geometric and algebraic
multiplicity 1. This again holds if and only if detF())= 0 has a first order zero at

Now we show that approMmations for an eigenvalue-eigenvector pair (,y) can be
computed--in the case where is simple--as solutions to nonlinear "finite" two-point
boundaw value problems. Lentini and Keller (1980) did computations pursuing ts
way.

We set, assung that fl is simple,

(4.66) Yn+l--, z--(Yl," ",Yn,Yn+I) T, X y?(1)--I
i=l

(the superscript T denotes transposition) and get from (4.1), (4.2), (4.3)
Z

(4.67) z’-t A(t’Z+l) tf(t,z), lt<,
Z

0

z(1)
B(z,+(1))

(4.68) z,(1) b(z(1))-0,

i=1

(4.69) zC([1, ]).
The condition "=y(1)- shall sort one eigenfunction y0 out of the one dimen-
sional eigenspace.
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Equations (4.67) and (4.68), (4.69) form a singular two-point boundary value
problem as described by de Hoog and Weiss (1980a, b), Markowich (1982a, b), (1983)
and Lentini and Keller (1980). Since all eigenvalues in f are isolated and since/ is
simple, the solution z-(y1,...,yn,l)r of (4.67), (4.68), (4.69) is locally unique. Now we
will show that z is isolated, i.e., the linearized problem has only the zero solution. We
get for the linearized problem with U--(Ul,’’’,Un,Un+ l)T

(4.70) u’-to] Ax(t’t)y(t)
u,

0 0

B(/) Bx()y(1)
(4.71)

2y(1) r 0

(4.72)
Setting v (Ul,.. -, un)r we derive

(4.73a)

(4.73b)
(4.74a)

(4.74b)
(4.75)

u(1)=O,

v’-- tA( t, l)v- u+ itAx( t, l )y( ),
uo+ const.;

n(/J,) 19 (1)+Un+l(1)nA(IJ,)y(1)--O

y(1)rv(1)-O;
v C([1, cl).

Because of Definition 4.1 the problem (4.73), (4.74), (4.75) has no solution unless
Un+ =0. If U+--0 then v has to be an eigenfunction of (4.1), (4.2), (4.3); therefore
v-cy for some constant c. (4.74b) gives c-0, such that u--=0 follows as the unique
solution of (4.70), (4.71), (4.72). Therefore, we conclude from Markowich (1983) that
the infinite problem (4.67), (4.68), (4.69) can be approximated by finite interval prob-
lems of the form

(4.76) W(r= tf( t, wr), <_t<_ T,

(4.77) b(wr(1))=O,

(4.78) S(wr(T)) -0

where wr-(w,..., w., w.+ l)r; (w,..-, w.) is the approximation to the eigenvector y
and w.+ is the approximation to X. The superscript T denotes transposition. The
choice of S: "+1 --,+ is explained in Markowich (1982b). The analysis given there
shows that we can take

w (r)
(4.79) S(wr(T))-Sp(w+’(T))

w (r)
Markowich (1982b) has proved that the solution wr is locally (around z) unique for T
sufficiently large and that

(4.80) IIz--wrl]i,,rl<_const.llS(z(T))ll=const.llSp(l)y(T)ll
holds. So we get the order of convergence given in Theorem (4.1) with s-- 1, because the
boundary condition (4.78) is equivalent to (3.21).
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If (4.63) holds, the order of convergence is

(4.81) [T--[_<const. Texp(( max Rei(X)+p)-a(T))
i-- l(1)r_

and the same is true for the normed eigenvectors.

5. Case studies. The first problem we treat is the so-called radial Schr6dinger
equation of the Kepler problem (see Jiargens and Rellich (1976, Chap. 3, par. 9) which is
given by

(5.1) -u"+ ((1 +l)lr-2--2cr-1)u -Xu, l_<r< c

with M L3 (0 }, where M is the set of positive integers, and c .
The transformation

(5.2) y- ( yl ,Y2 )r- ( u, u’) T

takes (5.1) into the system

( .31 y,_[ 0

(1 +l)lr-2-2cr-I +X
(,x)

such that

[0 1](5.4) A(,X)- h 0

holds.

l_<r<,

The parameter occurs linearly in (5.3), but we will construct the nonlinear
asymptotic boundary condition Sp(,).

The Jordan form J(c,) is

0 _V_ r+-l, r_-l, /)+-- 0 0 0 1

and therefore the set a- {XC]Re(v):0} is given by

(5.6) a-C- (XIReX_<0).
With appropriate boundary conditions of the form

(5.7) alY(1 ) + a2Y2(1 ) --0,
we conclude from {}4 that every eigenvalue Xf of (5.3), (5.7) is isolated and that the
dimension of the nullspace equals 1.

A complete analysis of the problem is given in Jtirgens and Rellich (1976). They
show that there is an infinite sequence of eigenvalues X(n):

(5.8) h(")--c2(l+ +n) -2 VnGNo,

and the eigenfunctions y(") are given by

(5.9) y(n)(r)=--exp(-r)rt+’pn(r)-exp(-h--r)rt+n+’(l+O(r-1))

because Pn(r) is a polynomial in r of degree n. They assumed that a sina, a2 =cosa
with a [0, 2r).



NONLINEAR EIGENVALUE PROBLEMS ON INFINITE INTERVALS 447

A straightforward calculation gives for X f

e(x)-[
Therefore, we conclude (since P+()k)= E(X)D+E-l(X))

(5.11) S0(X) IVY-,
The approximating problems have the form

(5.12) x’=A(r,X)xR, l<_r<_R, R>> 1,

(5.13) al,a2lxR(1 ) =0,

(5.14) [f-, 1]XR(R)-Ov/-x(R)+x(’(R)-O, XR--(X(I,X(R2’) r.
Since A(r,X)-[l+ O(r-) and since w(R, Re(v))<_const.R-l, the convergence
analysis given in 4 shows

(5.15) max(IX(n)-X()l, Ily(n)-x(’)l[tl, RI)<_ce-R’+-I
because the X(")’s are simple.

(5.15) follows by using _(r,X(n))-[y(n)(r),y(n)(r)]T. Therefore the estimate
(4.81), where O appears in the exponent, can be improved using (4.57). From Marko-
wich (1982a) we conclude that eve boundary condition Sx(R)=O, where S is
independent of X and where

)0 ina(5.16) SE(X)( 0

holds, leads to convergence of the order

max( IX(’) X) lie x)ltl,
(5.17)

c ][y(’( R )llw( R,Re()) c exp(-R)R,+"
Setting S=[Sl,S], s,s, (5.16) is fulfilled if and only if

(5.18) s,+sO
holds. For example, the natural boundary condition

(5.19) x()(R ) -O
satisfies (5.18) (s 1, s2=0) and the order of convergence given by (5.17) differs only
by one power of R from the order of convergence produced by the "optimal" boundary
condition (5.14).

The second problem we consider is the Orr-Sommerfeld equation (see Ng and
Reid (1980)) which governs the stability of a laminar boundary layer in a parallel flow
approximation:

,-
dz

(5.20)
iRa dz
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where a> 0, R>0 is the Reynolds number, U(z) is the velocity distribution satisfying

(5.21) U(z)-l+F(z)e-’’, o>0, FC2([0, o1)
such that U(c)-1, U"(c)-0 holds. (z)ei’(-xt) represents the disturbance stream
function. The boundary conditions for the Orr-Sommerfeld problem are:

(5.22) (0) q’(0) (o) ’(o) -0.
The new variable

(5.23) y- ( ,, qd, q", q,"’) r

gives the linear eigenvalue problem

0 0 0 0 0 0 0]
(5.24) y’--

0 0 1 0 0 0 0 0
0 0 0 +X

0 0 0 0 Y’ 0_<z<

f,(z) 0 f2(z) 0 a 0 b 0

z,X)

0 0 0]y(0)_ 0,
1 0 0 1
yEC([0, ])

(5.25) [0
(5.26)
where

A(

(5.27a) fl(z)----(a4+iaR(aV(z)+ U"(z))),

(5.27b) f2(z) 2a+ iaRU(z),

(5.27c) a=ia3R,

(5.27d) b= -iaR

hold. The eigenvalues of A(o,) are

(5.28)
Vl())-a’ ;’z(’)-(a2+iag(1-’))l/2’
;,3(2) -a, ,4(,) -(a2+iag(1-h)) 1/2,

so that Re;,(X), Re,E(X)>0; Re;,3(), Re,4(,)<0 for all )tE-C-(Jk[Re-1,
IMP_<- }. All eigenvalues }, Eft of (5.24), (5.25), (5.26) are isolated and the null-
spaces are at most two dimensional.

The approximating problems have the form

(5.29) x’z=A(z,3)Xz, O<_z<_Z,

0 0 0(5.30) 0 0 0 xz(O)--O’

(5.31) S(X)xz(Z)=O
where xz- (X(z),X(z),X(z),X(z4)) holds and X Eft.

As for the first example, we calculate the optimal boundary condition S(X)= Sp(h):

a,2(h ) a + ,2(, ) 0
(5.32) Sp(h)- avz(h)(Vz(h)+t) vzZ(h)+av(h)+a2 0 -1
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Since A(z,)-A(X)+O(ze-) holds, we get from (4.81) for simple eigenvalues

max(l/-/z], IJy- xzllt0,zl)
(5.33) <_const.Z2e-Z:w(Z, min(ct, Re v:(/)))exp(max(-a, Re v4(/ ) + p)Z)
wherey,xz are the normed eigenfunctions. In the most interesting case a< iRe v4(,)l < 1,
the order of convergence is Z2exp(-oZ2-2(a-p)Z), p>0 sufficiently small, while
linear asymptotic boundary conditions like

2(5.34) x(Z)-xz(Z)-O
achieve a slower order of convergence, namely exp(-2(a-0)Z) (see Markowich
(1982a)).

If the velocity profile fulfills

(5.35) V(z)-I +F(z)e-’z, 0>0, FC2([0, 1),
instead of (5.21), then the order of convergence reduces to exp(-(o+2(a-ta)z)). Ng
and Reid (1980) performed numerical experiments (using the optimal boundary condi-
tion (5.32)) with the Blasius velocity profile (fulfilling (5.21)) and with U(z)-1- e-.
Their results confirm that the order of convergence is faster for the Blasius profile (see
their Table I and II).

Grosch and Orszag (1977) performed computations using the linear boundary
condition (5.34) and obtained numerically the indicated order of convergence. These
computations show the superiority of the optimal (nonlinear) boundary condition
(5.32) for the Orr-Sommerfeld problem.
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CONNECTION FOR WAVE MODULATION*

R. E. MEYER ND J. F. PAINTER

Abstract. A new approach is described to the connection of wave amplitudes across the turning points
and singular points of second-order, linear, analytic, ordinary differential equations which can describe the
modulation of physical waves or oscillators. The general class of singular points thereby defined (2) contains
many irregular ones of greater complexity than have been accessible before; however, genuine coalescence of
singular points is not here considered. The asymptotic connection formulae are shown to result directly from
the branch structure of the singular point (3), indeed, to a first approximation, they reflect merely the gross,
local branch structure. The proof (5) relates the local structure of the solutions at the singular point to the
asymptotic wave structure by a limit process justified by bounds on the degree of irregularity of solution
structure.

1. Introduction. The semiclassical Schr/3dinger equation

(1) e2d 2 w/dz 2 +p w(z ) 0

with small parameter e and analytic coefficient function p(z) is central to a vast class of
oscillation and wave modulation problems in physics and other sciences. Particular
interest, especially for scattering theory, attaches to the "WKB" problem of connecting
the wave approximations to solutions across roots or singular points of p(z). The
following introduces a mathematical connection method which is simpler and more
general than any advanced before [Zwaan 1929, Langer 1931, Painter and Meyer 1981 ].
Simplification and clarification of connection theory is, in fact, the whole objective of
the study to be reported, and generalization was used only as a help towards it.

One reason why this objective has proved elusive over the generations may be that
the general, second-order, linear differential equation, of which (1) is the normal form,
encompasses too many disparate phenomena. The present study focuses on only those
forms of (1) which are genuine SchrOdinger equations in the sense that they can
describe the modulation of physical waves or oscillators. This subclass is characterized
in {}2 in terms of its admissible (turning-point and) singular-point structure. To attempt
only one step at a time, moreover, genuine coalescence of singular points is excluded.
This leaves a large class of singular points, none the less, because the potential func-
tions p(z) of (1) in the sciences must be defined, if not by speculation, then by
measurement, in which case they can be known only imperfectly. In addition, it has
long been recognized that scattering matrices may depend decisively on singular points
of p(z) away from the real axis of time or space, in which case there are scant physical
grounds for restricting their nastiness. The characterization of p(z) cannot therefore be
very specific and must include arbitrarily irregular points of (1) in the sense that "rank"
or similar notions of degree of irregularity are inapplicable. Certainly, multivalued
functions p(z) must be the norm, rather than the exception. All the same, modulation
implies a certain structure (2).

The multivaluedness of p(z) in (1) implies that the solutions w(z) must normally
be multivalued, and the main thesis to be propounded is that this multivaluedness is the
source of the connection problem and that the asymptotic connection formulae solving
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it are a direct manifestation of the branch structure of the potential p(z) at the singular
point. It is not a new thesis, the same fundamental view of connection was adopted
already by Olver [1974, pp. 481, 482] for regular and isolated singular points. Our
objective is to show how it can be extended to large classes of very irregular ones and
what new insights into the nature of connection emerge therefrom.

To this end, local solution representations near the singular point have been
developed in a companion paper [Meyer and Painter 1982], hereafter referred to as
[IPM], and are summarized in 3. They focus on a particular fundamental system y, Ym
of (1) in which Ym/Y 0 as x 0 so that Ym has a milder singularity than y which, in
turn, contains no additive multiple of Ym" This makes the pair a characteristic represen-
tation of the branch structure of the singular point. The representation is a local one, in
the first place, but turns out to have a striking two-variable structure: in the framework
of a natural, independent variable x (2), the solutions do not depend on the complex
parameter e in (1) separately, but only on the variables x and ex. One key property of
the representations in regard to connection is that they are partially global in the
oscillation variable x, even though strictly local in the modulation variable ex. Another,
is that they can be extended to bounds on ’degrees of irregularity’ of solution structure.
For instance, regularity of a singular point implies certain global symmetries for the
solutions and accordingly, an estimate of solution asymmetry and of its dependence on
distance from the singular point constitutes a bound on a degree of irregularity. Again,
any irregular point of the general kind here considered can be linked diffeomorphically
to a regular point and a pointwise comparison of corresponding solutions of the
differential equations so associated constitutes a ’diffeomorphic bound’ on a degree of
irregularity.

Such symmetry bounds are shown in 5 to admit a class of limit processes in which
both Ixl- and lex[--,0 and furthermore, the asymmetry of y and Ym is severely
restricted. This amounts to showing that asymptotic approximation of WKB-type
characterized by dominance and recessivity becomes available before local structure has
been lost. Existence of such limit processes translates immediately local information on
the structure of y and Ym at the singular point into information on the multivaluedness
of their asymptotic wave-representation. But, the latter information is what connection
theory seeks.

The simple symmetry characteristic of regular points fails for a nongeneric subset
of ’Frobenius exceptions’ [Olver 1974, p. 150] which involve logarithmic branch points,
and for the corresponding, nongeneric subset of irregular points, the alternative ap-
proach to connection via diffeomorphic bounds is more helpful. It is used in 6 to
continue the wave amplitudes analytically in the main connection parameter. While this
continuation is documented only in an asymptotic sense more abstract than is really
desirable, it does explain why no trace of the Frobenius exceptions is visible in the first
approximation to the connection formulae and also illuminates the relation of Frobenius
exceptions to solution normalization and poles of the gamma function. (More concrete,
even if not quite as wide, coverage of Frobenius exceptions is provided by the connec-
tion method of Painter and Meyer [1982].)

To explain these facets of connection and irregularity, it is helpful to limit the
presentation in other ways, and attention will be thus restricted to the first approxima-
tion to connection of wave amplitudes. A more exhaustive description may be thought
desirable for the sake of completeness, and most of all, error bounds are desirable. It
may be noted that the representations used are obtained by the standard method of
Volterra integral equations, which is precisely the method leading to effective error
bounds [Olver 1974]. The sketch of the representation method given in 3 makes clear
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that such bounds would emerge in terms of pointwise and integral bounds on a certain
irregularity function q(ex) arising in the characterization of the singular point ({}2). In
the general case, however, that function is barely specified and can tend to zero with ex
arbitrarily slowly, so that it appears doubtful whether the bounds would give much.
satisfaction to the numerical analyst. Most of all, however, we suspect that the present
proof of connection may not remain the simplest one for long, in which case present
attention to error bounds and higher approximations may be premature.

2. Modulation equations. Equation (1),

e2 d2w/dz2 +p(z; e)w(z )=0,

is one of a large family of normal forms of the general, linear, second-order differential
equation, and constructive general statements are difficult in such an indefinite frame.
By constrast,

dx/dz p/2/e
defines the Liouville-Green of WKB or Langer variables x and ex based on the local
wavelength or period, which have long been recognized as the natural ones for wave
modulation. Physical specifications, e.g. for scattering, relate directly to them, and if z
differs substantially from x, it can at best measure distance in legal units such as inches
or cm. The natural formulation of physical problems of wave modulation is therefore in
terms of x or x, from the start, which will avoid the extraneous difficulty of describing
the global transformation between ex and z, which has no physical significance and can
be a very complicated, multivalued map.

The exclusion of coalescence, in order to confine attention to one singular point at
a time, restricts not their total number, but only how fast they can approach each other
as e0. When this is not fast enough to introduce genuine coalescence, a rescaling
[Meyer and Guay 1974] permits the elimination of the main e-dependence from p(z; e),
and therefore not much generality is lost by ignoring the residual e-dependence. For
simplicity, p(z) will accordingly be taken independent of e in what follows.

The main property distinguishing the wave modulation equations among the larger
class of equations (1) is that the natural variable x must be definable, for otherwise, not
even the concepts of wavelength or period could exist for (1). An additional require-
ment arises as follows. If p/Z be nonintegrable at a singular point, then that point is
seen to correspond to no x C and hence, represents not a genuine singularity but a
device for reinterpreting a radiation condition as a singular point in the z-plane. Such a
device has been used at times in quantum mechanics, but is excluded here to con-
centrate on the class of genuine singularities of modulation. For that class, the singular
point of (1) must correspond to a definite point x. Without loss of generality, both will be
identified with the origin.

For an effective formulation of this notion of the most general wave modulation
equation (short of coalescence), it should be expressed in terms of the natural variable
x. Accordingly, the following is based on the premise that a branch r(x) of pl/4 is

definable as an analytic function on a punctured neighborhood of x-0 which is a
Riemann surface including the interval (-rr, 2 rr) of argx so that

(2) dz/dx- er-2

is integrable at x-0. (In conventional, turning-point terminology, such a Riemann
surface element comprises three adjacent Stokes sectors. Like z(x), of course, r(x) also
depends parametrically on e.)
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When the SchriSdinger equation (1) is transformed to the natural variable by, say,
simply setting

it takes the form

(3)

w(z)=yCx),

y"+2r-lr’y’--y=O,

which shows that the wave development is controlled by the "modulation function"

r’(x) ie d

r(x) 2 dz
p-1/2

rather than by the potential function p(z) directly. This illuminates why it has long
been known that the singular points of (1) should really include the roots of p(z)
(" turning points"). It is also seen that the modulation function has a particular struc-
ture: since p(z)--r4 is a function of z independent of e, it follows from (2) that ex is
also such a function, and in turn, that xr’/r depends on x and e only through the
product ex. A secondary hypothesis to be now adopted, because it simplifies the theory
of connection, is that a limit of xr’/r as ex 0 can be identified,

(4) xr’/r,[C as exO

uniformly in the Riemann surface sector A of ex in which xr’/r is defined locally near
ex=O. These two hypotheses also define the framework of the analysis of [IPM]. A
statement equivalent to (4) is that the (fourth root of the) potential r(x) can be written
in the form

(5) pl/4 r(x ) ( ex )vp( ex )

where p() is a function analytic on the Riemann surface element A with the property

(6) (/p)ap/ali=:,(li)-+o as --,0

uniformly in A, because (ex) xr’/r- 7.
To make the structure of the theory more readily apparent, it will help to ab-

breviate the notation by the convention that a function symbol such as g(x) will, as
before, be always understood to denote a function of both x and e. By contrast, a Greek
symbol such as q() will always denote a function of ex only. If such a function has
the property (6),

(/q)dq/ao asO
uniformly in A, then it will be called mild; it implies that q() varies near 0 less than
any nonzero real power of :

Vv>O, Iq-+ll-0 as-+0.
In particular, the limit ,/ postulated in (4) is thus seen from (5) to represent the
exponent of the "nearest power" of x in the (fourth root of the) potential, and the basic
integrability premise defining physical Schr6dinger equations implies

The general class of singular points of Schrdinger equations thus defined includes
very irregular ones, in addition to all the turning points covered in the literature
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[Painter and Meyer 1982]. For Langer’s 1931] class of fractional turning points,

is analytic and nonzero at z 0,

E
n--1

and the solutions of (1) and (3) are approximable uniformly in terms of Bessel func-
tions [Langer 1931, Olver 1977]. For other singular points, however, no simple, uniform
approximands in terms of classical functions appear likely. Local approximations have
been constructed in [IPM] to provide support for the present study even under the
vague assumptions just sketched, which admit functions () of arbitrary multivalued-
ness and approaching zero as 0 more slowly than any specific function. Similarly,
the coefficient functions p(z) in (1) here admitted can be of great complexity, especially
when several irregular singular points are present, and a useful global description
appears unlikely in the general case. Locally, however, the class of potential functions
p(z) can be described by

z-foZ[P(t)/p(z)]/2dt 1-23, as z0.

As indicated in the Introduction, the conceptual key to connection lies in the
two-variable structure of the Schr6dinger equation emerging from (2) to (4). It should
not have surprised us as much as it did, for it is already apparent in (1) that the
independent variable plays two distinct physical roles. The first term in (1) represents
the oscillatory mechanism, and its independent variable is clearly z/e, with local
wavelength as natural unit, prompting the transformation to

x--

By contrast, p() represents the potential and its variation, which is not dependent on
the presence of waves, and the role of z in it is therefore a different one. The
formulation sketched in this section adds the insight that the dependence on the
modulation variable z,-,ex= j enters into the SchriSdinger equation (3) only through a
relatively minor term

q( ex ) xr’/r-- !
in the modulation function r’/r. This function has been called "irregularity function"
in [IPM] because 0 characterizes the regular singular points.

The critical role of this two-variable structure will emerge in 5 which is devoted to
a proof that connection across singular points is a mathematical process local in ex,
even though asymptotic in x. This is, perhaps, the main new insight gained by extending
the fundamental view of connection of Olver [1974] to irregular singular points. It
explains why a merely local definition of (ex)mand thereby, of the potential and of
the Schr6dinger equationmon a Riemann surface element

A-- {ex" -rr_<arg(ex)_<2rr, O<lexl<E for some E>0}
turns out sufficient. (For notational convenience, E is adjusted so that O(ex) is analytic
up to the rim of the element and hence, bounded on A.) In a shortwave fimit e- O, that
entails little restriction on the corresponding domain D of x. On account of the
two-variable structure, moreover, a shortwave limit must be a limit ex - O. Hindsight, of
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course, makes all of this appear foreshadowed in the structure of (1), where the first,
oscillation term is defined globally in z/e, even if the potential p(z) be defined only
locally.

3. Branch structure. It will help to summarize now the results of [IPM] used in the
proof of connection in 5 and to indicate their motivation. If a limit e 0 is taken at
fixed x, then q(ex) O, by (5), and (3) approaches a form of Bessel’s equation (which
observation started Langer’s [1931] work). Its singular point is regular with Frobenius
exponents 0 and 1- 23’_>0. If 1- 23’ is not an integer, that implies solutions fs(X) and
X-2Vfm(X ) with entire functions fs, fm (and fs(O)=fm(O) 1), which turn out to depend
only on x 2. Integer values of 1/2-3’ correspond to the Frobenius exceptions for which
only fm(X) is entire.

It is plausible that (3) may have an analogous fundamental system (Y,Ym) when
e 4: 0, which displays the branch structure of the irregular singular point most clearly. If
Ym/Y--’ 0 as x 0, then y has there the stronger singularity and it appears natural to
call it the stronger solution, and Ym, the milder. Such a system has been constructed
[IPM] to obtain a representation of the branch structure at the general irregular point
of wave modulation and, in particular, to find out what replaces the entire functions fs,
fm and explore how departure from entirety can be characterized. The underlying idea
emerges most simply in the following construction ofy(x) for 1/2 _> Re 3’ > _.

Since (3) can be written (r2y’) r2y, a simple Volterra equation associated with it
is

y’(x)- [r(x)]-2f.X[r(v)]2y(v) dv,

(8)
+

By (5), a plausible iterative approach to (8) is by a sequence {b,,(x)} such that

bo l, b,(O)-O for n>_l

(and as always, it is understood that bn(x ) depends also on e). Since p() is a mild
function, it can be estimated in (9) at the expense of a small power, and it emerges
readily in this way, by estimation of b;, from (9) and (6) and thence, bn, recursively, that

bn(X)--n(gX)(X/2)2n,

(10) [8n()l<--k’n--F(--s)/[n!F(n--s)]’

s- -Re3,- - + lub [q(u)l.
u(O,1)

Therefore, if lex[ <E(3’) chosen to assure s<0, then the rapid decrease of k’ with n
documents a majorant series assuring the convergence of b to a solution Ys(X) of (3)
analytic on the Riemann sector D. Since y(0)= 1, bn(x) generalizes Frobenius’ entire
function f(x), but the ’coefficients’fi are generally multivalued functions of ex.

Observe that (10) suggests y Eb tends to an even function of x in some sense as
ex --, O. This can be made more precise by applying the same approach to the estimation
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of Ib,(x)+ b,(xexp-rri) and thence, Ib,(x)-bn(xexp-ri)] to show [IPM] that

[b(x)- bn( xe-’i )l <-([exl)nk’nlx/2lan

where

(11) (11)-,0 as I10.
These bounds still decrease fast enough with n to be summed to a bound on the degree
of oddness of y(x) in terms of the modified Bessel function I(z) [Olver 1974, p. 60]"
For Re>- and x, xexp(-i) in D and lexl<E(r),

(1) ly(x)-y(xe-’)l(lxl)F(-)lx/l=+I_.(Ixl).
Thus y(x) approaches evenness as [exl 0 uniformly on compact subsets of the cut
x-plane. For fixed ex, on the other hand, y(x) may lose evenness exponentially fast as

121 increases.
A good representation of the lder solution Ym(X) Of (3) depends on identification

of the exact function generazing the factor x1- of fm(X). It turns out to be just the
function z(x) defined by (2), indeed [IPM],

(13) z(x) (x)’-’(x)
with a ld function () such that

(4) (1-)0-- as 0.
Then Ym(X)/Z(X)=p(x) satisfies a differential equation related to (3) and can be
constructed for all Re by an iteration paralleling that just sketched to obtain
[IPM] a representation

(15) Ym(X)--z(x) 1+ n(X)(X/)n

with bounds

lan() <--kn- F(m)/[n !r(m+ n)],

where m- -32-Rev-a(lexl)>0 for lexl< another E(3’), since i2(ll)--,0 as Ilo. of
course, ’() and an() are generally multivalued functions, but an(0) is defined and
nonzero, so that ym/Z=fi(x) also tends to an even function as ex--+O. An oddness
bound is obtained by an estimate paralleling that indicated above.

THEOREM 41 [IPM]. For x and xe-ri in D and [exl < E(,/),

If(x ) fi( xe-’i )1-<a(IxI) r(m )lx/2l
2-mIm(Ixl)

and (11) 0 as I1 0.
The same comment therefore applies to ym/Z =)) as follows (12).

For the stronger solution Ys and for Re3,--< -1/2, the simple Volterra equation (8)
can, by (5), be used only at the price of a regularization of the first integral in (8). A
stronger solution in the sense indicated is defined only up to an additive multiple of the
milder solution, which is undesirable for a fundamental system displaying clearly the
branch structure of the singular point. The regularization adopted in [IPM] avoids that

Theorems are numbered consecutively from [IPM].
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additive multiple and constructs a stronger solution of the form

(16) y(x)- -+- jn(eX)(X/2)2n

for all Re 3’-< 1/2, but the construction is different in different strips

SN- ,C’I-N>Re,-->-N N-0,1,2,...,

and the estimates of grow more laborious and weaker with increasing N. Since B(0)
is found to exist for all n only when 1/2-, is not an integer, the symmetry even of the
limit ex0 fails for integer 1/2-,. Within the strips SN, however, symmetry bounds
were established:

TttEOREM 51 [IPM]. For noninteger 1/2- Re, >_0, x and xe-’i in D and sufficiently
restricted

]Ys(X ) ys( xe-’ri ) <- C([ ) 8,( lexl ) lx/2l
2 +*I-,(Ix l),

with s- -Re3,- 1/2 + lubu<0,olq,(u)l >0 and 0 as I 1- 0.
A useful light can be shed on the relation between the respective stronger solutions

yN(X) constructed in the strips SN by reference to the regular point q----0 which the
function q(ex) associates with any irregular point, by (5) and (6). Since (3) is a form of
Bessel’s equation for q=0, this open an avenue for pointwise comparison of, e.g., y(x)
with an explicit function of x and

THEOREM 6 [IPM]. If ex A, x is bounded from 0 and
C" 1/2 A > Rey>A 1/2 ), then

y,(x)-r v+- (x/2)l/2)-vI-/(x) <-Cl(G)a2(ex)elxl/]xVl

where ia lubalq’()l and 82()
Similar bounds [IPM], moreover, link YsN on compact subsets of the strip

TN- 3,C’--N-Sa>Re’>-
with the same Bessel function, and by (6), all these stronger solutions are seen to
approach, as e 0 for fixed x, the same solution of (3) for e =0.

4. Wave amplitudes. If y(x) satisfies (3), then W(x)=r(x)y(x) satisfies

(17) W"=(l+r"/r)W,
and by (4)

(18) r"/r=x-[’/(’{ 1)+q(27-1

so that Ir"/rl is integrable along paths in D bounded away from x=0. This confirms
[Olver 1974, p. 222] existence of a fundamental "WKB" solution pair

(19) W+(x)=a(x)ex, W_(x)--b(x)e

with functions a(x), b(x) analytic on D and boundedfor large Ix] (provided, of course,
ex= CA so that ,/, and q,’ are bounded). This is the fundamental system of (1) most
strikingly describing the asymptotic wave character (undamped on the lines where x is
pure imaginary) of the solutions.
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The "amplitude functions" a,b are determined only up to a constant factor, but
apart from that, the decay of Ir"/rl at large Ixl suffices [Olver 1974, p. 223, 224] to
assure limits for a(x) and b(x) as Ixl- with argx any integer multiple of rr. Those
limits are the well-known wave amplitudes in the first-order WKB-approximations to
the solutions of (1).

Since any solution of (17) must be a linear combination of IF+ and W_,

(20) r( x )y,(x ) t,,(x )e + ,(x )e-x,

and the same holds with subscript s in place of m, and supposing they can be
normalized satisfactorily, then am,...,/s are similarly analytic and bounded for large
Ixl. Since the left-hand side of (20) has been seen in [}3 to be multivalued, not all of
s,’" ",/m can be entire, and symmetry makes it plausible that all of them will usually
turn out to be multivalued. This prompts the question

tm(O) tm(OOe2ri )

which is, in fact, a connection question for WKB coefficients [Olver 1974, p. 481].
In view of the many contexts in which connection is important, it is natural that

many different forms of the connection prblem are found in the literature, but most of
them can be related to each other with little work, and a treatise on connection for
simple turning points is found in [Olver 1974, Chap. 13]. In any case, the problem turns
on relating the respective limits which represent the WKB coefficients on different
domains, and when it is recognized that those domains correspond, in the frame of the
natural variable, to sheets of the Riemann surface of the solution, then the form of the
connection question just arrived at is seen to be a natural one.

By contrast to the functions a(x), b(x) first mentioned, a,,(x) and bm(x ) are
normalized implicitly by the normalization of Ym(X)/Z(X) -p(x), and this turns out to
introduce an e-dependence into the normalization of am,/m" For fixed ev0, moreover,
Ix[ is bounded by E/e on the Riemann sector D on which the differential equation (1)
has been defined, and the connection question can therefore be posed only in the limit
e--, 0. This aspect is discussed in the Appendix, where it is shown that the functions

and

rather than am and bm themselves, are certain to have limits as e- 0 and Ixl--, o, and
those limits are therefore the wave amplitudes of the milder solution. For an assuredly
meaningful connection question, we should therefore rewrite the identity (20) as

(21) e’t- ’r( x ) p( )( )] ’Ym(X ) am(x )eX + b,n(x )e

(with explicit mention of the dependence of am,b on =ex omitted to focus attention
now on argx) and ask am(oOe2ri) -am(OO)-- 9.

5. Connection. Since (21) is an identity in x on D, it holds equally at x exp(-ri),
if that point is also in D. If exp(-ri) be abbreviated by j, then since ym--Zp and
rz--xl-vp, by (5) and (13), the identity

(22) [fi(x )--fi( jx )] x’- e-Ixl [a (x ) _jr-’bm( jx )] ex-l l
+ [bm(x)-jV-’am(jx)]e-x-’xt
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also holds on D. Now let [ex[ 0, but Ix[- o in such a way that the left-hand side of
(22) still tends to zero. That this does indeed define a nonempty set of "intermediate
limits", in the terminology of singular-perturbation theory [Eckhaus 1979], is a corollary
of Theorem 4 because [Olver 1974, p. 435]

Im(lXl),..,12rxl-/:eIxl as Ixl oe

and, e.g., Ixl I1Og m(l xl)l will serve.
For the choices argx-rr and argx-2r, respectively, such a limit of (22) yields

(23) bm(oCzeri)--j’r-’am(O), am(oe2ri)--j’r-lbm(oeri),

whence

(24) am(e2" ) am(0) 2i sin(,rr ) bin(
The choice argx 0 adds

(25) am(OO ) =jr-lbm(e-i )
to (23), whence the answer to the connection question for b is

(26) bm(ei) bm(e-i ) 2i sin(v )am( ).

For noninteger -Rey>0, a parallel argument for the stronger solution starts
from the identity

(27) r(x)y(x)--(x)eX+(x)e

analogous to (20) to deduce that the normalization y(0)= 1, y;(0)=0 assures bounded-
ness of

(28) e-va(x)/p()--a(x) and e-v(x)/p()-b(x)

as 0 and leads via the identity (22) with fi, m and replaced, respectively, by y, s
and , by the help of Theorem 5 to the same connection formulae (24), (26) for a, b in
the place of a, bm, because sin[(1-V)]=sin(v). (It is tNs independence of sub-
script wNch makes (24), (26) more convenient for present puwoses than various other
rdations, such as am( exp 2ei)=am(m)exp(-2i), also impfied by (23) and (25), or
their countearts for a, b obtained by replacement of - by .)

With appropriate interetation, morever, the same connection fomulae relate m,m and a, , respectively, because (p2f)- tends to a definite lit as 0, by (14),
and by (6),

P(J) exp ,()dr__ exp ,(lleZO)ido 1.

Since any solution y(x) of (3) is a linear combination of the fundamental pNr (y,y),
the functions a(x) and b(x) in the representation

r(x)y(x)=a(x)e + b(x)e
in terms of the fundamentN pair (W+, W_) of (17) are linear combinations of ,
and , , respectively, and therefore satisfy (24) and (26) as well. In the lit e 0 and
with interetation appropriate to the normalization of y(x), the connection formulae
(24) and (26) will therefore be a general corollary of (3) under the two hypotheses of 2,
when they have been extended in the next section to all
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6. Analytic continuation. Another proof of connection may be based on the diffeo-
morphic bounds, but will be detailed here only insofar as it covers the gaps left by the
symmetry bounds, or at least, elucidates how the Frobenius exceptions fit, none the
less, into connection theory.

By (27) and (28), the simple identity for the stronger solution corresponding to
(21) is

xVys(x) as(x)e + b,(x)e-x.
The wave amplitude a,(oo) of the solution y, defined in the strip T (3), understood
again as the limit as e +0 and Ixl-, o with argx-0, is therefore

a,(oo)-lim [e-xVy,(x)].
e+0

For fed x and e and given irregularity function +(ex) on A, the Schr6dinger equation
(3) depends analytically on y, by (5), and therefore, so does y, in the domain T. If the
limit defining the amplitude a,(m) is taken so that also ex O, as in }5, then (6) and
Theorem 6 show e-XxVy(x) to approach a lit uniformly on compacts c T and
hence, also a,(m) depends there analytically on . In fact [Watson 1944, p. 203], this
lit is -/=2V-F(v+)) and furnishes the analytic continuation of as(m) to the
domain Cr of F(V +).

Analogous statements apply to the amplitudes a,(mexp2i),.., b,(m exp-i)
of Y,l on T and show all of them to have analytic continuations to Cr wch, in turn,
are there related by the analytic continuations of the connection formulae. As shown in
}5, those agree on TN with the connection formulae for Y,N (of which the wave
amplitudes also have analytic continuations to Cr, by the estimates silar to Theorem
6 quoted in [IPM]). In ts sense of analytic continuation to Cr, the amplitudes and
connection formulae are therefore independent of N. The remaining poles of connec-
tion, finally, can be removed by renormalization of the stronger solution or by posing
the connection question for amplitude ratios such as

a(e2)--as()
2i sin(7 ).

Appendix. The somewhat delicate issue of normalization for connection may be
brought under control in two steps. For fixed e, the domain D of x on which r(x), and
hence also the differential equation (17), is defined is a Riemann sector of radius
E(,)/e. Let the particular functions a,b in (19) normalized in the manner of Olver
[1974, pp. 194, 220-222] be denoted by a0, b0. Then ao[b0]- and a[b]-0 at a point
of mino[maxz]Rex, which depends on e, and thus a0 a0(x; e), b0 b0(x; e), and the
first step will be to confirm that their dependence on e weakens as e--, 0.

Since q() is analytic and bounded on the Riemann sector A for 0< I@1 < the
same follows for

x2p(x)--3,(3, 1)+(23,- 1)q(li)+q+liq’(li)=xZr"/r
in (18) because it tends to 3’(3’-1) as li=ex0, by (6). For the basic connection
question of {}4, it is sufficient to restrict the Riemann sector D to a disc of the same
radius cut along the positive real axis of x for a0(x; e), and along the negative real axis,
for b0(x; e). Olver’s [1974, p. 221] variation function for a0 is

e(x ) I@( v ) dvl
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evaluated along progressive paths, and if such a path keeps distance R from the origin,
then since x2q is bounded,

(A1) 9-O(R-) asR

The same holds for the variation function for bo, which differs only in that the lower
limit is +lE/el. The functions furnish [Olver 1974, p. 221] bounds

(A2) lao(x; e)-- II, la’o(X; e)l<-e-l=O(g-)
and similarly, for b0. If now then D(eg)D D(e) and on D(e) the solution W+
normalized for D(e) is a linear combination of W+, W_ normalized for D(eg); thus

ao(x; e )e= Cikao(X ek )e + dikbo( x eg )e
with constants ci,, de computed from the respective normalizations and bounds to
yield

a0(x; ei)--ao(x; ek)(1 + O(ei) } +b0(x; ek)e--2(x+E/ei)O(ei)
and on D(ei) Re(x+ E/ei)>_O. As long as Ixl is well bounded away from 0, therefore,
ao(x;ei)-ao(x;e,)+O(ei) as leil-.O, and similarly for bo(x;e), and by the bounds
(A1), (A2), ao and b0 tend to limits as Ixl- o in D(0).

For the second step, note that the amplitude functions a and /m in (20) are
renormalizations of ao and b0 so that

gt,,(x;e)=Aao(x;e), l,,,(x;e)-Bbo(x;e)

with coefficients A,B possibly dependent on e. From (20), (5) and (13), therefore,

(A3) xl-VYm(X)/Z(X)-xl-v.9(x)-ev-(p)-[Aao(x;e)e+Bbo(x;e)e-X
The differential equation for p(x) is, by (2) and (3),

fi" + 2( r’/r+ z’/z )p’ =p,

and since the normalization to 9(0)-- 1, .9’(0)--0 recognized in (15) is independent of
e,p inherits from (r’/r+z’/z)x the property that it depends on e only through l-ex.
Like (r’/r+ z’/z)x, moreover, p depends continuously on in A, for fixed x 4 0, and as
0, by (4) and (13), r’/r+z’/z(1-/)/x and the differential equation for .9 be-
comes a form of Bessel’s, with solution

(A4) limp(x)- F( 3 ) 1/2

o - V (x/2)- I,/2)-v(x ).

This shows x -vf(x) to tend to a well-defined function of x on D(0) as - 0, and since
ao(x; e) and bo(x; e) have been shown to tend to limit functions on D(0) as e--,0, it
follows from (A3) that the functions eV-A/(o) and eV-B/(p) must tend to limits as
e-,0 and 0; of course, these limits might depend on the direction of approach,
which is determined by arg x.

In sum,

a---m Aa0(x" e) m--Bbo(x"p" p’ p’ p"

where eV-A/(p), eV-B/(p) have limits as e0 and 0, while the limits as e0 of
ao, b0 are defined on D(0) and tend there to limits as
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NONLINEAR INTEGRAL RICCATI SYSTEMS
AND COMPARISON THEOREMS

FOR LINEAR DIFFERENTIAL EQUATIONS*
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Abstract. A generalization of a technique of Nehari [Trans. Amer. Math. Soc., 210 (1975), pp. 387-406]

is introduced to study focal pairs for the pair of equations L,,y +p(x)y 0 and L,,y + q(x)y--0. Generalized
Hille-Wintner theorems are obtained for the case when p, q are not necessarily of constant sign.
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1. Introduction. The application of nonlinear techniques to study problems in
oscillation theory for linear ordinary differential equations is well known, and one of
the most important methods, at least as far as the second-order case is concerned,
involves the Riccati equation. In [8], Nehari extended these ideas to the study of nth
order linear equations of the form

(1.1) y")+q(x)y:O
by introducing associated Riccati differential systems. This leads to a variety of oscilla-
tion criteria for the equation. In this paper we wish to further develop these ideas in
order to obtain comparison criteria for the more general equations

(1.2) L,,y+p(x)y:O
and

(1.3) L,,y+q(x)y=O
where p, q are continuous on an interval 1= (a, b) (or (a ,b], a, b)) with a<b_< +,
and Ln is an nth order disconjugate linear differential operator on I (that is, the only
solution of L,,y-O with n zeros on I, counting multiplicities, is y0). It is well known
[10], [3] that L, can be written in factored form as

(1.4) LnY--O,(Pn-l," ", (OI(OoY)’)’, )’
where O>0 and oC"-(I). If we set LoY=OoY, L:y=o(Li_y)’, i= 1,...,n, then
Loy, Lly,. .,L,y are called the quasiderivatives of y (cf. [4]). (If L,y=y("), then 0 1,

1,. .,n, and the quasiderivatives are just the ordinary derivatives of y.) In several
recent papers [3], [4], [5], Elias has studied the oscillatory character of (1.2) by means of
a detailed analysis of the distribution of the zeros of the quasiderivatives. In these
papers and in the papers of Nehari [8], [9], it was assumed that the coefficients p(x)
(and q(x)) were of constant sign on I. It will be shown that this requirement can be
relaxed if one considers an appropriate Riccati integral system. We shall be primarily
interested in theorems involving comparisons between the integrals of the coefficient
functions. Typical of such theorems are those of Hille-Wintner type. Thus, if n 2 and
L2y=(r(x)y’)’, r>0, I=(a, o), and if O<_lffp(t)dtl<_fq(t)dt, then disconjugacy of
(1.3) on (a, m) implies disconjugacy of (1.2) on (a, m) (cf. [71, [11], and [2]). Generaliza-
tions to higher order equations, but with sign restrictions on the coefficients p, q, were
obtained in [5] and [61.
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We recall that an equation of the form (1.2) is said to be (k, n- k) disconjugate on
the interval I--(a, b) in case there exists no nontrivial solution satisfying the boundary
conditions

(1.5)
L,y(x)-O, i-0, 1,..-,k- 1,

Ljy(x2)-O, j-O, 1, .,n-k-1

for any x, x2I with x <xz. Similarly, (1.2) is said to be (k,n-k) disfocal on I in
case there exists no nontrivial solution satisfying the conditions

(1.6)
LiY(Xl)-O, i--0, 1,. .,k- 1,

Ljy(xz)-O, j=k,. .,n-1

for any x l, x2 E1 with x <x2. It was shown in [4] that if I--(a, z) and p is of one sign,
then (1.2) is (k,n-k) disconjugate on I iff (1.2) is (k,n-k) disfocal on 1. It is easily
seen (cf. [4],[8]) that (1.2) is a priori (k,n-k) disconjugate (and (k,n-k) disfocal) if
(-1)n-kp>0 on I. If (1.2) is (k,n-k) disconjugate (or disfocal) on I for all k=
1,--., n- 1, then (1.2) is disconjugate (resp. disfocal) on I. If not, then there will exist
x, x2 El, xl <x2, and a nontrivial solution of (1.2) satisfying (1.5) (resp. (1.6)). More
general boundary conditions than (1.5) or (1.6) may also be considered, and we refer
the reader to [4] where extremal points are defined and their relationship to the
oscillatory character of (1.2) is studied (see also [1]). For our purposes here, we shall
have occasion to consider only focal-type conditions, that is, conditions (1.6) and

(1.7)
tiY(Xl)-O, i-k,. .,n-1,

Ljy(x_)-O, j-O,. .,k-1,

where x<x_. Conditions (1.6) and (1.7) motivate the following definitions. (The
integer k is assumed fixed, <k<_n- 1.) For fixed x El, the smallest x2 El, x2>x,
such that there exists a nontrivial solution of (1.2) satisfying (1.6) will be denoted by
0(Xl)X2. If no such xa exists, we set 0(x)-- + o. Similarly, for x El, the smallest
x: El, x:>x, such that there exists a nontrivial solution of (1.2) satisfying (1.7) will be
denoted by q(x)----x2, with (x)= + o if no such x2 exists. Likewise, for xa El, the
largest x I, x <x2, such that (1.2) has a nontrivial solution satisfying (1.6) will be
denoted by O(xz)=--Xl with/(x2)--o if no such x exists. Finally, for x2I, the
largest x El, x <x2, such that (1.2) has a nontrivial solution satisfying (1.7) is denoted
by (Xj)XI. It follows from the above definitions that if O(Xl)--X2 then (x2)Xl,
and if 0(x2)=x then O(Xl)<_x2, with similar relations holding between q and

The systems technique which we develop here is motivated by a technique of
Nehari [8] in which he studied (k,n-k) disfocality (with sign assumptions on p(x)).
We obtain comparison criteria for focal pairs (stated in terms of the functions defined
above) and, along the way, correct a slight error in an argument in [8, Thm. 5.1]. The
statements of the main results are given in [}2. The proofs along with some additional
technical lemmas are given in 3.

2. Main results. In our first result below we shall be interested in obtaining a
comparison between focal pairs for (1.2) and (1.3) on the interval 1-- (a ,b ], a < b< +,
corresponding to conditions (1.6). We shall denote these by O(p; b) and O(q; b), respec-
tively. For convenience, we let

O(x)_(-- 1)"-k-’ q(x)
Po(X)Pn(X) if(x) n-k-I p(x)

[O0(X)Pn(X )
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(2.1)

Then

THEOREM 2.1. Assume (b)>0 and that

sx - s$<_ a<x<_b.

(p;b)<_(q;b).

Similarly, we have a result for focal pairs corresponding to conditions (1.7) on
I=[a, b), a<b<_ + o.

THEOREM 2.2. Assume gl( a )> 0 and that

(2.2) a_x(t)dt <- O(t)dt, < <b.

Then

q(p;a)>_q(q;a).

and let B denote the k k matrix

Then (1.2) is (k, n- k) disfocal on I.

3. Proof of Theorem 2.1. We define w(x) to be the solution of (1.3) satisfying

(3.1) L,_ ,wj. ( b ) ij, i,j 1,..., n,

where 8= if i=j and 0 if :/:j. We define the k-dimensional row vector

(3.2) Ui-(ti_lWl,ti_lW2,. ",ti_lWk) i= 1,’’" ,n,

(3.3) B-

For convenience, set ------/(q; b). Then we claim that B is nonsingular on (,b]. Notice
first that B(b) Ig, the k k identity matrix and if detB(x0) 0 for some fi <x0< b,
then a nontrivial linear combination of Wl,-.-, wg will have a k th order zero at x0 and
the quasiderivatives of order k,k+ 1,--.,n-1 will, by virtue of (3.1), vanish at b,
contradicting the definition of .

Next we define the row vectors Sg by

(3.4) S,-(-1)k+i-loiB-I i-k+ 1,. .,n.

Using a result on the monotonicity of (k,n-k) focal points (cf. [4]) under an
assumption on the sign of the coefficients, we may state the following:

COROLLARY 2.3. Assume (-- 1)n-kp(x)<O on I and let the assumptions of Theorem
2.1 (resp. Theorem 2.2) hold. Then (1.2) is (k, n k) disfocal on the interval (t (q; b),b
( resp. a,(q; a ))).

Theorem 2.2 applies to the infinite interval I--(a, ) (or [a, oe)) as well as the
finite interval. The next result is an analogue of Theorem 2.1 for the case I--(a, oe).

THEOREM 2.4. Assume (--1)"-gp(x)<0 on I=(a, ) and that (1.3) is (k,n-k)
disfocal on I. Assume

yx yx0< 10(t)dt<- gt(t)dt, x(a, ).
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We have

where C is the k k matrix

+

-CB+p-

0
0

0 p?l 0 0

0 0 p- 0

0 0 -Pk--I0 0 0

Differentiating the Si’s, we obtain

S-" 1Si+ ( 1) k+i-
Pi

0

Uk+

and

0

Vk+l

i-k+l,...,n-1,

S-(- 1)k+n-I UB-1 --(-- 1)k+"-’ U,,B-’B’B-’
0

Uk+
(since U (q/OoOn)Ul)" Since UB- (1,0,.- -, O) and since

0

Si ; si(k)Vk+ l’

Uk+
where S,.(k) denotes the last (kth) component of the row vector Si, we see that the Si’s
satisfy the following system on (a ,b ]"

S;- --)F1Si+I-SiC--D-Isi(k)sk+I, i-k+ 1,. .,n- 1,

lk) (1,0, "-,0),Sn -SnC-P; On Ok+l 0
with Si(b)-O, i-k+ 1,. -,n.
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If we let d denote the unit vector =(1,0,.-.,0), then (3.5) is equivalent to the
integral system

+SiC+p-lsi(g)Sk+,)dt, i-k+ 1,...,n-- 1,

(3.6)
s.( ) s.c+ ,..,, +

Therefore, the hypotheses of the theorem imply that (3.6) has a continuous solu-
tion Sk+ ,.-.,S on (,b]. Conversely, if there exists a continuous solution S+,..., S
on (a,b] for some a<_a <b, then we claim that B, as defined by (3.3), is nonsingular
on (a,b] and consequently (q;b)<_a. Suppose to the contrary that B becomes
singular as XXo+, where al<xo<b. Then since SiB--(-1)k+i-lU for Xo<X<_b,
i--k+ 1,...,n, it follows that Ul,..., U, are contained in the space V spanned by
U1,..., Uk. Moreover, since detB(x0)=0, it follows that dim V<k for x-xo and
therefore there exists a nonzero constant vector a=(al,-- .,ag) which is orthogonal to
V at x xo. That is, a. U/(x0) 0 (dot product) for all 1, n. If we set w E"/__lotiWi
(where the wi’s are as defined in (3.1)), then since a. Ui(xo)=Li_W(Xo)=O, i= 1,. -,n,
we conclude that w(x)=0, contradicting a 4: (0,..., 0). Therefore, B is nonsingular on
(a ,b], and it is clear that/( q; b) _< a.

We next observe (by Lemma 3.1 below) that the S;’s are all nonnegative on (fi,b].
That is, the components S(t)>_O on (&,b] for l= 1,...,k and i=k+ 1,. .,n. Next we
consider the system

oi(x):S(p-loi+ +oiC+p-loi(k)o+l)dt, i-k+ 1,. .,n- 1,

(3.7)

which we may write as

(3.8)
where # is the (n k) k matrix

(3.9) #:

Ok+
Ok+2

o
Consistent with our notation for the components SO), we shall use the notation o) for
the (i,j)th entry of 5.

Let be the Fr6chet space of continuous (n-k) k matrix-valued functions on
(a,b] with the compact-open topology and let (R) be the subset of of functions ti for
which a<x<_b, i=k+ 1,...,n,j= 1,...,k.

(R) is a closed convex subset of .
If # (R), it follows from (3.7), that the function (T#)(x) is continuous on (a ,b] and

for k+ _< _< n 1, _<j_< k, we have

S; l(k)(J)l] dt-- slJ)(-< [P-Isi(J+)I-[-(SiC)(J)-[-P- oi k+ X).

Similarly, l<_j<_k. Thus T maps 0 into itself, and the functions
in the range T((R)) of T are uniformly bounded on compact subintervals of (a ,b ].
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The majorization of the components of members of @ by corresponding compo-
nents S}J) and the integral form of the map T yields, in a standard fashion, the result
that T((R)) is equicontinuous on compact subintervals of (a,b]. Therefore T() is
compact.

Since the components of T6 are integrals of polynomial functions of the compo-
nents of 6, it follows that T is a continuous mapping of (R) into itself.

Now we may apply Tikhonov’s theorem to deduce that T has a fixed point in
which is a solution 6(x) of (3.7) on (,b]. It follows therefore (as in the first part of the
proof) that/(p; b)_< a, and this completes the proof.

LEMMA 3.1. With the notation of Theorem 2.1, /f Si(x)-(si(l)(x), .,Si(k)(x)),
i--k+ 1,..., n, are solutions of the system

S,(x)= f(;-’S,+l +S,C+-U’Si)S+,)dt, i-k+ 1,.- .,n-1,
(3.6) "x

an(X)-- SnCl-P; n k+,

on (a,b], with Si(b)=O i=k+ 1,...,n, then Si(t)(x)>O on (gt, b) for i=k+ 1,...,n,
l=l,...,k.

Proof. Writing (3.6) in component form, we have

(3.10)

S( Is(k)s(I) )dt, i-k+ n-1sil)( X ) P/-- lsi+l)l - P; k+l

si’.(x)=f[(,;’si’+.. +p-’l-I si(’-l)+p-lsik)S(’)+l )dt i-k+ n-1 l-2..., k,

Sn(1)(X) o-ls(nk)S(kl)+ldt+ Odt,

s(nl)(x) "--Sxb( l-I (’-l)-t-O 1K’(k)K(/) )dt l-- 2,... kt-’l--ln n -k+l

We adopt the notation f(x)g(x) for functions f, g, if there exist positive constants
A, B and an interval J (b t, b) (8> 0) such that

Ag(x)<_f(x)<_Bg(x) for allxJ.

The symbols O and o will have their usual connotation.
We shall show that for i= k+ 1,..., n, l= 1,... ,k,

)n+l--i(3 11) Si(O(x)(b-x

First we note that, since each component S}O(x) is continuously differentiable and
satisfies S/(t)(b) O, we have

(3.12)
Let

siO(x)=O(6-x).

(t)(x)= max Si(O(t).
x<_t<_b

From the fourth equation of (3.10) and (3.12), we have

g(t)(x) O((b x)g(t-1)(x))+O((b x
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from which we obtain

(k)(x)- O((b--x)(k-’)(x)).
Successive use of (3.10) leads to

(,k)(x)--O((b--x)k-’),
and so

(3.13) s(,k)( ) O((b-x 1).
From (3.12), (3.13) and the third equation of (3.10), and noting the hypothesis

t)(b) > 0, we find that

S(,’)(x)b-x,
which gives us (3.11) for i-n, l-1. Equation (3.13) and induction on in the fourth
equation of (3.10) give (3.11) for i-n, 1= 1,...,k.

Assuming inductively that (3.11) holds for i-m+ 1,...,n, 1- 1,...,k, where k+ 2
<_m+ <_n, we may use (3.13) and the second equation of (3.10) to eventually obtain

(3.14) (mk)(x)--O((b--x)n+k-m)+O((b--x)k-l(ml)(x)).
Equation (3.14), the first equation of (3.10) and the inductive hypothesis give

(ml)(x)--O((b--x)n+l-m),(3.15)
and (3.14) and (3.15) give

(3.16) (’)(x ) O((b- x )"+’-m ).
Now the first equation of (3.10), (3.16) and the inductive hypothesis give

n+l--m

which is (3.11) for i-m, 1.
Then (3.16) and induction on in the second equation of (3.10) give (3.11) for

i-m, l-1,2,-..,k. Thus we have verified (3.11). It follows immediately that each
component S/(/)(x) >0 on some interval (b-8,b) where 8>0.

Now it is easy to see from (3.6) that the components S(O(x) stay positive throughout
(t, b), and the proof of the lemma is complete.

Remark. In his proof of [8, Thm. 5.1] Nehari attempts to obtain positivity of the
solution of a system somewhat analogous to (3.6). However, his argument for local
positivity near the endpoint of the interval seems to be erroneous. An argument along
the lines of the proof of the above lemma could be given instead.

Proof of Theorem 2.2. The proof of this theorem is very similar to the proof of
Theorem 2.1 and can, in fact, be obtained by the change of variable x-a-b-t along
with appropriate modification in L,. We leave the details to the interested
reader.

Proof of Corollary 2.3. Assume the hypotheses of Theorem 2.1 hold and that
(- 1)"-p(x)<0 on I. From results of Elias [4, Thm. 2] it follows that (in our terminol-
ogy) O(x) is a continuous nondecreasing function on its domain. Since/(p; b)_<(q; b)
----fi we see that O(p; t)>_b, and hence there cannot exist x, x2 (fi,b], x <X2, and a
nontrivial solution of (1.3) satisfying (1.6). Similarly, one obtains the conclusion of the
corollary if the hypotheses of Theorem 2.2 hold.
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In order to prove Theorem 2.4, we state and prove the following technical lemma.
LEMMA 3.2. Let {r,,} be a sequence of real numbers with rm>a and rm o, and

suppose for each m that gm(X) is a nonnegative real-valued function defined on a <_x <-r
such that gm(Xl)>gm(X2) for a<xl<_X2<_rm Let Ym(X) be a solution of the integral
equation

Ym(X)--gm(X)+ y2m(t)dt, Ym(rm)--O,

with y,,(x) =-- 0 on rm, oo). Then (Ym(X)) is uniformly bounded on each compact subinter-
val of ( a, o).

Proof. Without loss of generality we may assume a-0. Let b>0 be given and let
8 b/4, 2 b/2. Then, assuming rm >- b Ym(X ) >- ff y 2m( ) dt SO that with Zm(X ) =--Ym( rm

x2 x2-x) we have Zm(X)>foZm(t)dt. Define l)m(X)foZm(t)dt. Then, differentiating, we
2 2have v zm I) and thus 2V’mV --> 1. Integrating from rm- 8z to rm- we obtain

>82-19m(rm__ 2) l)m(rm__ 1) 1,

and hence

v,,(rm_2 ) tm(rm__ 1) 1"

Thus Vm( rm 2 )< 1/(2 3l ) and so

It follows therefore that

and so

82 __< t_< 2 82 --2--1

4
2ay( <-822tn_<f t) -<

2(2__(1) b

Thus, for all x [22, rm b, r and 2, 22 ], we have

Ym(X)--Ym(t)’q-gm(X)--gm(t)-F yn<Ym(t),

and hence

O<_y(x)<_ inf (t) __<-
32<_t<232Ym

If rm<b, then Ym(X)=--O on [b, oo). It follows that (Ym(X)} is uniformly bounded on
[b, c] for any 0<b<c< oo. Fl

Remark. It is easy to see (and we shall make use of this fact) that if the equation in
the hypotheses of the lemma is replaced by

Ym(X)-gm(x)+fxrh(t)YZm(t)dt
where h(t) is a positive continuous function on (a, oo), then the same conclusion holds.
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Proofof Theorem 2.4. We choose a sequence of numbers r oe such that a< rm<
and such that frmg1 dt >--0 and 0(rm)>0. This we claim we can do because fxgldt>0 for
x (a, o). That is, if it would not be possible to find such a sequence {r,,}, then for
any sequence {rm} with r,,, there would exist Xm(a, rm) such that we have
ffcmgldt< 0. If we let, for each m,

2m-inf xm’a<xm<r, Odt<O
Xm

then we claim that {2m} cannot be a bounded sequence. For if it were bounded, then
choose a subsequence {2m} which converges to x0 (a, oe). Then we would have (since
f O dt <_ O)

0< gl dt lim dt <_ O

a contradiction. Thus, a subsequence of {2m} which we again label {2m} must diverge
to o. But then for a<x_<2 we have

fxX F ImOdt- Odt- rmodt>__O
X

by definition of 2m. This verifies the claim. Thus, for each m, from Theorem 2.1 we
obtain a solution Sire, i-k+ 1,. .,n, of

l(k) )dt, i-k+ n-1S,m( ) ; S,/ ,m+ S,mC+- im O/ ,m

(3.6)m
ts(x)= s,c+o

wNch ests on (a ,r].
We next wish to proceed to a solution of the integral system on (a, ) wNch

corresponds to (3.6), i.e.,

S(x)-[(o;s+ +sc+osS+l)e, +1-,
-x

s()= (sc+o +

We extend the definition of S(x) to all of (a, m) by setting S(x)--O for x>rm,
k+ n. We claim next that for each i- k+ 1,. -, n the sequence (S(x)}= is
uniformly bounded on compact subinteals of (a, m). To verify tNs, we wish to
exanethe equations for the components of the S, wNch may be written as

S2(X=r(o;S, +0-1 ,-l SS’ )d_S +o21 +,

s,(x= [(o- ,-l ss, qd, = 1,

0, />1,

for l-- 1,. .,k, i-k+ 1,. .,n- 1.
For i- k+ and l= k we have

/2S(k) (x)--gm(X)-t- 0ll(S(k) dtk+ l,m k+ l,m
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where

gm(X)--,f/m( -1 S(k) -Jr- -1 K(k-l)Pk+l k+2,m Ok--lOk+l,m) dt

is nonnegative and nonincreasing on (a ,rm] with gm(l’m)--0. Therefore, on any compact
subinterval, since O- is bounded below, it follows from Lemma 3.2 that the sequence
{ S(g+),m }m- is uniformly bounded. Therefore, the sequence {gin(x)}m= must also be
uniformly bounded on any compact subinterval of (a, oe). Thus, since the components
of S, are all nonnegative, it follows that the sequences /./’s(k)k+2,m}m= and tog+fK(k-1)l,mJm=l
are also uniformly bounded on each compact subinterval. If we next examine the
equation (3.18) for l=k-1 and i-k+l, we may conclude that the sequences

1) and f(k--2)’g+2,,,,}=l t,g+l,m}=l are also uniformly bounded on compact subintervals,
and proceeding in this manner, we see that all of the sequences (S(2,m}=l and
S(j) }m= for _<j<k are uniformly bounded on compact subintervals. Similarly, wek+ l,m

5;(J) are uniformly boundedmay now show that the sequences {S(3,m }m= 1, t--n Jm=

on compact subintervals, for _<j_< k. Thus, for each i, {Sm(x)}m= is uniformly
bounded on each compact subinterval. Moreover, it is easy to see that for each i, the
sequence {Sm(x)}m= is also equicontinuous on compact subintervals so that by the
usual diagonalization procedure, we may select a subsequence, which we again label
{Sire(X)}, which converges uniformly to Si(x ), i-k+ 1,...,n, on compact subintervals
of (a, m). It follows that the Sg(x), k+ <_i<_n, solve system (3.17) on (a, m).

Next choose a sequence s,--, oe such that Q(x)>_ O(sm) for a<x<_sm. Then

where

P dtl--Ip(x)-P(sm)l<_lp(x)l<__lQ(x)lPOPn

Now consider the system

P(x) dt, Q(x) Odt.

Oim ( X ) fSx 07 loi+ ,,m .qt_ oimC .qt_ O loi(2)Ok+ 1,m )

oom( ) (o.mC+O-;

k+l<_i<_n-1,

which we may write as

(3.20)m
where 6 is the (n-k) k matrix

(3.21) 6m-

Ok+ ,m

Ok+2,m

Again, as in Theorem 2.1, we notice that T is a self-map on @m, the set of continuous
( n k) k matrix-valued functions on (a ,m] with

a<x<_s,, i-k+ l,. .,n,
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j- 1,... ,k. The set 6m is a closed convex subset of ,n, the Fr6chet space of continuous
(n k) k matrix-valued functions on (a,Sm] with the compact-open topology. The
remainder of the argument is as in the proof of Theorem 2.1. If follows that (1.2) is
(k,n-k) disfocal on (a, Sm), m- 1,2, . Therefore, since (- 1)"-kp(x)<O on (a, ),
it follows that (1.2) is (k,n-k) disfocal on (a, o). This completes the proof of the
theorem. I-1

REFERENCES

[1] S. AHMAD AND A. C. LAZER, On an extension of the Sturm comparison theorem, this Journal, 12 (1981),
pp. 1-9.

[2] G. J. BUTLER, Hille-Wintner type comparison theorems for 2nd order ordinary differential equations, Proc.
Amer. Math. Soc., 76 (1979), pp. 51-59.

[3] U. ELIAS, Eigenvalue problems for the equation Ly+p(x)y-O, J. Differential Equations, 29 (1978), pp.
28-57.

[4] Oscillatory solutions and extremal points for a linear differential equation, Arch. Rational Mech.
Anal., 70 (1979), pp. 177-198.

[5] Necessary conditions and sufficient conditions for disfocality and disconjugacy of a differential
equation, Pacific J. Math., 81 (1979), pp. 379-397.

[6] L. H. ERBI, Hille-Wintner type comparison theorem for self-adjoint fourth order linear differential equa-
tions, Proc. Amer. Math. Sot., 80 (1980), pp. 417-421.

[7] E. HILLE, Non-oscillation theorems, Trans. Amer. Math. Soc., 64 (1948), pp. 234-252.
[8] Z. NEHARI, Nonlinear techniques for linear oscillation problems, Trans. Amer. Math. Soc., 210 (1975), pp.

387-406.
[9] Green’s functions and disconjugacy, Arch. Rational Mech. Anal., 62 (1976), pp. 53-76.

[10] W. F. TRENCH, Canonical forms and principle systems for general disconjugate equations, Trans. Amer.
Math. Soc., 189 (1974), pp. 319-327.

I1 l] A. WINTNER, On the comparison theorem of Kneser-Hille, Math. Scand., 5 (1957), pp. 255-260.



SIAM J. MATH. ANAL.
Vol. 14, No. 3, May 1983

(C) 1983 Society for Industrial and Applied Mathematics
0036-1410/83/1403-0006 $01.25/0

ON AN OSCILLATION THEOREM OF BELOHOREC*
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Abstract. An oscillation criterion is given for the second-order nonlinear differential equation y"
+a(t)lylv sgny-O, 0</< l, where a(t) is continuous but is not assumed to be nonnegative for all large
values of t. This is an extension of a well-known result of Belohorec.
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Consider the second-order nonlinear differential equation

(1) y" +a(t)lYlrsgny-O, "/v 1,

where a(t)C[ O, oo). We restrict our attention to solutions of (1) which exist on some
ray [t0, oo), where t0_>0 may depend on the particular solution. Such a solution is said
to be oscillatory if it has arbitrarily large zeros. Equation (1) is called oscillatory if all
continuable solutions are oscillatory. For a general discussion of nonlinear oscillation
problems of type (1), we refer the reader to [10]. We are here concerned with sufficient
conditions on a(t) for (1) to be oscillatory when a(t) is allowed to assume negative
values for arbitrarily large values of t. The well-known Wintner oscillation criterion for
the linear equation (i.e., (1)) with 3’-- 1, states that if a(t) satisfies

(2) lim fTa(t)dt-- +
T ot .’0

then (1) is oscillatory for 3’= 1, see [8]. Customarily, (1) is called superlinear if 3’> and
sublinear when 0< 3’< 1.

When a(t) is nonnegative, stronger oscillation results exist for the nonlinear
equation (1) when 3’ =/= 1, notably the following:

THEOREM A (Atkinson [1 ]). Let 3’ > 1. Then (1) is oscillatory if and only if

(3) lim frta ( ) dt + o.
To .’0

THEOREM B (Belohorec [2]). Let 0< 3" < 1. Then (1) is oscillatory if and only if
(4) lim foTtVa( ) dt- + oo

T oo

When a(t) is not assumed to be nonnegative such necessary and sufficient condi-
tions need not hold. In fact, if a(t) becomes negative on an open interval, then the
nonlinear equation (1) always has noncontinuable solutions, when 3’ > (see Kiguradze
[7]). However, Kiguradze [7] proved that condition (3) is sufficient that all continuable
solutions of the superlinear equation are oscillatory. A similar result was established by
Belohorec [3] for the sublinear equation, i.e., (1) with 0<3’< 1, namely that condition
(4) is an oscillation criterion for all continuable solutions.
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The result of Kiguradze [7] was somewhat more general and can be stated as
follows:

THEOREM C (Kiguradze [7]). If there exists a positive function q( ) such that q/>_ 0
and q/’ <_ 0 and satisfies

(5) lim q( )a( ) dt- +
T

and > 1, then (1) is oscillatory, i.e. all continuable solutions are oscillatory.
Attempts to extend Belohorec’s result [3] can be found in Coles [5], who showed

among other things that the condition

(6) lim fr(t+k)a(t)dt- +,
T .’0

where k is a constant and 0_<a-<-/, is sufficient for the oscillation of (1) when 0< 3’ < 1.
In fact, Belohorec [3] had proved that condition (6) with k-0 is sufficient for oscilla-
tion. The purpose of this note is to extend condition (6) in a manner analogous to that
of Kiguradze’s Theorem C. Our main result is

THEOREM 1. If there exists a positive function q(t) such that q’>_O and q/’ <_0 and
a( ) satisfies

(7) rlim foreP(t)a(t)dt-+,
and 0<[< 1, then (1) is oscillatory.

Proof. Assume the contrary. Then there exists a solution y(t) which may be
assumed to be positive on 0, ) for some t0_>0. For t>_to, define z(t)--[y(t)/q(t)],
which is again positive. Let/3 1/3’> 1; then y(t) (t)zt(t). By simple differentia-
tion, it is easy to verify that

(8) + +
z fl-1

which is the crucial step in this proof. Note that from (1) and the definition of z(t), we
have

(9) Y" (zt )’’ --aqY.
z z

Since tp" _< 0,/3> 1, the last two terms in (8) are nonnegative; hence we may combine (8)
and (9) and obtain the following inequality

fl (tpzt- ),, <(10) fl-1
Integrating (10) twice from o to t, we obtain

(11) qz#_,(t)<C,+Co -1 fto’ftI------ qv(z)a(r)drds,

where C0, C are appropriate integration constants. Clearly (7) implies that the right-
hand side of (11) becomes eventually negative contradicting the assumption that z
is positive. This completes the proof.

Remark 1. We note that the above proof gives a stronger result. In fact, condition
(7) can be weakened to that of

(12) lim sup
T-
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which is sufficient to produce the desired contradiction in (11). In this regard, we
generalize a result of Kamenev [6] for the sublinear equation by taking q0(t) 1.
Similarly, Wintner’s original result was proved under the following condition which is
weaker than (2):

(13) lim foTfotT - a(s ) ds dt- +

Condition (13) has been shown by Butler [4] to be sufficient for oscillation of (1) in the
superlinear case, 3’ > 1. This is a major contribution in second-order nonlinear oscilla-
tion, see also [9]. In view of Butler’s result and conditions (5) and (12), it would be
tempting to conjecture that condition (13) may be weakened to

+

where > 0, ’ >_ 0, tp" _< 0 for the superlinear equation.
Remark 2. Consider (1) with 0<3,< and a(t)-tXsint or tXcost. It was shown by

Butler [4] that (1) is oscillatory if h_> 1. Condition (12) with (t)--t shows that (1) is
also oscillatory if 1-,<< 1. Butler conjectured that in this case (1) is oscillatory if
and only if k_>-3’; see [4, p. 199] for further details.
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EXISTENCE AND UNIQUENESS OF SOLUTIONS
OF SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS*

JAMES T. SANDEFUR, JR.t

Abstract. A factoring technique is used to prove existence, uniqueness, and continuation properties for
solutions to a class of second order semilinear differential equations in a Banach space. These results are then
used to derive local and global existence results for a large class of partial differential equations. Among the
examples considered are the semilinear versions of the wave equation (possibly damped or strongly damped),
the telegraph equation, and the equation of motion for a vibrating plate.

Contrary to most techniques, this method does not require commutativity of the operators. An example
of this is also given.

1. Introduction. Consider the abstract second order semilinear differential equa-
tion

u"(t) +Au’(t) + Bu(t) =f(t, u(t))

in an arbitrary Banach space X, where A and B are linear (in general unbounded)
operators on X. Typically A and B are differential operators, X LP(2), where f is
some bounded or unbounded region in R (and usually p 2), and f is in some sense
Lipschitz continuous, at least locally. Particular examples of (1.1) are semilinear ver-
sions of the wave equation (possibly damped or strongly damped), the telegraph
equation, the vibrating beam equation, etc.

One standard approach to this type of problem is to reduce it to a first order
system in some space Xe3X, where XeCX has an "energy norm". The equation is then
shown to be controlled by a local group giving existence and uniqueness of solutions on
an interval [-c,c], c>0. See for example [1], [4], [5], [7], [12]. One disadvantage to this
approach is that the space Xe depends on the particular equation. An advantage is that
f need only be Lipschitz continuous with respect to the energy norm in u and may also
be Lipschitz continuous in u’.

Some authors have approached (1.1) without reducing the order of the equation.
For example Caughey and Ellison [2] use an eigenfunction expansion. Travis and Webb
[11] use cosine functions in the case where A--0 and Lightbourne and Rankin [8]
generalize this approach to cases where A 4:0 using a combination of cosine functions
and semigroups. These approaches have the advantage that they can be applied to large
classes of equations. They also remain in the space X.

Our approach is to factor equation (1.1) and then use semigroups and successive
approximations to get existence and uniqueness. While this method may at first seem
unnatural, its usefulness will be demonstrated by applying it to a large class of
equations using only the quadratic equation and some freshman calculus. Moreover,
the factoring procedure eliminates the need to find an energy norm suitable to the
problem.

In 2 we will give preliminaries and our main result. In 3 we will apply our results
to several examples while saving the proofs and further results for 4.

*Received by the editors March 10, 1982, and in revised form May 15, 1982.
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2. The main result. The set of bounded linear operators (T(t); tR+}, where
R+ [0, o), is a (C0)-semigroup on X if

(i) T(t+s)- T(t)T(s)= T(s)T(t),s,t>_O.
(ii) T(0)--I (the identity operator).
(iii) T(- ) is strongly continuous in R/.
(iv) IlZ(t)ll<Met for some M, to>0, tR+.

The operator A is the generator of T(-) if A--limh_O/((T(h)- T(O))/h) and D(A),
the domain of A, is the set of X for which the limit exists. Formally T(t) satisfies
the Cauchy problem

(cP) u’(t)=Au(t), u(0) =,.
If ,I,D(A), then u(. ) C(R+ ,X) and (CP) holds. More generally, u(t)= T(t) is said
to be a mild solution of (CP) when kD(A).

Consider the Cauchy problem

u"(t)-(A +A2)u’(t)+A2A,u(t)=f(t u(t))

where A, A are linear (possibly unbounded) operators on X-A and A2 need not
commute. Also assume that A generates the semigroup T., j 1,2. u is said to be a mild
solution of (2.1) if it satisfies

u(t)-- T(t)+forT(t--z)T2(r)(--Ack)d$
(2.2)

+ e e,.

where D(al). The idea for the integral equation (2.2) came from solving the Cauchy
problem for

(2.3) dt u2(t ) 0 A2 u2(t f(t,u,(t))

using the Phillips perturbation theorem. Equation (2.2) is the (mild) solution for the
first component of (2.3) and first appeared in [10], withf dependent only on t.

It will be shown in [}4, after some tedious calculations, that if bD(AA),
q D(A.), j, k 1,2 and f(., u(- )) is twice continuously differentiable when u is, then u
is a strong solution of (2.1).

Remark 2.1. In the case of the wave equation, i.e., A-- -A, then T(t): T(-t)
and we can define the cosine function C(t)=(T(t)+ T(-t))/2. Then (2.2) simplifies to
the semilinear wave equation of Travis and Webb [11].

Remark 2.2. Suppose that A and A2 also commute. The commuting means that
() I-A )- and (, 2I-A)- commute for all ). in the resolvent set of A,j- 1,2. In
this case we could also say that u is a mild solution of (2.1) if it satisfies

u(t)--- (Tl(t)+ T2(t))q+ Tl(t-’)T2(’)(+-Aldp)d

(2.4) + fotT2( t-’r )T(’r )( -A2dp ) d"r

+ T(t-’r)T(’r-s)+ T2(t-’r)T(’r-s)]f(s,u(s))dsd"
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where q D(A)f3 D(A2). This is an average of (2.2) and (2.2) with the ones and twos
switched. The advantage of (2.4) is the expected symmetry of the ones and twos.

HYPOTHESIS (H1). f is a nonlinear mapping from R+ @X into X. There is a positive
nondecreasing function g:[0, )--* (0, o) such that f(t, q,)ll _<g(x), II f(t, k)-f(t, q)ll-<
g(x)llq-k II/f IIqll, IIqll-<x and t[O,T]forsome T>0.

TI-IEOmM 2.1. Suppose A and A are semigroup generators on X, f satisfies (H 1),
kD(AI) and +X. Also assume that f(’,u(’))C(R+,x) when u(.)C(R+,x).
Then there exists a unique continuous function u satisfying (2.2) on the interval [0, c]for
some c> O.

The trick is to use successive approximation. We define u0 as the solution to the
linearized equation,

(2.5) Uo(t ) T(t)ck+fotT(t-$)T2(r)(+-Ack)d.
Then we define

(2.6)

where

(2.7)

We then show that uj converges to a function u which satisfies (2.2). The entire proof
will be given in 4 as well as global and asymptotic results. But first we will give some
examples to illustrate the usefulness of this approach.

Remark 2.3. Note that when A and A2 generate groups we get existence on [-c, c],
c>0.

3. Examples. All of the examples will be done in the complex Hilbert space
L:(fl), where f is either a smooth bounded region in Rn or all of Rn, n-- 1,2, 3. This will
enable us to use the operational calculus and the associated spectral mapping theorem
[3, p.1335] which we state here for convenience.

THEOREM 3.1. Let A be a self-adjoint operator on a complex Hilbert space X with
spectrum o(A)C_R and let (Ex:kR} be its spectral resolution. Let g be a continuous

function on o(A). Define g(A) by g(A)u=f_og()dExu with domain D(g(A))--{u
X f- o g(’) dExu exists}. Then g(A) is a closed, densely defined operator on X and
o(g(A))=g(o(A)). If gl and g2 are two such functions and Ig,(x)l_>lg=(x)l for all
Co(A), then D(gl(A))C_D(g2(A)).

It is an easy consequence of this that if Re(o( g(A)) } is bounded above, then g(A)
generates a (C0)-semigroup of normal operators.

In the following examples, f is assumed to satisfy Hypothesis (H 1).
Example 3.1. We start with a classic example, the semilinear wave equation:

utt(t,x) Au(t,x) =f(t, u(t,x)),

=,(x),

with xll and q,+L(R"). Define A=--cl(A), where cl means closure. It is well
known that A is self-adjoint, and o(A) R+.
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Let g()-iv and let A--A2-g(A). A and A2 are skew adjoint and thus
generate (C0)-unitary groups Tj, where Tj(t) exp(Ajt), j 1,2, R. By Theorem 2.1,
u satisfies

f’(f +
uOuO uO

By defining

and

we get that

C(,)q---=fo cos(tr)d(Exq) fo exp(itS) + exp(- itf)d(Exq)

S(t)q=--foSin(tf)d(Exq),

Note that the complex numbers have dropped out and that u is real. Also this solution
exists on some interval [-,c], c>0, since Tj, j-1,2 are groups. For more details see

[111.
Example 3.2. Consider (3.1) in X-L2(f), where f is a bounded domain in R and

its boundary O is smooth, n- 1,2,3. A- --cl(A) restricted to C(f). Then A has a

complete countable orthonormal set of eigenfunetions , z,-.. and eigenvalues ;k,,,. -,>0 and .-0 on 0 for allj [3,p.1743]. Let the eigenfunction expansion for
the initial values be q-Zj. aj.q, and q-Z.j= bqj. Since S(t)q, sin(tj.)q, and

C(t)q,j cos(t/)q by Example 3.1, we have the mild solution u satisfying

u(t)- [ajcosit)+bjsin(t)/V
j--I

+ f0tsin(tVj-sj)( f(s, u(s)), q,j)/vjds] q,j,

where (6,q)-faq* dx and means complex conjugate. In the case where the
eigenfunctions are known we can use successive approximation to estimate u.

We could also let A- --cl(A) have zero Neumann conditions. The main difference
is that X 0.

Example 3.3. Consider the strongly damped semilinear wave equation

(3.3) utt--tAut--Au=f(t,u), >0, u(0)--qb, u’(0)--

in L2(Rn) and again let A--cl(--A). Define g+_(X)-(-aX+--/a2X2-4X )/2 and A_+
g+_(A). It is easy to see that Re(g_+(,))_<0 for , o(A)-R+ and therefore o(A+_) is in
the left half plane. The semigroups generated by A _

are T_+ (t)- exp(tg +__ (A))
exp(tA +_). Equation (3.3) thus becomes

(3.4) utt-(A+ +A_)ut+A+A_u=f(t,u ), u(O)-q, u’(O)-,.
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If (Ex;, R} is the spectral resolution for A, then

’SoA+_d?--- (-aX+--i2h+(h))dEx+- (-ah-+-2h_(h))d(Ex),

where fl 4/a2, h _+ (X) 7 +-- (4X o22 )/2 and the roots are real on the correspond-
ing intervals. We can therefore combine integrals over [0,/3] into sines and cosines as in
previous examples while leaving integrals over [fl, oo) as exponentials. The final mild
solution therefore satisfies

(3.5)

u(t) f0Bexp( ctX t/’2)[cos(th + (X)) + ctX sin(th + (X))/h+ (X)] d( Exqb )

+ foeXp(-at/2)sin(th+ (X))/h+ (X) d(Ex )

+ fotfoexp(-aX(t-s)/2)sin(h+(X)(t-s))/h+(X)d(Exf(s,u(s)))ds
+ f;exp(-aXt/2)[cosh(th_(X )) + aX sinh(th_(X ))/h ())] d(Ex)

+ f;exp(-aXt/2)sinh(th_(X))/h_(X)d(Exq)
SotS;+ exp(-a(t-s)/2)sinh(h_(X)(t-s))/h_(X)d(Exf(s,u(s)))ds.

Note that this solution exists only on [0, c], c>0 since A_ do not generate groups.
If we now consider (3.3) on L2(2), where a is a smooth bounded region in Rn,

n- 1,2, 3, we have as in Example 3.2 an eigenfunction expansion for the solution. For
additional results see [41, [9], [121.

Example 3.4. Consider the semilinear telegraph equation

(3.6) utt-Potut--Au-f(t,u)

in L2(Rn) (or L2(f), where f is smooth bounded in Rn). Defining A as before, letting
g+/-(X)-(-a+--v/a2-4X)/2 and letting A+/--g+/-(A), we have that o(A+/-)c(y’y-
(-ct__+v/a2-4X)/2, X_>0} and Re(o(A__+)}_<0. As in Example 3.3 we can let -So Xd(Ex), where fl-a2/4. Here the integrals over [0,/3] will be exponentials and the
integrals over [fl, oe) will contain sines and cosines. The solution will be the same as
(3.5) except (i) the integrals f0 and f are interchanged, (ii) (aX) becomes a and (iii)
h _+ 7+-(4X- a2)/2.

Example 3.5. The damped semilinear wave equation in one dimension is

Uttnt-otUtx--Uxx:f(t,u), aR, xR,
(3.7)

u(O,x)-(x), ut(O,x)-/(x), rk andkL2(R).

Here we let A cl(.) which is self-adjoint with o(A) R. Let A +/- g +/- (A), where
g __+ (X) ( a +-- v/ct + 4 )iX/2. o(A +/-) is purely imaginary so that A +/- are skew adjoint
and consequently generate unitary groups T_ so that we get existence of a mild
solution u on an interval c, c], c> 0.

d with D(A)-- (q’Example 3.6. Consider Example 3.5 on L-([0, 2r ]). Let A 7
L[0,2r], is absolutely continuous and (0)-(2r)}. Then A is self-adjoint,
o(A)-(j;j-1,--+ 1,...}. An eigenvector q. associated with eigenvalue j is qj-eijx.
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Suppose we are given real initial data q and q in terms of the orthonormal basis
(sin(nx)/(ff, cos(nx)/vr, 1/2x/-). In particular let q- cos(nx) and -0. The general
case is similar. Thus q- (e +e-)/2 and u satisfies

u(,)

=cos( tna2+ 4 /2)cos(nx--nta/2)--a sin( tna2 + 4 /2)sin(nx-- tna/2)/4+a2

+ 2 sini(t--s)na+4/2)na2+4

[os(.x+./2 ./a)f(. u(.y )). os(.y ))
+ sin( nx + nsa/2 nta/2)( f(s, u(s,y )), sin( ny ) )] ds,

where f(s,u(s,y)),g(y))- ff(s,u(s,y))g*(y)dy.
The trick in ts problem is that the calculations must be done using the eigenvec-

tors {exp( inx) } and then we convert back to the real basis (cos(nx)) and (sin(nx)),
n-- 1,2, ..

Example 3.7. Consider the equation of motion of a tn panel

(3.8) u.+U,x+u,+.-r.+0.=( t, .),

u(0,)-,(), u,(0,)-(), [0,21.

Again let A-cl() defined on D(A)- (U[0,2]; is absolutely continuous and
(0)- 4(2)}. Then (3.8) becomes

(3.9) u"+(+A4)u’+ (A4+ FA2+ oiA)u=f(t,u).
Let

(+X) m(+X4)-a(x+rx+ oix)
g(X)-

2

Again, with a bit of algebra, it can be shown that Re(g } are bounded above on
o(A)-R, giving us estence of a ld solution on [0, c] for some c>0. Also see [1 ],[7].

Example 3.8. We now consider a case in wch the operators do not commute.
Consider the Cauchy problem for

(.o) ..(,)+2( ).,(,)-.(,) =y(, .( ))

in x-L2(R) with b,bL(R). A-cl() is skew adjoint, and B-b(x) and B’-b’(x)
are bounded linear operators on X. Let F(t, u(t)) =f( t, u(t)) + (B2 B’)u(t). F satisfies
(H1) iff does.

Since A-A-B are bounded perturbations of a skew adjoint operator, they
generate groups T. Note that A do not commute since A and B do not commute.
But by Theorem 2.1, we have estence and uniqueness of a ld solution to

d d

But (3.11) is equivalent to (3.10).
Note that the preceding can also be done in L([0, 1]) with D(A)- { L2([0, 1]);

is absolutely continuous and (0) (1)}.
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4. Proofs and further results.
Proof of Theorem 2.1. Define Uj and S(t,s, ) as in (2.5)-(2.7). For 0_<t_< To,

Tj(t)II_<M forj- 1,2, some M>0 and To- T(T as in Hypothesis H1). Let k>2M IIq, ll.
Then

for O<_t_<_c(k)-c (and O<c_<To). Let K=/k/g(k)/M. If K>_c redefine g so that
(H1) still holds and K_< c.

Assume that Iluj(t)ll<_k for O<_t<_K andj-O, -.., n. Then

Un+ l(/)11 Uo(t )1[ "+" fotfob’I[ S( t,s, q" )f(s, Un(S ))[I ds d’r

"0"0

/2+M2t2g()/<_
for 0 < _< K.Therefore u(t)ll < k, for all n and [0, K ],

u=(t)- u,(t)II <_M=[t(11 (,,,( )) -f(, u.(, ))II d d,,-
’0 "0

-< fotfo’()11 u,(,)- Uo( )11 , a’,,-

<_M g(k)2kdsd’r

=M2t2g()
by (HI), the above and the fact that S(t,s, ,)11 <Me on [0, g]. Assume forj- 1,---,n-
and t[0,K] that

uj/ 1() -uj(t)II <-( g( N)M2t )j2k/(2j) !o

Then

[[Un+l(t)--Un(t)l[<--M2ftf’[[ f(S,Un(S))--f(S,Un_,(s))l[ dsd
.’o.’o

m2 g(k)llUn(S)-Un_l(S)lldsdT

fotforM2ngn( k )s2"-:Z2k/(2n- 2) dsdr

g"(k)(Mt)2"Zk/(2n)!
for [0, K]. Hence {uj} is strongly convergent to a function u uniformly on [0, K].
By lettingj--+ m in (2.6) we see that u satisfies (2.2) on [0, K].

If v(t) is another solution of (2.2) and II v(t)ll-<k’ on [0,K’], K’_< T (T as in
hypothesis H1), then

I[u(t)-v(t)l[<_M2ftf[[ f(s,u(s))-f(s,v(s))[ldsd,
"0 "0

.’O aO
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where k"-max(k,k’). But the right side equals

M2g(k")ftftll u(s )-v(s )[I drds- M2g(k")ft(t_s )11 u(s )-v(s )11 ds
.’O .’ .’o

on t[0,K"], where K"-min(K,K’). From this it follows that u(t)-v(t) on their
common domain. The continuity of u is straight-forward and will be omitted. Q.E.D.

An equivalent proof of this theorem would be to use the Picard-Banach fixed point
theorem on (2.2).

We now discuss strong solutions of (2.1). We say that a function u’R+ - X is a
strong solution of (2.1) if uCI(R+,x)fqC(R+,D(A)), (u’-AIu)CI(R+,x)f")

C(R+, D(A2 )) and u satisfies ((d/dt) A )((d/dt ) A )u( ) f( t, u( )).
THEOREM 4.1. Suppose u(t)C2(R+,x) and that u satisfies (2.2), where

D(AjAk), q D(Aj), j, k-- 1,2. Also assume that f(. )--f(., v(. )) C2(R+, X) whenever
v CZ(R+, X). Then u is a strong solution to (2.1).

Proof. Let fo(t)=f(t,u(t)) and f(t)-dfo(t)/dt, fo"(t)-d2fo(t)/dt. Also let w(t)
--fd T(t-s)g(s)ds, where T is the semigroup generated by some operator A. We first
give several formulas.

LEMMA 4.2. IfgC(R+ ,X), then wE C(R+ ,D(A))A CI(R+, X). Also

(4.1) w’(t)-- T(t)g(O)+fotT(t-s)g’(s)ds
and

(4.2) Aw(t)- T(t)g(O)-g(O) +fot[-g’(s)+ T(t-s)g’(s)] ds.

For the proof see Goldstein [6, p. 49].
Now let

--tT(t-r) T2(’-s)fo(s)dsd’.

Let g(z) f T(z s)f(s, u(s)) ds. By applying (4.1) to v and then to g when comput-
ing g’, we get

f0 f0tf0(4.3) v’(t)-- tTl(t-’)T2(r)fo(O)dr+ T,(t-’)T2(’-s)fd(s)dsd’.

Applying (4.2) then (4.1) to v gives

(4.4)

a,v(t)- d,-

fot fotfo+ T,(t-’)T2(’)fo(O)d’+ T,(t-’)T2(’-s)fd(s)dsd’.

Therefore

(4.5) f0 f0tf0v’(t)-A,v(t)= tT2(r)fo(O)dr+ T2(’r-s)f)(s)dsdr.
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Repeating this process gives

d fotZ2(.’r)f(O) dr(4.6) -(v’(t)--AlV(t))-- T2(t)fo(O)+

+ T(z-s)fo"(s)dsdz.

By similar arguments we can show that

(4.7) A2(-v’(t)+a,v(t)) -T2(t)fo(O)-fotT2(r)fd(O)dr
fo fo’r ( -

Adding (4.6) and (4.7) gives

d d
(4.8) ( -d--A2 ) ( -d--Al )V(t)--f(t).
Let

Then

(t ( ) Tl ( ) dp -k- fotZl ( "r ) Z2( "r ) ( A dp ) d’r

d d

Therefore u fi + v is a strong solution to (2.1). Q.E.D.
Remark 4.1. If A and A2 commute and fo(0) D(A) ND(A2) in addition to the

conditions of Theorem 4.1, then u C2(R+, X) fq C(R+ ,D(AA2)), u’ C(R+ ,D(A) (3

D(A2)) and u satisfies

u"(t)-(A +A2)u"(t)+AA2u(t):f(t,u(t)).
Now we discuss global solutions.
HYPOTHESIS (H2). f is a nonlinear jointly continuous mapping from R+ X into X.

There is a positive nondecreasing function g: [0, o)- (0, oo) such that f(t, ck)-f(t,q)[I
-<g()ll,-q forO<_t<_r.

THEOREM 4.3. Suppose A and A2 are semigroup generators on X andf satisfies (H2).
Also assume qD(A)fqD(A2). Then there exists a unique continuous solution to (2.2)
on R+.

Proof. Define uj(t) again by (2.5) and (2.6). For O<t<_T, Ilu(t)-Uo(t)ll<_
M2f f)II f(s, u0(s))ll as d. Since f(s, Uo(S))-f(s, 0)11 < g(T)ll u0(s)ll and f(s, 0)11 and
Uo(s)ll are bounded on [0, T] we have Ilu(t)-Uo(t)ll<_M2g(T)Ct2/2 for some C>0.

Suppose Iluj(t)-uj_(t)ll<_(M2g(T)t2)YC/(2j)! forj= 1,2,...,n. Then

IlUn+(t)-Un(t)llM2ft[rll f(s,un(s))-f(S,Un-(s))lldsd
"0"0

<_M g(T)f’ (II )- U ,(S )ll as d’r
ao .o

<_M2g(T ) (M2g(T)t2) (2n)!

=(U2g(T)t2)"+’ C
(2n+2)!
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completing the induction. Therefore (uj(t)} is strongly convergent on [0, T]. Since T is
arbitrary, (uj(t)} converges on [0, ) to a solution u to (2.2), uniformly on compact
subsets.

The uniqueness and continuity follow from Theorem 2.1. Q.E.D.
We next prove the continuation property.
THEOREM 4.4. Suppose A and A2 are semigroup generators on X, f(.,u(.))C(R+,

X) when u(. )C(R+,x) and dpD(A)fqD(A2). Also assume that for each T>0 there
exists a positive nondecreasing function gr: [0, m) (0, ) such that (HI) is satisfied. Let
To>0 be such that there exists a solution u to (2.2) on [0, To) but that u cannot be
continued beyond[O, To]. Then either To= + m or lim/_ rff supll u(t)ll-- / .

Proof. Let TO T, and suppose that T< m and II u(t)ll -<M for 0_< < T. We will
first show that st- limt_ r- u(t) (= u(T)) exists. Let

v(t)= T,(t-r)T2(’-s)f(s,u(s))dsdr.

For 0<t<t"< T,

U(t )--V(i) fotfo’rZl( t--’r)( I-- Zl( i-t))Z2(q’-s )f(s,u(s ))ds dT

-Jl -+- J2,

IIJll<_llI-r(i-t)ll T(t-)r(-s)f(s,u(s))dsd

Since T(- )11 and IIT(" )11 are bounded on [0, 7"1,

<
CMgr(M)r-2

By the continuity of T, IIJ I1-< for It-tl<8 for some >0.
Likewise II J II <- CMgr(M)(z- t)/2< for I- tl <8 for some 8 >0. Therefore

IIv(t)-e(t)ll<e for It-t<min{,} and O<_t<t<T. Therefore lim_r-v(t) exists
and consequently lim_, r- u(t) exists.

Now we wish to extend u to the interval [0, T+e) for some e>0. Define uj.(t) u(t)
for [0, T] andj 0, 1, . For > T define

Uo(t)- T(t),l,+fT,(t-r)T_()(+-Aq,)dz

Define

+ T(t-’r)T2(’r)f(s,u(s))dsdr

T+ S(t,s,)f(s,u(s))dsdr.
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In a manner similar to the proof of Theorem 2.1 we show that for some to> T, (uj(t)}
converges strongly to a function u uniformly on [0, to]. By taking limits and observ-
ing that the integrals involving f(s, u(s)) add up to ffS(t,s, r)f(s, u(s))ds dr, we see
that u satisfies (2.2) on [0,t0]. Q.E.D.
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THE CONNECTION BETWEEN PARTIAL DIFFERENTIAL
EQUATIONS SOLUBLE BY INVERSE SCATTERING

AND ORDINARY DIFFERENTIAL EQUATIONS OF PAINLEVl TYPE*
J. B. McLEOD" AND P. J. OLVER

Abstract. A completely integrable partial differential equation is one which has a Lax representation, or,
more precisely, can be solved via a linear integral equation of Gel’fand-Levitan type, the classic example
being the Korteweg-de Vries equation. An ordinary differential equation is of Painlev type if the only
singularities of its solutions in the complex plane are poles. It is shown that, under certain restrictions, if G is
an analytic, regular symmetry group of a completely integrable partial differential equation, then the reduced
ordinary differential equation for the G-invariant solutions is necessarily of Painlev type. This gives a useful
necessary condition for complete integrability, which is applied to investigate the integrability of certain
generalizations of the Korteweg-de Vries equation, Klein-Gordon equations, some model nonlinear wave
equations of Whitham and Benjamin, and the BBM equation.

Key words. Completely integrable partial differential equations, inverse scattering method, Gel’fand-
Levitan equation, KdV equation, Klein-Gordon equations, nonlinear Schr6dinger equation, similarity solu-
tions, Painleve transcendents

1. Introduction. The recent discovery of nonlinear partial differential equations
which can be exactly solved by the linear integral equations of inverse scattering theory
has provoked considerable interest in the range of applicability of these methods for the
integration of nonlinear equations in mathematical physics. The original investigations
of Gardner, Kruskal and Miura [26] and Lax [22] for the Korteweg-de Vries (KdV)
equation have now been extended to solve a surprising number of differential equations
of physical interest, including the sine-Gordon, nonlinear Schri3dinger, three-wave
interaction and other equations (cf. [1], [19], [37], [38], [39]). In all of these examples,
the given equation is recast into a "Lax representation,"

dL
(1.1) ---=[B,L]-BL-LB,
where L,B are linear differential operators depending on the solution u(x,t) of the
equation, with B skew-adjoint. This representation implies that the spectrum of L has
an elementary time evolution, and hence the original equation can be integrated once
the inverse scattering problem of reconstructing the potential u(x, t) from the spectral
data of the corresponding operator L has been solved. In all known examples, this
inverse scattering problem is effected through the solution of a linear integral equation
of the form

(1.2) K(x,y;t)+F(x,y;t)+ K(x,z;t)H(z,y;t)dz-O,

known as the Gel’fand-Letitan equation. Here F and H are constructed from the
spectral data of L; the potential u(x,t) is recovered from the values of K on the
diagonal x --y.
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Hereafter, any partial differential equation which can be solved by such a linear
integral equation will be termed completely integrable, this terminology stemming from
the interpretation of the KdV equation as a completely integrable Hamiltonian system
[11], [23]. Of course, only certain types of solutions can be obtained in this fashion, so
this definition is subject to further refinement (cf. Definition 2.1). Completely integra-
ble equations all seem to have many other remarkable properties in common including
cleanly interacting soliton solutions, existence of infinitely many conservation laws,
Bficklund transformations, etc. (cf. [21]). However, the precise interrelationship among
these properties remains to be rigorously formulated; thus reasons of practicality
necessitate the adoption of the Gel’fand-Levitan type of linear integral equation as the
distinguishing characteristic of complete integrability.

The most notable drawback in the applicability of inverse scattering techniques is
that there is as yet no systematic method for determining whether a given differential
equation is completely integrable, i.e., can be solved by such a linear integral equation.
In this paper we find a useful necessary condition for integrability based on the nature
of the complex singularities of group-invariant solutions to the equation. Whereas we
are thus no closer to finding a scattering problem if it exists, this condition is useful for
determining when no such solution is possible. In the applications to be considered, a
number of nonlinear partial differential equations (p.d.e.’s) of interest will be shown
not to be integrable by inverse scattering methods.

This condition was inspired by an observation of Ablowitz, Ramani and Segur [2],
[4] that the ordinary differential equations for group-invariant (self-similar) solutions of
known examples of completely integrable equations inevitably are equations of the type
studied by Painlev6 and his students; these are characterized by the property that all
their solutions are meromorphic in the complex plane (cf. [17], [18]). Such an equation
will be referred to as an equation of Painlev6 type. (Painlev6 also allowed fixed
singularities of arbitrary type, but we will not.) This leads immediately to the conjecture
proposed by Ablowitz, Ramani and Segur [2] and Hastings and McLeod [16]:

CONJECTURE. If a system of partial differential equations is completely integrable,
and G is a symmetry group of this system, then the reduced system of ordinary differential
equations for the G-invariant solutions is ofPainlev type.

This conjecture, if true, would provide a powerful necessary condition to test for
complete integrability. Here we will prove a somewhat weakened version of the conjec-
ture, which nevertheless proves useful in several applications. There are two restrictions.
First, if, in the Lax operator L, some combination of the solution u and its spatial
derivatives occurs, say Q(u), then it is this combination (or combinations) that must
have only poles as singularities. For instance, if L=D +Ux, then only u is required to
have poles, and thus we may allow logarithmic branch points as singularities of the
solutions of the reduced ordinary differential equations. Usually we will assume that Q
is a linear combination of u and its spatial derivatives, calling this case linearly
completely integrable. Secondly, the same combination Q must satisfy certain precondi-
tions for the inverse scattering formalism to go through; this means that, when re-
stricted to the real axis, Q either is periodic or satisfies decay conditions at x----+ ,
which implies corresponding restrictions on the solutions u that can be considered. It is
only for such solutions such that Q(u) must be meromorphic. If a system of ordinary
differential equations has the property that, for such solutions u, the combination Q(u)
is meromorphic, we say that the system is of restricted Painlevb type relative to Q. Our
basic result, in rough form, replaces "Painlev6 type" by "restricted Painlev6 type" in
the above conjecture.
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The main tool in our proof is a theorem of Steinberg [32] which states that if T(z)
is an analytic family of compact operators in a Banach space, then (I-T(z))-,
provided this inverse exists for at least one value of z, is a meromorphic family of
operators. Under appropriate assumptions on the initial data of our completely integra-
ble system (to ensure that the functions F and H in the Gel’fand-Levitan equation
satisfy certain analyticity criteria) we can conclude from Steinberg’s result that Q must
be a meromorphic function of (x, t). Now suppose that G is a one-parameter, analytic,
regular local group of transformations acting on the space of independent and depen-
dent variables which leaves the set of solutions of the system of partial differential
equations invariant. Then the G-invariant (self-similar) solutions can all be found by
integrating a system of ordinary differential equations on the quotient manifold whose
points correspond to the orbits of G. The analyticity of G implies that for any
G-invariant solution whose initial data satisfies the inverse scattering assumptions, the
function Q on the quotient manifold can have only poles for singularities. In other
words, the reduced system of ordinary differential equations must be of restricted
Painlev6 type relative to Q.

Ablowitz, Ramani and Segur [2], [3] have also given proofs of a version of the
above conjecture. They restrict their attention to Gel’fand-Levitan equations of Fred-
holm type, and their groups are only groups of scaling transformations. Thus our result
is somewhat more general. Both proofs are necessarily restricted to certain types of
solutions, in particular, solutions decaying sufficiently rapidly as Ix] are allowed.
Extensions to the case of spatially periodic solutions can be inferred from the work of
McKean and Trubowitz on the Korteweg-de Vries equation [23], [34], although the
analogue of the Gel’fand-Levitan equation is not explicitly written down. We strongly
suspect, however, that solutions are in general meromorphic in the periodic case also,
and therefore include solutions of this type in our test for complete integrability. It
would be of great interest to remove all restrictions on the types of solutions for which
such a result can be proved and thereby prove the complete version of the conjecture.

In 3 we discuss some applications of this result. First we show that the gener-
alized KdV equation

(1.3) ut+uPux+uxxx=O
can be linearly completely integrable only if p=0, 1, or 2. These exceptional cases
correspond to the Airy equation in moving coordinates, the KdV, and the modified
KdV equations, which are well known to be completely integrable. Secondly we con-
sider a nonlinear Klein-Gordon equation in characteristic coordinates:

(1.4) uxt--f’(u ).
It is shown that if f(u) is a rational function, real for real u and with two consecutive
zeros, simple or double, on the real axis, and if (1.4) is linearly completely integrable,
then f is a polynomial of degree at most 4. Also, if f(u) is a linear combination of
exponentials e’J with the aj all rational multiples of some complex number a, again
real for real u and with two consecutive simple or double zeros, and if (1.4) is linearly
completely integrable, then

f( u ) c2e2Bu -+- C eu -Jr- co --t- c_ e-Bu -1- c_2e-2flu

for some ft. This includes the sine- and sinh-Gordon, and an equation due to Mikhailov
[24], [25], which are known to be integrable, and the double sine-Gordon equation,
whose status is a matter of dispute. The next application shows that certain nonlinear
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model wave equations considered by Benjamin, Bona and Mahony [5] and Whitham
[36] cannot be linearly completely integrable. The last example deals with the BBM
equation [5],

(1.5) u,+UUx-Uxxt=O.

Although this cannot be treated rigorously by the methods of the present paper, we
show that if the full conjecture were true, then (1.5) could not be linearly completely
integrable.

Finally we discuss the general Lax representations of Gel’fand and Dikii for scalar
differential operators L of order n (see [12], [13]). For n a composite number, there exist
steady state solutions of the corresponding evolutionary systems with arbitrary complex
singularities. This suggests that the inverse scattering problem for such an L is not
amenable to solution by a Gel’fand-Levitan type equation, at least in the form dis-
cussed here. Indeed, only for second and third order L (see [20]) has the inverse
problem been solved, so the theory for fourth order operators becomes of great interest.
From those results, it can be seen that our criterion for complete integrability is a
powerful preliminary test to determine whether a given system can be integrated by
inverse scattering.

2. Analyticity properties of completely integrable differential equations. Consider a
system of partial differential equations

(2.1) A(t,x,u)=O,

where x, R and u (u, um)R is a vector-valued function. We assume that the
initial value problem of (2.1) with

(2.2) u(x,O)=f(x)
is well posed for f in some Banach space of functions, so that for sufficiently small,
there is a unique solution u(x,t) of (2.1)-(2.2). In practice is either a space of
functions decreasing sufficiently rapidly at + c or a space of periodic functions.
Usually the presence of appropriate conservation laws will ensure that the solutions are
actually global in t, but this will not be assumed a priori. The first task is to make
precise what is meant by (2.1) being completely integrable.

DEFINITION 2.1. A system of partial differential equations is completely integrable
relative to Q(u) in the Banach space if there is a linear matrix integral equation of the
form

(2.3) K(x,y;t)+F(x,y;t)+ K(x,z;t)H(z,y;t)dz-O,

called the Gel’fand-Levitan equation, satisfying the following properties:
i) F, H, K are N N matrices of functions;
ii) F and H are uniquely determined by the initial data (2.2);
iii) for initial data in , and for all real x,y, all complex e, and in some domain f

in C, the functions F(x et,y et; t) and H(x et,y et; t) are analytic in e, t, and there
is a Banach space * (not necessarily the same as ) for which F(x- et,y- et; t)*
as a function of y and the operator

T(x, )f( y ) f( z )H( z et,y et; ) dz

is a compact operator in *;
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iv) the Gel’fand-Levitan equation has a unique solution (in *) for all x and at
least one in

v) the solution u of the system (2.1), (2.2) can be recovered from the solution K of
the Gel’fand-Levitan equation via a relation of the form

(2.4) [u(x, )] e[:(x,x, t)],
where Q is some function of u and its spatial derivatives, and P is a polynomial in K
and its spatial derivatives.

Thus to recover the solution u of a completely integrable system of partial differen-
tial equations, we must solve the Gel’fand-Levitan equation for K and then solve the
differentiN equation (2.4) for u. In practicN examples, Q is a linear combination of the
spatial derivatives of u, and in tNs case the system will be cNled Bnearly completely
integrable. It should also be remarked that the requirement that iii) hold for
complex e can certainly be relaxed, although there seems little practicN point in doing
so, and that the domain will customarily include the origin or at least have the origin
on its boundary (it ght, as in the example of the KdV equation below, be a sector of
a circle center the origin).

Example 2.2. The Korteweg-de Vries equation. TNs is the originM example of the
use of inverse scattering techniques [21 ], [22]. The equation is

(2.5) u,+6UUx+Uxx=O,
and has a Lax representation with operators

(2.6) L= D2- u, B= (4D + 3(Du+ uD) },
where D= d/dx. The Gel’fand-Levitan equation takes the form

(2.7) K(x,y;t)+F(x+y;t)+ K(x,z;t)F(z+y;t)dz-O,

and we recover the solution of the KdV equation via

d (x,x; t).(2.8) u(x,t)-2
The kernel F is given by

(2.9) F(x,t)- cexp(8kt-kx)+ R(k)exp(2kx+8ik3t)dk,

where X- -k are the eigenvalues, c the corresponding norng constants and R(k)
the reflection coefficient associated with the potential u(x,O)=f(x). This solution is
valid provided

(2.10) (1 +x)lf(x)i dx<

(cf. [7], [11).
The uniqueness of the solution of (2.7) in the KdV case is a standard result, and

the only item remaining to be checked is Definition 2.1 in condition iii). So far as
analyticity is concerned, the only part of F that could fail to be analytic is that
corresponding to the continuous spectrum of L:

(2.11) Fc(X,t)- R(k)exp[8ik3t+ikx]dk.
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If we take any reasonable space of initial data for , for example that given by (2.10),
then R(k) can be extended analytically into the upper half of the k-plane, and
is bounded as ]k . (The function R is closely related to the spectral density function
m of Titchmarsh, and the analyticity and estimates can be obtained by suitably
translating the results in [33, Chap. V].) If therefore we write

f + R(k)exp[8ik3t+ikx]dk-F+F,

say, and consider F, then, if is real and positive, we can deform the integral from
(0, ) to (0, a), for any a with 0<arga<1/2r. We can now increase argt, but the range
for a becomes 0<arget< 1/2(r- argt). Nonetheless this does allow us to define F(x,t)
as an analytic function of for 0< arg < r. (It is also an analytic function of x since for
large k the term k3t dominates kx.) If we decrease argt, the range for ct becomes

argt<arga< 1/2r, which allows us to define F(x, t) as an analytic function of for
-r<argt<0, and so in fact in the whole complex plane cut along the negative axis.
Similar remarks apply to F2.

Further, by using the deformed contours and integrating by parts (integrating eikx

and differentiating the remainder), we see that F, the Banach space defined by
(2.10), and that the operator T is compact in , although is certainly not the only
possible choice for *.

Example 2.3. A case in which the combination Q(u) appearing in the definition 2.1
of complete integrability is nontrivial is provided by the sine-Gordon equation, which is

(2.12) Ux,=Sinu.
The scattering problem which can be used to solve the sine-Gordon equation was first
described by Zakharov and Shabat [39] and was developed in full detail by Ablowitz,
Kaup, Newell and Segur [1]; it takes the form

(2.13)
)Wv --iv---Ux(X

Wx--iw+1/2Ux(X,t)v,

in which the x-derivative u of the solution of the sine-Gordon equation appears as a
potential.

The analogue of the Gel’fand-Levitan equation for (2.13) again takes the form
(2.7), but in this case K and F are now 2 2 matrices of functions. The matrix F is
constructed from the appropriate scattering data for (2.13); the precise details of this
construction can be found in [1]. Since u appears as the potential in (2.13), the
analogue of (2.8), used to recover the solution of the sine-Gordon equation, takes the
form

u(x,t)= -2K,2(x,x;t ),

where K2 denotes the upper right-hand entry of the matrix K. Thus for the sine-Gordon
equation, Q(u)= ux, a fact that will be of significance when we analyze the travelling
wave solutions in {}3.

We now investigate the properties of the solutions of a general integral equation of
Gel’fand-Levitan type. Our main tool is the following theorem of Steinberg [32],
generalizing a theorem of Dolph, McLeod and Thoe [9], for the case of Hilbert-Schmidt
operators.
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THEOREM 2.4. Let be a Banach space, and let T(z) be an analytic family of
compact operators defined for z C C. Then either I-T(z) is nowhere invertible for
z f] or (I- T(z))- is meromorphicfor z

Let us write the Gel’fand-Levitan equation (2.3) in the symbolic form

(2.14) (I+ T(x,t))K(x,y;t)+F(x,y;t)=O,
where T(x, t) denotes the family of integral operators

(2.15) T(x,t)f(y)- fxf(z)n(z,y; t)dz.

It will always be assumed that T(x,t) is a compact operator for each fixed (x,t). For
instance, this is guaranteed if

fx t)l  ly lz<o 

indeed, in this case T is Hilbert-Schmidt.
To apply Steinberg’s theorem, we treat the time as the complex parameter. (Note

that it would not do any good to look at x as this parameter since the domain of
integration for T(x,t) depends on x, and so the operators could not possibly be
analytic for a large enough class of functions.) Now, for all x,y, if the kernel H(x,y; t)
depends analytically on for f], then the operators T(x, t) depend analytically on t.
If furthermore F(x,y; t) is analytic in t, then Steinberg’s theorem implies that

K(x,y; t)- -(I/ T(x,t))-’F(x,y; t)

is, for each fixed (x,y), a meromorphic function of t. (It is one of the assumptions of
complete integrability that the inverse exists for at least one t.) Therefore

is also a meromorphic function of for each fixed x.
THEOREM 2.5. If a system ofpartial differential equations is Q-completely integrable

in the Banach space ffS, and if the initial data u(x, O), then the function Q[u(x, t)] is
meromorphic in for f and each fixed x.

A slight generalization of this theorem will prove to be of use in the sequel.
Suppose that the time axis is "skewed", by making the change of variables

( :, [) ( x-+ et, )

for some real . If u=f(x,t) is the solution to the "unskewed" equation, then =f(:, [)
-f(:- et’, {) is the solution in terms of the new coordinates. If we let

R(,y; t’)-K(-e{,y-d; t’),
then K is a solution of a Gel’fand-Levitan equation of the form

K(,y;t’)+F($-e{,y-e{;t’)+

Therefore the "skewed" equation is also completely integrable, which gives the follow-
ing theorem.

TrlEORE 2.6. If a system ofpartial differential equations is Q-completely integrable
in the Banach space gS, and if the initial data are in fib, then the function Q[u(x,t)] is
meromorphic in (x, t) for x
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Consider now the particular solutions of a given completely integrable system
which are invariant under the action of a one-parameter symmetry group of the system.
In many examples, the group is either a group of translations, leading to travelling
wave solutions, or a group of scale transformations, leading to the self-similar solutions
of dimensional analysis. The theory for more general symmetry groups is no more
difficult than for these particular well-known examples, but in order to preserve the
continuity of the exposition, we relegate a brief overview of the theory of group
invariant solutions of partial differential equations to an appendix. More comprehen-
sive treatments may be found in [6], [30] and [27].

The main result required here, which is standard for the two main examples, is
that, roughly speaking, all solutions invariant under a p-parameter group G of symme-
tries of a given system A-0 of partial differential equations can be found by integrat-
ing a system A/G-O of differential equations involving p fewer independent variables.
For example, if A-0 is a single equation for the function u(x, t), x, R, the solutions
invariant under the translation group Go: (x,t,u)(x + ce, +e,u), eR, where c, the
wave speed, is fixed, are just the travelling wave solutions

obtained as solutions of an ordinary differential equation found by substituting the
above expression into the given equation. Similarly, a scaling group Gs" (x,t,u)
(x,,/t,,Vu), 0<,R has self-similar solutions of the form

again obtained as solutions of an ordinary differential equation.
We now state the precise hypotheses required to prove our version of the general

conjecture on completely integrable systems and Painlev type equations. For a defini-
tion of terms the reader should consult the Appendix.

We restrict our attention to a Q-completely integrable system, A--0, of partial
differential equations in two independent variables (x,t). Let G be a one-parameter
local projectable symmetry group of the given system, such that the transformations in
G, when extended to complex values of the variables (x,t,u), are analytic. Let GO

denote the projected group action on (x, t)-space. Assume further that the action of GO

on some subdomain DO CC f, f as in Definition 2.1, is regular in the sense of Palais
[31], so that all the G-invariant solutions of A--0 defined over DO are found by
integrating a system of ordinary differential equations, A/G-O, defined over the image
M0 of DO in the quotient manifold M.

THEOREM 2.7. Suppose A--0 is a Q-completely integrable system ofpartial differen-
tial equations in the Banach space with an analytic, regular, projectable, one-parameter
symmetry group G. If u=f(x, t) is a G-invariant solution of A--0 with initial data lying in, then the combination corresponding to Q of the solution of the reduced system of
ordinary differential equations is meromorphic in Mo, the image ofDO in M.

Proof. Since GO is analytic, the orbits of GO in the (x,t)-plane must be analytic
curves. If the solution of the reduced equation had a singularity other than a pole on
M0, the corresponding G-invariant solution would have a similar singularity along the
orbit corresponding to the singular point. This, however, would contradict Theorem
2.6.

Thus Theorem 2.7, in a certain restricted sense, states that the reduced equation
for the G-invariant solutions must be of Painlev6 type. However, since the initial data
for the G-invariant solutions must lie in , it is not for every solution of the reduced
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equation that Q is required to have only poles for singularities. In effect we can
consider only those solutions which either decay sufficiently rapidly at --+ along the
real axis, or are periodic along the real axis. This restriction seems inescapable given the
particular method of proof. It would be extremely interesting to remove these restric-
tions and prove the conjecture of the introduction in full generality.

3. Applications.
3.1. The generalized KdV equations. Consider the equation

(3.1) ut+uVu+u=O,
where p is a nonnegative integer. This equation has scale-invariant solutions, but as the
resulting third order ordinary differential equation is rather complex to analyze in full,
we therefore apply our results to a simpler class of self-similar solutions, namely the
travelling wave solutions. Here the symmetry group is

G: (x,t,u)-(x+ce, t+e,u), eR,

where c denotes the velocity of the wave. The invariants of G are x-ct, u, and the
reduced equation for Gc-invariant solutions takes the form

U + uPl, Cl, O,
primes denoting derivatives with respect to . This can be integrated once:

-1
U"-Up+ +CU+

p+l

Multiplying by u’, a further integration yields

,)2__ -2(3.2) (u (p+l)(p+2)up+2+cu2+du+e,
for some constants d, e. Thus the general travelling wave solution will be expressed in
terms of the hyperelliptic function corresponding to the square root of the (p / 2)nd
order polynomial on the right of (3.2). The following two results characterize the
singularities of the solutions of (3.2).

THEOREM 3.1 (Painlevb’s theorem). Consider the ordinary differential equation

G(u’,u,)=O,
where G is a polynomial in u’ and u, and analytic in . Then the movable singularities of
the solutions are poles and/or algebraic branch-points.

THEOREM 3.2. Consider the equation

’)-1( ),(3.3) (u u

where R is a rational function of u. Then the solutions of (3.3) are all meromorphic in C if
and only ifR is a polynomial of degree not exceeding 4.

The proofs may be found in Ince [18] and Hille [17, p. 683]. Note that if u has an
algebraic branch point, so also does any linear combination of u and its derivatives.
Therefore, for (3.1) to be linearly completely integrable, (3.2) must satisfy Theorem 3.2.
Thus p--0, 1, or 2, and in these cases the solutions are given by elliptic or trigonometric
functions. Note that p--0 corresponds to the linear case, p--1 to the KdV equation,
and p--2 to the modified KdV equation, all of which are known to be integrable by
inverse scattering.

To complete the demonstration that the generalized KdV equations are not lin-
early completely integrable for p : 0, 1,2, we must place the complete integrability in a
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suitable Banach space , and to do so we check the asymptotic behavior of the
travelling wave solutions at -+. If we require that U, UxOO as [x[- o, then d-e-O
in (3.2). Moreover the polynomial on the right of (3.2) now has a double zero at u-0
and a simple zero at u0-[1/2(p/ 1)(p/ 2)c] I/p. Standard techniques (cf. [36]) allow us
to conclude the existence of travelling wave solutions with positive velocities decaying
exponentially for Ix[- o, and reaching an extreme value of u0. Thus for p odd, the
travelling waves are humps with u0 the peak value, while for p even, both humps and
troughs occur. The important point, however, is the exponential decay of these waves
for Ix[- , and the fact that for p :/: 0, 1,2, they have complex nonpolar singularities. If
therefore we take for the Banach space a space of functions vanishing exponentially,
we have shown that the generalized KdV equations are not linearly completely integra-
ble in @ for p :/: 0, l, 2, and this completes the demonstration that these equations can
be solved by inverse scattering only whenp- 0, or 2. This result is in accordance with
numerical evidence [10] that only in these special cases do the equations have soliton
solutions.

3.2. Nonlinear Klein-Gordon equations. Consider the nonlinear Klein-Gordon
equation in characteristic coordinates

(3.4) ut=f’(u ),
where f is an analytic function of u, real for real u, and prime denotes derivative. The
cases we will be most interested in are when f is a polynomial or a finite sum of
exponential functions. We will determine necessary conditions on f for (3.4) to be
linearly completely integrable by analysis of the singularities of the travelling wave
solutions. If c is the velocity, =x-ct, then the reduced equation for the G-invariant
solutions of (3.4) is

(3.5) -cu"=f’(u).
Multiplying (3.5) by u’ and integrating yields

c(3.6) -(u’)-=f(u)+k
for some constant k. For simplicity we shall assume that k can be chosen so that u
(real) is a simple or double zero of f(u)+ k and there is a second consecutive simple or
double zero for some real u2. This assumption ensures that the initial data u(x, 0) can
be chosen to lie in a suitable Banach space :

i) if u and u are simple zeros, so that a solution of (3.6) oscillates between u
and u, we take to be a space of periodic functions;

ii) if u is a double and u a simple zero, so that a solution of (3.6) decays
exponentially to u as we take to be a space of functions exponentially
converging:

iii) if u and u are double zeros, so that a solution of (3.6) tends exponentially to
u as o and to u as -o (or vice versa), we can again take to be a space of
functions exponentially converging, but to different limits.

The following theorem (stated in the context of (3.4) although it applies generally)
is an immediate consequence of considering a linear combination of u and its deriva-
tives. It tells us what singularities are possible for solutions of linearly completely
integrable equations.

THEOREM 3.3. Suppose for some constant k that the analytic function f(u) / k has two
consecutive simple and/or double zeros on the real axis. Then, if the nonlinear Klein-
Gordon equation (3.4) is linearly completely integrable in the relevant Banach space
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indicated above, it must be the case that any solution of (3.6) (with c having the opposite
sign to f(u)+ k between the zeros) has as singularities only poles or logarithmic branch-
points.

A logarithmic branch-point is by definition a singularity such that some linear
combination of derivatives has a pole. It arises in practice if the scattering operator L
depends only on ux, uxx,..., so that Q[u] in turn depends only on derivatives; to
demonstrate that this situation can indeed arise, consider the sine-Gordon equation

Uxt sin u.

It was indicated in Example 2.3 that this is completely integrable, and to examine it in
the context of Theorem 3.3 we take

f(u) -cosu, k-0.

The solution of (3.6) is then

V/sin(1/2 u) sn(c-1/2(
_

)},
where sn is the Jacobi elliptic function with modulus k- 1/-. This is well defined for
c>0. Now sn has simple poles on a certain rectangular lattice in C, and so u has
logarithmic singularities at these lattice points. The reason for the appearance of these
nonpolar singularities is the fact that u rather than u appears in the scattering operator
L. We note that u on the other hand does have only poles for singularities.

THEOREM 3.4. Suppose that f(u) is a rational function, real for real u and such that,
for some k, f(u)+ k has two consecutive simple and/or double zeros on the real axis. If
the Klein-Gordon equation uxt=f’(u ) is linearly completely integrable, then f is a poly-
nomial ofdegree not exceeding 4.

The proof is immediate from Theorems 3.1 and 3.2.
To discuss the case where f is a polynomial of degree _<4, one can try other

similarity solutions of (3.4), or else quite different tests. For example, it can be shown
[8] that when f is of degree > 2, so that f’ is nonlinear, (3.4) has only finitely many
polynomial conservation laws, while a theorem of Gel’fand and Dikii [12], [13] states
that if a system of partial differential equations has a Lax representation, then there are
an infinite number of polynomial conservation laws. Next we consider the case where f
is a finite sum of exponential functions

m

f(u)- , cje,u, cj,%C.
j=0

For simplicity, we restrict our attention to the case where % nct for some a C and
some rational numbers n.. By dividing a by the common denominator of the nj, we
may assume the na are integers. Now let v exp(au), so that v’= avu’. Thus v satisfies

(3.7)
c (/9,)2_ 2cjl)nj+ 2

22
Note that Theorem 3.2 cannot be applied here since may have singularities not shared
by u. However, since u’= ’/a, it is necessary to find conditions on (3.7) such that the
function v’/v, for solutions , has no movable algebraic branch-points. This requires a
more detailed investigation of the proof of Theorem 3.2. It suffices for our purposes to
note the following:

LEMMA 3.5. Consider the ordinary differential equation
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where P is a polynomial with P(0)@0 and n is a positive integer. Then for any o C
there is a solution v with algebraic branch-point at o. This solution has a Puiseux

expansion

v()-- E aj(l--o)’r

j=l

with a v O, and the rational number r is given by
i) r-(m+ 1)-1 ifn-2m,
ii) r- 2(2m+ 3)-1 ifn-2m+ 1.
The proof of this result can be inferred from Hille, [17, pp. 681-682].
LEMMA 3.6. Suppose v has an algebraic branch-point at o. Then v’/v has no

branch-point at o if and only if v()-(-0)rf() for r rational and f meromorphic at

o.
Proof. Assume without loss of generality that 0-0. Let v have the Puiseux

expansion

V()-- X ajjr,
j=0

where m is an integer and a0v0. Let ak be the first nonzero coefficient for which kr is
not an integer, if such exists. Now -- X bjjr,

j=o

where b0 a and the first nonzero coefficient bj withjr not an integer is bk --akao
Furthermore

mr- (m+j)ra  
j=0

Therefore

j=0

and the coefficient of kr is

ck- mraka- + (m+ k)raka- 1,

which vanishes only when ak-- 0. This proves the lemma.
PROPOSITION 3.7. Consider the ordinary differential equation

N

(3.8) (v’)2- X bjvj.
j-- --n

Given o C, there exists a solution v of (3.8) such that v’/v has an algebraic branch-point
at o, unless (3.8) is of the specialform

2

(3.9) (v’)2- X cjvjk+2
j=-2

for some integer k.
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Proof. Let o-0 and assume bN4:0 b_n=/=O. By Lemma 3.6 all solutions must be
of the form v()-rf() with r rational and f meromorphic at 0 if we are to avoid an
algebraic branch-point for v’/v. Thus

(V’)--2r(r-’fq-f’),
and

so that, equating the fractional powers of , we see that ha.=0 unlessjr=2r+ for some
integer . If n >0, it follows from Lemma 3.5 that bj 0 unless

i) j--= 2 mod(m+ 1) for n 2m, or
ii) 2j=4 mod(2m+ 3) for n=2m+ 1.

In particular, the only negative values of j which satisfy these congruences are 1- 1/2n
and -n, the first value occurring only when n is even.

Next set w 1/v. Then (3.8) becomes
N

(w’) g
j. /r/

Since w’/w= -v’/v, w must satisfy the same conditions as v. Therefore, if N>4, bj=0
unless

i)j--=2 mod(M- 1) if N= 2M, or
ii) 2j--4 mod(2M- 2) if N=2M+ 1.

The only positive values ofj satisfying these are N, 1/2N + and 2, the second only if N
is even. Comparison of the two sets of congruences then shows that (3.8) must be of the
required form.

THEOREM 3.8. Suppose f(u) is a linear combination of exponentialfunctions e’J with

a9 n9a, n9 rational, a complex. Suppose further that f(u) is real for u real, and that, for
some real k, f( u) + k has two consecutive simple and/or double zeros on the real axis. If
the Klein-Gordon equation Uxt=f’(u) is linearly completely integrable, then f must be of
the specialform

2

(3.10) f(u)-- E cjej#u,

where fl is a rational multiple of a.
It is interesting that the form (3.10) for f includes the double sine-Gordon equation

Uxt a sin om+ b sin -ufor which numerical studies of Dodd and Bullough [8] indicate the existence of soliton
solutions. Mikhailov [24], [25] and Fordy and Gibbons [15], have shown that a special
case of (3.10) whenf(u)=eU+ e-’ does have a Lax representation, but it is not known
whether the result extends to a general function f(u) of the form (3.10).

3.3. Model wave equations of Whitham and Benjamin. The integro-differential
equation

(3.11) ut+UUx+C[Ux]-O
where % is the integral operator

9C[fl(x)- fH(x-y)f(y)dy,
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was proposed by Whitham [35], [36] as an alternative to the KdV equation for long
waves in shallow water which could also model breaking and peaking. Here is taken
to be the Fourier transform of the desired phase velocity c(k), where k is the wave
number. Of particular interest is the case

c(k)-
+k,

>0,

so that

Note that is the Green’s function of the operator D2-,2-- so that (3.11) is
equivalent to the differential equation

(3.12) u --- UUx --- Ux O

It can be shown [10] that (3.12) possesses travelling wave solutions u, with [ul--,0 as
Ixl--, and amplitudes between 0 and some maximum height. Computer studies
indicate that these waves may be solitons, i.e., they may interact cleanly. One possibly
undesirable feature of (3.11) is the extremely fast propagation of short-wave compo-
nents, and for this reason Benjamin, Bona and Mahony [5] proposed the alternative
model

(3.13) ut-- UUx-[ut] --O.

Again, in the special case, (3.13) can be rewritten as

(3.14) @[ut-qt-UUx]-Ut--O.
In general, we will let @ be any constant coefficient linear differential operator

@-- Cioi, Cn=/=O.
i=0

We show here that the model equations (3.12), (3.14) cannot be integrable by inverse
scattering methods. As usual, consider the travelling wave solutions of these equations.
If c denotes the velocity, then the reduced equation, after integration, is

(3.15) @ 7(u--c)2 +a(u+d)-O.

Here d is a constant of integration, a in the Whitham model, a c in the Benjamin
model, and D now denotes d/d, x--ct. Since n th order equations of Painlev6 type
have not been classified, we resort to Painlev6’s original "a-method" to analyze the
singularities of the solutions of (3.15). The basic result is found in Ince [18, p. 319].

LEMMA 3.9. Suppose A(u, , a)=0 is an analytically parametrized family of ordinary
differential equations for a in some domain f containing 0 as an interior point. If the
general solution u(, a) is uniform in for a {0}, then it will be uniform for a=0.

In our case, let -- (0 + a’. Then if we consider u as a function of ’, (3.15) becomes

( cnn -.F OtCn n --1-F ...-Fotnco)-(U--C)2 -t- ot a ( u -l- d ) O

where D now denotes d/d. For a 0, this reduces to

-o,
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the solution of which is

U--C’JI-/Pn()
for an arbitrary polynomial Pn of degree -<n-1. This, for appropriate Pn, has an
algebraic branch-point at ’=0, so that, by the lemma, solutions of (3.15) must also
have nonlogarithmic branch-points. (This involves a slight extension of the lemma
above, but it is easy to infer its truth from the proof given by Ince.) If these solutions
also satisfy decay or periodicity properties, Theorem 2.7 (together with Theorem 3.1)
shows that model equations (3.12), (3.14) cannot be linearly completely integrable. In
particular, Whitham’s equation with @-1)2- p2 is not integrable by inverse scattering.

3.4. The BBM equation. The equation

(3.16) Ut-"UUx--Uxxt-’-O,

known as the BBM equation, was proposed by Benjamin, Bona and Mahony [5] as an
alternative model to the KdV equation for the description of long waves in shallow
water. In [29] it was shown to possess only three independent conservation laws, and
therefore by the results of Gel’fand and Dikii cannot be completely integrable. Our
consideration of this example runs into difficulties because the self-similar solutions do
not satisfy any decay or periodicity properties, and the functions Q we can allow are
limited, but we will indicate the method here.

First we note that (3.16) admits the symmetry group

of scale transformations. Invariants of G are provided by x and w: tu, for >0, and the
reduced equation for G--invariant solutions is then

(3.17) w"+ww’-w--O,

the primes denoting derivatives with respect to x. It can be readily checked, by the
procedure in Ince [18], that (3.17) is not of Painlev6 type. Indeed, it is of Ince’s type i(b)
[18, p. 330]. Applying the a-method as Ince does, one can readily check that branch-
points appear, although possibly only logarithmic, and this, granted the existence of a
suitable Banach space , would show that the BBM equation is not Q-completely
integrable for Q, say, the identity.

However, a closer investigation of the behavior of the real solutions of (3.17) is
required. Since x does not appear, it can be integrated to yield

(3.18) (1-w’)eW’-ce-w2/2.

In principle, this equation can again be integrated by solving for w’ in terms of w. To
investigate the solutions qualitatively, note that w’-0 if and only if w2-2 log c, c__> 1.
The only double root is when c- 1, and only in this case do solutions decay at + or
-. However, it is readily seen that a solution decaying at one endpoint cannot decay
at the other, nor are periodic solutions possible. Thus we are unable to apply our results
to this case.

3.5. Lax pairs of composite order. Gel’fand and Dikii [12], [13] succeeded in
classifying all Lax pairs of differential operators of the following special type. Let

Ln-D"+u,,__2Dn-:z+ +uD+uo
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be a scalar differential operator of order n with u-(u0,--’,Un_2) independent C
functions, and D--d/dx. They showed that for each integer m not a multiple of n, there
is a differential operator

Pm-Dm +pm,m_zDm-2+ +pm,lD+Pm,o
of order m, the Pm,i being polynomials in the uj. and their derivatives, such that the Lax
representation

at =[Pm’Zn]

is a nontrivial system of evolution equations

(3.19) ut=Km(u ).
Moreover, the Pm are unique if we require the coefficients Pm,j to have no constant
term.

Consider the stationary solutions of the system (3.19), i.e., those in which u is
independent of t. These satisfy the system K,,(u) 0, or equivalently, the "stationary
Lax representation"

(3.20) [Pm,tn]-’-O.
THEOREM 3.10. If the orders n, m of the operators Ln, Pm in the Lax representation of

(3.19) are not relatively prime integers, then stationary solutions of (3.19) with arbitrary
singularities in the complex plane exist.

Proof. Let k> be the greatest common divisor of m and n. Consider the operator

Mk--Dk +l)k_2Dk-2 +
whose coefficients vj(x) are sufficiently differentiable for xR but are otherwise
arbitrary functions. Then

L,,o-(M,) "/k, Pm,o-(M,)"/k

obviously satisfy the stationary Lax representation (3.20) and, moreover, using the
formalism of Gel’fand and Dikii, it is easy to prove that Pro,0 is derivable from L,,0 via
the same formulae as gave P,, from L,. Therefore each such Mk gives a stationary
solution of the evolutionary system (3.19). U]

Now suppose that L, is any such operator, where n is a composite number. If there
exists a Gel’fand-Levitan type of integral equation for solving the inverse problem for
the operator Ln, then Theorem 2.7 would imply the meromorphic character of the
group-invariant solutions of the evolutionary system (3.19), using similar arguments to
those used in the integration of the Korteweg-de Vries equation. This, however, is in
contradiction to Theorem 3.10 for the case of time-invariant solutions. (The relevant
symmetry group is just translation in t.) This indicates that such a differential operator
of composite order does not have an inverse-scattering formalism in the sense that the
SchriSdinger operator doesmeither no such Gel’fand-Levitan equation exists, or the
assumptions regarding analyticity are not justified. Indeed, we know of no such
Gel’fand-Levitan equation for any operator of composite order, e.g. for order n =4.

Appendix. Group-invariant solutions of differential equations. The general theory
was developed by Lie and, more recently, Ovsjannikov. For details, the best references
are [6], [27], [30]. Here we briefly review the relevant concepts.

Let

(A1) A(x,u)=0, xRm, uRn,
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be a system of partial differential equations in m independent and n dependent
variables. A symmetry group is a local Lie group of transformations acting on the space
RnX R which takes solutions of the system to other solutions. (The group acts on
solutions by transforming their graphs. In the case of projectable groups, meaning that
all transformations are of the form (, fi) (a(x),/3(x, u)), a solution u =f(x) will be
transformed into the solution =f() -/3(a- (),f(a- ())), provided a is invertible.)

The most helpful property of continuous symmetry groups is that for a given
system they can all be found by systematic computations of an elementary character.
The key step, which was Lie’s fundamental discovery, is to look for the infinitesimal
generators of the group, which are vector fields of the general form

v- 2 og= j= u.
the group transformations themselves being recovered from the auxiliary ordinary
differential equations governing the integration of the above vector field. This leads to
the following infinitesimal criterion for a symmetry group of a given system [28].

THEOREM. Let G be a connected local Lie group. Then G is a symmetry group of the
system ofpartial differential equations A--0 if and only if

(A2) prv(A)=0 whenever A--0

for every infinitesimal generator v of G.
Here prv refers to the "prolongation" of the vector field v, obtained as the

infinitesimal generator of the action of the group G on the spaces of partial derivatives
of u with respect to x induced by the action of G on functions u=f(x). The point is
that the condition (A2) leads to a large number of elementary partial differential
equations for the coefficients i, q0j. of v, the general solution of which is the most
general infinitesimal generator of a one-parameter symmetry group of the given system
of differential equations. Examples of this computation can be found in the above-men-
tioned references.

Now, given a symmetry group G, a G-invariant (or self-similar) solution of (A1) is
a solution which is unchanged by the transformations in G. The fundamental property
of G-invariant solutions is that, roughly speaking, they may all be found via the
integration of a system of partial differential equations in fewer independent variables.
To make this precise, we must assume that G acts "regularly" in the sense of Palais [31]
on an open subset UcRm XRn. This requires, in U,

i) that all the orbits of G have the same dimension,
ii) that, for any point (x, u), there exist arbitrarily small neighborhoods N such

that the intersection of any orbit O of G with N is a connected subset of O.
(The prototypical group actions excluded by the second requirement are the

irrational flows on the torus.)
Under these two assumptions, it is well known that the quotient space M--U/G,

whose points correspond to the orbits of G, can be naturally endowed with the
structure of a smooth (although not always Hausdorff) manifold. Moreover, the G-in-
variant solutions of (A1) are all obtained by integrating a reduced system A/G-0 of
partial differential equations on M, which necessarily has fewer independent variables.
Precise statements and proofs of these results may be found in [27].

For our purposes, the construction of the reduced system for the G-invariant
solutions proceeds as follows: Local coordinate systems on the quotient manifold M are
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provided by a "complete set of functionally independent invariants of G ", cf. [30]. If G
is projectable, these are functions of the form

which are unchanged under the action of G. The functional independence means that
the Jacobian matrix

w/x w/u
is everywhere nonsingular. The reduced system A/G=O will then be found in terms of
the new independent variables i and the new dependent variables w.

REFERENCES

[1] M. J. ABLOWITZ, D. J. KAUP, A. C. NEWELL AND H. SEGUR, The inverse scattering transform-Fourier
analysis for nonlinearproblems, Stud. Appl. Math., 53 (1974), pp. 249-315.

[2] M. J. ABLOWITZ, A. RAMANI AND H. SEGUR, Nonlinear evolution equations and ordinary differential
equations of Painlevb type, Lett. Nuovo Cimento, 23 (1978), pp. 333-338.

[3] A connection between nonlinear evolution equations and ordinary differential equations of P-type. I,
J. Math. Phys., 21 (1980), pp. 715-721.

[4] M. J. ABLOWlTZ AND H. SEGOR, Exact linearization of a Painlevb transcendent, Phys. Rev. Lett., 38
(1977), pp. 1103-1106.

[5] T. B. BENJAMIN, J. L. BONA AND J. J. MAHONY, Model equations for long waves in nonlinear dispersive
systems, Philos. Trans Roy. Soc. London Set. A, 272 (1972), pp. 47-78.

[6] G. W. BLOMAN AND J. D. COLE, Similarity Methods for Differential Equations, Lecture Notes in Appl.
Math. Sci., 13, Springer-Verlag, New York, 1974.

[7] P. DEIFT AND E. TRUBOWITZ, Inverse scattering on the line, Comm. Pure Appl. Math., 32 (1979), pp.
121-251.

[8] R. K. DODD AND R. K. BULLOUGH, Bcklund transformations for the sine-Gordon equations, Proc. Roy.
Soc. London Set. A, 351 (1976), pp. 499-523.

[9] C. L. DOLPH, J. B. MCLEOD AND D. THOE, The analytic continuation of the resolvent kernel and scattering
operator associated with the Schrbdinger operator, J. Math. Anal. Appl., 16 (1966), pp. 311-332.

[10] B. FORNBERG AND G. B. WHITHAM, A numerical and theoretical study of certain nonlinear wave phenom-
ena, Philos. Trans. Roy. Soc. London Set. A, 289 (1978), pp. 373-404.

[1 l] C. S. GARDNER, Korteweg-de Vries equation and generalizations. IV. The Korteweg-de Vries equation as a
Hamiltonian system, J. Math. Phys., 12 (1971), pp. 1548-1551.

[12] I. M. GEL’FAND AND L. A. DIKII, Fractional powers of operators and Hamiltonian systems, Functional
Anal. Appl., 10 (1976), pp. 259-273.

13] Resolvents and Hamiltonian systems, Functional Anal. Appl., 11 (1977), pp. 93-105.
[14] I. M. GEL’FAND AND B. M. LEVITAN, On the determination of a differential equation for its spectral

function, Amer. Math. Soc. Transl., Set. 2, (1955), pp. 253-304.
[15] J. GIBBONS AND A. P. FORDY, A class of integrable nonlinear Klein-Gordon equations in many dependent

variables, preprint, Dublin Institute for Advanced Studies.
[16] S. P. HASTINGS AND J. B. MCLEOD, A boundary value problem associated with the second Painlevb

transcendent and the Korteweg-de Vries equation, Arch. Rational Mech. Anal., 73 (1980), pp. 31-.51.
[17] E. HILLE, Lectures on Ordinary Differential Equations, Addison-Wesley, London, 1968.
[18] E. L. INCE, Ordinary Differential Equations, Dover, New York, 1944.
[19] D. J. KAUP, The three-wave interactionma nondispersive phenomenon, Stud. Appl. Math., 55 (1976), pp.

9-44.
[20] On the inverse scatteringproblem for cubic eigenvalue problerns of the class xxx+qx+ rxI’ --,

Stud. Appl. Math., 62 (1980), pp. 189-216.
[21] G. L. LAMB, Elements of Soliton Theory, Wiley, New York, 1980.
[22] P. D. LAX, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 21

(1968), pp. 467-490.
[23] H. P. MCKEAN AND E. TRUBOWlTZ, Hill’s operator and hyperelliptic function theory in the presence of

infinitely many branch points, Comm. Pure Appl. Math., 29 (1976), pp. 143-226.



1506 J.B. McLEOD AND P. J. OLVER

[24] A. V. MIKHAILOV, Integrability of a two-dimensional generalization of the Toda chain, Soviet Phys. JETP
Lett. 30 (1979), pp. 414-418.

[25] The reduction problem and the inverse scattering method, Physica, 3D (1981), pp. 73-117.
[26] R. M. MIURA, C. S. GARDNER AND M. D. KRUSKAL, Korteweg-de Vries equation and generalizations. II.

Existence of conservation laws and constants of motion, J. Math. Phys., 9 (1968), pp. 1204-1209.
[27] P. J. OLVER, Symmetry groups and group invariant solutions of differential equations, J. Differential

Geom., 14 (1979), pp. 497-542.
[28] How to find the symmetry group of a differential equation, appendix in D. H. Sattinger, Group

Theoretic Methods in Bifurcation Theory, Lecture Notes in Math. 762, Springer-Vedag, New York,
1979.

[29] Euler operators and conservation laws of the BBM equation, Math. Proc. Cambridge Philos. Soc.,
85 (1979), pp. 143-160.

[30] L. V. OVSJAmKOV, Group Properties of Differential Equations, Novosibirsk, 1962 (translated by G. W.
Bluman, unpublished).

[31] R. S. PALAIS, A Global Formulation of the Lie Theory of Transformation Groups, Memoirs 22, American
Mathematical Society, Providence, RI, 1957.

[32] S. STENaERG, Meromorphic families of compact operators, Arch. Rational Mech. Anal., 31 (1969), pp.
372-379.

[33] E. C. Ta’CmCLlst-I, Eigenfunction Expansions Associated with Second-order Differential Equations, 2nd
ed., Oxford Univ. Press, Oxford, 1962.

[34] E. TluaowTz, The inverse problem for periodic potentials, Comm. Pure Appl. Math., 30 (1977), pp.
321-337.

[35] G. B. WmTI-IA, Variational methods and applications to water waves, Proc. Roy. Soc. London Ser. A,
299 (1967), pp. 6-25.

[36] Linear and Nonlinear Waves, Wiley-Interscience, New York, 1974.
[37] V. E. ZAKHAtOV AND S. V. lkkNAKOV, Resonant interaction of wave packets in nonlinear media, Soviet

Phys. JETP Lett., 18 (1973), pp. 243-245.
[38] On the complete integrability of the nonlinear Schrfdinger equation, Zh. Matem. Teor. Fiz., 19

(1974), pp. 322-343.
[39] V. E. ZAKHAROV AND A. B. SHABAT, Exact theory of two-dimensional self-focusing and one-dimensional

self-modulation of waves in nonlinear media, Soviet Phys. JETP, 34 (1972), pp. 62-69.
[40] A scheme for integrating the nonlinear equations of mathematical physics by the method of the

inverse scattering problem, Functional Anal. Appl., 8 (1974), pp. 226-235.



SIAM J. MATH. ANAL.
Vol. 14, No. 3, May 983

(C) 1983 Society for Industrial and Applied Mathematics

0036-1410/83/1403-0009 $01.25/0

A NUMERICAL TREATMENT FOR PARABOLIC EQUATIONS
WITH A SMALL PARAMETER*

GEORGE C. HSIAO AND KIRK E. JORDAN

Abstract. A modified Crank-Nicolson-Galerkin procedure is developed for treating initial-boundary
value problems for parabolic equations with a small parameter, multiplying the time-derivative term. Error
analyis as well as numerical experiments are included. It is shown that with rather moderate step sizes, the
numerical results are in excellent agreement with the theoretical ones both inside and outside the initial layer.

1. Introduction. Let fl denote a bounded domain with a smooth boundary 2 in
R and let T>0 be any fixed constant. Consider the initial-boundary value problem
(P) consisting of the parabolic equation

0u(E) e--+L[u]=f(x,t), (x,t)ft(O,T],

together with the initial condition

(I) u(x,O)-(x), xf,

and the homogeneous boundary condition

(B) u(x,t)=O, (x,t)Of [0, T],

where e>0 is a small parameter, f and are ven smooth functions satisfying certain
regularity conditions to be specified. The operator L is a strongly elliptic second-order
partial differential operator with C coefficients of the form

(1.1) L[u]’--- aij(x) +c(x)u,
i,j:l

satisfying the ellipticity condition

i,j=l i=1

with a constant X0>0 for any real vector (,.- .,)R and any point xa. In
addition, we assume that a=a and c0 in .

Problem (P) represents an important class of singular perturbation problems,
wNch are normally investigated by the method of matched asymptotic expansions or
the method of composite expansions [4], [12]. In terms of the ternology in the
singular perturbation theo, there is an initial layer in the neighborhood of t-0.
Outside tNs layer, the solution of (P) is mainly donated by that of the reduced
problem, a boundary value problem in the present case,

(Po) L[U]=f(x,t), x,
U=O on ,
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for each fixed t, 0_<t_< T. Clearly the solution U(x, t) of (Po) generally is not expected
to satisfy the initial condition (I), and hence one is led to consider the initial-layer
problem"

t0
-:+L[v]-’ t>0,

V(x,O)-a(x)- U(x,O), x a,
V=0, xf, /’_> 0,

where [’- t/e is the stretched variable. As a typical feature of the singular perturbation
problems, the solution V= V(x, [) is significant only within the initial layer and decays
exponentially as [--, oe. Then the exact solution u-u(x,t; e) of (P), in appropriate
function spaces, admits an asymptotic expansion of the form (see [6])"

V(x,t)+
where the remainder term Z O(e) as e 0+ uniformly for all t, 0 _< t_< T. Here U and V
are only the leading terms in the asymptotic expansion for u, and higher order terms
are defined similarly by the reduced and initiaMayer problems such as (P0) and ([0)-

From the singular perturbation results, one may approximate the exact solution by
the. solutions of the reduced and initial-layer problems for small e, if the solutions U
and V are available. However in the present case, both (P0) and (’0) cannot be solved
explicitly and hence one has to rely on some approximate schemes. On the other hand,
one may be tempted to solve the singular perturbation problem (P) directly by the
standard numerical scheme such as the Crank-Nicolson-Galerkin scheme, since (E) is
a linear parabolic equation for each e > 0, no matter how small. As will be seen, because
of the presence of e, the usual Crank-Nicolson-Galerldn schemes can not be directly
applied and one will not obtain meaningful numerical results without reducing mesh
size in the initial layer. This of course requires considerable computational effort. In
fact, often because of the limitation of the computer system, the discrete problems
involved may become ill-posed numerically when mesh sizes get to be too small.

In this paper, we present two numerical procedures for treating singular perturba-
tion problems such as (P). Neither one of them needs very fine mesh size. In essence,
our procedures use singular perturbation theory to construct the leading terms in the
formal asymptotic expansions (1.3). Motivated by the asymptotic behavior of the
singular perturbation problems, we solved (P) numerically via the reduced and initial-
layer problems by the Galerkin method with finite elements as trial functions for the
space variables. This leads to an initial-value problem for a system of ordinary differen-
tial equations with constant coefficients and hence explicit solutions can be con-
structed. We refer to this approximation simply as the Galerkin approximation. For the
purpose of implementation on a computer, the system of ordinart differential equations
in the Galerkin approximation is further discretized and we arrive at a fully discrete
method for (P) which we refer to as the Initial-Layer-Crank-Nicolson-Galerkin
(ILCNG) approximation. We comment that although (E).is considered only for the
finite time interval 0_< t_< T, in terms of stretched variable t, it is really an infinite time
interval, 0 <_ [<_ T/e for e sufficiently small. As will be seen, the simple idea introduced
in [7] as how to determine a reasonable approximate finite domain with respect to the
stretched variable can be adopted here very naturally.

We organize the paper as follows. In {}2, we formulate and describe the approxi-
mate schemes in detail. Sections 3 and 4 contain the error estimates for the approxima-
tions. Finally, in [}5, a simple example is included to show the applicability of the



PARABOLIC EQUATIONS WITH SMALL PARAMETER 509

ILCNG approximation. Clearly with very tittle computational effort the numerical
results obtained from our scheme are definitely far better than the ones from applying
directly the standard Crank-Nicolson-Galerkin scheme to the problem, especially
within the initial layer.

2. Numerical procedures. Since our numerical procedures are based on the Galer-
kin’s method, it is most appropriate to consider the weak formulations of the problems
(P), (P0) and (0)- First we need some notation. As usual, we denote by Hm(f) the real
Sobolev space of order rn (an integer) on equipped with the norm II" and/m(f)
the subspace of Hm(f) obtained by completing C(f) with respect to the norm II" m;
C(f) denotes the space of infinitely differentiable functions with compact support in

By a weak solution of (P), we mean a function u= u(x, t) such that for each fixed
t[0, T], u(t)"- u(. ,t)I:t(2) and satisfies the integral identities:

(i)u(t) ) ’ (0, T]e w +a(u(t) w)--(f(t) w) for allwE (a) t
(2.1) )t

(u(0)-fi,w)-0 for all w’(n).
Here (-,-) denotes the L2-inner product and a(.,-) is the bilinear form associated
with L,

(2.2) a(u,w)’- aij(x) i)x--- 3x--- +c(x)uw dx.
i,j=l

Similarly, for each fixed t[0, T], U(t)"- U(.,t)tl() is the weak solution of the
reduced problem (P0) satisfying

(2.3) a(U(t),w)-(f(t),w) for all w/-l(’]), t[0, T],
and V(h V(., t’) 1(), the weak solution of the initial-layer problem (0) such that

(ov(;)),w +a(V(i),w)-O for allwl(), t’>O,
(2.4)

(V(0)+ U(0)-fi,w)-0 for all w/-Jrl(),
where t-= t/e is the stretched variable.

For simplicity we assume that f is sufficiently smooth so that u, U and V are
continuously differentiable with respect to t. More precisely, if ck(I;H) denotes
H-valued functions which are k times continuously differentiable on the interval I, we
require that u and U belong to CI((O,T];II())f"IC([O,T]; /_1()) and that V-
V(x, D belongs to Cl((0, T/e]; l(f)) C0([0, T/e]; Hl(f)). The existence and unique-
ness of the weak solutions for (P), (P0) and (P0) follow from the standard results for
linear parabolic and elliptic equations (see, e.g. [10]). In particular, it is well known that
under the assumptions on the coefficients, the bilinear form a(., ) in (2.2) is continu-
ous on HI()HI(f]) and strongly coercive on /_rl(’) for every t[0, o). That is,
there are positive constants X and/ such that

(2.5) la(u,v)l<_llulllllVll for all u,vHl()
and

(2.6) a(u, u for all U/-l(’).
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These properties are equally crucial to the error bounds for our numerical approxima-
tions.

To describe the Galerkin approximation, let us denote by Sh a one-parameter
family of N(h)-dimensional subspaces of () with a certain interpolation property
to be specified later. We assume that {(k(X)}--1 forms a basis of Sh and propose the
following approximation"

h Uh__ Vh(2.7) u,

where Uh and Vh are the continuous-in-time Galerkin approximations for U and V
respectively in (2.3) and (2.4). In terms of the basis {(x)}r= , the approximations Uh

and Vh have the explicit representations"
N N

(2.8) Uh-- 20tk(t)*k(X) and Vh- fl([)ckg(x),
k--1 k-----1

Here ’s are solutions of the algebraic system:
N

(2.9) 2 a(chg,cht)ak(t)--(f(t),,), l= 1,2,..-,N
k=l

which is equivalent to the Galerkin’s equation corresponding to (2.3). The Bk’s are the
solutions of the initial-value problem for the system of ordinary equations from the
Galerkin equation corresponding to (2.4):

N

2 ((hk,*t)[k({)+a(q’k,qt)flk(i)}--O, i>0,
k=l

(2.10)

k=l k=l

for l- 1,2,...,N. Clearly both (2.9) and (2.10) are uniquely solvable, since the matrices
appearing in (2.9) and (2.10) are all positive definite. Indeed, by denoting A a(q,,qt)
the stiffness matrix and B--(k,qt) the Gramm matrix it is easily seen that the

h defined by (2.7) admits the explicit representation:approximation u,
N

t/,
k=l

with 3’(t, [) defined by

(2.11)

where k th unit vector in N, t(t) ((f(t), q,), ", (f(t), q’v))r,

Uo- ((
A =B-A.

We comment that if we solve (2.1) directly by the Galerkin method and approxi-
mate u by

N

2
k=l
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then ), (’Yl(t),.-., 3N(t))7" will be the solution of the singular perturbation problem for
the ordinary differential equation:

(2.12)
eB’t’(t)+A’(t)-f(t), O<t<_T,

(0)- B-l((/, t/)l),..., (/, tN)) T.
In terms of the terminology in the singular perturbation theory, it is easy to see that the
vector 3,-(,1, .,,N0)r defined by (2.11) is really just the zeroth order term in the
composite expansion for , in (2.12). Hence our Galerkin approximation is a combina-
tion of asymptotic and numerical approximations. The coefficients 7 defined by (2.11)
are computable in principle. The exponential term in the coefficient is clearly the
analytic solution of the initial-value problem (2.10). In practice, it is best handled by
difference approximations or Pad6 approximations. This leads us to the Initial-Layer-
Crank-Nicolson-Galerkin (ILCNG) approximation, a fully discrete procedure which is
readily implemented on the computer.

Before we describe the ILCNG approximation, we note that since the reduced
problem (2.3) contains no e, it can be treated by any standard scheme for the boundary
value problem, e.g. the Galerkin method. On the other hand, although one may handle
the initial-layer problem (2.4) by any explicit scheme, it requires a long time to reach
t-T, since at t-T, t-T/e will be rather large for e small. To circumvent this
difficulty, following [7] we solve (2.4) only for 0 _< t-< fit, where fit is chosen such that

lne
(2 13) e-X’<e or fit>

where , is the coercivity constant in (2.6). Naturally this choice of fit is based on the
a..sy.rnptotic~behavior of ), in (2.12). A simple computaton shows that the solution
[(t)-(fl(t),...,flv(D)r of (2.10) and the coefficient 3,(t,/’)-(,l(t,/’), -,,u(t,/’))7"

of (2.11) satisfy the estimates"

(2.14)
I/( ;)l-< v/x(B) I/3(0)1 e-x7 for all/’_>0,

IV(t)-V(t,;)l=O(e) as e0+

uniformly for all 0_< t_< T, where x(B) is the condition number of B and I1 stands for
the usual Euclidean norm. Or from (2.1), (2.3) and (2.4), similar estimates hold also for
u, U and V; that is,

(2.14’)
IIv(;)llo<_e-:llv(o)llo for all/’>_0,

Ilu(t)- u(t)- v(;)ll0- o() as,-0+

uniformly for all [0, T]. Hence in view of (2.14) and (2.14’), if one is interested in an
approximation only up to O(e), the choice of fit in (2.13) is not unreasonable. In this
way we have modified the problem (2.4) and consider (2.4) only for 0-</’-< fit.

Our ILCNG approximation can now be described simply as a procedure consist-
ing of the Galerkin method for (2.3) and the usual Crank-Nicolson-Galerkin method
for (2.4) with 0_< [_< fit. To be more specific, we approximate u of (2.1) by

(2.1) -(,t) I v"(’t)’u,
t v,t) + v,
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Here Uh is the Galerkin solution of (2.3) which is the same as in the case of the
continuous-in-time and is defined b.y (2.8) and (2.9), while Vh ’s.are the Crank-Nicol-
son-Galerkin solutions of (2.4) at tj=jA[, j=0, 1,...,J=rh/At with A{ denoting the
mesh size in the stretched time/’-direction. In terms of the basis {qk(X)}=l of Sh, Vj.h
admits the representation:

N

(2.16) Vjh- E flkjrkk(X), j--0,1,’’ .,J--/A{,
k--1

where Oj-(fll, fizz,’" ",fluj)T are defined explicitly by the recurrence relations [13]"

(2.17)
/10"- B-u0,

+ "-(I+1/2A{B-1A)-’(I_1/2A{B-A)
for j-0, 1,-..,J-1, where A,B and u0 have the same meanings as those given in
(2.11). It is clear that all the/3j.’s as well as the coefficients a(t)’s of Uh in (2.15) are
now ready to be computed by routine numerical algorithms since in these calculations
the small parameter e does not appear explicitly.

In order to show the applicability of the ILCNG approximation, numerical experi-
ments are performed on model problems in {}5. As will be seen, with very tittle
computational effort the numerical results obtained from our scheme are definitely far
better than the ones from applying directly the Crank-Nicolson-Galerkin scheme to
the problem, especially within the initial layer. Both Galerkin approximation and
ILCNG approximation procedures are easily extended to the general case where higher
order terms in the asymptotic expansions are included. However, in order to achieve
optimal rate of convergence, the accuracy of the numerical approximation should be
varied according to the order of e. This will become clear from the error estimates of
our approximations in the next two sections.

3. The Galerkin approximation. In this section we derive the error estimates for
the Galerkin approximation, a continuous-time Galerkin procedure. Since the accuracy
of the procedure depends on the properties of the approximating subspaces Sh, follow-
ing [1] we assume that for fixed integer m_>2, the finite-dimensional subspaces Sh of

l(f) possess the approximation property such that for any u
m,

(3.1) inf { llu-xllo / hllu-xl{,} <-chllull
xS

holds, where c is a constant independent of h and u. As is well known, the space of
piecewise linear polynomials satisfies (3.1) for s-2. In general we have the following
error estimates.

THEOREM 3.1. Let (Sh}o<h<_l be a family of finite-dimensional subspaces of
satisfying the approximation property (3.1). Let uh, be the Galerkin approximation defined
by (2.7). For smooth data, fiHS() fq/-Jrl(f) and GH(f), if uHS()fqIl(f) is
the exact solution of (2.1) such that HS(f) fq/lau(), then the following estimate

+(1- Ch sup -(r)+ sup --(’)
0<,r_<t 0<-_<t 0

holds for 0 <_ <_ T, where C is a constant independent of e, h and u.
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Remark. The estimate (3.2) implies that for given e, h opt--,l/s is an optimal choice
of h in the sense that the error is O(e) uniformly for 0_< t_< T.

h intoWe begin the proof of (3.2) by splitting the error estimate of u-u,

(3.3)

and consider each term separately. Here uh denotes the Galerkin solution of (2.1) (see
(2.12)), and ft=Pu is the energy projection of u onto Sh and is defined for each fixed
t_>0 by

(3.4) a(ft(t),v)=a(u(t),v) for allvSh.

The size of u-fi is known from the approximate property (3.1). In fact it is easily
shown that if for some constant k>_O, uCk((O, T]; HS(f) fq/l(f)), then

(u-a)(t)

for some constant C independent of h and u, and <_s<_m. The remaining terms in
(3.3) are estimated in the following lemmas. We remark that the Galerkin solution uh is
utilized here only as an intermediate artifice in order to derive the estimates.

LEMMA 3.1. If e( ) ft( ) Uh( ), then

(3.6) e -,e +a(e,e)-e Ot
Moreover, for 0 <- <_ T, the following estimate holds:

(3.7) [le(t)l[o<_e xt/lle(0)ll0+ (1-e- 0<_<tsup 0t 3t (r) 0’

provided u C([0, T]; H(f)) and u/t C((O, T] H(2)).
Proof. By the definition, e(t)=ft(.,t)-uh(.,t)Sh, we may put v-e in (2.1) as

well as in the corresponding Galerkin equation to (2.1). Equation (3.6) then follows
immediately from (3.4) with v-e, where we have tacitly used the fact that the energy
projection P commutes with the differentiation (see [4]).

From (3.6) the rate of change of the error e(t) is easy to find. The coercivity of
a(-, ) implies

a( e, e ) -> ,ll ell --> ,11 ell.
Also note that

The right-hand side of (3.6) is bounded by ell O/Ot- Ou/Ot 0 e 0. Cancelling the
common factor e o, the identity (3.6) leads to

d IIuOue - Ilell0+Xllell0<_e 0t 0t o

and hence,

d-( eX’/*ll ell0) _< e
0t 0t 0"
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Integrating from 0 to t, we obtain

Ile(t)l]o<_e-"/lle(o)llo+ e Ot Ot (’r d,
0

e (1 e-xt/e_<e-Xt/lle(O)l[o + X )sup
0<,r_<t

which is the desired result (3.7).
LEMMA 3.2. If 8( ) uh( ", t) uh,( ", ), then

(3.8)

and

(3.9) II(t)il0_<e-’/11(0)110+ -(1-e ) sup -b-(r)
0<-_<t 0

forO<_t<_T.
The proof of Lemma 3.2 is almost identical to that of Lemma 3.1, if one notices

that )uh/)t is dominated by Of/Or, or more precisely,

-ft-(t) o_<- --(t) o"
The details will be omitted.

To complete the proof, it remains only to consider the estimates of the initial terms
h it is clear that both uh( 0) and uh,( 0)in the lemmas. By the definition of uh and u,,

are the best L2-approximation of fi in Sh. Hence by the property of the uniqueness of
the best L2-approximation in a strictly convex normed linear space [2], [3], it follows
that i(0)--0. On the other hand, we have

lie (0)1[o-II(", o)- u"(., o)IIo< I1(., o)- u(., o)11o-4-II-u’,(., o) Iio,

since u(., O) 0 0 for /(f). Consequently for , u HS(2) NI(2), it fol-
lows from (3.5) and the approximating property of Sh that

(3.10) lie(0) II0 chS( Ilu(", 0)IIs-t-II11 }

for some constant C independent of h, fi and u( -, 0).
This completes the proof of Theorem 3.1, if one collects the results (3.5), (3.7),

(3.9) and (3.10).
Remark. Under the same hypotheses in Theorem 3.1, an error estimate in Hi-norm

can also be derived. In general we have

h(t)l[ <--ChS-r(u(t)-u, Ilu(t)ll/llall-I-hre sup
0<,r_<

+Ce sup -O--(r) for r- 1,0,
0<-_<t 0

where Co=Co(h,ho, C) and C =C(h,ho) are constants.
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4. The ILCNG approximation. Here we consider error estimates for the ILCNG
approximation described in 2. Again we assume that Sh possesses the approximation
property (3.1) as in the continuous-in-time case. We first note that the ILCNG ap-

h defined in (2.15),proximation fi,

-"(x t)- { "(,t),u,
t>the,

ej <__ th e

is essentially the numerical approximation for the zeroth order term, U+ V in the
asymptotic expansion (1.3). It is natural to decompose the error according to

"]--[u-(V+ v)] + v+ V-u,.

As will be seen, the first term yields the asymptotic error from the singular perturbation
theory while the second term contains the numerical error. Indeed, if Z :-- u-(U+ V),
it is easily seen that Z is the weak solution of the initial-boundary value problem:

(4.1)
e ---,w +a(Z,w)----e ---,w
(Z,w)--O for all w/l().

for all w /-Jr (f), t(o,r],

Hence in the same manner as (3.9) one can show that

(4.2) IIZ(t)llo<_(1-e sup - (’)
0<,r< T 0

for all t, 0<t<_ T.
On the other hand, the estimate for the second term (U+ v--h.) depends on the

location of t. For outside the initial layer, that, is, > the,

(4.3) u+ v- u,- 0-<llu- ullo+llVllo<fhllfll-=+- IIll0+ IIf(0)ll0

Here the first estimate follows from the standard arguments in finite element analysis
for elliptic problems, whereas the second estimate follows from the initial layer behav-
ior of V in (2.14’) and the choice of th in (2.13).

For within the initial layer, that is, u,) is
more involved; we introduce l?(x, [) for each fixed [_>0 the energy projection of V onto
S defined by

(4.4) a(l?([),v)-a(V([),v) for allvSh,
and consider the estimate

(4.5) IIU</’)+ V<{)-,([) 0<_llu(/) uh([)ll0+llv([) (;)llo+[l(;)- v?ll0
for [={=jA[, j--0,0,1,.-.,J--th/A[ (see (2.16)). Both U-Uh and V-I? can be
estimated as (4.3) and (3.5). For the additional term 17"-Vh, we have the following
lemma.

LEMMA 4.1. Let . Vj.h- (,’(. [) and j V(. [)- (. [j.) for j--O, 1,. .,J.
Then for V C3([0, th]; H(f)),
(4.6)
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forj--O, 1,...,J- 1 (J>_ 1) with 7/ (/+l-g)/Aand7j "- (]j+l--lj)/A[where
j"--(--(A)2/12)(O3V/O3)(’,), ?g<’</’j+l, is the local truncation error. Further-
more, the estimate

(4.7) II jII0-

holds forj- 1,... ,J where x is a constant independent of e,h and iX{.
Proof. It is easy to verify that the approximate solution V defined by (2.16) and

(2.17) satisfies, forj 1,2,-.. ,J,

(t"bh’ wh)d1/2a( V-’hj+l + Vjh, Wh)--O for all whysh

together with

(Voh,wh)--(--uh(.,O),wh) for all whSh.

Hence

(4.9)
where

(4.8)
(S?y’wh)+1/2a(/+l+j’wh)----(Srl?()’wh)--1/2a((+l)+ ({J)’wh)

:--(i?l?(),wh)--1/2a(V({j.+,)+ V( ), wh)
in view of (4.4). On the other hand, from (2.4) we have

(6V(.),w)+a(V(+l)+ V(),wh)--(.,wh)

3V
(4.10) " "=

12 (Ai) (- i), tj<i< t/+,

is the local truncation error. It follows from (4.8) and (4.9) that

( w" + + w" ) ( )
for all whSh. In particular one may put wh--(j+l +(jSh and obtain the desired
result (4.6).

To establish (4.7), we use the identity

( 7j, j+l -at- j ) ---- +ll jll0
and the coercivity of a(., ) so that from (4.6) we have

The right-hand side is dominated by

Consequently, we obtain

2<2 2 2(4.11)
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Summing (4.11) fromj-- 0 toj=k<J- yields

I1/,11o -X- (llnllo / I111;)
j--0

Thus,

--<11ollo/ sup IIll=o/ sup
O<k<_j- O<_k<j--1

sincejA[<JA[= rh. Hence from (4.10), the result (4.7) then follows immediately with
defined by

03V
(4.12) x sup --O<_i<_jAi 0

This completes the proof of Lemma 4.1.
Lemma 4.1 provides information concerning the size of 17(-, t’)-V within the

initial layer. By the definition, we see that

(4.13) I1ollo-< u(0)- u(0) Iio / v(0)- (0) IIo,
the size of which is known from approximation property (3.5) and the like. The forward
difference II /’ik II o can be rewritten in terms of O/Otlg such that

0’Ok+ 1/2 (A)2 03’/(4.14) IIrll-< + 24 ---(i) [k<[<tk+l,
07 o o

where the first term on the right is again known from approximation property similar
to (3.5) and the second is of order (A/’)-.

Finally, collecting the results (4.2), (4.3), (4.5), (4.7), (4.13) and (4.14), we arrive at
the following

THEOREM 4.1. Let (Sh}o<h_< be a family of finite-dimensional subspaces of I()
satisfying the approximation property (3.1). Let u,~h be ILCNG approximation defined by
(2.15). Then for sufficiently smooth data f and a, if U HS(f) Ntl() for 0 <-- <_ T, V,
OV/O[HS(f) fq H(f) for O<_[<_rh, and in addition, if OU/OtH(f)for O<_t <_ T and
V C3([0, rh]; H(f)), then the following asymptotic rate of convergence holds:

(4.15) [[u(t) -~h {Coe+C,h" forrhe<t<_T,
 ,<t)llo -< Coe+C,hS+C2f-(hS+(A{)2) fort-dj

wit.h {j--jA{, j-O, 1,...,J--rh/A, where the Ci’s are constants independent of e,h and
At.

Remark. In the special case when Sh is the space of piecewise linear polynomials,
i.e., s--2, this result, (4.15), was announced in [8].

5. Numerical experiments. Here we present some numerical results for the ILCNG
approximation scheme previously discussed. We consider the following model problem:

U 2U --f(x,t), 0<x<l, t>0,
(P) u( x, O) fi( x ),

u(O,t)=u(1,t), />0,
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with f(x,t)-1-3x and fi(x)-sinrx-1/2x2(1-x). The exact solution of (P) can be
found explicitly:

u( x, ) 1/2x2(1-x) + e-t’:/ Sinrx.

Here the first term on the right-hand side is the reduced solution U while the second
term is the initial-layer solution V. For comparison we also solve (P) by the standard
Crank-Nicolson-Galerkin (CNG) scheme (see [11 ], [2] for more details).

For simplicity in both schemes, the ILCNG and CNG schemes, the finite dimen-
sional subspace Sh was chosen to be the space of piecewise linear polynomials. The
basis functions tk are the usual hat functions defined by

XXk_

h

h
0

Xk__ X--Xk

XkXXk+
otherwise

with uniform mesh size h-. An interpolation of the initial data was used for both
schemes. Thus at the space nodes, x, when t--0, the approximate solutions and the
exact solutions are identical. Both schemes were implemented using single precision on
the Burroughs B7700 computer at the University of Delaware.

For the ILCNG approximation scheme, rh was chosen according to (2.13). In the
present case, it is easily shown that the coercivity constant is equal to 2, and thus,

(C) n>_qln 10/,tr 2

if, in particular, e- 10-q, q>0. We comment that in general the coercivity constant
depends on the spectrum of the corresponding differential operator L and the exact
value may not be known so easily, However, a rough estimate of may suffice in the
determination of the lower bound for rh and explicit knowledge of X may not be
needed.

We conducted a graphical comparison of the ILCNG and CNG schemes for
e- 10-2. At the space point x .5, we plotted the solutions versus time. Our first graph
contains the solution from CNG and the exact solution; see Fig. 1. Figure 2 contains
the ILCNG and CNG solutions. In both the ILCNG and the CNG schemes, the space
mesh is chosen to be 0. For the CGN scheme the time mesh At is , while for the
ILCNG scheme the time mesh A[ is for the initial-layer solution.

One immediately notices in Figs. 1-2 the oscillations occurring in the standard
CNG scheme. This of course is due to the small parameter e appearing in the problem.
As time progresses, the effects of the initial layer, which causes the oscillations eventu-
ally damp out, but these effects certainly influence the numerical approximation far
outside the initial-layer region. These disturbing oscillations are not present in the
ILCNG approximation and in fact the ILCNG approximation exhibits behavior simi-
lar to the exact solution as our graphs illustrate.

For the ILCNG scheme several numerical experiments were performed. We first
allowed e to vary. Of course, we had to change rh in accordance with (5.1). The
remaining parameters were held fixed. The results for h-.1, At’= .1 are summarized in
Table 1.
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FIG. 1.
At=0.025.

1.00

$OLIV.

0 0.50 1.00
TIME

CNG scheme. Approximate solution by CNG scheme and exact solution. CNG with h-0.1,

1.00

0 TIME 0.50 1.00

FIG. 2. ILCNG and CNG overlay. Comparison of approximate solutions obtained by both schemes.
ILCNG with h-0.1, rh=2, A/’=0.1. CNG with h--0.1, At--0.025.

In order to indicate the dependence on the various meshes for e 10-4, we varied
the space and initial layer meshes, h and A/" respectively. Since the maximum error
occurred at x= .5, we tabulated the results at this space point and at the fixed time
level t- 10-5 in Table 2. We note that for h-.05 and A/’= .01, the approximation is
almost of the same order as the small parameter e. This indicates that by choosing
h2--(A{)2--e, we will obtain optimal order for our scheme. This is similar to results
obtained in the case of ordinary differential equations reported in [7] and [9].
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TABLE 1.-- ., zx-- .
APPROX. ERROR

e-- 10-4
.5(--4)
.(-3)
.5(-3)
.1

--.56293 10-1
--.62461 10-
-.62500 10-
-.62500 10-

--.55308 10-
--.62448 10-1
--.62500 10-
--.62500 10-

-.98536 10-3

-.13202 10-4

-.13291 10-6

0.0

.5(-8)

.1(--7)

.5(-7)

.1

--.62461 10-
--.62500 10-
--.62500 10-

-.55308 10-
-.62448 O-
-.62500 10-
-.62500 10-

e 10-2 rh=3

.5(-- 12)

.1(--11)

.5(-)

.1

--.56293 10-
--.62461 10-
-.62500 10-1
--.62500 10-1

--.55308 10-1

--.62448 10-
-.62500 10-
.62500 10-

e-- 10 -16 rh-----4

--.98536 10-3

--.13202 10-4

--.13291 10-6

0.0

-.98536 10-3

--.13202 10-4

--.13291 10-6

0.0

.5(-- 16) --.56293 10-1 --.55308 10-1 --.98536 10-3

.l(-- 15) --.62461 10- --.62448 l0- --.13202 10-4

.15(- 15) --.62500 10-1 --.62500 l0- -.13291 10-6

.l -.62500 10- --.62500 10- 0.0

TABLE 2

e 10-4, x--- .5, t=0.1 10-4

A [ Error when h .05

.O5

.025

.0125

.01

Error when h

3.7195 10’-2

1.0824 10-
4.9331 10-3

3.4981 10-3

3.3268 10-3

3.4033 10-2

8.4588 10-3

2.6428 O-
1.2255 10-3

1.0564 10-3

In conclusion we emphasize that the model problem (P) considered here was very
simple, nevertheless it is typical. Our numerical results were rather encouraging espe-
cially in comparison with those obtained by the standard Crank-Nicolson-Galerkin
method. Very little computational effort is needed for our scheme to achieve the
satisfactory accuracy and obtain the precise behavior of the solution in the initial-layer
region; furthermore it does not encounter the stability problems there We hope that
the idea of combining asymptotic and numerical methods employed here may shed
some light on some more complicated problems.
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PARABOLIC CAPACITY AND SOBOLEV SPACES*

MICHEL PIERRE*

Abstract. We prove in particular here that, given an open set fl of R v, the usual parabolic capacity on
]0, T[ f associated with the heat operator --A can be defined using only the Hilbert norm of the space
6.lff__ {vL2(O, T; Hg(f)); a, L:z(O, T; H-1- (2))} which arises in parabolic variational inequalities. The
result is stated in the general setting of parabolic Dirichlet spaces.

Introduction. Let f be an open subset of R N and T>0. The usual parabolic
capacity on ]0, T[ f associated with the heat operator- A is defined by

V w C ]0, T[ f open, flo duCo()
,rta

where u is the capacitary potential of o, that is, the solution of the (formal) variational
inequality

ul, a.e., u(0)--1,o(0), u(t,’)lau:0,
0u 0u
-Au>O, -Au-O on[u>l ].t 0t

(Here 1 is the characteristic function of to. Note that u,o -Auo, is a nonnegafive
measure on ]0, T[ f.) Another definition in terms of measures can also be found in
[21.

We show in this paper that this capacity can be defined using only the Hilbert
norm of the space

Slf= vL:(O,T;n(a)); (a))
namely, if we set, for.any open subset w of ]0, T[ ,

IIvll ; a.e.},
where

then there exist a, b>0 such that"

(II) Vw, a.co(w)<_c(w)<_b.co(O ).
It is well known that this space 2If arises as the natural space of test-functions in

numerous parabolic variational inequalities (V.I.) of type (I) (see Lions-Stampacchia
[4], Lions-Magenes [5], Lions [3], Mignot-Puel [6],... ). On the other hand, as in the
elliptic case, the tools of potential theory have also proven to be most useful to solve
and interpret these parabolic V.I. (see [1], [8]). The above result emphasizes the strong
relationship between the two approaches.
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A direct consequence of (II) is that any element of 2If has a quasicontinuous
representation. This fact (that we established in [8]) is an important tool to deduce
fundamental properties about the structure of parabolic potentials (i.e., the functions
uL2(O,T;H())fqL(O,T;L2(f)) such that aU-Au>0)_ (see [8], [10] for these re-
sults).

Another consequence is that, as in the elliptic case, "LE-estimates can be used to
evaluate the parabolic capacity of a set. In the same spirit, we also show here the
following result: if u is a parabolic potential greater than or equal to 1 on to, then the
capacity of to can be estimated by the norm of u in L2(0, T; H01(f)) fq L(0, T; L2()).

Lastly, this suggests that for the nonlinear problems associated with operators of
the form

u
Ot divA(x,u,Du),

the natural capacity can be defined by the norm of

%-- I)_.LP(O, T; WI’p(a)); .LP’(O, T; W-1

wherep ]1, o[ is suitably chosen and + ,, 1.
In this paper, we state our result in the general setting of Dirichlet parabolic spaces

so that it can be applied to general elliptic operators with Dirichlet, Neumann or mixed
boundary conditions.

1. Parabolic Dirichlet space. Let X be a locally compact space, countable at the
infinity, a Radon measure on X whose support is X. We denote (X) (resp. +(X))
the space of continuous (resp. nonnegative and continuous) real functions with com-
pact support in X. The space (X) is equipped with its usual locally convex topology.

Let V be a Hilbert space with the norm I1" II; we assume that V is embedded into
LE(x), the space of (classes of) real square integrable functions with the norm

Then, if V’ is the dual space of V, we have

(1) VL2(X)V’.

The scalar product in L-(X) as well as the duality (V’, V) will be denoted by (.,-).
We will assume:

(2) ( X) Cl V is dense in V and ( X).

Example 1. (a) X-u, V=H(u), V’-H-I(N).
(/3) X=f open set in , V=H(fl), V’-H-I(2).
(3’) X=, V=H(F) (2 regular bounded open set in N).
(6) X=(1 point), VL(X).
Given T>0, we denote Q-[0, T[ X equipped with the Radon measure dr(R) ,

where dt is the Lebesgue measure on [0, T[. (Q) will denote the space of continuous
numerical functions with compact support in Q, equipped with its natural topology.

That is X is the union of a countable number of compact subsets.
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Now, associated with V, V’, we have

cV= L2(0, T; V) and its dual cV’- L2(0, T; V’),

These spaces are Hilbert spaces with the norms"

2

Let us recall that 2tf is embedded into C([0, T[; L2(X)) (see Lions-Magenes [5]).
As a consequence of (2), one can show that (see [8])

(3) ( ) f’l 2If is dense in and ( ), [0, T X.

(4)
The operators A.(t). For a.e. t, let a(t,., ) be a bilinear form on V V satisfying:

X/u, v V V, a(t, u, v) is measurable,

(5) :IM>_O, V(u,v)Vl/, a.e.t(0, T), la(t,u,v)l<-Mllull’llvll,

(6) 3a>0, VvV, a.e.t(0, T), a(t,v,v)>_allvll.
With a(t,., .) and its adjoint a*(t,u,v)-a(t,v,u) are associated two continuous

operators from V into V’ defined by

Vu,vV, (A(t)u,v)-a(t,u,v), (A*(t)u,v)-a*(t,u,v).

We will also assume that A(t) and A*(t) satisfy maximum principle properties,
namely that the contractions r Irl and r r+/ operate on V equipped with a and a*
that is

(7) ’evil/, v+V, v-El/ anda.e.t(0, T), a(t,v+,v-)>_O,

(8)
VvV, v+AIV anda.e.t(0, T),

a(t,u+u+/ 1,u-u+/ 1)_>0, a(t,u--u+/ 1,u+u+/ 1)_>0.

Example 2. Corresponding to the choices of X and V in the examples above one
can successively choose:

N U V N OU

i,j=l i=l

+ fnoc(x’t)uvdx’
where aj, b, co L([O, T[ N N) and satisfy

i,j=l

a.e. on Q.

Then, a(., .,.) satisfies (4) and (5). It satisfies (7) and (8) if c0_>0 and satisfies (6)
if Co>_A for A large enough. Since we will study parabolic properties, the latter point is
not a restriction.
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(/3), (3’) One can choose a(., .,-) as above where one replaces R N by f.
(8) Take a defined by

a.e.t(O,T), V,u,vER, a(t,u,v)=a(t)uv,
where a EL(0, T), a _> 0.

Parabolic potentials.
DEFINITION 1. We shall call a parabolic potential any element of

o-- {uLZ(O,T; V)fqLo(O,T;L2(X)); VvLwith v(T)--O, >_0,

Remark. We will often omit the variable in the integral above and write it as

--g;,u

Thanks to the Hahn-Banach theorem, we have (see [8], [10]):
PROPOSITION 1. Let u o. Then there exists a unique Radon measure on Q, denoted

by u, such that

Vvn%(Q) with v (T ) O, ---,u +a(u,v)- vd(u).

Details are given in [8], [10] about the space and the measures u. Let us just
make them explicit in a particular but typical example.

Example 3. Let X fl, V-- H(), V’ H- l(f) and

VtE[O,T], Vu,vV, a(t,u,v)- fuvuVv.
Then, if u L2(0, T; H(f)) f) L(0, T; L2()),

(uEO2) u>_O, -- --Au>_O in 6’(lO, T[ a)

Moreover,
u

u- u(0+) dxo + -O7 au,

where dxo is the Lebesgue measure induced on {0} and u(0+)--esslimt_.o u(t) in
L2().

More examples are given in [8].

2. The main result. Let us first recall the usual definition of the parabolic capacity
associated with the operators A(t).

For any open set of Q, we consider

o)0= (uO; u_> a.e. on ).

Then, if )o is not empty, it has a smallest element u,0 called the capacitary potential of
(see [8], [10] for a proof).
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DEFINITION 2. For any open set o C Q, we set

Co()_ffQdU,+

if @ =/=

if @-- .’
For any E C Q, we define:

capacity of E- co(E) inf Co(O).
toD E
open

Now let us define two different capacities. For that we denote by A the space
L(0, T; L2(X)) with the norm:

Ilull -Ilull+ sup ess lu(t)l.
t(O,T)

DEFINITIONS 3 AND 4. For any open set o C Q, we set:

Cl(o)-inf(llull; uO, u_>l a.e. on

c(o)-inf{llvl[; v*, v_>l a.e. on

For any E C Q, we define:

cI(E )- inf CI(),
toE

to open

c2(E)- inf c2(o).
toDE

to open

Then, we have the main result.
THEOREM 1. There exist a, b>0 such that, for any E C Q:
(i) a.co(E)<_[c(E)]E<_b.co(E),
(ii) a.co(E)<_[CE(E)]E<_b.co(E).
Remarks. According to this result, to estimate the parabolic capacity of a set E,

one can
(i) find u 62 with u >_ on a neighborhood of E and compute the A-norm of u, or
(ii) find v with v_> on a neighborhood of E and compute the ef-norm of v.
Note that the definition of c1(- ) still involves 62 and hence the operators A(t), but

it uses the Hilbert norms of ef and L2(X) instead of an "Ll-norm as in the definition
of c0(t).

The interest of the definition of c2(.) is that it only involves the topology of the
Hilbert space and does not depend on the operators A(t).

Recall that o- A; so the topology of A is weaker than the topology of 2If. But it
is also sufficient to estimate the capacity of a set if one uses elements of .

If Cl(. ) and c2(. ) are not generally "strong" capacities, they are however "weak"
capacities. Namely"

PROPOSITION 2. (i) For i--0, 1,2:
(a) E E2 ci(E ) < ci(E2).
(b) For any nondecreasing sequence (E) ofsubsets of Q

ci( [.,I E)- supci(E).
n n
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(c) For any nonincreasing sequence (Kn) of compacts of Q

Ci( 0 Kn)--innfci(Kn)"
(iJ) (strong subadditivity). For all E,E2 C Q,

Co(e,

(iii) ("weak" subadditivity). For i= 1,2, for all El, E2 C Q,

c,( e, ) <_c,( e, ) + ).

The properties of Co(’) have already been studied in [8] (or [10]); we shall not
reproduce the proofs here.

Only the property (b) is difficult for Cl(- ) and c2(. ). It will result from important
properties of the spaces @ and 21Y that will also be used to prove the part (ii) of
Theorem 1. But let us begin by the proof of (i) in Theorem which is fairly easy.

Proof of (i) in Theorem 1. It is sufficient to prove it for any open set ta c Q.
Let us prove that, if o, =/= ,

(9) Ilu[l-<(2/-I ) c(’)"a

In order to compute, we need to approximate u, by more "regular" potentials.
This is the purpose of the [8, Thm. I-1] (see also [9]) which says that the solution of:

ux )(10) ux21Y, ux(0)-u,o(0), ux+X--i-+Aux-uo, (X>0)

satisfies

ux6), ux <-u,o, fo.dux <- fo_duo,
and converges in L2(0, T; L2(X)) and weakly in to u, when 0+. But for any
t(O,T)

2jot fot()uh )a(ux,ux)-- --d-t-+Aux’ux +(ux(0)’ ux(0))"

Since 0<ux _<u,-< 1, the right-hand side (which is formally equal to

f[o,tlxxuxdux) is less than fodux (see [8, Prop. 1-3]). Hence, for any X, by (6)

2

lux(t)[2, [[uxl[r<- dux<-Co().

Letting h go to 0 gives (9) and the second inequality of (i) with b- 2 + -.
For the first inequality, let ta c Q open and uff with u_> a.e. on ta. For any

compact KC o, there exists E(Q)f3 621+ equal to on K and with support in ta (see
[8, Lemma 11-2]). Then, if ur is the capacitary potential of K, ur is carried by K (see
[8], [10]). Therefore,

(11) co(K)- fo.dur<-fQdui.
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Now, if ux is the solution of (10), where u‘o is replaced by ur, since Oux/Ot +Aux_>O
and q_< u, we have

So ( )au- (+(o), u(O)) + +Au,

)+Aux,u
Using u , we obtn:

fo+a.(u(O),u(o))+(.(r),.(r))+ q(u,u)+a(u,u).
When X goes to 0+, ux converges to u in the sense of measure. Hence, using (1 1), we
have

(12)
T

co(K)<-lu(O)llu,<(O)l+lu(r)llu,<(r)l+ a(u,ur)+a(ur,u).

But if 62,o 4 there exists a nondecreasing sequence of compacts K C0 such that
co(Kn) converges to Co(W ) and ur, weakly converges to u‘o in C(see, for instance, [8,
Prop. 11-4]). Then, passing to the limit in (12), we obtain that there exists c depending
only on M (see (5)) such that:

Co( < ) <-cllull<lluo>ll.
This together with (9) completes the proof of (i) in Theorem 1.

Proof of (ii) in Theorem 1. It is a direct consequence of the part (i) and the
following proposition.

PROPOSITION 3. There exists k>0 such that
(i) /u 62, 3 v 6N with

v>_u, Ilvll<_kllull.
(ii) Vv 2ff, 3u2 with

u>-v+, Ilull
Proof of Proposition 3. For (i), given u 62, we consider the solution v of

(13) v2tf, v(T)-u(T-), t +A*(t)v-A*(t)u+A(t)u.

By well-known results about these linear parabolic equations (see Lions-Magenes [5]),
such a solution exists in 2If and there exists a constant c depending only on A(t) such
that

Ilvll_< [lu(r)l_ + lira(t)ull, + IIA(t) ull<,]
That is

Ilvll-<kllull,
where k depends only on A(t). Moreover, we formally have:

0 igu
+A(t)u>OOt (v-u)+A*(t)(v-u)- - (since u 62 ).
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Since (v u)(T) 0, by the maximum principle, v _> u. This formal computation can be
justified in the following way. Given fL2(O,T;L2(X)), f>--O, let us consider the
solution w of:

Ow
w , w(0) 0, -- +A(t)w--f.

By the maximum principle (see (7)), f_>0w_>0. But

+()w,v -(v(rl,(r)+ -+*(lv,w

This implies

)-,u +a(u,w).

Since w0 and u , the right-hand side is nonnegative. As f is arbitrary, this implies
u.

For (ii), given v ff, we consider

(14) u=inf(w; wv}=inf(w; wv+ }.
Using the results of Mignot-Puel [6], it can be shown (see also [8, Lemma II-1]) that
u and is the lit in L2(0, T; L(X)) and weakly in of the solution u of the
penalized problem

Ouu, u(0)-v(0), +A(t)u--(u-v)e -0 (>0).

But, for any (0, T),
2 [v(0)122+ ta(ue,ue)_ t On )lu(/)[2- +au,u

--fot(-- --E (ue-v)-’ue-v)q-fOt(oue-ot --Aue’v)
_<(.(,()-((o,(o+ --+*v,.

Passing to the limit gives- lu(t)12+-Ilull<-Iu(t)l=lv(t)l=/ -- /h*v Ilull.

Hence, there exists a constant k depending only on A(t) such that:

<-kllvll’llull.
Since u and u_>v+, this completes the proof.

In order to prove Proposition 2, let us introduce for any E C Q:

/v d3+ v- lim v in with v >_ a.e. on a neighborhood of E /
n--, o

/ u o; :i u o with u-lim un in cV, lim sup ull-< nil },
n

u(T)- lim (un(T) in L2(X) and Un>-- on a neighborhood of E}.
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If E--to is an open set, we immediately have:

621,o- (v 021;+. v> 1 a.e on to} 0),0- (uO). u> a.e. on to)

Moreover, we verify that, for any E C Q:

c(E)--inf(llu[lA; uge}, cu(E)-inf(llvll;
Remark that ’e is a closed convex set in 21;. Hence, if ve is the projection of 0 on 2ffe
in a Hilbert space lf, then c2(E)= vEIl .

LEMMA 1. For any nondecreasing sequence ( E.) ofsubsets of Q:
(i) Cl.-/Lfe =2lYu s,

(ii) C19e.
To prove Lemma 1, we will need the following consequence of Proposition 3.
LEMMA 2. There exists k>0 such that, for any v 21;, there exists w 21Y with

that

w lvl, Ilwll  kllvil s.
Proof of Lemma 2. Let v -t f, by (ii) in Proposition 3, there exist u 1, u 2o such

Now by (i) of the same proposition, there exists w 2ff with

w>_u, /u2, ilwll<_kllUl /u2IIA.
Then, w_>v+ +v- -Iv and satisfied

Remark. As a consequence of (7), if v V, then v+, v- and Ivl also belong to V
and the norm of Ivl in V can be estimated in terms of the norm of v.

But there is no such estimate in (see L. Tartar’s remark in the appendix).
However Lemma 2 will be sufficient for our purpose.

Proof of Lemma 1. Let E- U.E.; the inclusions 2lYe C CI. 621;e., e c CI.%. are
obvious.

Let v f’). Ye.; then there exists v.
and IIv-v. ll_<2-". The series ,(v.+-v.) is converging in 2If. By Lemma 2, there
exists w. with

-v.l, IIw ll <-kllv./ -v.ll .
Hence the series Eo Wn converges in

Now set g. v. +E wg. If k>n
k--I k--I

g.>_v.+ wj>-Vn+ (Vj+l-V1)-vg>--I a.e. on tog.
n n

Hence, g._> almost everywhere on kJ.+,tok which is a neighborhood of E and
v limg. in 621f. Therefore v 2ffe.

Now let u Cl.e.; then there exists u. o) such that Ilu-u. llr+lu(T)-u.(T)12
_< _l. and Un>-- on a neighborhood to. of E.. For any k>0, we consider the solution of

v, -W +A*4 -u,+X(Au,+A*u,).
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Then, by [8, Lemma IV-1I, vX>-u,,. (Remark that formally
A*(vX-u,,))-X(t +Au,,)>_O.) Moreover, for X fixed, Vnx converges in to the solu-
tion of

Indeed,

vX21f, vX(T)-u(T), vX
A*vx) A*vX+X --b--+ -u+X(4u+ u)

IIv Ilu - nile+ lu(T ) u(T )12).
Since vX>_un >_ on wn, as in the proof of Lemma 2, for any X>0, we can construct

gX 0- converging in to vx with gX_> on a neighborhood of E. Let us choose
gx- gXx such that II gx-vx II -<,.

By Proposition 3, there exists uxo with ux>_gx-vX and
k,. Moreover, by the results in [8, [}IV], there exists a convex combination of the vx

(still denoted by vx) such that:
vx converges to u in ,
limx_, vx A-- u A,

if X-- inf(u o; u_>vx }, x-- vX converges to 0 in A.
Then ux +xo, ux+ x_>gx_> on a neighborhood of E, ux+x converges to u

in , ux(T)+ftx(T) converges to u(T) in L2(X) and limx_0 ux+x A--Ilull A" Hence
U .6"E

Proof of Proposition 2. The properties of c0(.) are shown in [8]. The part (a) of (i) is
obvious. The point (b) is a direct consequence of Lemma 1.

For (c), remark that, for i- 1,2,

ci( (’)Kn)<- infci(K).
n

Now, for e>0, there exists a neighborhood of K= fqK such that

c,( ,,) <_c,(K ) + e, c2( ,,) <_c2(K ) + e.

But as Kn is a sequence of compacts decreasing to K, for n large enough, K C oe.
Hence

inf ci(K,)<_ci(K)<_ci()<_ci(K) + e.
n

For (iii), we use the subadditivity of I1" and I1" A.

3. Application. We proved in [8] that the elements of are quasicontinuous. We
will give here a more direct proof using essentially the equivalent definition of the
capacity given by Theorem in terms of the d-norm, together with Lemma 2. (See also
[7] for abstract "elliptic" results of this kind.)

We recall that, given a capacity c(.) on Q:
DEFINITION. A function v" Q is said to be quasicontinuous if there exists a

nonincreasing sequence of open set o c Q with
(i) lim_, oo c(%)- 0,
(ii) the restriction of v to the complement of % is continuous for all n.
Remark. This definition is clearly invariant when one replaces c(. ) by an "equiva-

lent" capacity d(.), that is a capacity satisfying for some a>0

:ia,b>O, EcQ, a.c(E)<-[.(E)]<-b.c(E).
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Hence, the notion of quasicontinuity is the same for our capacities c0(-), c1(-) and

THEOREM 2. Any element v of ff has a unique quasicontinuous representation .
Remark. "Unique" means here that, if t3 is quasicontinuous and satisfies 3-t3

almost everywhere, then 3-t quasieverywhere (i.e., everywhere except on a set of zero
capacity).

Proof of Theorem 2. Let vl’; by density of (()f)L in L, there exist
v LN(() converging to v with

Let
n--1

IOn- (zQ; ]V+l(Z)-v(z)l>2-n) and p- [...) .
n>_p

By Lemma 2, there exists w glf with

Wn>--IVn/ --%1, Ilwnll <-k live/ v ll .
Hence

c2(IOn)<C2((zO; Wn(Z)>2-"))<__2nllw,ll.
This proves that limp_. c2(p)- 0. But, for any p"

[vn+l(Z)-Vn(Z)l<_2 Vzqp, n>_p.

Hence, v converges uniformly on the complement of each p. The limit 6 is defined
quasieverywhere (everywhere except on f-)

p fp which is of zero capacity), t is quasicon-
tinuous and 6-v almost everywhere.

For the uniqueness, let us consider 3 quasicontinuous with t-3 almost everywhere
and IOn a sequence of open sets associated with -3 (see the definition above). Then,
An- (z Q; t-t3<0} t_j IOn is open for any n. Since (z Q; 3-3<0) is of measure 0,
-A.- 6lf,. for all n. Hence

c2(zQ; t-t3<0}_< lim c(A,)- lim c2(IO,)-0.
n-- oo n-- oo

Remark. The above property of the elements of ff is a fundamental tool in the
study of the structure of parabolic potentials as well as in the resolution of associated
variational inequalities (see [9]).

Appendix (Communication of L. Tartar) (see Lemma 2).
PROPOSITION. Given f a regular bounded set of R N, for 621f-(v

L2(0, T; no(f))" Ov (W L2(0, T; H- ))} there does not exist any (continuous) function
C[ ]" O, ) O, c) such that

- lvl  c[llvll ].
L2(0, T; H- )

Proof. Let aGH() and fn WI’2(0, 1) with fn_>0, fll =(0,)- 1, fn converges in
LZ(O, 1) to 0 when n goes to . (Take for instancefn(t)--[1 + sinnrt] with X- v-/r).

Now, applying (15) to vn(t)=f(t)a, since Ivl-flal, one would have
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That is,

lal C[
This is not true. (If 2- (0, r) take, for instance, a,,(x)-n sin nx.)
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THE RIEMANN PROBLEM IN TWO SPACE DIMENSIONS
FOR A SINGLE CONSERVATION LAW*

DAVID H. WAGNER"
Abstract. Solutions are given for the partial differential equation O/Otu(t,x,y)+O/Oxf(u(t,x,y))+

O/Oyg(u(t,x,y))=O, with initial data constant in each quadrant of the (x,y) plane. This problem gener-
alizes the Riemann problem for equations in one space dimension. Although existence and uniqueness of
solutions are known, little is known concerning the qualitative behavior of solutions.

Whenf and g are convex and f=--g, then our solutions satisfy the uniqueness, or entropy condition given
by Kruzkov and Vol’pert. Under certain extra conditions on f and g, our solutions satisfy the entropy
condition if f and g are convex and sufficiently close. A counterexample is given to show the necessity of
these extra conditions on f and g. The correct entropy solution for this counterexample exhibits new and
interesting phenomena.

1. Introduction. Let f and g be given real functions satisfying f" >0 and g" >0.
Consider the initial value problem

0 u(t x,y)+ 0 ( (
____

( ((1.1) a- -xf"u’t’x’Y" +’dy g’u’t’x’y’’-O’
u forx>0, y>0,

u forx<0, y>0,
(1.2) u(O,x,y)--u3 for x<0, y<0,

u4 forx>0, y<0.

This is a Riemann problem in two space variables. It generalizes the Riemann problem
in one space variable, the study of which has been a key to the understanding of
solutions to systems of nonlinear hyperbolic conservation laws in one space variable [2].

Global existence of weak solutions to (1.1) with more general initial data than
(1.2) was first proved by Conway and Smoller [1]. Later Vol’pert [9] and Kruzkov [6]
proved existence and uniqueness of weak solutions satisfying an entropy condition, in
the class of bounded measurable functions.

No similar advances have been made concerning systems of nonlinear hyperbolic
conservation laws in two or more space variables; it may be that study of the Riemann
problem for these systems will yield a breakthrough. In this paper we begin an attack
on this problem by finding explicit entropy solutions to (1.1), (1.2) for a large class of
pairs (f, g), in the case of a scalar conservation law.

We should mention that Guckenheimer [5] and Val’ka [8] have studied examples of
(1.1) with piecewise constant initial data, in configurations different from (1.2).

DEFINITION 1.1. A bounded, measurable function u: R + X R2- is said to be a
weak solution to the initial value problem consisting of (1.1) with initial data u(O,x,y)

Uo(x,y ) if

o o(1.3)
+

u -,+f u ) -x ,+g u ) -y , dx dy dt O

for every test function C0(R / X 2), and if u(t,., u0 in Loc as 0.
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DEFINITION 1.2. (Vol’pert [8], Kruzkov [6]). A weak solution u, to (1.1), is said to
satisfy the entropy condition if for any real constant k and any C(@ + @ 2) such
that _>0,

fafa+ 2sign(u-k) (u-k) -O+(f(u)-f(k)) -x
(1.4)

+(g(u)-g(k)) -y, dxdydt>_O.

We shall construct weak solutions to (1.1), (1.2) which are valid for any choice of
the constants u, u2, u, and u4. It is conceivable that this construction may fail to
produce a well defined function if f and g are not sufficiently close to each other. The
degree of closeness that is sufficient may depend on the choice of f and g; therefore, in
order to be rigorous we will state and prove our theorems in terms of the distance from
f and g to a given reference function h. Thus we consider the pair (f, g) as a perturba-
tion from the pair (h,h). Of course, our theorems will cover the case where f is held
fixed and g is perturbed away from f.

The form of our solution to (1.1), (1.2) varies with different orderings of the
constants u. Thus there are twenty-four cases to be considered. Fortunately, these
twenty-four cases can be reduced, via geometrical reflections and inversions, to eight.
We will however, consider each of the twenty-four cases and identify the reductions.

We shall show that our construction produces a well defined function which
satisfies the entropy condition, if f= g, and f" >0; see Theorem 1. We will also show in
Theorem 2, that under certain ordering conditions on u 1, u., u and u4, we have that
for every function h such that h">0, there exists e>0 such that f-hllc2<e and
IIg,-hllc2<e imply that our construction produces a well defined function which
satisfies the entropy condition. In Theorem 3 we shall show that if the ordering
conditions of Theorem 2 are not satisfied, then, provided f"--g" and f’"--g’" at
certain points w to be specified later, for every h such that h">0, and h"--f" and
h’" -f’" at all of the points w, there exists e>0 such that f- h c,<e and g- h c,<e
imply that our construction produces a well defined function which satisfies the en-
tropy condition.

Finally, an example will be given where f’" 4 g’" at the point w of Theorem 3, and
where our constructed solution, although it is a weak solution, does not satisfy the
entropy condition. In this example f and g may be arbitrarily close, and the initial data
may be arbitrarily small. We will also give the correct entropy solution for this example.

One system of equations containing a scalar conservation law is that describing
two-phase, two-dimensional immiscible flow in porous media, where gravity, capillary
pressure, molecular diffusion, compressibility, as well as spatial variations in porosity,
depth and viscosity, have been neglected (see [3], [4], [7]):

(1.5)

(1.6)

(1.7)

as. o +o__-’-bx(vlf(S)) by (v2f(S))-O’

--(I)1,1)2)-- k(S ) Vp,

X7 v- source terms.

In [3], [4], f(S)--s2/k(S) was used. Although one may imagine that our solutions
are thus special entropy solutions of this system with XTp constant, (1.7) prevents this.
However some of our solutions, Cases 9 and 19, exhibit shock waves meeting at an
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acute angle, or in a cusp, similar to the fingering behavior which is of interest in oil
recovery problems, and for which (1.5)-(1.7) is a model.

2. Construction of the solutions. We shall see that our constructed solutions are
piecewise smooth, having discontinuity sets consisting almost everywhere with respect
to two-dimensional Hausdorff measure, of smooth surfaces. In this context, Definition
1.2 implies two conditions, given below, on the discontinuities of a solution. These can
easily be derived via localization and integration by parts and appropriate choices of
the constant k.

Condition 2.1 (the Rankine-Hugoniot condition). At any point p on a surface of
discontinuity S of the solution u, if

(a) n is a unit normal vector to S at p,
(b) u+-lime-0+ u(p+en),
(c) u--lime0+ u(p-en),

then

(2.11 n. (u+-u-,f(u+)-f(u-),g(u+)-g(u-))-O.

Condition 2.2 (the entropy condition). Orient n so that u+>_u-. If k is any
constant such that u- <k<_u+ then

(2.2) n-(k-u+,f(k)-f(u+),g(k)-g(u+))>_O.

Using (2.1) one may check that (2.2) is equivalent to

(2.3) n. (k-u-,f(k)-f(u-),g(k)-g(u-))>_O.

One may further check that if a function u is a piecewise classical solution, except for
smooth surfaces of discontinuity where Conditions 2.1 and 2.2 hold, then u is a weak
solution satisfying the entropy condition.

Let us consider one-dimensional shock waves and rarefaction waves, as they arise
in the two-dimensional Riemann problem.

(a) The one-dimensional shock wave. If the initial data is

U if x<0,
(2.4) u(O,x,y)-

u2 if x>0,

and u > u2 then the problem really has only one space dimension:

if x<O,
(2.5t UtAf-f(U)x--O, u(O,x)--

U2 ifx>O.

In this case the solution is well known:

(2.6) u(t,x,y)-u(t,x)--

f(ul)--f(u2)
u if x_< t,

U U2

f(Ul)--f(u2)
u2 if x_> t.

U U2

This solution has a discontinuity, called a "shock wave", along the plane

f(ul)--f(u_)(2.7) x t.
U U2
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We will refer to this shock wave as SX[ul,u2] for "shock in the x direction connecting
u to u2." The shock wave in the y direction obtained by interchanging x with y and f
with g above we will call SY[u 1, u2].

(b) The one-dimensional rarefaction wave. If the initial data is

u(O,x,y)-u if x<0,
(2.8)

u2 if x>0,

and u <u_, then the problem again reduces to (2.5), and its solution is well known:

U if x<f’(u)t,
(2.9) u(t,x,y)-u(t,x)- u2 ifx>f’(u)t,

s if x-g’(s)t, u<-s<-u2.

The part of this solution between x=f’(u)t and x--f’(u2) is called a "rarefaction
wave". We will refer to this particular rarefaction wave as RX[ul,u2] for "rarefaction
in the x-direction, connecting Ul to Uz."

Note that the solution described in (a) is a weak solution to (b), since it satisfies
Condition 2.1. However, it does not satisfy the entropy condition since u <u, and f is
assumed to be convex.

The interaction ofRX with SY. Let the initial data be as in (1.2), with u -u2- u
w, and u4-v, and v>w. Then for bounded t, and sufficiently large x, the solution
looks locally like SY[v, w], due to the principle of finite domain of dependence, which
was shown to hold in this context by Vol’pert [9] and Kruzkov [6]. For y sufficiently
negative, the solution looks locally like RX[w, v]. Since a solution is invariant under
dilations (t,x,y)(ct, cx, cy) for c>0 whenever the initial data u(O,x,y) is invariant
under dilations (x,y)(cx, cy), we may describe a solution completely by describing it
along the plane t= 1. The solution is constant on rays through the (t,x,y) origin.

SY[v,w]

X

RX[w,v]

FiG. 1. Interaction of RX with SY.

Thus our current knowledge of the solution to this problem may be described by
Fig. 1. In Fig. 1, the horizontal line labelled SY[v, w] indicates the plane of that shock
wave, and the vertical lines labelled RX[w, v] indicate planes along which the solution u
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is constant, thereby depicting a rarefaction wave. The space labelled ? is filled in as
follows. The RX region meets the region where u--w along a smooth surface of
discontinuity S, having equations x =f’(s)t, y--3’(s)t, parametrized by s, for w<_s<_ v.
The unknown function 3’ is determined by the jump conditions, as follows.

First we,describe the normal vector n--(n t, nx, ny), to the shock surface S in terms
off and 3’. To do this, we need two tangent vectors to the surface x=f’(s)t,y=3"(s)t.

Holding s fixed, we have dx--f’(s)dt, dy=3"(s)dt. Holding fixed, we have
dx--f"(s)tds, dy=3"(s)tds. Thus we have two tangent vectors, v=(1,f’(s),3"(s)),
vz --(0,f"(s), 3"(s)). Then

(2.10) i1- v2-- (--f"(s)3’(s) +f’(s)3"(s ), --3"(s),f"(s)).
Keeping in mind that in RX[w,v], u-s on the plane x--f’(s)t for y<3"(s)t, the

Rankine-Hugoniot condition gives us

(2.11) (w-s)(f’(s)3"(s)-f"(s)3’(s))+(f(+fw,!-f(s))(-3"(s))(s)(g(w)-g(s))-O.
This equation is a first order, linear, scalar differential equation for the unknown

function y:

g(w)-g(s)-v(s)(w-s)
(2.12) 3"(s)=f"(s) f(w)-f(s)-f’(s)(w-s)"

Note that the denominator in the right-hand side of (2.12) is always positive for
w =/= s, sincef" > 0.

The shock surface S should be a smooth continuation of the planar shock wave
SY[v,w] through the rarefaction wave RX[w,v]. Therefore these two surfaces should
meet along a common line at the right edge of RX[w, v]. This yields the following,
initial condition for 3"

(2.13) y(v)- g(v)-g(w).

SY[v,w]

FIG. 2. The shock surface F v, w ].
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Since (2.12) is linear, it is thus explicitly solvable. The following formula for 3’ can
be obtained from the usual one by an integration by parts:

y(s)-g(s)-g(w)
(2.14)

exp f(w)-f(z)-f’(z)(w--z) dz) g(w)-g(r)-g’(r)(w-r)
dr.

Note that for w<s<v, we have /(s)>(g(s)-g(w))/(s-w); hence, using (2.12),
we have V’(s)>0. Therefore, as s decreases to w, ,(s) approaches some finite limit,
which is greater than or equal to g’(w). In fact this limit is g’(w), as we shall see in 3.

We shall refer to the shock surface S as F[ v, w]. See Fig. 2. This shock surface will
occur in solutions to the Riemann problem, and usually in truncated form, denoted
here F[v, w: p l, namely the portion of F[v, w] corresponding to values of s greater than
some number p and less than v. Reflecting F[v, w] across the line x--y by interchang-
ing x with y and fwith g, we obtain a similar shock wave, denoted FR[ v, w].

Note that, given any solution u to (1.1), with initial data Uo(x,y ), the function fi
given by (t, x,y) u( t, x, -y) is a solution to

with initial data fi(0, x,y) Uo(-X, -y). Thus, if u(t,x,y)--F(t,x,y,f,g, Ul,U2,U3,U4)
is a formula giving the solution to the Riemann problem in terms of f, g, and the initial
data constants u,...,u4 for a given ordering of these constants, then the solution for
the case given by interchanging u with u and u2 width u4 in the given ordering, and
then reversing the order, is u(t,x,y)= -F(t,-x,-y,f,,-u3, -u4,-u,-u2), where
f(s)=f(-s). Thus, for example, the solution for the case u <u2<u <u4 determines
the solution for the case u3>u4>u >u2. We call this procedure "inversion."

If we apply the inversion process to F[ v, w], we get an inverted F-shock, which we
shall call FI[v, w]. See Fig. 3. We call the reflection of FI[v, w] across the line y--x,
FIR[v,w].

SY[w,v]

Y

RX[ v w

FI[v,w]
x

FIG. 3. The shock surface FI[ v, w ].
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We are now ready to discuss the Riemann problem.
The formula for the solution to the Riemann problem is different for different

orderings of the initial data constants u, u2, u and u4. This indicates that twenty-four
cases must be considered; however reflections, inversions, and reflected inversions of
cases previously discussed will only be indicated as such, and will not be discussed in
detail. This reduces the number of cases to be discussed, to eight. The formula to be
given consists of a picture for each case, with labels such as RX[u,u2], SY[u2,u3] and
F[u,u2] given to parts of the picture. The interested reader may then refer to the
formula given earlier in this chapter for each of these phenomena.

U2

SY[u3,u2]

u3

RX[u3,u4]

SY[u4,ul]

x

u4

FIG. 4. The case u <u2<u3<u4.

Case 1. u <U2<U3<U4 At t- the solution looks like Fig. 4. In this case we have
two shock waves extending from the intersection of SY[u3,u2] and SX[u2,u] to the
point P, and from the line x --f’(u3)t, y 3’(u3)t to P. The following theorem concern-
ing these shock waves is due to Guckenheimer [5].

THEOREM. a shock surface between two constant states a,b, in a solution to the
Riemann problem lies in a plane which passes through the line

(2.15) x_f(a)-f(b) y_g(a)-g(b) t.
a-b a-b

Thus the two shock waves extending to P are planar. We shall call these shock
waves "q’-shocks."

Now from (2.15) we deduce that P has coordinates

f(u3)-f(u) g(u3)-g(u,) )U3--Ul U3--Ul

Note that since U <U2 <U3, we have

(2.16) f(u2)-f(ul) <f(u3)-f(ul) <f’(u3)
U2U U3U

these are the x-coordinates of SX[u2, u 1], P, and the left edge of RX[u3, U4] respec-
tively. Thus both q’-shocks may be parameterized by s and with the equations
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x=f’(s)t and y=q(s)t. In case u --u2 or u2-u then either the left or right t’-shock,
respectively, is not present, because both end points of that particular shock are
identical.

Using the method by which (2.12) was derived, one may derive the following
differential equation for q:

(2 17) /’(s)=f"(s)
g(ul)-g(u3)-/(s)(ul-u3)
f( u, ) -f( u ) -f’(s )( u,- u )"

Note, from Fig. 4, that the right ,t’-shock meets the left endpoint of the r[u4,ul: u3]
shock wave continuously, so that (U3)--’t(U3). Comparing (2.17) with (2.12), we see
that q’(u3) 3"(u3). Thus the F-shock meets the ,t,-shock with first-order smoothness.
We may also deduce that for any point (f’(v), 3’(v)) on the F[ u4, u l] shock at t= 1, the
tangent line to the curve x=f’(s), y= y(s) passes through the point P given by

(2.18)
I)--Ul I)--Ul

One may also deduce this by rewriting (2.12)"
g(ui)--g(s)

ay_ u,-.
(2.19) dx f"(s) f(ul)-f(s )

U --S

Case 2. u <U4<U <U2. This is the reflection across the line y-x of Case 1.
Case 3. U3>Ua>Ul >U2. This is the inversion of Case 1.
Case 4. u3>u2>u >u4. This is the reflected inversion of Case 1.
Case 5. u2<u <U3<U4. At t- the solution looks like Fig. 5.

U2

SY[u3,u4]

U3

RX[u_ ui]

FI u2,u3: Ul]

F[ U4 U 1" U31
\ SY[u4, u

U4

RX[u3,u4]

FIG. 5. The case u < u < R u

Note that the right edge of RX[u2,ul] has equation x=f’(ul)t. Since f">0 and
ul<u3, f’(ul)<f’(u3); furthermore, x=f’(u3)t is the equation for the left edge of
RX[u3,u4]. Thus RX[u2, ul] lies completely to the left of RX[u3,u4] in this case. The
point P has the same coordinates as in Case 1.
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Case 6. U4<UI<U3<U2 This is the reflection of Case 5. Note that Cases 5 and 6
are invariant under inversion.

Case 7. u2<u3<u <u4. At t-1 the solution looks like Fig. 6. In this case, since
u3<u, and f">0, we have that f’(u3)<f’(ul); hence RX[u2,u] overlaps RY[u3,u4].
Also the shock waves r[ua, u] and FI[u2,u3] are not truncated in this case. The point
O has coordinates (f’(u),g’(u)), and O2-(ff(u3),g’(u3)).

RS[u2,ul]

S!3)’
-,

RX[u3,u4]

Ul
Ul

FIG. 6. The case U2U3UlU4

Case 8. u4<u3<u <u2. This is the reflection of Case 7. Note that Cases 7 and 8
are invariant under inversion.

Case 9. u <U3<U2<U4 At t- the solution looks like Fig. 7. The point P has the
same coordinates as before.

Case 10. u <u3 <Ua<Uz. This is the reflection of Case 9.

U

SS[u2, ul]

RY[u3, u2]

Ul

FR[u2,uI:U3]

UI:U3]

!..._ SY[u4’utl

P

FIG. 7. The case u <U3<U2<U4
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Case 11. u3>u >u4>u2. This is the inversion of Case 9.
Case 12. u3>u >u2>u4. This is the reflected inversion of Case 9.
Case 13. u <u2<u4<u3. At t- the solution looks like Fig. 8.

SX[u2,u]

U2

SY[u3,u2]

u3

SY[u4, ul]

u4

SX[u3,u4]

FIG. 8. The case u <u2<u4<u3

Case 14. u <U4<U2<U3. This is the reflection, and also the inversion, of Case 13.
Case 15. U2<U3<Ua<Ul At t--1 the solution looks like Fig. 9. Here Q has

coordinates (f’(u3), g’(u3)). Between the points C (f’(u4), gt(u4)) and C2
(f’(u), g’(u )), the rarefaction waves RX[u4, u] and RY[u4, u] meet along the surface
A, which may be described by the equations x--f’(s)t and y--g’(s)t, for u4 <s<ul and
t>0. The plane sections where u-- s in each wave meet along the line x=f’(s)t,y= g’(s)t.
Thus the solution is continuous, though not differentiable, along this surface. One may
check that the entropy condition is satisfied near A.

U2

SY[u3,u2]

u3
[’I[u2,u3]

Y

RX[u2ul]

Ul

C

.u4 - x

RX[u3,u4]

FIG. 9. The case u2<u3<u,<u
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Case 16. u4<U <U2<U1. This is the reflection of Case 15.
Case 17. Ua>U >u2>u3. This is the inversion of Case 15.
Case 18. u2>u >Ua>U3. This the reflected inversion of Case 15.
Case 19. U2<Ua<U3<U1. At t-- the solution looks like Fig. 10.

U2

SY[u3,u2]

u3

RX[u2,u

I’I[U2,U3] /,./
’IR[u4, u3]

Ul

C RY[u4, ul]

u4

FIG. 10. The case u2<u4u3<ul

Case 20. U4<U2<U3<Ul This is the reflection of Case 19.
Case 21. Ua>U2>U >u3. This is the inversion of Case 19.
Case 22. u2>ua>U >u3. This is the reflected inversion of Case 19.
Case 23. U3<U2<Ua<Ul At t= the solution looks like Fig. 11. Here Q1 has

coordinates (f’(u3),g’(u3)). Also Q2--(f’(u2),g’(u2)), O3--(f’(u4),g’(u4)), 04--
(f’(Ul),g’(Ul)).

u2

RY[u3,u2]

RXI

Y

RY[u4,u]

u3 t/4]

u4

FIG. 11. The case u3<u2<u4<ul

Case 24. u <U4<U2<Ul This is the reflection of Case 23. Note that Case 23 and
24 are invariant under inversion. Also note that Cases 23 and 24 are the only cases with
continuous solutions.
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3. Verification of the entropy condition. We will now prove three theorems show-
ing that under certain conditions, our solutions are single valued and satisfy the
entropy condition. Theorem treats the case where=g and is convex. It is easily seen
that this also includes the case f"= cg". Theorems 2 and 3 concern perturbations away
from this case.

THEOREM 1. If f g, then the constructions in 2 for Cases 1-24 define functions,
and these functions satisfy the entropy condition.

Remark. In Cases 9-12 and 19-22 it is conceivable that our solution may fail to be
single valued due to overlapping F shocks, as illustrated in Fig. 12. Therefore it is
necessary to prove that this does not occur.

U2

U3 U4

FIG. 12. Overlap.

Proof. We need to prove that the entropy condition is satisfied for SX, SY, F, and
I,. However SX and SY are one dimensional shocks and the entropy condition is
known to hold for them. The proof for F[v,w] is as follows: To verify the entropy
condition we .require n, the normal vector to F[ v, w], to be oriented towards the side of
the shock surface where u is larger. In this situation this means that n must "point in"
to the rarefaction wave. Since the rarefaction wave lies in the region y< 3’(s)t, we must
have nyO. Sincef">0, this means we should choose:

(3.1) n= ( f"(s)3"(s)--f’(s)y’(s), 3"(s), --f"(s)).
Thus, we must verify

(3.2) (k- w)( f"( s )3"( s ) f’( s )3"( s )) + ( f( k ) f( w))( 3"( s ) f"( s )) >_0

for all w<k<s<v.
LEMMA 1.1. When f=--g, 3"(s)<f"(s) for s>w.
Proof. Using (2.13), and using the fact that f">0, we have that 3’(v)<f’(v).

Furthermore 3’--f’ is a solution of (2.12). The uniqueness of solutions for s> w implies
that 3"(s)<f’(s) for all s>w. Using (2.12) and (2.13), one notes that 3"(v)=O<f"(v),
and also that 3"(s)=f"(s)impliesf(w)-f(s)-3’(s)(w-s)=f(w)-f(s)-f’(s)(w-s);
this in turn implies that f’(s) 3’(s) when s 4: w. Since 3’(s) <f’(s), we must have that
3"(s)<f"(s) for s>w.
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We now verify (3.2). If the left-hand side of (3.2) is considered as a function F(k),
then one checks using Lemma 1.1 that F"(k)> 0; also F(w) 0. Furthermore, F(s) 0
since in (3.2) one may replace all w’s by s’s, using (2.1). Therefore F(k)>0 for
w<k<s<v; this is (3.2).

The entropy condition for reflected and inverted F[v, w] shock waves may simi-
larly be verified.

It remains to verify the entropy condition for ,I,-shocks. These appear in two
different contexts:

(1) Tangential shocks, that is, xI,-shocks which are tangential to F-shocks. Such a q"

shock has the same normal vector n as does the F-shock at the point of tangency, and
also the same values of u on either side of the shock. Therefore the entropy condition
for a tangential ,I,-shock is equivalent to the entropy condition for the corresponding F
shock at the point of tangency.

(2) Nontangential shocks. One may check, using the ordering of u 1, u 2, u3, and u4,

and the convexity off and g, that the intersection of any nontangential -shock surface
with the plane t- is a line segment with negative slope, as depicted in Figs. 4 and 8.
Furthermore any nontangential xI,-shock is a shock between u and Ul, with u3>u1,

with the region u=ul above, and to the right of the shock. Thus ll=(nt, nx,ny) with n
and r/y negative. The entropy condition becomes

(3.3) (k-u3)nt-+-( f(k)-f(u3))(nx+ny)>-O,
for u3>k>uI. Since nx-q-ny<O, and f is convex, the left side of this inequality has
negative second derivative with respect to k, and by (2.1), is zero when k-u or k-u.
Hence it is positive for values of k between u and u3.

To verify that our solutions are single valued it suffices to show that overlap of
F-shocks does not occur. In the proof of Lemma 1.1 we saw that 3"(s)<f’(s); thus both
F shocks lie on opposite sides of the curve x--f’(s), y-f’(s).

THEOREM 2. Let u, u2, u3, u4 be such that our proposed solution to (1.1), (1.2)
contains no complete F, FR, FI, or FIR shock, that is, let us consider only Cases 1-6,
9-14, 23, and 24 of 2. Let M--maxl<_i<_aUi, and m-rnJn<_i<_aUi. Then for any given

function h such that h">0, there exists e>0 such that whenever f-hllct,,<e, and
g-h C=tm,M< e, our construction for the solution to (1.1), (1.2) in these cases defines a

function, and this function satisfies the entropy condition.
Proof. As noted before, it suffices to prove that in our solution to the perturbed

equation, the entropy condition holds for truncated F-shocks, and for nontangential
q-shocks.

Recall that the entropy condition states that for F[v, w: p] we must have"

(3.4) (k-w)nt+(f(k)-f(w))nx+(g(k)-g(w))ny>_O,
or

(3.5) W(k,s ) ( f"( s )3’( s ) f’( s )3"( s ))( k- w)
+7’(s)(f(k)-f(w)) -f"(s)(g(k) g(w)) _>0,

for all w<_k<_s<_v, and w<p<_s. The function 3’ satisfies the initial value problem
(2.12), (2.13). Since f is convex (for e sufficiently small), and s_>p>w, the denominators
in (2.14), the formula for 3’, are bounded away from zero, and the bound depends only
on h, e, v, w and p. Thus we may conclude that the map (f, g)--, 3’ is continuous from

[ ,v].(f[fC2[p,v],f">O)x{glgC [p,v,] g >0) toC p
Next note that

(3.6) 02W ’( )f" f"(
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and note that W(s, s) W(w, s) 0, by (2.1). Whenfg-h we know by Lemma 1.1
that 7’(s)<f"(s) for p<s<v. Thus 32W/k2<O for w<_k<_s<_v, w<p<s, when
f--= g =h. Moreover, O2W/k2 depends continuously on f and g in the C2 topology on f
and g. Therefore there exists e> 0 such that f- h c < e and g- h c < e imply
2W/k2>O, and it follows that F[v, w:p] satisfies the entropy condition.

Since /(s)<f’(s) whenf=--g=--h, for e sufficiently small we must have V(s)<g’(s);
thus in Case 9-12 the two F-shocks lie on opposite sides of the surface x=f’(s)t,y=
g’(s)t. Thus overlap does not occur for e sufficiently small.

Finally, for nontangential ,I,-shocks we must show"

(3.7) (k- U3)n + ( f(k) --f(u3))nx + (g(k) g(u3))nyO

for u <_k<_u3. Since nx<O and ny<O as we saw in the previous section, and since
f" >0 and g" >0 for e sufficiently small, the left-hand side of (3.7) has negative second
derivative with respect to k, and equals zero when k-u or k-u3. Thus (3.7) holds for
values of k between u and u3.

THEOREM 3. Suppose u l, u2, u3, and u4 are such that our proposed formula for the
solution to (1.1), (1.2), contains some complete F[v,w], FR[v,w], FI[v,w], or FIR[v,w]
shock, that is, let us consider Cases 7, 8 and 15-22; suppose also that f"(w)-g"(w) and
f’"(w)-g’"(w) at all w which occur as above. (Note" w is always either u or u3.) Let rn
and M be as defined in Theorem 2. Then for any given function h such that h">0 and
h"(w)=f"(w), h’"(w)=f"’(w), there exists e>0 such that if II f--hllc4[m,Ml<e,
h llc4[m,M]<e, then our proposed solution is single valued, and it satisfies the entropy
condition.

Proof. The proof consists of several lemmas.
LEMMA 3.1. The map T: C4[v,w] C4[v,w]Cl[v,w], T(f,g)-y, where satis-

fies (2.12), (2.13), is continuous for f">O, g">0. The map Ss(f,g)-(d/ds)T(f,g)(s)-
,’(s ) satisfies

(3.8) I(DSs)(f,g)(P, q)l_< Cls- will(p, q)llf4tv,wl,

for all p,q in C4[v,w] such that p"(w)-q"(w)-p"’(w)-q’"(w)-O, where C>0 does
not depend on p, q, or s.

Proof. From (2.14) we have

v(s)_g(s)-g(w)
S--W

fv (fs f"(z)(w-z)dz g(w)-g(r)-g’(2r)(w-r)drexp
f(w)--f(z)--f’(z)(w--z) (w--r

--(def.) Ts(f,g ).
Clearly T is a continuous and differentiable mapping from (flf C4[w, w], f" >0)
(glgC4[v,w], g">0} to R, for s(w,v]. However, it is necessary to show that
DTf,g) is bounded independent of s, and independent of the choice of (f, g) from a
neighborhood of (h, h).

Define Tw(f,g) to equal g’(w). We prove that s T(f,g) is continuous at w, as
follows: We have

fr f"(z)(w-z)dz ) f g"(O)(O-w)dO"t’(s)- T(f,g)-g(s) g(w)_ exp
s--w f:f"(O)(O-w)dO i-7--7--f: dr.
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Note that

exp fwf,,(O)(O_w)dO

2
exp +

WZ

2ff’"(O)(O-w)ZdO
) :i’"( -)’dO)(w z)(i"()(z w- o)(o w

(s-w)2 exp
(r-w (w-z) f,f"(O)(O-w)dO

Thus

s)_g(s)-g(w)
Stow

v 211f’"ll dz
IIg"ll

)=
dr<(s--w)- exp

3(inf(f")) (r-w

_(s_w)2( SW I)mW 2 3(inf(f"))

and so we see that lims.w’(s)-g’(w); thus s--, T(f,g) is continuous on [v,w]. The
sup norms and infimums used above and henceforth are all taken over[v, w].

Next,

(DTs)f,g)(p,q)
_q(s)--q(w)

SW
exp

fwf,,(O)(O_w)dO
dz

Thus

[(Dr)(/,g)(p,q)[

[ff"(O)(O-w)dO] 2

fw ff q"(o)(o-w)g"(O)(O(r_w)2W) dO+ (r--w
dO dr.

fs ))2( 3(inf(f")) )<llq’ll /
v (s_w 21lf’"ll(v-w)_er,

f"(O)(O-w)dOJ -2
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p"(w)+ p (e)ae (w-z) e -wz,,( )(e

--Lp (O)((O-w)2-(z-w)2)dO dz 11"112
q"(w)(r--w --fwq .O)[(O--w)2--(r--w)2]dO

2 (r_w)g dr.

Since only perturbations fixing f"(w), g"(w), f’"(w), and g’"(w) are considered,
we havep"(w)=q"(w)=p’"(w)=q’"(w)=O. Thus

I(OT)<Z,g>(P,q)l

fs )2
exp (2llf’"ll(v-w))3(inf(f"))-<llq’ll/ (s-w)2

< IIq’ll / exp
3(inf(f"))

’"[l0n( w) In( w))] (s w)2+-llq v- s-

and so we see that II(DTs)(f,g)ll is independent of s, w<s<_v, and also independent of
the choice of (f, g) from a sufficiently small neighborhood of (h,h). Therefore by the
mean value theorem the map (f,g,s),[(s) is locally Lipschitz for each s, with a
Lipschitz constant independent of s. Thus (f,g) is a continuous mapping from
C3[w,v] C3[w,v] C[w, v]. Next,

Ss(f,g)=’’(s )

g’(s)(s-w)-(g(s)-g(w)) g(w)-g(s)-g’(s)(w-s)
) (s w)

exp
fwf,,(O)(O_w)dO fwf"(O)(O-w)dO (r-w)2
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Differentiating with respect to f and g, we have

(DSs)(f,g)(P,q)

(w-s)[P"(s)fwf"(O)(O-w)dO-f"(s)fP"(O)(O-w)dO]
[fSwf"(O)(O-w)de]2

exp
ff"(O)(O-w)dO

dz ) fg"(O)(O-w)dO
(r-w)-

f"(s)(w-s)
ff"(O)(O-w)dO

exp fwf,,(O)(O_w)dO

[(fsr[fwZf’t(O)(O--w)dO] -2
zf"(O z) p (0)(0 w)dO dz(w-z) p"(z) )(O-w)dO-f"(

g"(O)(O
)2
w) dO+ q"(O)(O

)2
w)

dO dr

(w-s) p’"(o)ao f"(o)(o-w)dO+ 2 Swe o)((O-w -(s-w))o

-I.-

[fwf"(O)(O-w)dO] 2

fvS( S--W ) 2 ( fs
r Ji"’t(O)(O--w)2dO

exp
ff,,r--w (w--z) (O)(O-w)dO

f"(s)(w-s)
Sf"(O)(O-w)dO

) ff g"(O)(O-w)dOdz
)(I’W



RIEMANN PROBLEM IN TWO SPACE DIMENSIONS 551

Note that, since p’"(w)- 0,

, to)ao-- . (o)((O-w)-(-w))o.

and

(o)(o-w)’ao= -5 o)((z-w -(O-w))ao.

Thus

(DSs)(y,g)(P,q)

l-(w-s) 0 -w"( )(o

e’"’(ol((-l-(o-lleo "(o(o-eo

fj._,,,., ) ) ( w+f"(s) p tO)(s w (O--w
6 6 2 ((-w)-(O-w))

.fv( )sw 2exp(i fvfttt(O)(O-w)2dO
r--w (w--z) fZwf"(O)(O-w)dO

"(o)(o )w) aOdrdz
(r-w

f"(s)(w-s)
ff"(O)(O-w)dO

2exp
(w-z) f*wf"(O)(O-w)dO

dz

[(fsr(W--z)(fwZf"(O)(O--w)dO) -2

p’"’(O)((z-w)-(O-w))dO "(O)(O-w)dO

+f"(z) p’"’(O) (z-w)3 (O-w

r gtt(O)( 0 )2W) dO
+ q’"’(O)(r w (O--w _(r w)((r_w)_(O_w))6 6 2 dO]dr.
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So

[(DS,)(/,g)(p,q)[

<
llp""llooIlf"lloo (5)I- w[
(inf( f.))

1
I)--W S--W

211f’"ll (v- w) ) IIg"ll
exp

3(inf(f")) 2

IIf"llo is_wlexp( 21lf’"llo(v-w) )+ (in-7,)2 3(inf(f"))

IIp""llllf"llllg’ll. (5) fv2(inf(f"))2 2(
i(r_ w)2 -(s-w)21dW

/’W)2

/v )
IIq’"’ll ](r--w

o" -g (S--W)2dw

Thus II(DSs)(f,g)ll CIs-wl for some C>0, where C depends only on f’"ll o, inf(f"),
g"ll o, and (v, w).

LEMMA 3.2. In a F[v,w] shock, in the case where f----g, 3’"(w)<f’"(w).
Proof. Recall that when f=--g, f’ is a solution to (2.12). Thus 3’(s)--f’(s)+o(s),

where o satisfies

f"(s)(s-w)
fwf"(O)(O-w)dO

Thus

d ln(o(s))(-w) f"(s)(s-w)
ff"(O)(O-w)dO

Note that

f"(s)(s-w)2

lim 2.
s-w fwf"(O)(O-w)dO

Thus one may write

fv ff’"(O)(O-w)2dO(s)-C(s-w)2exp
(z-w) ff"(O)(O-w)dO

One may observe that o has 2 continuous derivatives at w if f has 3 continuous
derivatives, and o"(w)<0 if and only if C<0.

Thus 3""(w)<f’"(w) if and only if 3’<f’. However, 3’(v)-(f(v)-f(w))/(v-w)<
f’(v) sincef" < 0.

We can now prove that for sufficiently small e, f- h c’< e and g- h c4< e,
together with the hypotheses of Theorem 3, imply that overlap does not occur. It
suffices to show that for e sufficiently small, 3’(s) <f’(s), w<s_< v. From this it follows
that the line y x separates the two F-shocks in Cases 19 through 22.
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Since when f=g h, 3’(s) <f’(s) for w<s_< v, and since 3’ depends continuously
on f and g, we have that for any 8>0 there exists e>0 such that f-h C4<e and
g-hllc4<e imply 3"(s)<f’(s) for w+<_s<_v. For s near w, andf=--g---h,

f"(s ) -3"(s)-- ( f"’( w) -3’"( w))(s- w) + o(s-- w).
Since by Lemma 3.2 f’"(w) 3’"(w)> 0, for i sufficiently small we have

U"(s)-3"(s) > Co(s-w )
for some C0>0 and for w<_s<_6. By Lemma 3.1 and the mean value theorem, for
f- h c’< and g- h c’< e

f"(s)-3"(s)>(Co-eC)(s-w )
for w<_s<8. For e sufficiently small C0-eC>0, and hence f"(s)>3"(s) for w<s<_8.
Since 3"(w)--f’(w), the result follows.

To finish the proof of Theorem 3, it must be shown that

W( k,s ) ( f"( s )3"( s ) f’( s )3"( s ))( k- w )

+3"(s)( f(k)-f(w)) -f"(s)(g(k)-g(w)) >-0,
for all k,s,w<_k<_s<_v. Recall that W(s,s)- W(w,s)-O, and, whenf=g, 02W/Ok2-
f"(k)(3"(s)-f"(s)) which is less than zero for w<s<_v. In fact, for s close to w,

(13W ) =f"( 3’" -f"’( (s ww)( (w) ).

On the other hand,

02W)O(f,g) k2
(p,q)

Df,g)( 3")( p, q )f"(k + 3"( s )p"( k ) -p"(s )g"( k -f"(s )q"(k ).
Thus

Df,g)- (p,q)

<- O(s- w)[l( p, q )l[cf"( k ) + 13"(s )p"( k ) -p"(s)g"(k ) -g"(s)q"(k )[.
Since we are considering only those tangent vectors p and q such that p"(w)-q"(w)- O,
we have that [p"(k)[, [p"(s)[, and ]q"(k)[ are less than ([1 p c + q c,)Is- w[. Thus
fo5 some C > O,

D(y,g) - (p,q) C Is-wl. II(p,q)llc4.

Thus for f=--g--h, O2W/Ok2<_Co. Is-wl for some Cl>0; and for f=h+ep, g-h+eq,
wherep and q satisfyp"(w)-q"(w)=p’"(w)-q"’(w)-O,

02W<-(e(C/Cl)l](P q)llc,-Co)ls-wl<-o
Ok 2

for sufficiently small e. Since under these conditions W is convex down, and W--0 at
k s and k w, one concludes that W_> 0 for w _< k_<s _< v.

Remark. In Theorems 2 and 3 one may, of course, fix f and perturb only g, or the
other way around. In this case one chooses h--=f, or hg, respectively.



554: DAVID H. WAGNER

4. A counterexample. The following is an example of a C one-parameter family
(f,f) of pairs of C functions such that f=fo and such that for certain initial data, the
solution given in 2 does not satisfy the entropy condition for e>0. However, we also
give the correct entropy solution for this example.

Let f(s)= s 2, and f(s) S 2 "q- es 3. Consider the initial value problem

(4.1)
u(t,x,y)+

0
0- -x f( U( t’x’Y )) +-Y f( u( t’ x’y )) O’

[8 forx>Oandy<O,u(O,x,y)-
0 otherwise,

where >0. Note that f">0 on [0,] for e>-1/(3). The solution given in 2 is
described in Fig. 13.

,0] sr[,0]

RX[O,t]

FIG. 13.

PROPOSITION. If f(s)--S 2, g(S)--fe(s)--S2q-eS 3, then for no choice of e>0, and 3
such that 0<3 does the shock F[3,0] satisfy the entropy condition, near the line x-O,
y-O.

Proof. F[3,0] is described by the equations x=f’(s)t, y-3’(s)t, O<_s<_3, where 3’
satisfies

(4.2)
O--s2--eS3--3’(s)(O--s)__2 3"(S)S--S2--eS

O--s2--2s(O--s) S 2

-----g--- +

Thus one may solve to find

(4.3)

Also

(4.4)

3’(s) 2s- 2as 2 ln(s) + sZ[ + e(2 ln(8) + 1)

3"(s)-2-4esln(s)-2es+2s +e(21n(3)+ 1)
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The shock wave F[, 0] satisfies the entropy condition if

(4.5) W(k,s)-(k-O)(2/(s)-2s,[’(s))+(k2-O),/’(s)-(k2+ek3) 2

_>0 for O<_k<_s<_8.

Note that (O,s)-2r(s)-2sr’(s). Solving /(s)-s’(s)-O, we have

2s 2es 2 ln(s ) + s 2 g+ e(2 In( ) + 1)

2s- 4es 2 In(s) 2es 2 + 2s + e(2 ln() + 1) 0,
(4.6)

2es 2 ln(s) + 2es 2 s 2 + e(2 ln() + 1) 0,

s 2 2eln(s)+2e- -+e(21n()+l) -0.

Thus (s)-s/’(s) if s-0 or

(2e-s-exp --e -+e(21n()+ 1))))(4.7)
(def.)u0

Note that u0 is positive, and that lim0u0-0 for 0<. Furthermore, for 0<s<u0,

y(s)-sT’(s)<O, hence, -ffaw(0,s)<0 for these values of s, and thus W<0 for these
values of s, and k close to zero. Thus for any choice of greater than 0 our solution
does not satisfy the entropy condition for small e.

To keep the computations relatively simple, we give the correct entropy solution
for this example only in the case i- 1. In this case we will see that F[ 1,0: u0] satisfies
the entropy condition. To the left of x--f’(uo)t, a new rarefaction wave appears, and
the shock wave passes between this new rarefaction wave and RX[O, 1]. At t-1 the
solution looks like Fig. 14.

Let us call the new rarefaction wave Z, and the continuation of F[1,0: u0], f. Let
f have equations x--f’(s)t, y- w(s)t. Below f, the solution u equals s on plane
sections x--f’(s)t. Above f, u-v on plane sections

(4.8) y-f:(v)t-fw,’,((;) (x-f’(v)t).)

These plane sections meet the shock curve at x=f’(s)t, y-w(s)t tangentially, as
suggested by (4.8).

We now prove that this description is correct, and give an explicit expression for w
and the relationship between s and v.

Since f is to satisfy Condition 2.1, we have

(4.9) w’(s)-f"(s) L(v)-L(s)-w(s)(v-s)
f(v)-f(s)-f’(s)(v-s)

Furthermore, by hypothesis, u-v along a plane tangent to x--f’(s)t, y-w(s)t. Thus
the following result, due to Guckenheimer [5], will allow us to get a different expression
for w’(s).

THEOREM. If U is a solution to the Riemann problem, then inside each region of
rarefaction, the surfaces u-v are sections of planes passing through the line x--f’(v)t,
y--f(v)t.
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6

u=0

/

4,

3

2

Uo 2 uo

SY[O, 1]

RX[O, 1]

u=l

X

FIG. 14. The solution to (4.1) with 8- 1, e=8.

From this result, we get

(4.10)

Thus

(4.11)

dy_w’(s) _Ay_ w(s)-(v)
dx f"(s) Ax f’(s)--f’(v)"

v2 + ev3-s2-es3- w(s )(v-s ) w(s )- 2v- 3ev2

V2--S2--2S(V--S) 2S--2V

w(s)-2v-3ev2= 2 2 W(S)(D S))

2( w(s ) -v-s- e( v + vs + s )).
And thus

(4.12) O--ev2--(2es)v+w(s)--2s--2es 2.
So

(4.13) v- s--+ (3s 2- (w(s)/e) + (2s/e))1/2.
Since v<s is desired we choose the sign. Now by (4.10)

(4.14)
w’(s)- w(s)-(2v+ 3ev2)

2 + 6es- 4e{ 3s 2-+- 2s-w(s)
1/2
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Now, differentiating (4.13) with respect to s, and substituting (4.14), we compute

(4.15)

=1-

2-w’(s)
6s+

2s-w(s) ,/2

2 3s 2-k-

6S+2e el (2+6eS 4e/3s2+
2/3sz + 2s- w(s

Thus v s + c. Since, as depicted in Fig. 14, v-- 0 when s uo, we have that
c= uo. Thus v--Uo-S, and we expect that the surfaces x=f’(s)t, y--w(s)t, and x--
f’( v(s ))t, y --f’( v(s ))t meet when s v(s ) uo s; that is, at s Uo/2.

We may now rewrite (4.10):

w,(s_W(S)-2v-3ev2) w(s)+2s 2uo 3e(s uo(4.16) s-v 2s-uo

Thus we have a linear first order differential equation for w. The initial condition is
w(uo) 7(Uo). The solution is

(4.17)

Uo 1/2 2z-2uo 3e(uo z

( _Uo)3/2
dz+s-T

z

2

Note that

2,(Uo)
uo

+2uo l+3e- 1- s-- u--

uo -)/2 u 2 Uo

Thus the two surfaces x --f’(s)t, y w(s)t, and x --f’(v(s))t, y =f’( v(s))t, do meet at
s v(s ) Uo/2. Since by (4.3)

);27(Uo)-2uo 2e(Uo)21n(uo)+(e 1)(Uo

(4.18) 2 exp l+e) ( l+e
2e

-2eexp
2e

=2Uo+2eu,
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we have that

(4.19)

Thus

(4.20)

U0 2 U0 U0+

( no)w’( s ) 2e s-- + 2+ 3euo,

w"(s)- -2e<O, fore>0,

and we see that the shock curve y=w(s), x=f’(s)=2s is concave down. Furthermore,
w’(uo/2 2 + 3euo 2 + 6e(Uo/2) =f"(Uo/2). Thus the shock curve meets the curve
y ---f’(v), x =f’(v) tangentially.

To verify the entropy condition for f, it is necessary to show that

(4.21)
W(k,s ) (2w(s) 2sw’( s ))(k- ( uo s ))

)2 e(uo s)3)2>0,’
for Uo-S<k<s, (Uo/2)<-s<-uo. Substituting (4.19), we have

W(k,s ) ( k +s- uo )(2es2- ZeuS) + (k2-u+ 2UoS- s 2 )[4euo- 2es
(4.22)

2[ek3- eU3o + 3eus- 3eUos2 + es3].
It is now easily checked that W(s,s)-- W(Uo-S,s)=O; this verifies Condition 2.1, the
Rankine-Hugoniot condition, for f. Next

0W 2

Ok (k,s)-(2es -2eu)+2k(4eUo-2es)-6ek2

(4.23) 2 +--(2s-u0) 3 ---0 for k---s+-uo s+ uo or Uo-S.

Thus for each s, W(k,s) is cubic in k, with a single root at k-s and a double root at

k-Uo-S-v. Since these are the only zeros of W, and the leading coefficient of W is
-2e<0, and v<s, we conclude that W_>0 for v<_k<_s.

Note that in the above proof e may be arbitrarily large. Furthermore lim_ u0-
e-.5 .61 < 1. Also, the double root of W at k-v shows that is a two dimensional
analog of a one dimensional scalar contact discontinuity.

Finally, to prove that F[1,0:u0] satisfies the entropy condition for all e>0, it
suffices to show

(4.24) W(k,s)-(27(s)-2sT’(s))(k-O)+(k2-O)),’(s)-2(kZ+ek3-O)>-O,
for O<_k<_s, uo- e-(1+)/2<s< 1. Substituting (4.3) and (4.4), we have

W(k,s)-(Z(Zs-2es21n(s)+(e 1)s 2)

(4.25) 2s(2- 4es ln(s ) 2s ))k
+ k2(2 4es ln(s ) 2s ) 2(k 2 + ek )

=2k(sZ(Zelns+e+ 1))+kZ(-4esln(s)-2s)-Zek3.

Thus W(k,s)-0 if k-0, or if k-s. We have already seen, in (4.5), that aw-if(0, s)> 0 if
s>uo, and _ff(0,u0)aw 0. Since W is cubic in k with leading coefficient -2e<0, we
may conclude that W_>0 for O<_k<_s, Uo<_S<_ 1.
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NEW RESULTS ON THE VIBRATING STRING
WITH A CONTINUOUS OBSTACLE*

A. BAMBERGERt AND M. SCHATZMAN’$

Abstract. We give an explicit formula which describes the solution of the problem of the linear elastic
string vibrating against a plane obstacle without loss of energy. This formula allows us to prove continuous
dependence on the initial data; a regularity result in some bounded variation spaces is given. A numerical
scheme is deduced from the explicit formula.

Finally we prove the weak convergence of a subsequence of solutions of the penalized problem to a
"weak" solution (i.e. one which does not necessarily conserve energy) of the problem with an obstacle when
the obstacle is arbitrary; when the obstacle is plane, all the sequence strongly converges to the solution of the
obstacle problem which conserves the energy.

1. Introduction.
1.1. Presentation of the problem and the results. This paper aims to give some new

results on vibrating strings with obstacles. The model is the same as in [5], but as it
appears necessary to elucidate several points of the modelization which was exposed
there, we shall give it from the beginning.

We consider the small transverse vibrations of a string that is constrained to be on
one side of a material obstacle. Let the transverse displacement at time of the material
point of the string with coordinate x be denoted by u(x, t). If the string were free, i.e., if
there was no obstacle, then u would satisfy the wave equation

[:] U Utt-- Uxx--" O.

We assume that the obstacle has position (x). We translate the requirement that the
string stay on one side of the obstacle into the inequality

(1) u(x,t)>_p(x) Vx, t.

When the string does not touch the obstacle, its motion satisfies the wave equation, and
thus

(2) supp [S]uC ((x,t)" u(x,t)-(x)).
We require that the string does not stick to the obstacle; this can be translated as

(3) U] u_>0,

which means that the obstacle does not exert a downward force on the string.
Notice that (3) is essentially equivalent to subsonic propagation of interactions. To

see this, let t-o(x) be a curve which separates a region 6 on the half-plane (0, )
in two open regions + and - where U]u vanishes. Suppose that u+ -u]/ and

u--ul- are sufficiently smooth, and that

(4) u+-(x,o(x))-(x),
v(z,t)
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France.
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Wisconsin (Madison) and California (Berkeley). The research of this author was sponsored by the U. S. Army
under contract DAAG29-75-C-0024, and by the U. S. Air Force Office of Scientific Research under contract
C-F49620-79-C-0128.
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Then we can compute El u in the sense of distributions, with a test function:

0u 0 0u
(2u,)--(-, 0)+(x,

( "+ "- (x (xll+ (x o(xllo(x (x o(xx.Ot Ot Ox Ox

Relation (4) can be differentiated with respect to x, and implies

x x (x.(xll--.’(x "+ "- (..(xllOt Ot

Introducing (7) into (8), we get

)(x o(x  ,xt Ot

But hypotheses (4) and (5) ensure that

u+ u-
t (x,o(x))O and (x,o(x))O.

Therefore, u is nonnegative if and only if o’ is almost everhere smaller than 1.
It is not enough to suppose that conditions (1), (2) and (3) are satisfied, as notNng

has been said of the evolution of the energy of the string during the collision with the
obstacle.

The hypothesis that will be made is that the energy is conserved. TNs requirement
should be analysed from a mathematical point of view as follows: The condition must
be local, because the propagation properties of hyperbolic equations suggest it, and it
must be satisfied wherever in the x,t half-plane the free wave equation is satisfied.
Thus, multiplying by u/t the relation

(a) u=0 one.
where is an open region such that (8) is satisfied, we obtain a relation in divergence
form:

0 ( OU 2 OU2 ) 0 ((9) 0S + -U 2U -0 in.

The operations by wch we deduce (9) out of (8) are valid if Ou/Ot and Ou/Ox are
locally square-integrable in X (0, ).

The energy condition we shall impose is

0 ( 0U
2 0U 2 0 (OU OU)(10) 0S + - 2U -0

in the sense of distribution on X (0, ).
We could alternatively write it as

def 2 + 2(1) s,- (-2uu,,u u, ), V.Su-O.
Here, the first component of the vector field S, is the energy density flux, and the
second component of the vector field S is the energy density.

Notice that (10) cannot be deduced by multiplying (3) by Ou/Ot, as Ou/Ot must be
expected to be discontinuous on the support of u.
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For initial conditions such that the free solution corresponding to them is locally
of bounded energy, it was proved in [5] that the Cauchy problem (1)-(3) and (11)
possesses a unique solution if the function tp is convex.

The approach which led to condition (11) is essentially a mathematical one; from
the mechanical point of view, one would like to know if (11) implies that the velocity of
the string after collision is the opposite of the velocity of the string before collision. The
answer is affirmative, but one has to give a meaning to

(12)
u Ou
--Ot (x, t+0)- -- (x, t-0) if (x,t) supp U] u.

This was the purpose of [1, part V], where it was shown that if

(13) is Lipschitz continuous on , with Lipschitz
constant 1, and o_> 0 on ,

(14) lUx(X,t)12+lut(x,t)l2
dx<-C(a,b) Va>0, Vb>0, Vt<_b

--a

and if (3) is satisfied, then right and left derivatives can be defined almost everywhere
on the noncharacteristic parts of the curve o(x).

Moreover, if (11) holds, then for all o satisfying (13), we have:

(15)
O+u (x,o(x))-I O-u

-t-(x,o(x)) a.e. on (x" Io’(x)l< 1).
We shall prove in {}2 the following explicit formula in the case of the plane obstacle.

Let w be the free solution of the wave equation
[-q W:0,

Wt( x, O) U,() ).
Let the obstacle be q O, and let the backward wave cone be

def
’) t’ x x’T,,t- ((x’,t "0< <--t-

Let us denote by r- the negative part of a number r--sup(-r, 0). Then the
solution of the problem (1)-(3) and (11) is given by

u(x,t)--w(x,t)+2sup((w(x’,t’))-" (x’,t’)_T,t}.
This formula shortens considerably a previous proof [2] of continuous dependence

on data, and is the key for the numerical scheme studied in 3. We shall give in {}4 a
regularity theorem in spaces of bounded variation, in the case of a general concave
obstacle.

In 5, we shall consider the functions ux which solve the problem

ux-(ux-) -0,

(16) ux(x,O)=uo(x ),
Oux
at

In the first half of this section, we shall prove a weak convergence result, which does
not depend on the shape of nor on the regularity of the initial data. The limit
function will satisfy a set of energy inequalities instead of (11).



NEW RESULTS ON THE VIBRATING STRING 561

In the second half, we shall assume that the obstacle is plane, and that duo/dx and
u are locally of bounded variation. Then the solution of (16) converges strongly in
Ho(R R /), and its limit is the unique solution of (1)-(3) and (11).

1.2. Notation and summary of previous results. We shall use throughout this paper
the following notation and definitions:

V is the set of functions u such that

 17> f (lu (x,t)l =a

q-lUt(X,t)[ )dx<_C(a,b)<
--a

w is the free solution of the wave equation:

U]w-O,
(8) w(x,O)-uo(x),

wt(x,O)-Ul(X).

kl a, b I < b.

If we denote the closure of a set A by clA, we define a set E by

E- cl( (x,t)" w(x,t)<dp(x) )
I is the domain of influence defined by

(19) I- (T+ "(x t)E)x,t

where T+ is the forward wave cone {(x’,t’)" t’> + Ix-x’l}, and the boundary of 1,x,t

called the line of influence, is given by

(20) OI-((x,t)’t-z(x)},
where z is Lipschitz continuous with Lipschitz constant

(see [5,proposition 11.3] for the proof of this claim). The backward wave cone T, is
((x’,t’).o<_t’<_t-lx-x’l).

The characteristic coordinates and are given by
x+t --x+t

(21) =,

with the notation (l,rl)-z((l-rl)/v,(l+rl)//) for all functions of two variables x
and t.

We shall call problem (P o) the following problem"
Given uo Hlo(), u Loc() satisfying the compatibility condition

(22) u,(x)>_o a.e. on

(10)

find u in V such that
(a)
(b) suppl--luC ((x,t)’u(x,t)-q(x)),
(c) u_>0;

O--’(Ux U --X (--2UxUt)--O
in the sense of distributions in NI NI +"

(23)
Ot
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The precise statement of the results of existence and uniqueness in [5] is as follows:
THEOREM 0. Problem (Po) possesses a unique solution u if p" is nonnegative.

Moreover, this solution u is the unique solution of the linear problem

u V,
[S] Ul((x,t t(x)) --0,

Ou Ou
(24) --(x ’(x)+0)-- (x r(x)-0) ae on(x’r(x)>O&lz’(x)l<l)

U (x O)-u,(x).Ot

If/z is the measure defined by

(25) (l,/)- -2fwt(x,r(x))(1-"(x)2)*(x,r(x))dx,
then the solution of (19) is given by the sum of the free solution w and of a convolution

(26) u- w+,l
where is the elementary solution of the wave equation with support in the positive
light cone"

{1(27)

_ - on ((x,t)’t_>lx[},
0 elsewhere.

It will be useful to consider the problems (Px,t), which are just (P) restricted to the
backward wave cone Tf,t, with initial data given on [x- t, x + ]. Clearly, u is a solution
of (P) if and only if it is a solution of (Px,t) for all x R, >0. The first result on the
convergence of the penalty method for the string with an obstacle was proved by A.
Bamberger [3].

An explicit formula for the string with a point obstacle was obtained by L. Amerio
in [1] and by M. Schatzman in [6], with a different argument.

Continuous dependence on the data and convergence of the penalty method for
the point obstacle are proved in [6]. See also the results of C. Citrini [4], where
regularity assumptions are relaxed.

2. The explicit formula. Continuous dependence on the initial data.
2.1. The explicit formula for the infinite string. In the case of the zero obstacle

(and more generally, the plane obstacle), the solution of (P) can be expressed by an
explicit formula. We denote by r- sup(r, 0) the negative part of a number.

THEOREM 1. The unique solution of (P) when q- 0 is given by

(28) u(x,t)-w(x,t)+2 sup [w(x’,t’)]-.
x’, t’) T,

Remark 2. If the obstacle is plane, i.e., if (x)-ax+ fl, then (28) can be gener-
alized to

(29) u(x,t)-w(x,t)+2 sup
x’, t’) G T,,

To deduce (29) from (28) it is enough to consider u-, and notice that 7q -0.
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The proof of Theorem comes in several steps. The first step is the following
result:

LEMMA 3. The set where sup([w(x’,t’)]-:(x’,t’)T,t} does not vanish is the
interior of the domain of influence I.

Proof. If w(x’, t’) < 0 for some (x’, t’) in the backward cone T,,t, then (x, t) belongs
to the forward cone T,t,, the vertex of which is in the interior of E. Thus (x, t) is in the
interior of I. Conversely, if (x, t) belongs to the interior of I, then there exists a point
(x’, t’) in the interior of E such that (x, t) belongs to the interior of Tx+,,c We can choose
this (x’,t’) such that w(x’,t’) is strictly negative, because the set of (x’,t’) such that
w(x’,t’)<O is dense in the interior of E. Therefore, suP(x,,t,)T-,,[W(X’,t’)]- >0. [--I

Let us define

(30) k(x,t):inf(w(x’,t’): (x’,t’)T,,t }
Then, thanks to Lemma 3, we have, if u is defined by (28),

(31) u(x,t)- w(x,t) for t<_’r(x),
w(x,t)-2k(x,t) for t>_,r(x).

LEMMA 4. Let uo and u satisfy the compatibility conditions (22), and let I be
nonempty. Then the function k satisfies
(32) Elk=0 in the interior of I.

Proof. Let us extend w to the whole plane R R, by solving the (backward) wave
equation

(33) wt(x,O)-u(x),
[]w=0 fort<0, x.

The assumption that I is not empty implies that, on the line of influence,

if I’(x)l< 1,

a.e. on (x" I’(z)l< 1).
We shall prove that w(x,t)>_O for t_<r(x), by essentially the same argument as in

[5, Thm. IV.2]. For the convenience of the reader, let us sketch it here.
Let U=(x:w(x,r(x))>q(x)}= (.Ji]ai,bi[, where the open sets ]ai,bi[ are the

connected components of U. Then [5, Lemma 11.6] tells us that

(34) "r(x):min(’r(ag)+x-ai,’r(bg)+b-x ) Vx[ai,bi].
Therefore if we set

(35)

ai+z(ai) bi+’(bi)

ai+ r(a,) --bi’+-’r(bi)

the line of influence in characteristic coordinates is such that

(36) y()_ /i if [i, ),
[r/,,/i if -,
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if Y is the multivalued mapping (see Fig. 1) defined by

Y() 0 + ( ,SrI )

FIG. 1.The sets E and I, the influence line t-z(x), the intervals (aj, bj), and the characteristic coordinates,
with the j,

Let (,rl)--f()+g(rl), where f and g are in Hloc(R). From (35), we deduce f()+
g(rl)_>0 for i_<_< and from (34), f()+g(rli)>_0 for i_<_<. As we must have
f(i) +g(rli)-0-f()+g(rl)-0, by definition of U,i,

, r/i and , then

(37) f(l)=f(l;)<_f(l) ’q’ [i,j ].
Similarly,

(38) g(rli)-g(rl’ f
On C, the complement of the set U[i, ], we have

(39) f’() <0 a.e.

The simplest way to see this is to notice that Y is one-valued on C, and that

f()+g(r())-O on C,

f(l’)+g(Y(l))>_O for ’_<.

Let us now evaluatef() + g(/). Suppose first that X(/) Y- (/) is one-valued. Then

f() + g( *l)-- g(*l) +f( X(rl)) fx(n)lcf,(,) d’
(40) f(min(l,X(rl)))_f(max(i,))]
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where the summation is extended to the indices such that [i,] intersects [, X()]. We
have:

g(i)+f(X())>_O,

fx()lcf’(’)d’<_O by (39).

As X() is one-valued, it is not contained in the interior of an interval [i,]. Thus

min[;, X(rl))
and, if [i,], the corresponding term in the sum vanishes. For in [,], the term
in the sum is f()-f(), which is not positive, by (37). Therefore, the expression (40) is
nonnegative for _<X(r/). If we suppose that X(r/)-[.,], we have to study the
expression

g(rl)+f()-fJlcf’(:’)d’- [ f(min(;, ))-f(max(,, ))],
and the result still holds, i.e.,

(41) w(x,t)>_O for t<_’(x).
Thanks to (41), we may redefine k as

k(x,t)-inf(w(x’,t’)" t’<_t-lx-x’l},
or still, in characteristic coordinates,

(42) /(j,) inf(f(j’) + g(r/’) j’_< & r/’ _< /}.
Then, it is immediate that

(43) /(, r/) inf { f(’) j’_< } + inf{ g(r/’) r/’_< r/},
which proves the claim of Lemma 4.

We shall now prove that u, defined by (28), satisfies the transmission condition
(15) across the line of influence.

LMMA 5. If u is defined by (28), then almost everywhere on

(44)

(45)
Let x be a point satisfying (45), and let us denote

wx(x,’(x))=a, wt(x,’(x))--b,
Then

and

where e satisfies

u )u

--at + 0) o)

Proof. Let A (x: I’(x)l < ). Then, almost everywhere onA, by [1, A.2],

wx(x,(x)) and wt(x,r(x)) exist.

a+mb=O, b<_O

w(x’,t’):a(x’--x) + b(t’-’(x)) +e(x’-x,t’-’(x)),

lim
e(r,s)

I +1-0 Irl7 [l =0.
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We have

inf{a(x’-x)+b(t’-,r(x))" (x’,t’)T.t}-b(t-,r(x)),
and therefore,

(46) b(t-,r(x))-sup(le(x’-x,t’-t)l.,r(x’)<-t’<-t-lx-x’l}

_< k(x, t) <-b(t--’r(x)) + ]e(0, t--,r(x))l.
As I ’(x)l < 1, we have

lim [sup(le(x’-x,t’-t)l’,r(x’)<_t’<-t-lx-x’[)/(t-,r(x))]-O,
tz(x)

and we deduce from (46) that

lim u(x’t)-u(x’r(x))---wt(x,’r(x))
under the assumption (45).

Conclusion of the proof of Theorem 1. Lemmas 3, 4 and 5 imply that the function u
defined by (28) solves the linear problem (24), up to the condition u V. Therefore it
remains to check this last condition. If we take into account the formula (43), let us
show that k is in V.

We know that f is in Hdoc(R); let

f()- inf( f(’)" ’_<}.

Then, we can compute the derivative off() almost everywhere:

0 iff()>f()oriff’()>_O,
(47) f’()-

f’() iff()=f()and iff’()<0.

We deduce from (47) that f is in Ho(R). Similarly, is in Hoc(R). The function k
which can be written as

will therefore be in V, i.e.,

I x(X t)l +lkt(x,t)l dx<_C(a,b) Va,b, Vt>_O

and thus u is in V. E]

2.2. Continuous dependence on the data.
COROLLARY 6. The map ( uo, u ) u which to an element ofHloc() Loc() satisfy-

ing the compatibility condition (22) associates the solution of (P) is continuous from
Hloc() Loc() equipped with the strong topology to

WISP(J0,-[-0(); Zoc([] )) ("] Zfoc([O -[-0(); Hloc(l))

equipped with the strong topology, for allfinite p.
Proof. We have at once the continuity from Hloc(R) Loc(R) to C(RR+).
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lpThe topology on WI ([0, + oo); Loc(Nt)) f3 Lp 0oc([ + o); isHloc(Nt)) defined by
the seminorms for A, B>0

(fO If-- ]P/2)
1/p

2+u])(x t)dxq(u)-Iu(O,O)l+ (u
A

The topology on Hllo(Nl) Lo(NI) is defined by the seminorms for A >0

p(uo,u,)-Iuo(O)]/ f_ -x +lu, dx
A

It has been proved in [5, IV.2] that for solutions of (Po) with zero obstacle,
au au au (x,t)[= au (x-t,o)(48) -(x,t)- -(x+t,O),

Therefore

(49)

Let qABo

f(luxl+lu,l)(x,t)dx=f

--’--A--t "AI- lull2 dx

be the seminorm

VA,t>0.

qABo(V)_v(O,O)+esssup A (ivxl=+lv,l=)(x,t)dx
t[0, B] A

Then (49) implies

(50) q,so( u ) <--PA +s( Uo+ Ul ).
If (U, U’) is a sequence of initial data satisfying the compatibility condition (22) and
converging to (u0, Ul) in Hlloc(R) L]oc(R), then, as a consequence of (50),

(51) u"u

and moreover, (48) implies that

--(x,t)

in + )Hloc(R R weakly,

2 2)u
(x,t) dx ’qt,A>0

__,A 0u(53) Ou" (x,t) dx (x t) dx v >o

Gathering (51), (52) and (53), we obtain

(54) u- u in Hloc(N +) strongly.

Thanks to Fubini’s theorem, one has from (54)

(u(.,t), u(.,t))(u(.,t), u,(.,t)) in (Lo(R))2
strongly, for almost all t0.

The relation (55) together with the estimate

qA(U")suppA+(U;+U)< +
n
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Woc ([0, + o), LL()) fq Loc([0, + o),imply that u converges to u in the space ’
Remark 7. The mapping (Uo,U) u is not continuous to Wo’c([0, + o); Lo(R))

q Loc([0, + o); HIoe(R)) which is the space V defined in (17).
Take for instance the sequence of initial data

n+lu- 1, u
As these do not depend on x, the solution of Po is

with the limit

n+l
1-t

n
n+l

t--1
n

ift<
n+l’
n

if t_>
n+l’

1--t if t< 1,u(x,t)-- t--1 ift_>l.

Then we may calculate qABoo(Un--U)"

if B<
n

n+lqAlo( un u )
22 if B>n-n---

n+l"

Thus if B> 1, qA(u"-- u) does not tend to zero as n tends to infinity.

2.3. Application of the explicit formula to the finite string with fixed ends. The
explicit formula (29) will allow us to give a simple construction of the solution of (Pf)
where (Pf) is the problem of the vibrating string with fixed ends, and obstacle -K
<0. The only modification with respect to (P) we shall require is that u be in the
space L(0, T; H(O,L))N wl’(0, T; L2(0,L)) for all T>0.

In fact, u will be in the space

L((0, ); H(O,L)) W"((O, ); L2(O,L))
because we can integrate (10) on any rectangle [0,L]X[0, T], and we get the energy
equality for arbitrary times T:

(56) fL(lux(x,Z) +lut(x,T)12)dx +lUll dx.

Let us define

Then

and similarly

e
duo

lu(x,t)-u(O,t)l-

) 1/2

+ lUll
2

dx

foXU(X’,t)dx’l<-ef-,
lu( x, ) u( L, )l<--e/L- x
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Let a K2/e:Z. Then
(57) Vt[0,), Vx[0, a) to (L--a,L], u(x,t)>-K,
and V1 u cannot be supported in the strips ([0, a)tO (L-a,L]) [0, oe) (cf. Fig. 2). Let
us extend the initial conditions uo, u to the interval [-a,L+ a] by:

ui(-x)= -ui(x ) ifx[-a,0], i--0,1,

FIG. 2. The geometric construction usedfor the explicit formula in the case of the vibrating string with fixed
ends, and a constant negative obstacle.

Then the corresponding free solution w is defined on the cone T/z,L/2+et with the
property that

w(O,t)-O, O<-t<a.

Let u be defined on T/z,L/z+ by (29); then for x-0,

(58) u(O,t)-w(O,t)+Zsup ([w(x’,t’)+K]-}.

But, w(0, t) 0, and T(, is included in the strip a, a] [0, c), so that w> K on this

strip, and thus u(O,t)-O on [0, a]. Analogously, u(L,t)-O on [0, a].

(59)

Therefore, (58) defines the solution of (Pf) on Z/2,L/2+afq([O,L])<[O, c)).
Let us define by induction the solution of (Pf) on the region Rn given by

Rn- (x,t)[O,L][O,c)" +(2n--1)a- x- --<t

<--+(2n+l)a- x---2

We shall denote by % the function

L L
on(x)-+(2n- 1)a- x-- if x[0,L],

o,(X)--On(--X), on(L+x)--on(L--x) if x[0, c].
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Suppose we know u(x, on(x)) for x [0, L ]. Let

(60) Wn( X, O.(--X))
Wn(X (In(X))--- -u(2L-x, on(2L-x))
w.=0.

ifx[O,L],
if x[-a,O],
if x[L;L+a],

The function wn is defined in the region

(I.(x)<_t<_(2n+ 1)a+- x-- -a<_x<_L+a.

Let us notice that the symmetry of the initial conditions in (60) implies

(61) wn(O,t)--wn(L,t)=O for (2n-1)a<_t<_(2n+ 1)a.

Moreover, as u(x, (In(x)) _> K, V x [0, L ], and as u satisfies the energy condition (10),
we shall have

(62)

Let

(63)

wn(x,t)>-- -K for (In(x)<_t<_(2n+ 1)a+ -Ixl
or for on(x)<_t<_(2n+ 1)a+ -It-xl.

u(x,t)--wn(x,t ) + 2sup[(wn(x’,t’) +K )-" (In(x’)<t’ <--t-Ix- x’l].
Thanks to (61) and (62), u satisfies the boundary conditions. Therefore it solves the
problem of the string with an obstacle on Rn, and the induction can be pursued.

3. A numerical scheme.
3.1. A numerical scheme in a backward cone for the zero obstacle. Let there be

given initial data u0 and u on the interval [-T, T]. We seek an approximation to the
problem (P0,r) on the backward cone T,r.

Let h-T/n be a step, and let us define discretized initial data u) and u’ by the
following formula, where u0

h is an affine interpolation, and uh is piecewise constant"

(64)
u(x)--[Uo((p+ 1)h)-uo(ph)](x-ph)+uo(ph)

fplp+ l)hu (x,) dx’
The corresponding free solution wh is given by

Let us define

ifx[ph,(p+l)h],

ifx[ph,(p+l)h].

wh(x,t)--- u(x+t)+u(x--t)+ u,(x’)dx
--t

(65) ffih,j--wh(( h, (i+j i+j
for 0_<---_<n-

Then ff.h. satisfies the finite difference relation

(66) ffh .--lh + ~h ~h
Wi_l -wi_i,j i,j--I ,j ,j--
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Let us define a function ti h,j on our mesh by

(67) h ._ if/hi+ 2max{ (#h )-’i’<_i,j’ i’i,a i’,a’ <--j, +j’>O}.
We could define fih, alternatively by

(68) fi _kh -2Ri,j i,j

(69) i, ,’ id-’ ,’

h -0 if-n<i<n

Notice that h is not the discretization of , the correction term in characteristic
coordinates, but the discretization of .1i, where [ is the set I in characteristic coordi-
nates.

THEOREM 8 Let u be the solution of (P0,T) with zero obstac&, and &t be definedl,j

by (67). Then"

(70) max ,-u h h C
i,j

where C depends only on the initial conditions.
Moreover, we have the following bounds on the (approximate) characteristic deriva-

tives:

<1 ih
-i  Ox- )( dx’

Proof. Let us first evaluate wh -w(x ,t’),y when (x’,t’) is in the characteristic
square centered on ((i-j)h/2, (i+j)h/2), with sides of length hv-, i.e.,

2i-lh<_x’+t’<_2i+lh and -2j-lh<-x’ t’<--2j+lh"
2 2 2 2

w(x,,t,)__ffh__w(x, (" i+j )i,j t’)-w J-h,---h

12 [ u(x’ + t’) u( ih ) + Uo(x’- t’) u(-jh )

u,(y)dy- u(y)dy
x’- t’ jh

+ t’( Uox.qt- Ul )2dy
1/2

f :’-t’( Uox_ Ul )2dy
jh

<- 2 (UoxOl-Ul "qI-(UOx--Ul)2
1/2

--2 T

(fTT(U2Ox.3t_ U21) dx )1/2.
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We may then deduce from

h 7" /2

that

[sup((#h i’ } ’, -"i,j)-" <--i,j <--j i+j>--O --sup{[w(x t’)] O<_t <t-lx-x’l}
(’74) ( f__TT(Ux" U21) dX )1/2.

Let us note that lh
i,j w((i-j)h/2, (i+j)h/2), because the approximation (64) is

very particular.
This, in turn, gives

i,j-- U h,--h(75) max
,J

This completes the proof of (70).
We now turn to proving (71) and (72). Let us note first that if

/h :min(ffi, .i’_< --<j +j’>O},i,j ,j, j’

we can write/h alternatively asi,j

(76) /h --min(#,j, "i’<i,j’<_j}i,j

because we know from (41) that ffh >0 for i+j<0, as long as we suppose that thei,.j--
domain of influence is not empty.

Relation (76) implies that

(77) lh =fh ,h,, (i)+ (),
where

(78) :fh g,, (i)+ (),
and

(79) fh(i)--n(fh(i’)’i’i), h(j)--n(gh(j’):j’j}.
Thus, (68) can be written as

,, ,,+:[ ()+ ()]
if T is not empty. Iffh(i)+h(j)O, thenfh(i 1)+h(j)0, and (71) is immediate.
Suppose now that

(S0) Y() +(j)<0.

We have two cases. In the first case,

(8) ]h(i-1) +h(j)0.
Then, necessarily

(82) fh(i ) =fh(i ) <fh(i_ 1) fh( i-- 1)
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and thus,

lh h gh h __fh gh,,.i u_,j=f (i)+ (j)--2fh(i)--2 (j) (i--1)-- (j)

--[fh(i)+,h(j)+]h(i--1) +h(;)].
Thanks to (80) and (82), we get

(83)
lfh(i)--fh(i 1) I.

In the second case,

fh(i--1)+h(j)<O.
Iffh(i 1)=fh(i), we have immediately

(84)

Iffh(i 1)>fh(i), then, we have (82), and

(85)
i,j--U_l,=f i)+g j)--2 (i)--2 (j) (i--l)-- (j)+2fh(i-1)+2h(j)

2](- 1)-f()-f(i 1),

and, thanks to (82) we have

la -a_,,ll"(i)-( 1)1i,j

From (83), (84) and (85), we deduce

The proof of (72) is analogous. E]

f’,_ ,)( Uox + U, )( x’) dx’

We can deduce from (71) and (72) an energy inequality. Let io, Jo be given such
that n -< o,Jo -< n and o +Jo -> 0. Then we have

(86) ,.
2., _joh

3.2. A numerical scheme for the string with fixed ends and a constant obstacle. We
shall use here the inductive construction of 2.3, which we discretize.

Let uo and u be given on [0,L], and let

where the obstacle is q(x) -K<0.
Let n be an even integer, and let the step be h--L/n; let n o be the largest integer

such that n o h_< a.
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We discretize the initial data as in (64) for O<_p<n, and we extend them as
periodic and odd functions:

X)wU tL

We define w’h by

(88)

and let

(89)

Let

(90)

for-noh<x<_O r-O

fornh<_x<_(n+no)h, r-O, 1.

-noh<_x<_(n+no)h,
wO,h

t (x,O)--u(x), -noh<_x<_(n+no)h,

E]w’h--0 in T(-/2)h,(n/2+no)h,

o,h_ wO,h(j i+j )i,j h,---h

( )fih _ff0,h i’ j’ i’;,j ,j +2 sup (ff0’h,j +K) _<i, _<j, +j’0

where <n + n o, J -< n o, +j_> 0.
Let us define a subset Rm’h of 7/ 7/by

(91) R’n- [n+(2m- 1)no,n+(2m+ 1)no] [--n+(2m-- 1)no,(2m-- 1)no]
U [(2m--1)no,n + (2m+ 1)no] [(2m--1)n o, (2m+ 1)no].

The region Rm’h is the discretized equivalent (in i,j coordinates) of the region R
defined by (59).We define ,,,n on the lower boundary of Rm’n by

(92)

n+j, --n+i

for i--n+(2m--1)no, --n+ (2m--1)no<_j<_(2m--1)no,
forj-- (2m--1)no, (2m--1)no<_i<_n+(2m--1)no,
for i--(2m-- 1)no, (2m--1)no<_j<_(2m+ 1)no,
for (2m--1)no+n<_i<_(2m+ 1)no+n,j-- --n+(2m--1)n,

and in R"’n we have

(93) 17t2m,h lTlm,h m,h m,h
i,j i--l,j + Wi,j--1 i--l,j--I for (i, j), (i-- 1,j-- 1) in Rm’h

Then, we shall define fn Rm,n
i,j on fq {(i,j) O<_(i--j)/2 <_n} by

(94) fin --lm,h TP m’.h +K )- i’ <--i j’ Rm’h
i,j i,j +2sup{( i’,j’ <--j and ( i’,j’) }.

Of course (94) is the discretization of (63).
THEOmM 9. Let un be defined by (93), and let u be the solution of (Pf) on [0,L] with

obstacle K. Then

(95) ma.x
,J

id-u h,-"-h cm+l
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for (i,j) in the region Rm’h defined by (91), where C depends only on the initial conditions.
Moreover, we have the following bounds on the (approximate) characteristic derivatives:

(96)

<1,. u/- 1,.l-
lih,j t h <1i,j-11--5

{ + U, )( x’) ax’

Uo - U, )( x’)
jh

if u0 and u are extended to all R by periodicity and imparity.
Proof. We shall replace the number ct defined in (87) by noh; for this new value of

a, we can perform the construction of the solution of Pf as in 2.3, and we shall compare
W and .m.,h, on the regions R and Rm’h.

Thanks to Theorem 8, the relation (95) is verified for m-0 and C_>(2f+(u+_
u2)dx)l/, and the relation (96) is satisfied in R0.

Suppose that for a certain constant C, (95) and (96) are satisfied in R 1,h.
Then we have

(97) [.m.,h__wm(

_
h

i+j
’’J -’--h ) <-C’V

for i,j on the lower boundary of Rm’h which is the upper boundary of R 1,h.
Then we have

(’" i+j )1(98) W --h Ri,j h <__5CmV in ,h,

because im..’h (respectively wm(((i-j)/2)h,((i+j)/2)h)) is the sums,of at most five
terms i,m,)’d, (respectively wm(((i’-j’)/2)h,((i’+j’)/2)h)) with i’,j on the lower
boundary of R’’h (respectively (((i’-j’)/2)h, ((i’ +j’)/2)h)) on the lower boundary of
Rm).

;m,h wm(x t, t)If we now evaluate the difference , when (x’, t’) is in the character-
istic square centered on ((i-j)/2)h, ((i+j)/2)h with sides of length hv-, we have

(99) m,h-wm(x,,t,)l<__5cm+i,j W h,---h -wm(x’,t’)

but we have for Pf the equivalent of (48), i.e.,

--( UOx--Ul)(X-- t, O)

if u0 and u are extended to all of R by imparity and periodicity.
Therefore

(100)

wm (x,t) =7 [(Ux+Ul)(X + t’O)l’

W (x,t)lOn -- I(ux-u’)(x-t’O)l"
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Relation (100) allows us to evaluate wm(((i-j)/2)h, ((i /j)/2)h)- wm(x ’, t’),

("" i+j ) ( /+ )1/2(101) W --h, "--h -w"(x’,t’) <_ 2 f-a a(Ux+u)dx
Let us denote by E the number, wch has the dimension of an energy:

Gathering relations (97), (99) and (101), we obtain:

.
Therefore, if we choose C 15 +2E, we have

15C+2C+1.

The proof of (96) is immediate.
Remark. For (i,j) in R’h, we have

+j >(m 1)n2 0,

and thus

1+ _<(( i+j 3
m --h)/2noh)+-.

Therefore, if (((i-j)/2)h,((i+j)/2)h) converges to (x,t) as h goes to zero, we have
from (95):

i+j I<
for all C > C, and for all h small enough.

4. Regularity in spaces ot tunctions oI locally bounded variation. This section is
dedicated to proving the following result of regularity for an arbitrary concave obstacle

THEOmM 10. Let uo and u be elements of Hoc(R) and Loc(R) respectively, such
that

(102) duo and u are locally of bounded variation
dx

Suppose that uo and u satisfy the compatibility condition (22), and that the obstacle is

concave.
Then for all 1, the function

defined on [-, +) is locally of bounded variation, and analogously, for all the

function

defined on [-l, + ) is locally of bounded variation.
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Proof. We retain the notation of 2.1"
U-- (x "w(x,z(x))>O)- [,.J ]ai,bi[;

(35)

y() r/i if i, ),
(36) r/i] if

V I’"’:l)
We have the following representation of the solution:

+g(ll) for ,_< Y(/j),
(103) ]()+(/) fort/_> Y(),

with the transssion conditions:

Y() ](104) f(l)+g(Y(l))=j(l)+(Y(t))-q)

f,(105) (t)+ g’(Y())- ]’(/)+ ’(Y())]
if Y is one-valued and 0 > Y’() > .

If we differentiate (104) with respect to on C, we get

(p,[ -fY() (1- Y’(tj))(106) f’(t)+ r’(t)g’(Y())=f’(li)+ Y’(t)’(Y())- S
(notice that Y is decreasing on C, and therefore almost everywhere differentiable). For
Y’() 0, we deduce from (106) that

(107) /’() --/’()-- --- (p’(-- r()).For 0>Y’()>-c, we deduce from (105) and (106) that ]’()+f’()-v’(-
Y()),which contains (107). Therefore, we have

(108) ]’()+f’()-ftp’(- Y()) a.e. on C,

and differentiating (104) on C’,

(109) f’():/’() a.e. on Cc.
Let us denote by h the function

Ou(110)
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where r/is fixed throughout the end of this proof, and let o sup{’ X(r/)}. Then, for
-<0, h() =f() and o does not belong to any interval (i, ).

To evaluate the total variation of h on a given bounded interval I--[a, b], we have
to estimate

TV( h I)= TV( h; IV) (-o,o)) + TV( h; Cf3 ( o, +o))

(111) +TV(h; Cn (o, + )) + Ih(o+O)-h(o-O)l
+ [[h(;+Ol-h(l-Ol[q-[h(,i+O)-h([i-O)[

(i jo---< ji---< b

According to (108) and (109), we have:

TV( h; If’l (- ,o)) + TV( h; Cf’l ( gSo, + )) + TV( h; Ccf"3 ( gSo, + ))

(112) <--TV(f;I)+TV(q/( - Y() ) -f()’I)
By hypothesis, " is positive, therefore ’ is increasing; as (- Y())/f- is increas-
ing, the right-hand side of (112) is bounded.

The term Ih(0+0)-h(o-0)l is bounded, because (102) ensures that f, and
therefore f, is locally bounded.

The remaining term in (111) is the sum

(x3) X
(i lo<---i<--b)

[1h(57 + o)- h(7-0)[-4-Ih(L-4-O)- h(

which could possibly contain an infinite number of terms. Using (108) and (109), we
can write the terms of (113) as

(114)

[f(gsi+O)+f(i_O)_Vrq,( li--li/
But we have the following inequalities, deduced from the definition of the line of
influence and of the intervals [i, ]"

,(ji-vl/-0)-a-_<O,i(,-o)- - v

(115)
q/( i--i/(+o)-- v

i(;+o)- ---+o -b?O.
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We can estimate (114) by

[a-+a-l+lbi++b?l+---- p’ +0- -0

(116)

But

la? +a-[+[b+ +b[<la/+ +a-]+]b/+-a/+l +lo,+ +o;l+lo--b[,
and using the sign conditions (115),

[a/+ + a-]+ Ib,.+ + b-]_< 2]ai+ + a-]+ Ib/+ a-I+ ]b/- + a-
(llV) ( q,(--y());[i , )<_4TV f()- S (-

i]

Carrying (117) and (116) into (113), we obtain:

[[h( / o)-h(5-O)l +

<_ 4TV( f [0,)]) + 5TV
(118)

Here, -sup{j" _<b}. The same argument holds for the other characteristic deriva-
tive. The proof of Theorem 10 is complete; notice that we have proved, in fact, that
locally, TV((ft/)(.,i),I) is a bounded function of r/, for all bounded I.

Remark 11. It is not true that under hypothesis (102), (3u/3)(.,t) or (u/O)(.,t)
are of bounded variation for all t.

To see it, let us consider the following example. Let

(119) w(x, t) IA-t-a(x+t)4sin x+tl if Ix+tl<b,-

A if Ix + tl--> b.

We choose b such that sin(1/b) 0, and a such that the curve

(120) t_A_a(x+t)4sin x+t

always has a slope less than 1, for Ix + I_<b. For this purpose, we differentiate (120)
with respect to x:

t’-- 4a(1 + t’)(x + t)3sin )2 ,)-a(x+t COS x+. (l +t

and so,

(121) 4b3+b2

1-a(4b3+b2)
Clearly It’[ can be made smaller than if a is sufficiently small.
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Then we choose A large enough to have

w(x,O) A_ax4sin for !xl b.
Obviously, duo/dx=wx(X, 0) and u =wt(x, 0) are locally of bounded variation.

Thanks to (121), the line of influence is given by (120). We shall now see that
(Ou/O)(.,A) is not of bounded variation. The straight line t--A crosses the line of
influence infinitely many times, at the points

-1

x=-A for

OU(x,a)-

<b, n7/,

and we have

-A -A),if x
(2k+ 2)rr (2k+ lrr

orifx (2k+l)-A’ (2k+2)-A k<0,

+ ifx
(2k+ 1)r

-A, 2k-----A k>0

-A)or if x 2kr -A,
(2k+ 1)r

k>O

k<0.

This function is not of bounded variation on any interval containing zero.

5. Convergence of the penalty method.
5.1. Weak convergence. This paragraph is dedicated to a general (and unfor-

tunately coarse!) study of the penalized problem

(122)

rnux- 2(ux-) -o,

u(x,O)=uo(),
Oux
Ot (x’O)-’UI(X)’

where r- sup(- r, 0), and is an arbitrary continuous function of x, and u0, u satisfy
the compatibility condition (22). The parameter X is positive, and will tend to zero.

Let us mention that (122) always possesses a unique solution; to see this, it is
enough to write (122) in the form of an integral equation, and to use Picard iterations.

PROPOSITION 12. We have the following estimates for the solution ux of (122):
b Oux

2 ux (x,o(x)) +2 (x o(x))o’(x) dx(x,o(x)) + ot Ox
(123)

z ( u0 + lu,I dx

for all Lipschitz continuous o with Lipschitz constant such that a >0 on (a, b), o(a)=
o(b)=0;

fr/(4) ,X(u(x’,t’)-(x’)) dx’at’C(x,t,Uo,U,)

where C does not depend on X.
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Proof. (i) Estimate (123). We have the identity

ux- (ux- q)- Ot

0 (OuxOux) 0 ( Oux]
z 2)+ ((u-)-) -o.

Integrating on the region ((x,t)’a<_x<_b and O<_t<_o(x)}, we obtain the identity
2 0U)k 20u (,o()) + ( o())

+2o,(x)( Oux Oux ) ]0t 0 (x,ox)+X((u(x,o(x-(x)) dx

noting that (ux(x, 0)- W(x))- =0 for all x. From here, (123) is immediate.
(ii). Estimate (124).
We integrate [2 ux (1/X)(ux )- on the backward cone Tx-,t:

l--l ux dx’ dt’
,!

--t
-Ti-(x"t-lx-x’l)-Ul(X"O) dx’

 ot( --x ( x + t-- t’, t’) --x ( x-- + dt’

--t
--(x’,t-lx-x’l)+ --x(X’,t-lx-x’l) dx’

x,]/ -gT(x’,t-lx-x’l) --g-x(x’,t-Ix- I) dx’- Ul(X’)dx’.
--t

Let o(x’) t-Ix x’ Then

ux( x’, t’) dx’ dt’
;,

g+t[ OUh OUx g+t ,)<_ -gT(X’,O(x’))+o’(x’)-ffx (X’,O(x’)) dx’+ u,(x Idx’,
--t

and using the Schwarz inequality and (123), we obtain

X(u-) dx’dt’<- Ti-(x’,o(x )+o x’)-ffx(X’,O(x ) dx’
,t mt

(x’lu,.x_’ x,x,)’

(fx ( duo ,)2) 1/2
x+,

l(,,(x,)l: + (x dx’
--t
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We need definitions of left and right traces of the characteristic derivatives of a
function u.

The following results were proved in [5]: let u be in V (cf. Def. (17)), such that F-] u
is a positive measure. Then the function

1--(’) [a,b

is increasing from [-a, ) to LZ(a,b) for all a,b, and similarly

is increasing from [--c, c) to L2(c, d) for M1 c, d.
We define

0 (’)-limh,o (’+h),

0 (’)- limh,o (’-h)
(125)

0
0 ( ) lim

0a
,o(+h,n)

Oa(,n)- lim
0a

The functions aa/a and aaTa are defined for all not belonging to the null set
and for all larger than -; analogously, the functions/ and/ are defined
for M1 not belonging to the null set Nn and for all larger than -.

[5, Prop. V.2 and Cot. V.4] tell us that

Ou- (.,o(-))L(; (1

Ou
0(.,o(.))L( (1 -o’1 dx),

Ou (. ,o(.))L((. o()>0}, (1 + o’) d),

Ou

Note that the above traces are not continuous functions of u. We have the following
example"

1+1--t ift<l+-

u(x,t)- n n

Then

Ou, (x, 1)_Vx,
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We may now state the following result of weak convergence of the penalization:
THEOREM 13. Given initial conditions uo Loc(Nt) and u L21oc(g) such that Uo>_ q)

and u >_0 almost everywhere on the set {X Uo(X)=p(x)), there exists a function u such
that

(126) u V,

(127)
(128) V1 u_>0,

(129) supp [S]uC ((x,t)’u(x,t)-q)(x)),

(130)

2

(1 +o’(x)) +
)U

(1- a’(x))dx

2) dx,

--(x,a(x)) (1%-o x))+-(x,a(x)) (1-o x)) dx

--< lu’12+ -x dx,

for all Lipschitz continuousfunctions o, with Lipschitz constant 1, such that o(a)= o(b) 0,
o>0 on (a,b),

(131) u(x,O)--Uo(X ),

(132)

)U
O’---(x,O)--UI(X)
u <_u,(x)

if uo(x)>q)(x),

if uo(X)=ep(x).

Proof. From estimates (123) and (124), we can see that we can extract a subse-
quence u, such that

(133) u,+ u weakly, in V.

The weak, topology on V is defined by the semi-norms

f4, + fuxZ + futf3
where f, f2 and f3 are in L(Nt /; L2(Nt)) with compact support in Nt [0, o). We deduce
from (133) that

(134) u,u in C(NtR+) with the compact topology.

Possibly with a new extraction

(135) (u-p) v weakly in M(R +) the set of measures on Nt +

Therefore

(136) l-lu=v_>O.
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Relation (123) gives a bound on ((u- q)-)2// in Lo and thus

To check (129), let (Xo, to) be a point such that U(Xo, to)>q(Xo); thanks to (134)
we can find a neighborhood U of (xo, o) and a tt o such that u,(x, t)- p(x)
>--1/4(U(Xo, to)-q(Xo)) V/<to, for all (x,t) U.

Therefore

[-qU[u-O for/</o,

and in the limit [2] Ulu-O. This proves (129).
To prove (130), let o be given, and eo be a positive number. Let us define for [e < eo

(137) o(x)--]x--a+e--eo

-x+b-eo+e
Then (123) implies

(138)

if x[a+eo,b-eo],
ifx[a+eo-e,a+eo]
if x[b-eo,b+e-e.o].

2

(1 + o’(x)) +
2

(1

2

But the left-hand side term of (138) can be written as

fab--eo fo(x)+e" (X,
+o dx’o(x)-’ {1 u,

2

t)l (1 (x,t)(1--o’(x)) dt,

and we can take a weak limit in this double integral, thanks to (133).
Thus we can rewrite (138) without the index

(139)

0u
e,dE,,a+eo

_<(e
we

2

(1 + o’(x)) +

Taking e’-0 in (139) and letting e" tend to zero, we obtain

our 12(-(x,a(x))

-<
-*o

+ lul dx.

12Ou" (x,o(x)) (1-o’(x)) dx

Letting eo go to zero, we obtain the first relation of (130). If we take g’-0 and let e’
and then eo tend to zero, we obtain the second relation of (130).
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The initial condition (131) is obviously satisfied. It remains to check (132). For this
purpose, let us take, in (137), o(x) 0 on a, b ]. Then, ultimately we get

fa -T(’) + --(,o) d<

Using the identity

Our[2Ourl2duol2

-ff(x,O) + -- (x,0). -aTx + 0u
(,0+0

which takes into account (131), we have

o] Ou (x o+o) dx< lu12dx.
As a and b are arbitrary, we have eventually

Ou
-(x,O+O) -<lu,(x)l a.e. on R.

When u0(x)>q(x), we have the first part of (132), as locally, v E] u 0. E]

We shall now study the relation between the strong convergence of Oux/Ox and
Oux/Ot, and the verification of the energy condition (11).

LEMMA 14. Let ux be a sequence of solutions of (122), converging weakly, to a
solution u of (126)-(132). Then, u satisfies the energy condition (11) if and only if Oux/Ot
and Oux/Ox converge to Ou/Ot and Ou/Ox respectively, strongly in Loc(R [0, )).

Proof. Notice first that as ((u,- q0)-//). 1K converges to v- 1/ in M(R R +)
weakly, for all compact K, and as (u-q)- converges to zero uniformly on compact
sets, then

(140)

for any compact set K.
Let oh(x’)= h- x- x’[. Then we have the identity, for any function v,

fo fx+hl 19 12 I) 12 ]dh.,x_ h --(X,Oh(X)) (l +o;,(x))+ --I (X,Oh(X)) (1--o;,(X))dx
()

fxx_tdX’fOt+x-x’2 --(X’,I’) dt’-I- X+tdx’ t-x+x’2 -- (x’,t’)
2

If the limit of the sequence u, satisfies (11), then the value of (141) for v-- u is

x- -x + Il

The value of (141) for v u. is

(143) odhx_hft fx+h( du 12) 0
((u"-)-)2dx’dt+lu, x- f,,,___,
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And according to (140), the limit of (143) is (142). Therefore, as
converges weakly to Ou/Od (resp. Ou/Or) in Lo([O,o)+), and

lim f, dx dt + dx
O u

--0 x,t --- ,t " dt’
x,t

2

dx’ dt’ + -,t

2

where Ax,t-- {(X" t’) r,,t/x’ <-- 0}, Bx,t’- r,t\ Ax,t, we can conclude that the conver-
gence of 3u,/Old and uJO to 3u/3t and 3u/O is strong.

Conversely, if 3u,/Old (resp. 3u,/3) converges strongly to 3u/Old (resp.
then it is straightforward to pass to the limit in (11).

5.2. Strong convergence when the obstacle is zero and the initial characteristic
derivatives are of bounded variation. The first step in this study is to notice that if w is
an affine function, then the penalized solution converges to the solution of (Po) which
conserves the energy.

LEMMA 15. Let there be given initial conditions

(144)
u( x O) a bx >_ O

u,(b,O) -c<O,
on x0- o xo + to ],

and suppose that the free solution w(x, t)= a-bx-ct is such that

W(Xo,to)<O.
Then the solution ux of(122) with initial conditions (144) is given by

(145) ux(x,t)=

a-bx-ct
ct + bx- aX(c2- b2) sin
/X(c2-b2)

for bx + ct<a

for a<_bx + ct<_a +r?t(c- b2 )

bx-t-ct-a-,lr/-(cZ-b2) for bx + ct>_a + rv/X( c2- b2 )

Therefore ux converges strongly in H(T,to ) to the solution of ( Pxo,,o).
Proof. Let us compute the solution of (Pxo,to):

E- ((x,t)To,to’a-bx-ct<O).
We see at once that the slope of the line a-bx/ ct is smaller than 1, in absolute value.
Therefore I-- E, and

(146) u(x,t)- ( a-bx-ct ifa-bx-ct>_0,
bx + ct- a if a bx ct <_ O.

Let us look for the solution of (122) with initial conditions (144) under the form

ux(x,t)--fx(bx+ct ).
Then fx must satisfy the ordinary differential equation

(2 bZ)f,,
1_

--f -0

with the initial conditions

fx(a) =0, f(a)= 1.

This problem can be solved immediately and gives (145). Clearly the limit of the
sequence ux is u, and Lemma 14 allows us to conclude the proof.
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Remark 16. Suppose we replace the function r- by a function q such that

q(x)=0 if x_>0,

k(x)>0 ifx<O,
q is continuous, strictly decreasing on (-, 0),

Then the penalized problem

at (x,O)--u,(x)

can be studied as above; we get Theorem 14 with almost no change in the proof.
Moreover, a phase plane analysis shows easily that in the case of initial data (144) the
limit of ux is the function (146). We chose the specific penalization (122) because of its
simplicity. We need an integral solution of the linear Klein-Gordon equation with
initial values given on a curve o(x). This is the object of the next lemma.

LEMMA 17. Let w be a solution of the wave equation on the set S ( (x, )/o(x ) <_ <_

0- Ix-x01 } where o is a Lipschitz continuous function with Lipschitz constant 1.
Then the unique solution on S of the problem

lu+ u-O,
(147) u(x,o(x))=w(x,o(x)),

Ou )w

Ot (x,o(x))---(x,o(x)) a.e. on (x’lo’(x)[<l }
is given by

(148) U(x,t)--W(X,t)-- -’ C’lT-t

/(t--t’)2 (X--X’)2
w( t’) dx’ dt’,

where

(149) o(Y)- 2 (--1)n ()2nn!n_>O

is the Besselfunction o.
Proof. We verify that if w is a solution of the wave equation in the whole plane and

if

(x,t)_ {0 if t<o(x),
w(x,t) ift_>o(x),

then

f ,O(X)))dX

+
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Solving (147) amounts to finding a solution of

I-]U-t- xU {((x,t)"t>o(x)}--0,
U(X,t)l((x,t ./_<o(x)} --0,

Ou Ow
o-; a.e. on {x" Io’(x)l < 1},

which can be written as

(150) u----X,u
where g is the elementary solution of the wave equation defined by

{1(x,t)-- ift>_x,

0 elsewhere.

The convolution equation (150) has a unique solution given by

(151) u- (-1)"
.=o " =I

By a simple inductive calculation in characteristic coordinates, we obtain:

(152)

Therefore

(153)

((n- 1)!)"

(-1) (x t)-- ’o
n --1

Together with (153), formula (151) gives (149).
We can now state the theorem of convergence for penalized solutions:
THEOREM 18. Let uo and u be such that

(154)
duo
dx

and u are locally of bounded variation

and suppose that they satisfy the compatibility condition (122). Then the solution ux of
(122) converges to the solution of (Po) when goes to zero.

Proof. Let us first notice that on Ic, the complement of the domain of influence,
we have, if u is the solution of (P):

Vlu=0, u_>0 onIc.
Therefore

ux- u on Ic
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and, in particular,

u(,()):u(,()):w(,()),
0u 0u (x,,(x)-O)-

0w
8t (x,z(x))- -- ---(x,,(x)) a.e. on (x" IT’(x)l < 1},

where we recall that T, the line of influence, is Lipschitz continuous, with Lipschitz
constant 1.

We shall now use assumption (154) to obtain more information about the line of
influence. We need the following notation (see Fig. 3):

(156)

We shall denote

Q-((x,t)’xltl),
Q=-((x,t)’tlxl),
Q3-((x,t)’x-Itl),
Q4-((x,t)’t<--Ixl}.

(157)
)w

lim
w

t (x,t" Qi)-
(h,k)--,o -(x-t-h,t-t-k).
(h,k)UQi

Thanks to (154), (Sw/St)(x,t; Qi) is defined for _<i_<4, and we have the formula

(158)
OW (x,t. Q)_

Ow’ Ow
8t S -(x,t)+--- (x,t)

with notation as in (125). We have analogous formulae for the three other limits.
LEMMA 19. Let x be such that T’(x ) is defined and IT’(x)l < 1. Suppose that

Ow(159) max (x t" Oi)<0
1--<i--<4

Then there exists a neighborhood (x-e,x+e) of x such that Ix’-xl<’(x’) has left
and right limits at every point and IT’(x’ +-- O)l < 1; moreover

w ,),sup --(x’,T(x Q)<_-/<O.
1_<i_<4

Proof. The hypothesis (159) implies that, in a neighborhood N of (x, T(x))

w
sup --(x’,t’; Qi) <_ -1<0;
1<i<4

therefore w(x’,-) is strictly decreasing for x’ close enough to x, and moreover, if k is so
chosen that wt(x, T(x)) + kwx(X, T(x))<0, then

w(x+kh,T(x)+h)<O.
Thus, there exists a unique solution to the problem

w(x’,o(x’))=o,
(160) max(Ix- x’l, Io(x’) T(x)l) -< a, where a is a small positive number.
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FIG. 3. The regions Qi, i= 1,.--,4 of the (x,t)-plane.

To prove that o is identical to in an interval [x-a’,x + a’] where a’ may be smaller
than a, we have to check that

Io’(x’)l<l a.e. on [x-a’,x+a’].

The function o is continuous indeed, as w is continuous and t’-o(x’) is the unique
solution of w(x’, t’)-0 in N. We may not directly differentiate the relation w(x’, o(x’))

0, as we do not have the assumptions of the implicit function theorem. But, with the
very same argument as in this theorem, and using notation (157) and its analogue for
Ou/x, we have

w(x’+h,o(x+h))-w(x,o(x’))+wx(x’,o(x’); Q,)h

(161)

Here e is a function such that

By a standard argument

(162) lim
h0

(h, o(x’ +h)-o(x’))EOi

for all h such that (h,o(x’ +h)-o(x’)) Q,.

lim
e(k)

=0.
k-O k

o(x’+h)-o(x’) ]__ Wx(X’,a(x’); Q,)

The same result holds in the three other quadrants Q2, Q3 and Q4, and by choosing a’
adequately small we shall have

for [x-x’[ a’,
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and thus

(h,o(x’+h)-o(x’))Q for h>0 small enough,

(h,o(x’+h)-o(x’))Q3 forh<0, Ihl small enough,

Io’(x’)l_<l-e a.e. on [x-et’,x+a’],

r(x’) o(x’), and r’ has right and left limits at all points of x
Let us compare locally the solution of the linear Klein-Gordon equation (147) to

the solution of an approaching problem with simpler initial data. Let

w(xo,to)
’(Xo)--to, w,(xo,to)
ro(X ) to + m(x-- Xo ),
Wo(X,t)--wt(Xo,to)(t-- to) + Wx(Xo,to)(X--Xo),
Uo(X, o())- Wo(, o(X))-o,
Uo Wo
t (’())-W(’())-w’(’ )’

So- ((x,t)" t>’ro(x)).
Then:

Uo(X, t) i)(1 m2) wt(xo, o)sin

With the help of (148), we have

uX(x,t)--Uo(X,t)--W(x,t)--Wo(X,t )

(163)

t-to-m(x-xo)
V/)(1 -m2)

(i(t--t’)2--(x--x’)
2 ),t

[(w" Is)(X’,t’)-(wo" lso)(X’,t’)] dx’dt’.

Let us estimate (163) for x and such that

(164) IX-Xol+lt-tolC,
and under the hypotheses that Ir’(Xo)l< and that wt(xo,to) and Wx(Xo, to) are well
defined. Then

+ )t- ,ol) -o(
To estimate the integral, let us first note that

Iw" ls--wo" lsol-<lw-Wo} lsso.
This relation comes from the fact that, locally, w. ls’--w- and wo. lso--w-. We
define new variables X and T by

t- t’ Tv/ x- x’ Xv
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Then the integral expression in (163) is estimated by

fo+.olo(T=-X= )llw(x-x,,- )-wo(x-x,,-
xoso(X-XV,,-)r.

But

iw(x-,,-)-wo(x-,,-)lo(ix--xol +l,- -,ol),
and we have to check that (( X, T) T (x X, T) S S0} is bounded.
Ts set can be written as

) }
and using the fact that ’(xo) < 1, tNs set is bounded under the condition (164).

Thus, immediately,

(165) lu(x,t)-Uo(X,t)l -o().
A consequence of (165) is that, for sufficiently small, the solution u of (147) is
negative on the set

(166) T,to+(_e)X(l_m2 ((x,t)" tr(x)}.
Ts uses the fact that u <0 on a neighborhood of xo, as was proved in Lemma 19.

Therefore, on the set (166), the solution of the penalized problem (122) is the
solution of the linear problem (147), for small enough. We have thus, for (x, t) on the
set (166):

ou ow ow
t (x’,t’)- (x’,t’)-

,,,__,) t (’’ I I)

f [(t t’)2
(t--t’)(w. ls)(x,t)dx’&.

Reasoning as for (165), we can prove under assumption (164) that

ux Uo (x,l -o(,

or

and, in particular

-ff (x,t)-w,(xo,to)OS
t--to--m(X--Xo) --o(1),

(167) ,to+ (rr--e)i)k(1--m2) )-- +wt(Xo,to)COS(rr--e)

on {Xo’r’(Xo)<l and wt(xo,r(Xo); Qi)<O,i-1,...,4).
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Analogously,

(168) lim t0 + (rr-e))k(1- m2 ) )-Wx(Xo,to)COS(rr-e)

on (Xo "r’(xo)< and wt(xo,’r(xo); Qi)<O,i-1,...,4},
and (167) and (168) in turn imply:

(169)
lim 0ux
x-.0-- (x’t+(r-e)(1-m2) )-w’(x’t)cs(rr-e)’
lim oux )-

Therefore, the limit ff of u satisfies:

a.e. on {x" I-’(x)l < 1).
This proves that ff is indeed the solution of (Po). 7q

6. Conclusion. There are still many open problems which can be conveniently
listed at this point. The main one is to prove existence of an energy conserving solution
when the obstacle is not assumed to be concave, as was the case in [5].

An obstruction to the proof of existence is that the lines of influence might cluster,
and we do not know how to extend the solution after they have clustered.

But there is a more fundamental problem: the whole model relies on the assump-
tion that the motion is transverse: how well is this assumption satisfied when the
obstacle is not parallel to the rest position of the string? A better model might be
needed; it should be at the same time realistic and tractable.

Another class of problems is the study of the qualitative properties of the system
that we consider: periodicity, almost periodicity, for instance; for a first set of results in
this direction, see [7].
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HOLOMORPHIC FUNCTIONS IN TUBES WHICH HAVE
DISTRIBUTIONAL BOUNDARY VALUES AND WHICH ARE

H’ FUNCTIONS*
RICHARD D. CARMICHAEL AND STEPHEN P. RICHTERS"

Abstract. Let C be an open convex cone in Rn, n-dimensional real space, such that C does not contain
any entire straight line. We consider holomorphic functions in tubes TC=R"+iCCC", n-dimensional
complex space, which are known to have ’ distributional boundary values. We prove that if the $’ boundary
value of such a holomorphic function is an Lp function, _<p_<o, then the holomorphic function is in the
Hardy space HP(TC), <--p<--o, corresponding to the tube Tc and can be recovered as the Poisson integral
of the distributional boundary value. A similar result is proved wih respect to the holomorphic functions in
tubes Tc which are known to have boundary values in the distribution spaces ’, K, (’)’, and (We) and
which do not necessarily have S’ distributional boundary values. In all cases we prove converse theorems.
Our basic results are motivated by a recent 1-dimensional theorem which is associated with calculations in
theoretical physics. Our results extend this l-dimensional theorem to a much more general setting and are
also obtained with respect to two types of growth conditions on the holomorphic functions and with respect
to several distribution topologies as noted above. In addition, as part of the analysis needed to prove our
basic theorems we have obtained some new results concerning the Hardy HP(TC)-spaces and Poisson
integrals corresponding to tubes Tc and have also obtained some new distributional boundary value results.

1. Introduction. Let C be an open convex cone such that C does not contain any
entire straight line. We consider functions which are holomorphic in the tube TC-R +
iCC C and which satisfy a growth condition under which the functions are known to
obtain distributional boundary values in $’, the space of tempered distributions. We
prove that if the ’ boundary value of such a holomorphic function is an Lp function,
_<p_< , then the holomorphic function is in the Hardy space HP(Tc) and can be

recovered as the Poisson integral of the distributional boundary value. We then con-
sider holomorphic functions in tubes Tc which satisfy a growth under which the
functions are known to have distributional boundary values in the spaces ’, K, ($)’
and (We) but do not necessarily have boundary values in $’; again we prove that if
the distributional boundary value is in Lp, _<p_< , then the holomorphic function is
in HP(Tc) and is recoverable by the Poisson integral of the boundary value. In all cases
we prove converse results.

This paper has been motivated by [28, Thm. 2] which is a 1-dimensional result like
that described in the preceding paragraph and which becomes a special case of our
work here. In [28] Raina notes the importance of the He spaces in particle physics and
gives several references in which the He spaces are used in applicable calculations. The
distributional boundary value computation, with which [28, Thm. 2] is concerned with
respect to the distribution space ($)’, is important in quantum field theory where the
vacuum expectation values are distributional boundary values in a relevant distribution
topology of holomorphic functions defined in subsets of C. In [28,Thm. 2] the
existence of an ($)’ boundary value follows from the growth [28,(3.2)] by the analysis
of Constantinescu [13], which we have generalized to arbitrary tubes in [10]. Con-
stantinescu constructs local fields, which are a category of fields larger than the strictly
localizable ones and which also contain the tempered fields; he proves that the vacuum
expectation values in local fields are distributional boundary values in ($)’ of holo-
morphic functions in a tube domain in C corresponding to the forward light cone in

*Received by the editors March 24, 1981.
Department of Mathematics, Wake Forest University, Winston-Salem, North Carolina 27109.
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Rn. (See [13] also for references and discussion of other field theories.) Other domains
of holomorphicity in applications in the computation of distributional boundary values
are the half planes in C 1, the tube in C corresponding to the backward light cone, any
of the 2 generalized half planes in C corresponding to the quadrants in Rn, and more
generally tubes in C defined by open convex cones in R whose dual cones have
nonempty interior. In the latter case, important and interesting distributional boundary
value results for tempered distributions which have application in quantum field theory
are obtained in [32,Chap. II, 11.2]; also see [29,IX.3]. We also refer to [27] for
important representation results of holomorphic functions in tubes by Fourier-Laplace
transforms of tempered distributions.

Because of the importance in mathematics and in theoretical physics of the Hardy
He spaces and of the distributional boundary value computation for holomorphic
functions in tubes in C which satisfy various growth conditions, we prove in this paper
the results indicated in the first paragraph of this section. In so doing we also prove
some new results concerning the He functions and Poisson integrals corresponding to
tubes Tc in C and obtain new distributional boundary value results for several spaces
of distributions.

In 2 of this paper we state notation and definitions and obtain some technical
results which will be needed. Cauchy and Poisson integrals and He spaces correspond-
ing to tubes Tc in C are discussed in 3 where we obtain several needed results
concerning these topics. We define the holomorphic functions in tubes Tc which
generalize the functions considered in [28, Thm. 2] in 4 and state some new distribu-
tional boundary value results corresponding to these holomorphic functions which
extend some previous results of ours. The growth of holomorphic functions in tubes
which have $’ boundary values and which we study in this paper is also defined in 4.
Sections 5 and 6 are devoted to obtaining the basic results of this paper as described in
the first paragraph of this section corresponding to the various generalized function
topologies and corresponding to the two types of growths on the holomorphic functions
which we consider here.

2. Notation, definitions, and technical results. The n-dimensional notation to be
used in this paper is exactly that described in [3, p. 1042]. Note especially the n-dimen-
sional differential operators_Dff and Dz. If zCn, [z is as defined in [6, p. 844]. 0 will
denote the n-tuple of zeros, 0--(0, 0,-.., 0), throughout the paper.

The definitions of a cone C in R", projection of a cone C, pr(C), compact subcone
C’ of a cone C, and the indicatrix function of a cone C, Uc(t ), are given in [3,p. 1042].
The dual cone C* of a cone C is defined to be C*-(tR t,y)>_O, for allyC)--
(t R" Uc(t)_< 0}. O(C) shall denote the convex envelope of the cone C, and Tc

denotes the tube Tc=R / iC in C" defined by the cone C.
The L Fourier and inverse Fourier transforms are defined in [3, p. 1042]. The limit

in the mean Fourier and inverse Fourier transforms of functions in Lp, <p_<2, and
Lq, (1/p)+(1/q)= 1, are in [21] and [2]; and we assume familiarity on the part of the
reader with the properties, such as the Parseval equality and inequality, of these
transforms in n dimensions. Y[q(t); x] (Y-l[q(x); t]) shall denote the Fourier (inverse
Fourier) transform of a function q in the relevant sense throughout the paper.

The function spaces (R), $, p,$, and Wt and their respective Fourier transform
spaces ,, Kp, ", and We along with the respective properties and topologies can be
found in [17], [30], [3], [18] or [10], and [19] or [26], respectively. The function spaces,@, and can be found in [30]; also see [4] and [9]. The same references as above
also discuss the corresponding distribution spaces (R)’,’,’ ,$, and Wt and their
respective Fourier transform spaces %’,’,K, ()’, and (I4fe)’. We ask the reader to
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note these references for the respective definitions of the distributional Fourier (inverse
Fourier) transform relating (R)’ ’, ’ ,-*’, ,-,K, ()’, and Wfu,--,(WU) in a
linear, continuous, one-to-one, and onto manner in each case. In this paper Y[V]
(Y-I[u]) will denote the Fourier (inverse Fourier) transform of a distribution or
generalized function V (U). In our transforms we delete the factor (2r)" which is
contained in [17,p. 190,(1)], for example, because of the way we have defined the
Fourier transform of functions with 2 rr in the exponent of the exponential term.

All definitions and terminology concerning distributions, such as the support of a
distribution, will be that of Schwartz [30]. The support of a function f and of a
distribution V will be denoted by supp(f) and supp(V). All terminology from topo-
logical vector spaces and their dual spaces, such as bounded set in a topological vector
space and strongly bounded set in a dual space, can be found in [14] and [16, Chap. 1].

Let C be an open connected cone in Rn, and let C’ be an arbitrary compact
subcone of C. Let f(z) be a function of z-x+ iy Tc. Let U be a distribution or
gene_ralized function. By f(x + iy) U in the weak topol_ogy of the distribution space as
y 0, y C, we mean ( f(x + iy), q(x)) - (U, ) as y 0, y C’ C C, for every compact
subcone C’ of C and for each fixed element q in the corresponding test function space.
By f(x + iy)- U in the strong topology of the distribution space as y--, 0, y C, we
mean (f(x+iy),(x))(U,) as y0, yC’CC, for every compact subcone C’ of
C where the convergence is uniform for ff on arbitrary bounded sets in the correspond-
ing test function space. U is then called the weak or strong, respectively, distributional
boundary value of f(z); this boundary value is defined on the distinguished boundary
of the tube Tc, {z x + iy" x Rn, y- 0}, which is not necessarily the topological
boundary of Tc.

In the remainder of thissection we prove technical results which will be useful in
this paper.

LEMMA 2.1. Let C be an open connected cone in R and let Ic.(t ) denote the
characteristic function of the dual cone C* of C. We have

(2.1) (Ic,(t)exp(Zri(z,t)))LP forallp, l<_p<_,

as a function of R for arbitrary z T(c).
Proof. See [8,Lemma 2]. (The word "volume" in [8,p. 577,1ine 11] should be

"surface area".)
Let /-(/z,.,-..,,) be any of the 2 n-tuples whose entries are 0 or 1. Let

z-x+iyTC,-R"+iC where C-(yR"’(-1)"yj>O, j-1,-..,n} is any one of
the 2" quadrants in R". Put

fi (1 i( |)lJzj)N+n+2(2.2) X(z)
J=

where N_>0 is fixed and n is the dimension.
LEMMa 2.2. For the function X(z ), z TC,, defined in (2.2) we have X(x + iy ) X(x)

in the weak and strong topologies of ’ as y O, y C,,. Further, if there exist elements
U’ and h(x)Lp, l<_p<_m, such that (X(x)U)-h(x) in $’ then U=(h(x)/X(x))
in’.

Proof. We desire a limit result as y 0, y C,; thus without loss of generality we
can assume ]Yl _<M, y C, for a fixed M>0. We have

IS( x / iy) S(x)l<_lg(x / iy)l/ Is(x)l
(2.3)

--j !
j=l j=l
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since ((- 1)’yj)> 0, j _.=_j 1,.. -, n. The right side of (2.3) when multiplied by an element
q, is an L’ function of x R" which is independent of y C, s_uch that lYl -< M. Using
this fact and the fact that X(x + iy) X(x) pointwise as y --, 0, y C, the Lebesgue
dominated convergence theorem yields

lim_ f.x(x + iy)q)(x)dx f, (x
y--,O ---...nx )dp( x )dx,
yC,

which proves that X(x+ iy) X(x) in the weak topology of ’ as y 0, y C. But is
a Montel space ([36,p. 21] or [14,p. 510].) Hence by [14,p. 510, Cor. 8.4.9] the
convergence of X(x + iy) to X(x) holds in the strong topology of ’ also.

To obtain the second result in Lemma 2.2 first note that (1/X(x)) is a multiplier in
$ and hence in $’; and hLp, p, implies h ’. By hypothesis (X(x)U)=h(x)
in ’, thus for any

h() (x) ()
(x() ’())- (h()’ x() )- (x(), x() )-

which proves that U= (h(x)/X(x )) in $’ as desired. The proof of Lemma 2.2 is
complete.

LMM 2.3. Let X(z) be the function defined in (2.2). For each C we have

(.4 x( ’ r"

If((- 1)"y)>Oforj 1,. .,n,yq, then

(2.5) IS(x+iy)l ., (K;(3))N+"+(1 + Iz;I) N+n+2

for some constants Kj( $j) depending on 8j, j-- 1,..., n.
Proof. z_ TC, implies ((- 1)"Jyj)>0,j= 1,- -,n. Thus for eachj- 1,. .,n,

i|__i(__ 1)ttjzjl_._ ( (1 +(--|)ljyj)2/x)l/2
from which (2.4) follows.

To prove (2.5) note that for z TC,, ((1 + Izl)/Izjl)-* as Izjl-* , j-,..-,n.
Applying the definition of limit with e-1/2 for each j-1,...,n we obtain a number
Mj.> 0 such that

(2.6) 1+ Izl<lzjl if Izjl_>Mj>0.
If Izjl <_m, z Tc,,, then for (( 1)Jy)>6>0 we have

(2.7) Izl- j.

Combining (2.6) and (2.7) we have

Izjl>-Kj( j)( / lzjl) if ((-1)’yj) >--Sj>O, j-l,...,n,

where Kj(3j)-min(2/3, 3j/(1 + Mj)}. Thus for yj- Im(zj) satisfying ((- 1)"Jyj)>_3j>O,
j-- 1,--., n, we have

I1 i( 1)’Jzj[--((l+(1)t’yj) +#),/22
>[zjl>Kj(,j)(1 +[z[)
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for eachj= 1,... ,n. (2.5) follows from this inequality and the definition of X(z). This
completes the proof of Lemma 2.3.

Let b_>0 be fixed. Let g(r), rRl, such that g(r)---1 if r>_(-b), g(r)=0 if
r<_(-b-e), e>0 and fixed, and O<_g(r)<_ 1. Let C be an open connected cone and put

(2.8) (t)-g((y,t)), tRn, yO(C).

We have h(t) , Rn, for each y G O(C).
We now present a discussion which will be useful in the proof of Theorem 5.1

below. Let h(x)Lp, _<p_<2. Then (h(x)/X(x))L1 since [1/S(x)l_< 1, xRn, for
X(x) defined by (2.2) with y- there. For l<p<2, H(t)--l[h(x)/X(x);t]Lq

exists in the Lq sense, (1/p)+(1/q)-1; and if p-1, H(t)--l[h(x)/X(x);t]L.
Then H(t)--l[h(x)/X(x)] as elements of $’ also, _<p<2. Now assume that there
exists an element U$’ such that U= (h(x)/X(x)) in ’ and that there exists a
continuous function G(t) having support in C*, the dual cone of some given open
convex cone C, such that U=[G(t)] in ’. We then have

(2.9)
3[G(t)]-U-h(x)X(x)

X(x)h(x)]
as equalities in ’. Since supp(G) C_ C* then supp(H) C_ C* almost everywhere as a
function. Now take ?(t) defined in (2.8) corresponding to the present open convex cone
C and with b-0 in the definition of (2.8). We have (h(t)exp(2riz,t))) as a
function of tER for each z Tc. Using this fact, the assumption that U=(h(x)/X(x))
in ’, (2.9), the Fourier and inverse Fourier transforms on ’, and assuming that the
integral on the left of (2.10) below is well defined (for it is later in the paper where we
need this calculation), we have for all z Tc that

(2.10)

and the last integral is well defined by Lemma 2.1 and the facts that H(t)L if p-
and H(t)Lq, (1/p)+(1/q)- 1, if <p<2. We need the discussion in this paragraph
and (2.10) in the proof of Theorem 5.1 below.

3. Cauchy and Poisson integrals and Ht’ spaces. We shall prove the main results of
this paper, which are contained in [}[}5 and 6, corresponding to open convex cones C in
R such that C does not contain any entire straight line. Because of this and for certain
technical reasons, we assume that C is such a cone throughout this section.

The Cauchy kernel corresponding to the tube TC-R + iC is

(3.1) K(z-t)--fc,eXp(2ri<z-t,l))dl, tR, zTc,
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where C* is the dual cone of C. The Poisson kernel corresponding to Tc is

(3.2) O( z" ) K(z- )K(z- t) IK(z- t)l2
K(2iy) K(2iy) tERn’ zTC"

Because of [36,Lemma 1,p. 222] we need the assumption on C stated in the first
paragraph of this section in order for Q(z; t) to be well defined. We have obtained
properties of K(z-t) and Q(z; t) in [4], [8], and [9]. Kortnyi [22,Prop. 2] and Stein
and Weiss [33,p. 105] have noted that the Poisson kernel Q(z;t) is an approximate
identity; see also [4,Lemma 6,p. 213]. In the following lemma we collect facts from
these references which we need in this paper.

LEMMA 3.1. K(z-t) is a holomorphic function of zTc for fixed tR". For
<_p<_2 andfixed z Tc, K(z- t) N@Lq for all q, (l/p) + (1/q)- 1, and Q(z; t)
N(R)Lq for all q, <_q<_ , as functions of Rn. Further, Q(z; t) satisfies the following

approximate identity properties"

(3.3) Q(z;t)>_O, tR", zTc,

(3.4) fi Q( z; ) dt- z Tc

if$>O,

(3.5) lim fit Q(z; t)dt-O
z tol>
zETc

uniformly for all o R.
We obtain some additional facts and calculations which we need concerning the

Cauchy and Poisson kernel functions in the next three lemmas.
LEMMA 3.2. Let w--u+ iv Tc be fixed. Then K(z + w) is holomorphic in z Tc

and

(3.6) IK(z+w)l<--Mv<o, zTc,
where M is a constant which depends only on v-Im(w). Further, we have that K(x +
iy + w) K(x+ w) in the weak and strong topology of’ as y Im(z) O, y C, for each
wTc.

Proof. For w Tc fixed, K(z + w) is holomorphic in z Tc as in Lemma 3.1.
Applying [8, Lemma 1] corresponding to v- Im(w) C we obtain i- iv>0 depending
on such that ,) _>11 I*/I for all ,/ C*, and by the same result y,,/) > 0, y C,
,/ C*. Using the definition of K(z + w) from (3.1), [31, Thm. 32, p. 39], and integration
by parts (n- 1) times we obtain for z Tc that

(3.7)

IK(z+w)l- fc,exp(2ri<z + W, 1)) dll<-fc.e-2<Y’n>e-2(v’n>
<-fc*e-’(v ,,l) d,l <-fc*e-2=lvl Inld <_fI.e-=,vl ,hid,

--nforn-le-2rlvlrdr--n(n 1) !(2rSlvJ)

where 2, is the surface area of the unit sphere in R"; and (3.6) is obtained with
Mv--f,,(n-- 1)!(2rtJlv])-".
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For w Tc and z Tc, the analysis of (3.7) yields

IIc.(r/)(exp(2ri(z + w, r/))- exp(2ri{x + w,
(3.8) <-Ic.( rl )( e-2r(Y’n)e-2r(v’n) + e-2r(v’n) ) --< 2 Ic,(1 )e-2’(v’n)

where Ic.(1 ) is the characteristic function of C*; and the right side of (3.8) is an L
function of R by the analysis of (3.7) which is independent of y-Im(z) C. Since
(lc.(,l)(exp(2ri(z + w,l))-exp(2ri(x + w,r/))))-" 0 pointwise in *1 Rn as y- Im(z)
-’0, y C, for each xRn, the Lebesgue dominated convergence theorem yields that
K(z+w)-’K(x+w) pointwise in xR as y-,O, yC, for any fixed wTc. Now let
q. We similarly obtain as in (3.8) and (3.7) that

(3.9) I(g(z/w)-g(x/w))(x)l<--2Mvl(x)!
where Mv is the constant in (3.6); and the right side of (3.9) is an L function of xR
which is independent of y C. Another application of the Lebesgue dominated conver-
gence theorem now yields

lirn_ [ (K(z+w)-K(x+w))O(x)dx-O, q$,
y0 aR
yC

for any w Tc. This proves the desired weak convergence of K(z + w) to K(x + w) in
$’. The strong $’ convergence follows from this as in the proof of Lemma 2.2. The
proof of Lemma 3.2 is complete.

LEMMA 3.3. Let g(t)Lv, l_<p_<2, and let G()--l[g(t);] in the function
sense, which exists. Assume that (G(,1)exp(2riz, rl)))L as a function of IR for
z Tc and that supp(G) c_ C* almost everywhere. Then

(3.10) fc*G(rl)e2ri(z’n)drl=fR"g(t)K(z-t)dt’ zTC"

Proof. The integral on the right of (3.10) is well defined for _<p_<2 because of the
properties of K(z-t) noted in Lemma 3.1. For <p_<2, (3.10) is obtained by using
Lemma 2.1, Lemma 3.1, the definition of the inverse Fourier transform in Lq, (1/p) +
(l/q)= 1, Fubini’s theorem, and exactly the same calculation as in [33,p. 104,lines
3-6], which holds equally well for <p_<2. Ifp= 1, the fact that G(rl)=-[g(t); n] is
the L transform along with Lemmas 2.1 and 3.1 and a direct application of Fubini’s
theorem yields (3.10). We ask the reader to verify the details if desirable.

LEMMA 3.4. Let zo be an arbitrary but fixed point in Tc. Let <_p <_ o. There exists
a closed neighborhood ofzo which is contained in Tc and
a constant B(zo) depending only on zo such that

(3.11) IlQ(z;t)ll,<-n(zo)<, zN(zo,i ),
where the Lp norm is with respect to R.

Proof. From the definitions of K(z-t) and Q(z; t) in (3.1) and (3.2), respectively,
and from (3.3) we have

(3.12) O<_Q(z t) IK(z-t)12 (K(iy))2_
z-x+iyTc, tR

K(2iy) K(2iy)

and by the analysis of Lemma 3.2, O<K(2iy)<, yC. Let z0-x0+iyo be an
arbitrary but fixed point in Tc. Since C is open there exists a closed neighborhood of
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Zo, N(zo,)CTc, such that (y: ly-yo[-<i)C C. Now K(iy) and 1/K(2iy) are continu-
ous functions of y at each point of C. Thus K(iy) and 1/K(2iy) are bounded on
(y:ly-Yol<_6} C by constants depending only on Yo; hence from (3.12) we have

(3.13) o<-O(z;t)<B’(zo), z=x+iyN(zo,), tR,
where B’(zo) is a constant which actually depends only on y0=Im(z0). (3.13) proves
(3.11) in the case p= . Now let _<p< . Again using the continuity of K(iy) and
1/K(2iy) on C we have from (3.13) and (3.4) that for z N(z0, 8)

,a(z;t)dt-(B’(zo))1

and (3.11) follows with B(zo ) ( B’( zo))P- )/P. The proof is complete.
A function f(z) which is holomorphic in the tube TC=R + iC belongs to the

Hardy class HP(TC), 0<p<, ([33,pp. 90-91], [22,p. 276]) if there exists a constant
A < which is independent of y C such that

(3.14) fa,lf(x+iy)’dx<_A for allyC.

The Hardy class H(Tc) is the space of all bounded holomorphic functions in Tc.
The following lemma is a converse to [22, Prop. 4] and is already known in the

special case that Tc is a half plane in C.
LEMMA 3.5. Let f(z) be holomorphic in Tc and have the Poisson integral representa-

tion

(3.15) f(z)=fi,h(t)Q(z;t)dt, zTc,

for some hELp, l<_p<_. Then f(z)HP(TC), l_<p<_; and f(x+iy)h(x) as
y O, y C, in Lp if p< and in the weak-star topolo ofL ifp .

Proof. The integral in (3.15) is well defined for p because of Lemma 3.1.
First let h L. Using (3.4) we have

If(x+iy)[Af,Q(z;t)dt-A, zTc,

where A is a bound on hL almost everhere; hence f(z)H(TC). If p<
we use Jensen’s inequality [15,2.4.19, p. 91], the appromate identity properties of
Q(z; t) given in Lemma 3.1, and Fubini’s theorem to obtain

<

(3.16)

f. l )lefa,Q(z; )dx dt=fan[h(t )[edt
for all z-x+ iy Tc. (Note that the integral of Q(z; t), z-x+ iy Tc, Rn, with
respect to xR" in (3.16) is 1. This fact follows by a change of variable and [33,(ii),p.
105] or [4,(50),p. 213] and hence also follows from (3.4).) (3.16) is the desired growth
(3.14), and f(z)HP(TC), lp<. The desired convergence of f(x+iy)h(x) as
y 0, y C, in Lp if p< and in the weak-star topology of L if p- follows
from (3.16) and [22,Prop. 3(c) and 3(d),p. 280]; for the weak-star topology of L the
reader is referred to [20, p. 8]. The proof is complete.

The following growth result for He(Tc) functions, p<, is needed in this
paper and has been proved in [11]; we do not repeat the argument here. Of course we
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have not includedp- in the result since by definition the H(TC) functions are the
bounded holomorphic functions in Tc. Because of the previously known growth for
HP(Tc) functions, 0<p_<, in the special cases that C-(0, ) or (-,0) in
dimension or C-C,, any of the 2" quadrants in n dimensions, as noted in (3.20) below,
our growth (3.17) below is of interest for dimensions n_>2 and for cones that are not
the quadrants.

THEOREM 3.1. Let f(z)HP(TC), <_p<o, where C is an open convex cone in R
such that C does not contain any entire straight line. For any compact subcone C’ of C
there exists a constant M(C’) depending on C’ such that

(3.17) If(x+iy)l<-M(C’)lyl -"/1" Tc’z-x+iy

The following result provides the representation of Hp functions, 0<p_< o, in
terms of the Fourier-Laplace integral. For 0<p_< and 2 <p_< the representations
are new. The result is of independent interest; with respect to this paper we need case
III of the result, which is already known, and the proof of case IV. Thus we give a
detailed proof only of case IV.

THEOREM 3.2. Let f(z)HP(TC), 0<p_<, where C is an open convex cone in R
such that C does not contain any entire straight line.

I. If 0<p<l_ and C=C, is any of the 2 quadrants, there exists VS’ with
supp(V) C_C Ca such that

(3.18) f(z)-- (V, e2ri(z’t)), z@Tc.

II./fp-- there exists V’ with supp(V) C_ C* such that (3.18) holds.
III. If l<p_<2 there exists gLq, (1/p)+(1/q)-1, with supp(g)C_C* almost

everywhere such that

(3.19) f(z)--ft,g(t)eZ’i<z’t)dt, zTc.

IV. If 2 <p<_ and C is contained in or is any of the 2 quadrants Ca, there exists
V’2 with supp(V)C_ C* such that (3.18) holds.

V. If 2 <p <_ there exists V $’ with supp(V) C_ C* such that (3.18) holds.
From analysis of Madych [23], if f(z)Hl’(TC,), 0<p_<, for any quadrant C,,

there exists a constant M, depending only on f, such that

(3.20) If(x+iy)l M z x + iy Tc"

Using (3.20), case I is proved by analysis from [5] and also can be obtained as a
corollary to Theorem 4.4 below. Cases II and V follow from Theorems 3.1 and 4.4 of
this paper. Case III is a special case of [9, Cor. 4.1 and 4.2]. In cases I, II, and V we
also use the fact that f(z) obtains an ’ boundary value, a fact which follows from
analysis contained in [36], [35], and [22] and applied to the various cases where relevant.

We have included case IV in Theorem 3.2 for two reasons. First the conclusion of
the existence of an element V(R)2 in case IV is somewhat more precise than can be
obtained in case V for the more general cone since (R).2 c$’. Secondly, as we have
previously noted, we desire to display the proof of case IV for later reference in this
paper, and we give this proof now.
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Proof of Theorem 3.2 IV. For any cone C as hypothesized in case IV put

(3.21 ) F( z ) f( z

Y(z) zTC’

where

(3.22) Y(z) fi (1 i(1)’zj) 2
Tc

j--I

By analysis as in the proof of Lemma 2.3
n

(3.23) Y(z)
hence 1/Y(x-+-iy)U_Lq for all q, l_<q_<oe, as a function of x=Re(z)R" for yC
arbitrary. We are considering 2 <p_< oe here. If p= oe we have from (3.23) and the
hypothesis that f(z)H(Tc) that

(3.24) fa,,Ir(x+iy)l  x<-A fI
where A is the bound on f(z) H(Tc) wch is independent of y C. Since F(z) in
(3.21) is holomohic in Tc, (3.24) proves that F(z)H(Tc) in the case p= . For
2<p< we use H61ders inequality and (3.23) to obtain for all y C that

A2/p (1 +4) -2p/(p-2)
dx

where A is the constant in (3.14) corresponding to f(z)HP(TC), 2<p<, here. The
right side of (3.25) is a finite constant wch is independent of yC. Thus again
F(z) H2(Tc) for the case 2 <p< . Thus for 2 <p we apply case III of Theorem
3.2 or [33,Thm. 3.1,p. 101] and obtain a function g(t)L with supp(g) C* almost
everhere such that

(3.26) F( z ) fl,g( )eZ’ri(z’t) dt, z Tc.
Now put

V: (1-i(-1)’Dj. (g(t))

where Dj. is the differential operator with respect to tj., j- 1,..., n, as noted in 2 above.
(See [3,p. 1042].) We have V(R)2 [30,Thin. XXV, p. 201], and supp(V)-supp(g)c_ C*
as distributions since C* is a regular set [30,pp. 98-99]. Taking b-0 in the definition
of (t) in (2.8) corresponding to our cone C here, we have (?(t)exp(2ri(z,t)))$ for
z Tc. Noting that @2 C’ and recalling that supp(V)--supp(g)c_ C* we use distrib-
utional differention and obtain

(V, e 2ri(z’t) ) (V,X( )e 2’g(z,t) )
(3.27)

l-I f.j=
,,g( )e 2i(z’t) dr, z Tc.
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Combining (3.21), (3.22), (3.26), and (3.27) we have (3.18). The proof of Theorem 3.2
IV is complete.

The final lemma in this section is a technical result which we need in {}5. Before
stating the lemma we note some further facts concerning the Poisson kernel function.
Of course the integral in (3.4) is a continuous function of z Tc since the integral is
constant for all z Tc. For any fixed M>0 the integral

fit fit IK( z-- )12 dt(3.28) a(z; t)dt- K(2iy-----S I-M
is also a continuous function of z x / iy TC; hence so is

(3.29)

We of course have

(3.30) -,lim TMQ(z;t)dt=fl"
Q(z;t)dt-1, zTc

LEMMa 3.6. Let h(t)L. Let C be an open convex cone such that C does not
contain any entire straight line. Put

(3.31) X(t) I(1 ie(1)’tj) N+"+2 e>O, tR",
j=l

where NO is a fixed real number, n is the dimension, and -(,. ., ,) is any of the
2 n-tuples whose entries are 0 or that defines the quadrant C,. As e 0 +

uniformly in z on compact subsets of Tc.
Proof. Since II-ie(-1)"tl 1,j-1,...,n, for any e>0 and any t-(t,...,t)

R, then 1/X(t)l for all e > 0 and all R. Thus for all e > 0 and almost all R

(3.32) h(t)-x(t )
2[Ihl[ t=-B.

Now let S denote any compact subset of Tc and let 6>0 be arbitrary. Let z0 be an
arbitrary point in S. Because of (3.30), given 8>0 there is a positive real number
M(8, z0) depending on 8 and on z0 such that

(3.33) Q(zo;t)dt<
i>M(,Zo 4B

where B is the number in (3.32). Using the continuity of integrals of the form on the
left of (3.29) for any fixed M>0, given 8/4B there ests 8’(8,Zo)>0 depending on 8
and on zo such that

(3.34) Q(z; t)dt- Q(zo; t)dt < lZ-Zo[<8’( Zo)
i>M(,Zo i>M(,Zo 4B’

Combining (3.33) and (3.34) we have

’((3.35) Q(z; t)dt<-- Iz-z01<6 6,Zo).
>M(i, Zo) 2B
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As z0 varies over S, the balls O(zo,8’(8,Zo))={z: cover S which is
compact. Hence there is a finite number of these balls which cover S and which we
enumerate as O(zj,8’(,zj)), j--1,...,m, with the zj. being the centers of the balls.
Corresponding to each of these zj,j-- 1,..., m, there is the number M(8, zj),j-- 1,. .,m,
from (3.33) for which (3.35) holds. We now put

(3.36) M(i, S) max(M(8,zl),M(,Z2),’’" ,M(,Zm) }.
If z is any point in SCTc, then z is in at least one of the O(zj,8’(8,zj)),j-1,- -,m;
using this fact and (3.3) we then obtain from (3.35) and (3.36) that

(3.37) fit Q(z; t)dt<_fl Q(z; t)dt<
>M(, S) >M(8,zj) 2-- zSC Tc,

where the M(8,zj) in (3.37) is chosen corresponding to zS being in the ball
O(zj,8’(8,zj)) for the appropriate j-1,-.-,m. In (3.37) M(8,S)>0 depends only on
8>0 and on the compact set S c Tc and does not depend on z S. Recalling (3.3),
(3.4), and (3.32) and using (3.37), we have for all z S that

< h(t)--X(t) Q(z;t)dtIH(z) H(z)[_
I-M(,S)

fl h(t)+ h(t)-x(t ) Q(z;t)dt
I>M(8,S)

(3.38) --< II h I1 z:o sup
tI <--M(, S) fit Q(z;t)dt

I-<M(8,S)

+Bfl Q(z; t)dt
>M(8,S)

< h II oo sup
Itl<-M(,S) X(t ) +

for arbitrary > 0. Since (1 (1/X(t))) --. 0 uniformly for on compact subsets of R as
e 0 +, the estimate (3.38) yields the desired result since S was any compact subset of
Tc. The proof of Lemma 3.6 is complete.

4. Generalizations of previous results. In this section we state generalizations of
some results concerning and related to distributional boundary values which we have
obtained in previous papers. We do this because we desire to have these generalizations
noted and because we need them to prove the main results of this paper. The proofs of
these generalizations are obtained in the same way as the proofs which are already
given for the special cases with only slight modifications. Thus we simply state our
generalizations here and note that we have verified the modifications in the proofs of
the special cases needed to prove the generalizations. The special case of each of the
stated results in this section is noted in parenthesis next to the theorem number. We do
have one result in this section which_ is new, and we indicate a proof of this.

Throughout this section N(0, rn) denotes the closed ball about 0 with radius m> 0.
THEOREM 4.1. ([10,Lemma 10, p. 398]) Let C be an open connected cone and let C’

be an arbitrary compact subcone of C. Let m>0 be arbitrary but fixed. Let g( ), E R, be
a continuous function with support in C* which satisfies
(4.1) Ig(t)l<M(C’,m)exp(2r(o,t) + oll)), tRn,
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for all o >0, where M(C’, m) is a constant which depends on C’ and on m>0 and (4.1) is
independent of o (C’\(C’ fq N(O, rn))) (that is, (4.1) holds for all o (C’\(C’ fq

N(0,m)))). Let y be an arbitrary but fixed point of C. Then (exp(-2r(y,t))g(t))Lp

for all p, <_p< o, as a function of R.
We now define a class of holomorphic functions in tubes. Let C be an open

connected cone and let A_>0 be a real number. For any real number m>0 and any
compact subcone C’ of C put T(C’;m)-R"+ i(C’\(C’ N(O,m))). We shall say that a
functionf(z) belongs to the class H(A; C) iff(z) is holomorphic in the tube TC-R + iC
and if for every compact subcone C’ of C and every m>0, there exists a constant
M(C’, rn) depending on C’ and on m>0 such that

(4.2) [f(x+iy)l<--M(C’,m)(1 +[z[)Uexp(Z’rr(A +o)[y[), z--x+iyT(C’;m),

for all o >0, where N is a nonnegative real number which does not depend on C’ or on
m>0.

The growth (4.2) is more general than [10, (23), p. 398] in that the constant M(C’,m)
in (4.2) depends on C’ and on m>0 instead of just on C’. Further, any function which
is holomorphic in T(C’;m) for any compact subcone C’ of C and any m>0 is also
holomorphic in the whole of TC; for if z-x/ iy Tc, there exists a compact subcone
C’ of C and an m>0 such that z T(C’; m) since C is open. Thus if f(z) is holomor-
phic in T(C’; m) for all C’ C C and all m>0, thenf(z) is holomorphic in Tc.

(4.2) is also more general than [6,(3),p. 845] and [7,(12),p. 772] because of the
constant M(C’,m) and also because (4.2) holds in T(C’; m), m>0, and not necessarily
in the whole of Tc’, C’ C C. The functions H(A; C) defined by the growth (4.2) are the
correct functions to extend and generalize the functions considered by Raina [28, Thm.
2].

We should have defined the holomorphic functions considered in [6, III], [7, 4],
and [10, [}4] to be the H(A; C) functions in the first place because these are the more
general and more natural functions with which to obtain the results there. We have
already generalized the boundary value results of [7,4 and 5] to the H(A; C) func-
tions in [3,8]. (See [3,8,1,p. 1062] for relevant discussion. The growth (4.2) is
slightly more general than the growth [3,(6.4),p. 1053] which defines the functions
F(A; C)considered in [3,8] because of the arbitrary o>0 in (4.2). Nevertheless, the
same proofs of [3, 8] yield the results of that section for the H(A; C) functions also.)
We now generalize results of [6] and [10] to the H(A; C) functions and complete the
correction of the lack of insight on our part now.

THEOREM 4.2. ([10, Lemma 11, pp. 399-400]) Let C be an open connected cone. Let
V=Dr(g(t)), the distributional derivative of g(t) of order / with / being an n-tuple of
nonnegative integers, where g,(t) is a continuous function on R" which satisfies (4.1). Let
supp(V) C_ C*. Then f(z)-(V, exp(Zriz,t))) is an element of H(O; C).

THEOREM 4.3. ([6, Thm. 1, p. 846]) Let f(z)H(A; C) where A >_0 and C is an open
connected cone. There exists a unique element U ’ such that f(x + iy) U weakly in ’as yO, yC; and there exists a unique element V6 having support in SA--(t
R’’Uc(t)<--A} such that U-3 [V] in ’.

COROLLARY 4.1. Let f(z)H(O; C) where C is an open connected cone. There exist
unique elements U ’ and V ’ such that f(x + iy) U weakly in ’ as y O, y C;
supp(V) c_ C* So; U--’A’[V] in .,’; andf(z)- (V, exp(2ri(z,t))), z Tc.

Proof. All results follow from Theorem 4.3 except for the representation of f(z). In
the proof of Theorem 4.3 for A- 0, V is constructed to be the distributional derivative
of a continuous function g(t) on R" which has support in C* and which satisfies (4.1);
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and supp(V)-supp(g)c_C* as distributions since C* is a regular set [30,pp. 98-99].
By Theorem 4.1, (exp(-2r{y,t))g(t))L fL, yC. For V=DV(g(t)), being some
n-tuple of nonnegative integers, the construction of the proof of Theorem 4.3 yields (see
the similar step [6, (6), p. 846])

f( z ) zV[e-2’(Y’t)g( ) x] z x + iy Tc,
and this Fourier transform can be interpreted in both the L and L2 sense now. But by
Theorem 4.2, V, exp(2ri{z,t)))H(O;C) for our present V=DV( g( )). Thus the
computation [3,(7.14),p. 1056], which is valid under the properties of g(t) here for
z Tc, together with the above representation of f(z), z Tc, prove f(z)-
V, exp(2riz,t))), zTc, as desired. (The properties of g(t) here are such that this
proof is exactly the proof of [3, Thm. 8.2].) The proof is complete.

THEOREM 4.4. ([6,Thm. 2,p. 847]) Let f(z)H(A; C) where A>_O and C is an open
connected cone. Let f(x + iy) U weakly in ’ as y - O, y C, where U is unique. Then
U ’; there exists a unique element V ’ such that supp(V) c_S { R" uc(t) _<A)
and U-[V] in ’; andf(z)- {V, exp(2ri{z,t))), zTc.

Special cases of results like Theorem 4.4 have appeared in the literature of quan-
tum field theory; see [34, p. 61 ].

In the next two theorems C will denote an open convex cone such that [10, prop-
erty (C), p. 395] is satisfied by each compact subcone C’ of C. Further, we assume that
the n-tuple a-(al,...,a) is such that %_> 1,j= 1,. .,n.

THEORE 4.5. ([ 10, Thm. 1, p. 402]) Letf(z)H(A; C), A >-0. There exists a unique
elementVwith supp(V) C_SA (t Rn uc(t)<-A) such that (exp(-2r(y.t))V)
for allyC andf(x+ iy)-3[V]() in the weak topology of($) as y-O, yC.

THEORE 4.6. ([10,Thin. 2,pp. 405-406]) Let f(z)H(O; C). There exists a unique
element V $ with supp(V) C_ C* So such that (exp(- 2r(y, ))V) $for ally C;

(4.3) f( z ) (V, e 2ri(z’t) ), z TC;

(4.4) f(z)-3[e-2r(Y’t)g], z-x+iyTC,
where (4.4) holds as an equality in ($)’;

(4.5) (f(x+iy)’yeC, lyl<_M) is a strongly bounded set in ()’ where
M is an arbitrary but fixed positive real number;

(4.6) f(x + iy) - 3[ V ($)’ in the weak topology of ()’ as y -. O, y C.

As we noted earlier we have similarly generalized the boundary value results of
[7,4 and 5] to the H(A; C) functions in [3,8]. Using analysis founded upon our
analysis of [10], Pathak [26] has obtained results like those of [10] for the generalized
function spaces Wt and (Wa) and for the class of holomorphic functions H(A; C).
(The space U of [26,p. 236] is identical to H(A; C) for open connected (and hence
convex) cones C and A _>0. Further, [26, Thm. 2, (ii) and (iii), p. 238] and [26, Thm. 3, (i)
and (ii), p. 240] hold for z TC.)

In addition to the growth (4.2) on holomorphic functions in tubes Tc we shall also
be concerned in this paper with another growth which we introduce now. Let C be an
open connected cone. For each compact subcone C’ of C let f(z) satisfy

(4.7) If(x+iy)l<-M(C’)(1 +lzl)Nlyl -k, z-x+iyTc’,
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where M(C’) is a constant which depends on C’ and where N_>0 and k_>0 are real
numbers which are independent of C’ and depend only on C and of course on the
function. The growth (4.7) is of interest to us because any function f(z) which is
holomorphic in Tc and which satisfies (4.7) has a distributional boundary value in the
weak and strong topologies of $’ [36, p. 235]. We note that results of the type [36, p.
235] were first proved by Tillmann [35] for generalized half planes. Meise [24], [25] has
extended the results of Tillmann to vector valued tempered distributions, and in [12] we
have extended the result [36,p. 235] for functions holomorphic in tubes to the vector
valued case. Note that any function f(z) which satisfies (4.7) also satisfies (4.2) with
A-0. Even with A-0 (4.2) is a more general growth than (4.7) because there are
holomorphic functions which satisfy (4.2) but do not obtain ’ boundary values and
hence do not satisfy (4.7). We shall say more about this at the beginning of 6 below.

We conclude this section with a technical calculation which we need later. Let C be
an open connected cone which is contained in or is any of the 2 quadrants C, in Rn.
Put F(z) --f(z )/X(z ), z Tc, where f(z) satisfies (4.7) and X(z) is defined in (2.2)
with the N being the N of (4.7). Let C’ be any compact subcone of C and let 8>0. If
yC’CCC_C, and lyl>tJ then for each j-1,...,n there exists 8j>0 such that
((- 1)Jyj)>ij>0. Thus from (2.5) and (4.7) we have for any compact subcone C’ of C
and any >0 that

(4.8)
IF(z) I-

_<M’(C’,8)(1 +lzl) -n-2

for all z-x+iyT(C’;8)-R"+i(C’\(C’fqN(O,8))) where M’(C’,8) is a constant
which depends on C’ and on 8 and which is given by

M’(C’,i)- M(C’)8-k

here M(C’) is the constant from (4.7) and the Kj(Sj),j- 1,. .,n, are the constants from
(2.5).

5. Holomorphic functions which have distributional boundary values and which are
H’ functions. In this section and the next we obtain results like [28,Thm. 2] for
functions holomorphic in tubes Tc in C and for various distribution spaces. We give
necessary and sufficient conditions for functions which are holomorphic in tubes and
which are known to have distributional boundary values to be He functions. The more
interesting direction of our results in which the holomorphicity and growth are assumed
and the He property obtained is proved first for tubes Tc where C is a cone that is
contained in or is any quadrant C in R", and then we use this setting to prove the
results for C being a general cone.

Because of the growths (3.20) and (3.17), the $’ boundary value results of
Vladimirov [36, p. 235], Tillmann [35], and others, and the importance of the tempered
distributions $’ in applications, the growth (4.7) is a natural growth to consider in
obtaining results of the type which we desire. We consider the growth (4.7) in this
section. In 6 we indicate results of the type which we obtain in this section but for the
growth (4.2) with A--0, which is the growth that extends [28, (3.2)] to arbitrary tubes
Tc in Cn.
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Let C be any open convex cone in Rn such that C does not contain any entire
straight line throughout this section. Let f(z) be holomorphic in TC-Rn+ iC and
satisfy (4.7). By [36,p. 235] there is a unique U’ such that f(x + iy) U in the weak
topology of $’ as y 0, y C; and as noted before this convergence also holds in the
strong topology of ’ by [14, Cor. 8.4.9, p. 510] and the fact that is a Montel space.
We emphasize that this unique stro_ng $’ boundary value U of f(x + iy) is obtained
independently of the sequence y0, y C, [36,p. 235], that is independently of the
sequence y 0, y C’ C C, for every compact subcone C’ c C. We now begin our proof
that if U=h(x)Lp, <_p<_, thenf(z)HP(TC).

THEOREM 5.1. Let C be an open convex cone that is contained in or is any of the 2
quadrants C in R. Let f(z) be holomorphic in Tc and satisfy (4.7). Let the unique strong

’ boundary value off(z), which exists, be h(x)Lp, l<_p<_o. Then f(z)HP(TC),
_<_p<_ o, and

(5.1) f(z)=fR,h(t)Q(z;t)dt, zTc.

Proof. Put

f(z) Tc ,>0,

where

(5.3) X(z) fi(1 ie(1)Jzj) u+"+z e>0,
j--l

with/-(,...,#) being the n-tuple whose entries are 0 or that defines C, N being
the constant of (4.7), and n being the dimension. By the proof of (2.4), [1/X(z)l <_ l,
z TC,, e> 0. Because of this, g(z) satisfies (4.7) since f(z) does, and g(z) is holomor-
phic in Tc. By the argument in the paragraph preceding this theorem, for each e>0
there is a unique U ’ such that

(5.4) g(x+) U asy0, yC,

in the strong topologff of ’, and we emphasize again that this unique U is independent
of the sequence y 0, y C. For the present we let e>0 be arbitrary but fixed. Let C’
be an arbitrary compact subcone of CC and let >0 be arbitrary. From the
discussion of the last paragraph of 4 and the analysis of (4.8) we obtain the existence
of a constant M(C’, 8, e) depending on C’, 8, and e such that

(5.5) [g(z)lM(C’,8,e)(l+lzl) -n-2, zeT(C’;8)-R"+i(C’(C’N(,8))).
Now put

(5.6) G(t)=f,g(x+iy)exp(-2i(x+iy, yC, tR".

For any y C there is a compact subcone C’ of C and a t>0 such that y (C’\(C’f)
N(0,t))); thus (5.5) shows that G(t) is well defined as a function of tR for each
y C. In fact G(t) is a continuous function of R for y C; and because of the
growth (5.5), the same type of analysis used in [6, pp. 846-847] to show the indepen-
dence of y C of the function in [6, (5), p. 846] and the support of this function to be in
SA -(t" Uc(t)<_A) there can be used here to show that G(t) in (5.6) is independent of
y C and supp(G) C_ C* for each e > 0. (This same type of argument has also been used
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in the proof of [3,Thm. 7.1,pp. 1055-1056].) For any compact subcone C’ of C and
any 8 > 0, (5.5) yields

(5.7) IG(t)l<M’(C’,8,e)e2<y’t>, tR, y(C’\(C’fqN(),))),
and (5.7) holds independently of y(C’\(C’ NN(0,8))) since G(t) is independent of
yC. Also from (5.5), g(x+iy)LlNL2 as a function of xRn for each yC. Thus
(5.6) can be rewritten as

(5.8) e-2rY’t)G(t)-6"f-l[g(x+iy);t], yC,

where - can be interpreted as either the L or L2 inverse Fourier transform. By the
Plancherel theory we have (exp( 2ry, ))G( )) L2, y C, and

(5.9) g(x+iy)-[e-2<y,t)G(t);x], z-x+iyTc,
with this Fourier transform being in the L2 sense.

Since G(t) is continuous, supp(G)C_ C*, and G(t) satisfies (5.7) independently of
y(C’\(C’ f3N(0,))) for any compact subcone C’ of C and any i>0, then by
Theorem 4.1 we have (exp(-2ry,t))G(t))Le for all p, _<p< , as a function of
R for each fixed y C. Thus the Fourier transform in (5.9) can also be interpreted

in the L sense, and (5.9) becomes

(5.10) g(x+iy)=fl,G(t)e2i(z,t)dt zTc,

with the right side being a holomorphic function of z Tc since the left side is. (The
right side of (5.10) is also holomorphic in Tc because of Theorem 4.2.)

Both G(t) and (exp(-2ry,t))G(t)), yC, are elements of (R)’. Also g(x + iy)

’ as a function of xR for each y C. Thus (5.9) holds as an equality in ’. Let
q @ and q(x)- [q(t); x]. Arguing exactly as in [36, p. 237, 11. 10-14] or [6, (11), p.
847] and using the Fourier transform from @’ to ’ we have

(5.11) ge(x+iy),b(x))-e-2r(Y’t)Ge(t), dP(t))-*(Ge(t),dP(t))--[Ge(t)],t)
as y 0, y C, which proves that

(5.12) g(x+iy)3[G(t)] asy, yUC,

in the weak topology of ’ with [G(t)] being the Fourier transform of G(t) from (R)’
to ’. But (5.4) holds in the strong and weak topology of $’; and since U’c’ and
the $’ topology is stronger than that of ’, we have that (5.4) also holds in the weak
topology of ’ and U-Y[G(t)] in ’. Thus G(t)--[U] in @’. But U’C’; so
that oy- 1[ U] $’ C @’. Since G(t) 0y- 1[ U] in (R)’ and oy- 1[U] $’ c (R)’ we thus have
that G(t) can be extended to be an element of $’ with G(t)--I[U]$ in ’([36,pp. 237-238,especially p. 238,lines 1-6], [6,proof of Thm. 2,p. 847], or [12,p.
330,lines 10-20]); and hence

(5.13) U-[G(t)] ’ in ’.

(Once we have that G(t)$’ above, (5.13) also follows in another way"

(exp(-2ry,t))G(t))L-C$’, yC, and g(x+iy)’ as a function of xR for
y C; thus (5.9) holds as an equality in ’. We can now prove directly using analysis as
in (5.11) that g(x + iy) --, [G(t)] $’ in the weak, and hence strong, topology of ’ as
y --, 0, y C. But from (5.4), U $’ is the unique ’ boundary value of g(x + iy); hence
we must have (5.13).)
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Now X(x+ iy) is a multiplier in ’ as a function of xR for each fixed y C.
Also

(5.14) X(x+iy)X(x) asy0, yC,

in the strong topology of $’ by the proof of Lemma 2.2, and X(x) is a multiplier in $’.
From (5.2), (5.4), and (5.14) we obtain

(5.15) lim f(x+iy)- lim_ X(x+iy)g(x+iy)-X(x)U.
y y0
yC yC

in the strong topology of $’. But by hypothesis, the unique strong $’ boundary value of
f(z), which exists, is h(x) LP, _<p _< . We thus have

(5.16) X(x)U-h(x) in ’.
The proof of Lemma 2.2 and (5.16) now yield

h(x) in’(5.17) U-X(x )

The proof will now proceed by considering different values for p. First assume
_<p_<2. Our goal is to construct a function which we know is in HP(TC), <_p<_2,

and then to prove that it equals f(z). Since h(x)Lp, l_<p_<2, and [1/X(x)[<-l,
e>0, then (h(x)/X(x))Lp, l_<p_<2. Recall that G(t) is a continuous function of
tERn with supp(G)C_C*; thus because of (5.13) and (5.17), we have exactly the
situation described in the last paragraph of 2. By the discussion of that paragraph and
by the calculations (2.9) and (2.10), there exists a function H(t)--i[h(x)/X(x); t]
which is in L ifp- and in Lq, (1/p)+(1/q)- 1, if <p_<2, such that supp(H) C_ C*
almost everywhere and

h(x) [H(t)]
(5.18)

as equalities in $’ and

(5.19) fc,G(t)e2’i(z’t)dt=fc,H(t)e2’i(z’t)dt, zTc.

By (5.10), the facts that supp(G)C_C* and supp(H)C_C* almost everywhere, (5.19),
the fact that H(t)--i[h(x)/X(x); t] in the function sense where (h(x)/X(x))Lp,
__<p_<2, and the proof of Lemma 3.3 we have

S. z(5.20) g(z)= ,G,( )e2:i(z’t) dt "(l z- Tc

where K(z-t) is the Cauchy kernel.
Now let w be an arbitrary but fixed point of Tc and consider the function

(K(z / w)g(z)), z Tc. This product is holomorphic in z Tc by Lemma 3.2 and the
fact that g(z) is. Recall that g(z) defined in (5.2) satisfies exactly the growth (4.7) of
f(z) since I1/X(z)l<_l, e>0, zTc. Thus by (3.6), (K(z+w)g(z)) satisfies the
growth obtained by multiplying the growth of g(z) by the constant Mv, v-Im(w), of
(3.6), which is independent of z Tc. By Lemma 3.2, K(x + iy+w)K(x+ w) in the
strong topology of ’ as y 0, y C. Thus by this convergence, the existence of U in
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(5.4), and (5.17) we have

(5.21) lim_ K(x+ iy+ w)g(x+ iy)-K(x+w)U-K(x+w)
y-+O
yC

in the strong topology of ’; and (K(x+w)(h(x)/X(x)))Lp, _<p_<2, since h(x)
Lp, l_<p_<2, here and both K(x+w) and 1/X(x) are bounded for xRn. We thus
have exactly the same situation and type of hypothesis with respect to (K(z + w)g(z)),
z Tc, as we did with g(z) in obtaining (5.20) from the beginning of the proof of this
theorem. Thus by (5.21) and the holomorphicity and growth of (K(z+w)g(z)) for
z Tc and by exactly the same proof as in obtaining (5.20) we have

fR h(t) K( + )K(z t)dt zTc.(5.22) K(z+w)g(z)= ,X(t w

This equality holds for w being arbitrary but fixed in Tc. For z--x + iy TCin (5.22)
we now choose w=-x+iyTc. With this choice of w, (K(t+w)K(z-t))=lK(z-t)l2

and K(z + w)=K(2iy); and (5.22) yields

(5.23) g(z)-
X[

Q(z;t)dt, zTc,

where Q(z; t) is the Poisson kernel corresponding to Tc. (Our argument in this para-
graph leading to (5.23) is an adaptation of the argument in the proof of [33, Thm. 3.9, p.
106].) The Poisson integral on the right of (5.23) is holomorphic in z Tc since g(z) is.
Combining (5.20) and (5.23) we thus have

fc fI h(t) K(z-t)dtg(z ) ,Ge( )e 2i(z’t) dr-- X()
(5.24)

fII h(t)
,X(ii) Q(z;t)dt, zTc,

and all four functions of z Tc in (5.24) are holomorphic in Tc.
Since 1/.X(x)[ _< for all x R and all e> 0, then

[P (h(x)]
p

]P) [Ph(x---)-h(x) <2p Ih(xXe(x ) xe(X )
q- ) <2P+’Ih(x)

and the right side is in L since hELp, _<p_<2, here and is independent of e>0. By
the Lebesgue dominated convergence theorem

(5.25) lim h(x----)-h(x) dx-O, l_<p<2X (x)
Now put

(5.26) G(z)-fa,h(t)Q(z;t)dt, zTc.

(We shall show that G(z)HP(TC), 1 _<p_<2, and then prove G(z)--f(z), z TC.) Let
zo be an arbitrary but fixed point in Tc. Since C is open we can choose a closed
neighborhood N(zo,B)- {z.lz-zol<_ , of z0 contained in Tc. If <p_<2 we use
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(5.23), (5.26), and HOlder’s inequality to obtain

(5.27) Ig(z)-G(z)l <- X(t]-h(t) [[Q(z;t)llLo, zTc,

(1/p)/(1/q)- 1; and ifp- we use (5.23), (5.26), and (3.12) to yield

(K(iy))2 f,, h(t) TC"(5.28) Ig(z)-G(z)l <_ (t),-h(t) dr, z

Thus (5.25), (5.27), and (5.28) together with Lemma 3.4 and its proof yield that
g(z) G(z) uniformly in z for z (z" Iz z0l < 8} as e 0 +. From this fact and the
fact that g(z) is holomorphic in Tc for each e >0, we conclude that G(z) is holomor-
phic at zo Tc and hence in the whole of Tc since z0 is an arbitrary point of Tc. We
now apply Lemma 3.5 to G(z), which is defined by (5.26), and conclude that G(z)
HP(TC), --<p--<2, since h(t)_Lp, 1 _<p_<2, here.

For _<p_<2 and we have by HOlder’s inequality that

(5.29) IG(x+iy),q(x))-h(x),q(x))l_<llG(x+iy)-h(x)ll , q, tqo

Inequality (5.29) together with the definition (5.26) of G(z) and [22, Prop. 3(c)], the fact
that G(x+iy)h(x) in Lp as yO, yC, prove that G(x+iy)h(x) in the weak
topology of $’ as y 0, y C; hence this convergence is in the strong topology of ’also as we have argued before.

We now have that (f(z)- G(z)) is a holomorphic function of z Tc. By hypothe-
sis, f(z) satisfies (4.7) and hence satisfies (4.2) with A-0. Since G(z)HP(TC),
_<p_< 2, then G(z) satisfies (3.17) by Theorem 3.1; hence G(z) satisfies (4.2) with

A-0. Thus (f(z)-G(z))H(O; C) as defined in [}4. Further, both f(z) and G(z)
converge to h(x)Lp C’ in the strong topology of ’ as y0, y C; so that

(5.30) (f(x+iy)-G(x+iy))O asy0, yC,

in the strong (and weak) topology of ’ with the boundary value U=0’ being
unique in (5.30). By Theorem 4.4 there exists a unique element V’ with supp(V)c_ C*
such that 0 oy V] in $’ and

(5.31) f(z)-G(z)-(V, e2i(z’t))-(V,?(t)e2"(z’t)), zTc,
where X(t) is the function of (2.8) with b--0 there and (?(t)exp(2riz,t))) for
z Tc. But the Fourier transform on ’ maps ’ one to one and onto ’ as does the
inverse Fourier transform on $’. Thus 0=Y[V] in ’ implies V=y-I[0]=0 in $’. This
together with (5.31) proves that f(z)-G(z), z Tc. The proof of our result for the
cases 1_<p_<2 is thus complete since we already know that G(z)U_HP(TC), _<p<_2,
and (5ol) holds by the definition (5.26) of G(z).

We now complete the proof of Theorem 5.1 by proving the result for the remaining
cases that 2 <p-< o. Recall that our analysis from the beginning of the proof through
(5.17) holds for -<p_< . For any e>0

n
,,,N+n-k-2) H (-2 ..._ x..2) 1--N/2--n/2

X (x) "
which shows that for each e>0, (1/X(x))U_Lq for all q, _<q_< 0. By hypothesis in the
present case, h(x)Lp, 2<p-<. Thus (h(x)/X(x))LOLp, 2<p_<. Now if
p-c then (h(x)/X(x))L2 since hL and (1/X(x))L2. If 2<p<, analysis
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as in (3.25) proves (h(x)/Xe(x))L2 here. We thus have (h(x)/X(x))L f-)L20L p,
2 <p _< oe, and (5.17) holds. Since (h(x)/X(x)) L2 we thus may use exactly the proof
given above for the case p-2 to conclude that (5.18), (5.19), (5.20), (5.23), and (5.24)
hold such that all four functions of z Tc in (5.24) are holomorphic in Tc for each
e >0. If 2<p<, (5.25) holds here by exactly the same analysis; hence for the Poisson
integral representation of g(z) in (5.23) and (5.24) and the definition of G(z) in (5.26),
the exact same analysis as in the case <p_<2 now proves for our present case of
2<p< oe that g(z) G(z) uniformly in z for z in an open neighborhood of each fixed
point zo Tc as e--,0+. For the case p-oe, we choose a closed neighborhood con-
tained in Tc about each fixed point zo Tc, which can be done since C is open, and
apply the proof of Lemma 3.6 to yield that g(z)- G(z) uniformly on the closed
neighborhood of zo Tc and hence on the corresponding open neighborhood about
zo Tc as e--,0+. Thus for any p, 2<p_<, we conclude as before that G(z) is
holomorphic at each point zoTc and hence in the whole of Tc since g(z) is
holomorphic in Tc for each e>0. By Lemma 3.5 we now have G(z)HP(TC), 2<p_<.
Using [22, Prop. 3(c) and 3(d)], the inequality (5.29) if 2 <p< oe, and the definition of
the weak-star topology of L if p- oe, we obtain that G(x+ iy)--, h(x) weakly and
hence strongly in ’ as y --, 0, y C. The proof for 2 <p_< o is completed by exactly the
same argument on (f(z)-G(z)) as at the conclusion of the proof for _<p_<2. We
have (f(z)-G(z))H(O; C) and (5.30) and (5.31) hold with V=0 in (5.31). Thus
f(z)-G(z)HP(TC), 2<p_<, and (5.1) holds because of the definition of G(z) in
(5.26). The proof of Theorem 5.1 is complete.

We note an error in the proof of [28,Thm. 2]. The statement "g(x)-f(x) in
LP(-oe, oe) as e0" for the casep- oe in [28,p. 517,line 20] is false, f(x) there could
be f(x) 1, oe <x<, for example in the case p oe; then g(x) (f(x)/q(x))
f(x) in L(-oe, oe) as e--,0+ if and only if (1/q,(x))--, uniformly on -oe<x<oe
as e-0+ where q,(x) is defined in [28, (3.4), p.516]; and this latter convergence is false.
For p-oe a correct approach is to use the proof of our Lemma 3.6 to achieve the
desired result at this step in the proof of [28, Thin. 2].

We now extend Theorem 5.1 to arbitrary tubes of the type which we are consider-
ing in this paper.

THEOREM 5.2. Let C be an open convex cone such that C does not contain any entire
straight line. Let f(z) be holomorphic in Tc and satisfy (4.7). Let the unique strong $’
boundary value off(z), which exists, be h(x)Lp, l<_p<_oe. Then f(z)HP(TC),
<_p <_ o, and (5.1) holds.

Proof. For each of the 2" quadrants C, consider C fq C,. Let Sj., j-1,.-. ,k, be an
enumeration of the intersections CN C, which are nonempty; then each Sj. is an open
convex cone which is contained in a quadrant in Rn. Put

(5.32) f(z)=f(z), zTSj-R"+iSj, j-1,...,k.

Then each f(z) satisfies the hypothesis of Theorem 5.1 for z TSj, j= 1,.--,k, with
respect to holomorphicity and growth. From the discussion in the paragraph im-
mediately preceding Theorem 5.1, f(z) obtains its strong g’ boundary value indepen-
dently of how y 0, y C, and this boundary value is h(x) LP, _<p _< oe, here. Thus
each f(z) has h(x) as its unique strong ’ boundary value as y--, 0, y Sj., j= 1,... ,k.
By Theorem 5.1, we obtainf(z)HP(TS),j 1,...,k, and

(5.33) fj(z)--fR,h(t)Q(z; t)dt, zTS, j= l," .,k.
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For _<p< o, there exist constants Aj,j= 1,. .,k, such that

(5.34) fiJfj.(x+iY)lPdx<--AjP. yS, j-1,.. ",k,

and each Aj. is independent of y S. Put

(5.35) A max{A,,Az,.-.,A}.
Now let y C such that y S, j-1,...,k. Then y is on the topological boundary of
some Sj.. Choose a sequence of points { yj. n} C S such that y,--,y as n . By the fact
that f(z) is holomorphic in Tc, the dfinition (5.32) of’f(z), j-1,...,k, Fatou’s
lemma, (5.34), and (5.35) we have for _<p<o andyC such that yfS,j= 1,...,k,
that

(5.36) fRJf(x+iy)[Pdx<--linminf fRJf(x+iYj,n)lPdx<_AjP.<_AP.
Combining (5.32), (5.34), (5.35) and (5.36) we have for _<p< o that

fRJf(x+iy)lPdx<--AP, yC,

where A is independent ofyC. Thusf(z)HP(TC), _<p< o, as desired.
Ifp- o we apply Theorem 5.1 and obtainfj.(z)H(TSj),j= 1,...,k; hence

(5.37) j-1,...,k,

for positive constants Bj., j- 1,. -, k, which are independent of z TSj. Put

(5.38) B max(B B2,.-. ,Bg ).
Again let yC such that yS, j= 1,-..,k, and choose a sequence {Y,n) in an
appropriate S which converges to y as n o. Since f(z) is holomorphic and hence
continuous at z= x + iy, a simple continuity argument together with (5.32), (5.37) and
(5.38) proves that

(5.39) If(x/iy)l<_l /B

for any yC such that y Sj_., j= 1,.--,k. Then (5.32), (5.37), (5.38) and (5.39) prove
that (5.39) holds for all z Tc where B is independent of z Tc. Hencef(z)H(Tc)
in the casep- o.

We now have f(z)U_HP(TC), l<_p<_o. By [22,Prop. 4] there exists a function
H(t) LP such that

(5.40) f( z ) fl,H( )O( z ) dt, z Tc.
But for z TS, j--1,...,k, (5.33) holds. Thus by (5.32), (5.33), (5.40) and [22,Prop.
3(c) and 3(d)] we have that h(t)=H(t) almost everywhere for tERn. Hence the
conclusion (5.1) in this theorem follows from (5.40). The proof of Theorem 5.2 is
complete.

As we noted at the beginning of this section we chose to consider the growth (4.7)
here because it naturally extends the known growth of np functions in tubes as given in
Theorem 3.1, because of the ’ boundary value results of [36,p. 235] and [35] and the
growths considered there, and because of the importance of ’ in applications. We note
for emphasis that Theorems 5.1 and 5.2 will hold for any growth which will satisfy the
growth of [36, p. 235] and such that the technical construction in the proof of Theorem
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5.1 will hold. In particular these theorems will hold for the functions [32,Thm.
II.5, (II.1 lb), p. 56] and for those of Tillmann [35, (5), p. 110].

Two corollaries follow immediately from Theorem 5.2.
COROLLARY 5.1. Let the cone C and the holomorphicfunction f(z), z Tc, satisfy the

hypotheses of Theorem 5.2 for <p_<2. Then (5.1) holds and there exists a function
g(t)Lq, (1/p)+(1/q)- 1, with supp(g)c_ C* almost everywhere such that

Ifp- 2 we further have

(5.42) f(z)=fR,h(t)K(z-t)dt, zTc,

where h(x)L2 is the unique strong ’ boundary value of f(z) in the hypothesis of
Theorem 5.2.

Proof. By Theorem 5.2, f(z)HP(TC), <p_<2, and (5.1) holds. The existence of
g(t)Lq, (1/p)+(1/q)-l, with supp(g)c_C* almost everywhere such that (5.41)
holds, now follows by Theorem 3.2, case III. If p- 2, there exists a function H(t)La

such that

(5.43) zTc,

with H(t)--[g(x);t] in L2 [33,Thms. 3.6 and 3.9,pp. 103-106]. But (5.1) holds for
the hL from Theorem 5.2. By the same argument as at the end of the proof of
Theorem 5.2, (5.1) and (5.43) imply that h(t)-H(t) almost everywhere; hence (5.42) is
proved by (5.43).

COROLLARY 5.2. let the cone C and the holomorphic function f( z), z Tc, satisfy the
hypotheses of Theorem 5.2 with the unique strong g’ boundary alue off(z), which exists,
being a constant K. Then f(z)- K, Tc.

Proof. By Theorem 5.2, (5.1) holds with h(t) K. By (3.4) we then obtain f(z) K,
z Tc, as desired.

We now state a converse to Theorem 5.2.
THEOREM 5.3. Let C be an open convex cone such that C does not contain any entire

straight line. Letf(z)H(TC), <_p<_ oe. There exists h(x)Le such that

(5.44) f(x+iy)h(x) asy, yC,

in Lp if <_p < and in the weak-star topology of L ifp andfor all p, <_p
(5.44) holds in the strong topology of g’. Further, if <_p< oe then f(z) satisfies (3.17) and
hence (4.7); if p-o, f(z) is bounded on Tc and hence satisfies (4.7); and for all p,
_<p_< m, (5.1) holds.

The proof of Theorem 5.3 is immediate using [22, Prop. 4 and Prop. 3(c) and 3(d)]
and arguments that we have used previously in this paper. Details are left to the
interested reader.

6. Results for other distribution spaces. In this section we note results like those of
5 for the distribution spaces which are associated with the space of functions H(0; C)
as defined in 4. The elements of H(0; C) are defined by the growth (4.2) with A-0
there. As we previously noted, functions which satisfy (4.7), a growth which yields
boundary values, also satisfy (4.2) with A-0. One naturally asks whether one actually
obtains a different distributional boundary value theory by considering the more
general growth (4.2). The answer is yes. There are holomorphic functions in tubes

(5.41) f( z ) -,g( )e2"’ dt, z Tc.
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which satisfy the growth (4.2), even for A-0, but which do not obtain ’ distributional
boundary values and hence can’t satisfy (4.7); see [1, p. 306] and [34,(2-67), p. 54] for
relevant examples. Thus obtaining distributional boundary value results for holomor-
phic functions in tubes which satisfy (4.2) with respect to the distribution spaces ’, K,
r_> 1, ()’, or (We) yields information not obtainable by considering the growth (4.7)
and can have importance in applications as inferred in [28, 1, last and Thm. 2] and
[31.

Let C be an open convex cone. f(z)H(O; C) obtains a unique weak distributional
boundary value in ’ by Theorem 4.2 of this paper and in K, r_> 1, by [3, Thm. 8.1];
and in the case of K the convergence of f(x + iy) to a unique element of K as y- 0,
y C, is in the strong topology of K; also [3, Thm. 8.1]. (The H(A; C) functions defined
in 4 are slightly more general than the Fl(A; C) functions defined in [3,p. 1053], with
which [3,Thm. 8.1] is concerned, because of the arbitrary o in (4.2); the same proof of
[3, Thm. 8.1] yields this result holding forf(z)H(A; C), A >_0, also.)

If C is an open convex cone such that [10, property (C), p. 395] is satisfied by each
compact subcone of C, then f(x+ iy)H(O; C) obtains a unique weak distributional
boundary value in ()’ as yO,yC, for a-(a,...,%) such that c9_> 1,j-1,- -,n,
by Theorem 4.5 in [}4 of this paper. Similarly if [26, property P, p. 235] is satisfied by
each compact subcone of C then f(x+iy)H(O; C) obtains a unique weak distribu-
tional boundary value in (We) as y -- , y C, by [26, Thm. 1].

We now state our results which correspond to Theorem 5.2 for the spaces ’, K’
r_> 1, ()’, and (We)’.

THeOReM 6.1. Let C be an open convex cone such that C does not contain any entire
straight line. Let f(z)H(O; C). Let the unique weak 7.’ or K’r, r>_ 1, (weak and strong in
the case of K’) boundary value of f(z), which exists, be h(x)Lp, <_p<_ oe. Then
f(z)Hl(TC), <_p<_oe, and

(6.1) f(z)--,h(t)Q(z;t)dt, zTc.
THEOREM 6.2. Let C be an open convex cone such that C does not contain any entire

straight line and such that every compact subcone of C satisfies [10, property (C), p. 395]
(or [26,property P,p. 235].) Let f(z)H(O; C). Let the unique weak ()’ (or (We)’)
boundary value off(z), which exists, be h(x)Lp, l<_p<_. Then f(z)HP(TC),
<_p <_ o, and (6.1) holds.

As noted in [10, p. 395] the first quadrant, and in fact any quadrant C,, and the
forward (backward) light cone are examples of cones which satisfy the hypotheses in
Theorem 6.2 corresponding to (’)’. Similarly these cones also satisfy the hypotheses
with respect to (We)

The proofs of Theorems 6.1 and 6.2 are obtained in the same manner that
Theorem 5.2 was proved. We first prove Theorems 6.1 and 6.2 for C being an open
convex cone which is contained in or is any of the 2" quadrants C, in R as in Theorem
5.1. In this case we construct g(z)-f(z)/X(z) as in (5.2) and G,(t) as in (5.6). Using
the growth (4.2) of f(z)H(O; C), the same properties on G(t) as in the proof of
Theorem 5.1 follow; and as the reader probably suspects, the proofs are completed in
the same way as the proof of Theorem 5.1 is obtained. The only difference here is that
some technical points with respect to the various distribution topologies involved need
to be checked which correspond to facts already obtained in the proof of Theorem 5.1
We have verified all new points which are needed for the proofs of Theorems 6.1 and
6.2, and these become obvious to the reader as he reads through the proof of Theorem
5.1. Since the proofs of Theorems 6.1 and 6.2 are obtained in the same way as that of
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Theorem 5.1 for the case that C C_ C,, we ask the reader to reread the proof of Theorem
5.1 and verify any details desired for Theorems 6.1 and 6.2. Then, of course, Theorems
6.1 and 6.2 for arbitrary C as hypothesized follow in exactly the same way that
Theorem 5.2 followed from Theorem 5.1. We do note that the recovery step (5.31) for
(f(z) G(z)) for the case that C c_ C, in Theorems 6.1 and 6.2 follows by Corollary 4.1
of this paper for the case ’, by [3, Thm. 8.2] for the case K where we note that
[3, (8.10),p. 1063] actually holds for all z Tc since C is open, by Theorem 4.6 in this
paper for the case (g")’, and by [26, Thm. 2] for the case (Wa) where [26, Thm. 2, (ii)]
actually holds for all z Tc since C is open and m>0 is arbitrary there.

It is obvious that corollaries to Theorems 6.1 and 6.2 can now be stated like
Corollaries 5.1 and 5.2. As a converse to Theorems 6.1 and 6.2 we state the following
result whose proof is obtained by exactly the same means as indicated for the proof of
Theorem 5.3.

THEOREM 6.3. Let C be an open convex cone such that C does not contain any entire
straight line. Let f(z)HP(TC), <_p<_ o. There exists h(x)Lp such that (5.44) holds
in Lp if <_p < and in the weak-star topology of L if p o. For all p, <_p <_ o,
(5.44) holds in the weak topology of ’, (’)’, and (WU) and in the weak and strong
topology of K’r, r>_ 1. Further, if <_p< then f(z) satisfies (3.17), (4.7), and (4.2) with
A 0; ([p o, f(z) is bounded on TC; andfor all p, <_p <_ , (6.1) holds.

Of course [28, Thm. 2] is a special case of our analysis in this section, and our
results are applicable to the paper [13] where the distribution spaces $’1 and ($1), are
considered.
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NECESSARY AND SUFFICIENT CONDITIONS
RELATING THE COEFFICIENTS IN THE RECURRENCE FORMULA

TO THE SPECTRAL FUNCTION FOR ORTHOGONAL
POLYNOMIALS*

JEFFREY S. GERONIMOf AND PAUL G. NEVAI*

Abstract. The problem considered here is, given the coefficients in the recurrence formula for polynomi-
als orthogonal on a segment of the real line, what can be said about the spectral function with respect to
which they are orthogonal? The coefficients are assumed to converge at a particular rate and the conse-
quences for the spectral function are found that are necessary and sufficient.

AMS (MOS) subject classification (1970). Primary 42A52.

1. Introduction. Let p(h) be a nondecreasing function on a segment [a, b] of the
real line with infinitely many points of increase. Furthermore, let

(1.1) sn fbxn dto( X )

exist for all n. It is well known [5] that one can construct a unique set of polynomials
(p(?,n)} with the following properties:

A) p(X, n) is a polynomial of degree n with positive leading coefficient,

B) fap(,,n)p(,,m)dp(.)-n,m, n-O, 1,2....

Furthermore, these polynomials satisfy the following three-term recurrence formula:

(1.2)
a(n+ 1)p(,,n + 1)+b(n)p(3,n)+a(n)p(?,n-1) =?p(?,n), n=0, 1,- .,

Here

(1.3)

and

p(X,-1)-0.

a(n):Lt’Xp(,,n)p(,,n-1) dp(,)

(1.4) b( n ):fab,p (?,n)2dp( X ).

In this paper we assume that the coefficients in the recurrence formula converge at
a particular rate, and we find conditions for the spectral function that are necessary
and sufficient. More precisely, let

(1.5) v(0) 1, u(n)_>
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be an even funciton of n with the following properties

,(n+ 1) n_>0
(1.6) ,(n)_< ,(m),(n--m), n,m>--O,

and

lim sup (,(n)) ’/’- 1.

We prove the following:
THEOREM 1. Let 0<K(O)< c. Let (a(n )) be a sequence of positive numbers and

(b(n )) be a sequence of real numbers satisfying the following conditions:

(1.7) lim a(n)-a(o)>O, lim b(n)-b(),
/’/--- O( n-- oo

and

(1.8) a( n + IB(n- 1)1 <

Then a necessary and sufficient condition for the above to hold is that there exists a
bounded nondecreasingfunction p(,) on a finite segment of the real line of the form

(1.9)

o(0) dX, X- 2a(o)cos0+b(),
U not as above,

dp(h)- E pi(h_hi)dX hi@hj, i@j, Pi>0,
i=l N<,

O<_O<_r,

where

o(0 )ld(011 o(-0 )ld(-O )1
sin 0 sin(- 0 )

ln(o(O)ld(O)lZ/sin O) has an absolutely convergent Fourier series, and

(1.10) In[,(n)]q(n)-q(n+2)l<.

The a(n)’s and b(n)’s are related to O(X) by (1.3) and (1.4).
Here

(1 111 o(O)ld(O)12
sin0

q(n)ei"’
n--

(1.12) B(n)- b(n)-b(o)

i(,) is the Dirac delta function, and d(0) is equal to
1) if o(0) is bounded at 0 0 and 0 r,
2) 1- ei if o(0) is unbounded at 0 0,
3) + ei if o(0) is unbounded at 0=r,
4) 1-e-i if o(0) is unbounded at 0=0, and 0=r.
In [3], (1.7) and (1.8) were assumed to hold with u(n)= for all n. The spectral

function was constructed and shown to satisfy all the necessary conditions except
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(1.10). Therefore, in [}2 we briefly review the results of [3] and develop the equations
necessary to complete the proof. Next (3), we show that if one forms a new spectral
function p0() by adding or substracting a finite number of mass points to dp(), then
the coefficients a(n), b(n) associated with p(X) still satisfy (1.7) and (1.8). Finally, in
[}4 we show that one can alter the absolutely continuous part of p(X), o(0), in a way
that allows one to call upon [2, Thm. 1] to complete the proof ([}5).

2. A review. It is easy to see that if (1.7) holds, then the orthogonal polynomials
(p(X, n)) satisfy the following recurrence formula:

(2.1)
where

(Z,n)-C(n)(Z,n-1),

1/z

(2.2) C( n ) a( ) { ( a( n } n-1 2...
a(n) I-- Z-B(n-1) 1/Z

(2.3)

and

X-a() Z+2 +b(o).

Z is a complex number. For initial conditions one takes

(2.4) p( X, 0) 4’(Z, 0) K(0) >0,

Two other useful solutions [3] of (2.1) are

(2.5)

and

d+(Z’n)-(p+(Z’n))q,,+(Z, n)

(2.6) dp_ ( Z, n )

satisfying the following boundary conditions"

(2.7)

It can be shown [3] that +(Z,n) and _(Z,n) are linearly independent for Z4:___

and that

(2.8) l/Z) IZI--1,
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where

(2.9) f+(Z)-K(O)Z n+olim Z"+(Z,n),
and

(1)(2.10) f_ (z)--f/ (z)--f+ Izl- 1.

One can include polynomials of the second kind in this scheme by defining

(2.11) (Z,n)- ,,(Z,n)
n> l,

satisfying (2.1) with boundary conditions

K(0)(2.12) Q(X, 1)-,(Z, 1)---?l)a,
It is now possible to write (see [3, App. B])

(2.13) p+(Z,n)-K(O)[f+,(Z)p(?,n)-f+(Z)Q(,,n)],
where

(2.14) f+a(Z)-g(o)z n-oclim Zn+(Z,n).

nl, IZI- 1,

To proceed further it is convenient at this point to introduce the techniques of
Banach algebras. Let A denote the class of function integrable on -r_< 0_<r such that
if g is an element of A, then

(2.15) g(O) E g(K)e’ro

with

(2.16) I[g[I,- E
K=

,(n) is defined in (1.5) and (1.6). Let A+ and A- denote those functions in A, of the
form

(2.17) g(O) E g(K)eir
K--0

and
0

(2.18) h(O) h(K)eit

respectively.
Let g ll be the norm on A, A+ and A-. Then A,, A+ and A- are Banach

algebras [1 ]. A will denote the Banach algebra where u(n)= for all n.
Returning now to (2.1), we can show the following [3]:
THEOREM 2. If (1.7) holds and

(2.19) n=2 nu(2n) a(a(n)2 +ln(n--1)l
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then

(2.20) lim a()
,, K(O) Z"(Z,n)-Zf+(Z)[],-O,

(2.21) Zf+(Z) is analytic inside and continuous on the unit circle,

(2.22) p+(ei,n)A+ for all n>_O.

(2.23) Iff+(Z) has zeros inside the unit circle, they are,
a) real,
b) simple,
c) finite in number.

Finally, iff+ ( Z) has zeros on the unit circle,
a) they must be at Z + and/or Z 1,
b) Zf+ ( Z)/d(Z) CA +, Z ei.
d(Z) is defined following (1.12). The consequences for the spectral function, 0(),

of the above are as follows:
THEOREM 3. If (1.7) and (2.19) hold then there exists a bounded nondecreasing

spectralfunction 0() on a finite segment of the real line of the form given by (1.9) with

(2.24) o(h)- a(m)sinO X_a(m)(eiO+e_iO)+b(m), Z_ei0

g(o)Zr[f+(Z)l-
and

(2.25) sin0 A.

3. The mass points. Let

(3.1)

o() d., a<-<-b,
U+ not as above,dpi(’)- E Pm(’--’m) d, i-- --1,0, 1,
m=l IN.l,

with

(3.2) IAmllAm_l.

Furthermore, let (ai(n ) } and (Bi(n) } be the coefficients in (2.1) associated with d#i(X)
respectively.

THEOREM 4. If

y nv(2n) a(n
=, a()

/lgo(n-1)1- <,

then

nv(2n)
--1

a-l(n (n-- 1)1 <o
a(oo)2

+ IB-,

This requires a minor modification of the techniques used in [3, App. B].
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Proof. Let

(3.3) Pi(.,n)-Ki(n).n--F i- -1,0, + 1,

be the polynomials orthonormal with respect to dfl(,). One finds (see [4, 7])

Ko( n._) [ po( h n ) + PNPO( h__._N n )_ .K_ On__(_ )kN )
PNK ( .N ;_(3.4) p_,(X,n)-K_,(n)

with

(3.5) K(X,X’) po(X,j)po(X’,j).
j=0

Solving for qi(Z,n) in the upper component of (2.1) then substituting it into the
lower component yields

(3.6) /g(Z,n)=p(X n) a(n)Zpi( x n-l).

(Note that a(m)-a(m) since dff(X) all have the same absolutely continuous part [3].)
It follows from (3.4) and (3.6) that

(3.7)

Since

K(n) [p0(X n)+PNP0(XN’n)K0n(X’Xn)
K_,(n) PNKn0(XN, XN)

a_l(n ) Ko(n--1)
a(o) _i--i-) Z P(X’n--1)+

(3.8) ai(n) -Ki(n-1)Ki(n)

pNPO(XN,n--1) l(t, XN)
1--PNKLI(kN,kN)

(3.7) can be arranged to equal

(3.9)
K_ l(n)_ l(m,/’/)

[ ( p(XN,n)Kn(X,XN) ao(n ) Zp(XN,n 1)n--lK(n) qJ(Z’n)+PN
1--PNK,,(XN,Xv ) a() 1--PNK,,O_I(XN,XN)

Multiplying by Z then equating coefficients of Z2" gives

(3.10)
K_l(n)K_(2n,2n)

=Ko(n)Ko(2n,2n)

where

PO(XN’n)2

+Ko(n)Io(2n,2n)pu I_--NIiX-IXN )

2n

(3.11) Z"4’i(Z,n) E Ki(2n,j’)Zj,
j=O

ao(n)2 pO(XN,n--1)2

;_ )a( oe PNKn_

i--1,0, 1,
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and

(3.12)

and

(3.13)

At, [3],

2n

ZnP,(X,n) E R,(2n,j)Z,
j=O

i----1,0,1.

:o(O)PO(XN’n)-- P+(ZN’n)’

1--pKoo(XN,XN)--O.
Therefore the term in brackets in (3.10) equals

pO+(zs n ao(n pO+(zs n 1)(3.14)
Y7--.+,P+ (ZN,J)-- a(oo) y,ooj_,,pO+(zN,j)2

Solving (3.6) for pO+ (ZN n 1) then substituting into (3.14) gives

(3.15)
2pO+ ( ZN,n )4’O+ ( ZN,n )

z%.pO+ ( z,,, )’
)2b+ ( ZN n

Z2N ,i=npO+ ( ZN i)2"
Using (3.6) once again gives

--pO+ ( ZN,n
i-- n a()2 P+ ( ZN’

(3.16)

From (2.1) one finds

(3.17)

where

-2 E P+(ZN’i+ 1)k+(Zu’i+ 1)

E E PO+(ZN,i)2pO+(ZN,J)2

i--n+ j=n

2p+ ( Zu,n )++ ( Zu,n )

Z22 _o ),=,,P+(ZN
O+(Zu,n):

2 _0 )2ZE,--.v+ ( ZN,

/+(Zu,n)--ao(n) E 1--a(J+ 1)2
=n )2 ZN-- Bo(j) Z/V-n+l

pO+ (ZN,j)
j a(o ao(J)

n

ao(n)-Ko(0) H a(oo)
i=1 ao(i)"
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Sincep+(Z,n)A +, Z=ei it follows from (2.7), (3.2) and (3.12) that (see [3, App. B])

(3.19) c*lzllp+(z,,)lcIzl, IZu]< 1.

Substituting the above results into (3.10) gives

K-l(n)
K_l(2n,2n)

Ko(n)
lKo(2n,2n)]

+ClRo(2n,2n)l I(3.20) i--n

ao(i + 1)2 [ZN]
2i-2n

+3
i--nj--i+l a(o)2

7 12j--2n+ IBo(J)l IN,

(I a(j+l)
+3 l-

j=, a(o)2
7 12j-2n/ IBo(j)l I=N,

It follows from the recurrence formula (2.1) that

(3.21) Ki(2n,2n)-(1 ai(n)2

a(o)- /,(2n, 2n).

Multiplying (3.4) by Z n, then equating coefficients of Z 2n shows that
((K_ l(n)/Ko(n))K_ 1(2n, 2n)) is bounded from below. Therefore

nv(2n)
n--1

(3.22)

_<C+

To show that

(3.23)

2 nu(2n)
n=l

+3 jv(2 j ) 1-
a( j+ 1)2

j:2 a()2 +IB(J)I} ,,=,: (j-n)lZ.I
+3 jv(2j) -a(j+ 1)2

j:, a(o)2

, nu(2n)lB-,(n- 1)1< ,
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multiply (3.9) by Z" and equate coefficients of Z2n- l:

K_(n)K_(2n,2n-1)

Ko(n)[Ko(2n, 2n 1)

(3.24)

PO(N,n)-+PNIo(Zn,Zn 1) I_PNKOn (XN,N)
ao(n pO(N,n--1

Ko ? )a()2
PN n-(;kN, N

+puo(2n_2,2n_2) Bo(n- 1)Po(Xu,n-- 1)2

1-- PNKO_ I( ?N,XN )
pO(XN,n)Po(XN,n--1) )

--ao(n)ao(n--1){Po(N,n--1)Po(?N,n--2)}]
The upper component of (2.1) has been used to arrive at (3.24). The last two terms in
(3.24) can be recast using (3.12), (3.13) and (3.6) to read

po(?N,n)PO(?N,n--1)
--IONKn(kN,kN)

ao(n)ao(n--1) pO(XN,n--1)Po(A.N,n--2)
a(c)2 1--PNKn--I(,N,N)

[a() p+(Zu n

(3.25) ao(n)Zu [ Y,,+,p+(Zu,i)2

2 )2ao( n pO+ ( ZN n

a()2 ]o )2i=nP+(ZN,

++(ZN,n)P+(ZN,n)
Xi=n+ P+ (ZN,i)2

ao(n ++(ZN,n--1)p+(ZN,n--1)
a()2 X )2i-nP+(ZN,

It follows from the recurrence formula (2.1) that

(3.26)

K,(2n,2n-1_-a()) g(2n--2 2n--3) -B,(n-1)/(2n 2n)ai(n) a()2

Therefore (3.25), (3.26), (3.24) and the previous analysis give (3.23).
THEOREM 5. If

ao(nnv(2n) 1--
)2
+ [Bo(n-- 1)1 <

n=l a(c

then

] nv(2n)
n=l
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(3.27)

Proof. Letting pN --0n+l (see [4, 7]) in (3.10) yields

Kl(n)Kl(Zn,Zn)

-Ko(n)Ko(Zn,Zn)

Po(U+l’n)2

-K(n)g(2n 2n)ON+
I+ON+,Kn(XN+

ao(n Po(N+,n--1
a()2 I+ION+IKLI(kN+I,XN+,)

Setting

(3.28) D-(1 -PN+lKOn(kN+l,kN+l))(l "PN+lKnO__l(kN+l,kN+l))
and rearranging the above equations gives

-Ko(n)Ko(Zn,Zn)

Ko(n)Io(2n,2n)ON+l [ )2D PO(XN+I’n ao(n )2
a(c)2

Po(’N+l ’n-1

(3.29) Ko( n )/o(2n, 2n )pZu+
D

2 0PO(,N+,n) Kn--I(XN+I,N+ )

ao(n)2

)20(XN+ X )]a(c)2
po(,N+,n--1 g, 1’ N+I

Letting Z 1/Z in (3.6) then substituting it twice into the third term of (3.29)
yields

 o(n x ))2 o aN+ )--
)2
Po(AN+I’n--1 K (XN+I, N+PO(N+I’ n Kn--l(kN+l

a(oQ

(3.30)

(1ZN2+ 10 ZN+I ,n KOn(’N+I’XN+I)

,n K. (XN+I, N+I+2Z+lPO(AN+l’n)qO ZN

i=o

1-- i-;:/ pO(hN+,i

2ZN2+ 10 ZN+I ,i+ 1)Po(Au+l,i )

ZN2+ 1+0 ZN+I t2},i+1 -zuz+IK(0)2 po(Au+l,n)2.
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It is clear from the recurrence formula (Zs is outside the support of dp) that

(3.31) Cps+,lZs+,l -" )2 gO( x ks+ )<PN+lPo(kN+I,n <PN+I N+l,

< +PN+IKOn()tN+I,XN+I),
and it can be shown (see [3, App. B]) that

(3.32) 1.

Therefore (3.29) reduces to

<_lKo(n)Ko(2n,2n)l+3C IKo(n)go(2n’2n)l IZN+llPN+I

(3.33)

2n

[2n--i+C^lKo(n)Io(2n,2n)l 6 , [Zs+ O Zs+i ,i
i=1

n--I ao(i+l)2

Here the fact that Z"/o(1/Z,n is bounded for all n has been used (see below). It
follows from (2.1) and (3.32) that

+ E + IBo(J)l INN+,I(3.34) 4’o N+l ,i <--C IZN+,I a(j+l

j=o a(m)2

Therefore (3.33) becomes

<_lKo(n)Ko(2n,2n)[+3C IKo(n)Ig:o(2n’2n)[ [ZN+I
PN+I

(3.35)

n--I

+C"lKo(n)lo(2n,2n)l 6nlZN+I2n+ E
i--O

ao( + 1)2

+6EE

Multiplying (3.35) by n,(2n) and summing on n, let us examine the last two terms on
the right-hand side. We see that

n--I a0(i+ 1)2] n,(2n) ] 1- IZs.ll
:’n-2i

)2n i--0 a(oQ

(3.36)
o n--I

2n--2i
< E (n--i)v(2(n--i--1))]ZN+ E v(2(/+ 1))
n=l i=0

ao(i+ 1)2

2n--2i+ E ,(2(,--i--1))IZN+ E i,(2(i+ 1))
n=l i=0

ao(i+ 1)2
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and

X nv(2n) X 1-
)2

+lB0(j)l tZm+,
n

<- E (n-J)Zv(2(n-J i))[gu+l{2"-2s
n=l

X Xv(N(j+l))j=o 1-
a()2

+ E (n--j).(2(n--j--llllZN+.l2"- s
n=l

xn ( ao(j+l)2 }j=0

These two equations plus (3.21) and (1.6) imply (the fact that (Kl(n)/Ko(n))(2n,2n)
is bounded from below follows from (3.4) with 0 -0+) that

(3.37) nv(2n)

To show that

(3.38)
n=l

let ON--->--PN+I in (3.24), then use (3.6) and (3.26) and the procedures that led to (3.37)
to yield the desired result.

4. Alteration of the absolutely continuous part. Without loss of generality let us
assume that a(c)-1/2 and b(c)-0 in (1.8). Furthermore, letf+(Z)4:0 for IZI < 1. This
implies that

(4.1) dp(X)-o(;k)dX (- l_<X_< 1).
If f+(1) 0, define

(4.2) o*(X)-- (1 -,)o() (-1_<_< 1),
and if f+(1) 4: 0, define

(4.3) o^(X) -o’X’( (-I<X<I)

Let

(4.4) p*(X.n)--K*(n)Xn+
and

(4.5) p^(X,n)-K^(n)X"+
be the orthogonal polynomials associated^ with o*()t) and o (X) respectively. Finally let
a*(n) and b*(n), and a (n) and b (n) be the coefficients in (1.2) for p*(X, n) and p
()t, n) respectively.
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THEOREM 6./f

(4.6) , nt,(2n)[ll-2a(n)[+lb(n)[] < o
n=l

and iff+ (1) O, then

(4.7a) x nr(2n)[ll_2a,(n)l+lb,(n)[] < o"
n=l

If (4.6) holds andf+(1) 4 O, then

(4.7b) , nv(2n)[ll-2a^(n)l+lb^(n)[]<.
n--1

Proof. First assume that f+ (1) 0. Expanding (1 h)p*(X, n ) in a Fourier series in
{p(h,i)} and then using the orthogonality relations, one finds

K*(n)K(n) p( n)-- p( n+l).(4.8) (1-X)P*(’n)-K*’n, ) K(n+ 1)

Therefore,

(4.10) a*(n)2-a(n)a(n+ 1) p(1,n +p(1,nl)P()12’n- 1),

If substituting (2.13) into (4.9) and noting that f+ (1) 0 gives

n-l))2 a(n)a(n+l) p+(1,n+l)p+l2(4.11) a*(n
p+(1,n

Squaring (4.8) and integrating it against o(X) gives

)2 K,(n)2
(4.12) 1-b*(n)--f (1- X)2p*(X,n )2 o(X)dX_K,(nK(n ) - K(n+ )’
where (1.4) has been used. It follows from (4.9) that

p+(1 n) + p+(1,n+ 1)

Let us now find the corresponding expressions for a (n) and b (n). From the
Fourier series expansion one finds

(4 14) p"(X n)- K(n-1) K’(n)
K(n)

p(X,n-1)+ K(n) p(X,n).

Multiplying by o() and integrating yields

f, o(X)

(4.15) K(n-1)K(n) _,p(X,n) x dX

o(x) dX

(4.9) K(n)K( 1)__p(1,n+p(1,n)l)
In particular, for- 1,
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Therefore,

(4.16) a^(n+l)2-a(n)a(n+l)
o(x) f,f’_,p(X,n+ 1) dX _,P(X,n-1) T-Z  x dX

Since Q(,, n) is a polynomial of the second kind,

(4.17) Q(,,n)-f’ (p(,,n)-p(t,n))o(t)dt
--1 -t

Substituting the above equation into (2.13) and using the fact that f+(Z)=/=O for [Z[_< 1,
we get

(4.18) lim p(X,n)-
n--> o

and

(4.19) lim p+ (Z,n)-0,
n-+oo

which give

(4.20)

Equation (2.13) now becomes

(4.21)

Hence

(4.22)

]Z[< 1,

f+=f+ (Z) f,_,z_Tdt.o(t)

p+(1,n)-K(O)f+(1) fl p(t,n) o(t)dt
--1 --t

a^(n+ 1)2-a(n)a(n+l) p+(1,n+ 1)p+(1,n--1)
p+(1,n)2

Squaring (4.14), multiplying by o(X) and integrating give

(4.23) b"(n+l)-l-a(n+l) p+(1,n+l)+ p+(1,n)
p+(1,n) p+(1,n+l) ]’

where (4.15) has been used. It follows from (4.11), (4.13), (4.22) and (4.23) that (4.6)
and (4.7) hold if

(4.24) ] nv(2n)
n=2

and

(4.25) ] nv(2n)
n=2

Set

(4.26)

p+(1,n+l)p+(1,n-1)
)2p+(1 n

p+(1,n+ 1) p+(1,n)+p+(1,n) p+(1,n+ 1)

8(n)=p+(1,n+ 1)-p+(1,n).
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Then

(4.27)
p+(1,n+ 1)p+(1,n--1)_ 1_ B(n)--B(n-- 1)

and

(4.28) p+(1,n/l)+ p+(1,n)
--2--

p+(1,n) p+(1,n+ 1)

8(n)8(n-- 1)
p+(1,n)2

(n)2

p+(1,n)p+(1,n+l)"
From (2.13),

(4.29) lim p+ (1,n)- 1.

Therefore (4.24) and (4.25) converge if

(4.30) nv(2n)l(n)-(n- 1)1< o
n=2

and

(4.31) nv(2n )6( n <
n:2

It follows from (1.2) that

(4.32)

(n)-6(n-1)-p+(1,n+ 1)-2p+(1,n)+p+(1,n-1)

--[1--2a(n+ 1)] p+(1,n+ 1)
-2b(n)p+(1,n)+[1-2a(n)] p+(1,n- 1).

Thus (1.8) and (4.29) imply that (4.30) holds. Equation (4.30) and the properties of v(n)
imply

(4.33) ](n)l<.
n--2

Therefore,

):nv(2n)8(n <_ E I(n)l E iv(2i)ls(i)-8(i-1)l
n--2 n-2 i=n(4.34)

< ] I(n)l iv(2i)lS(i)--8(i-1)1.
n=2 i=2

It is clear that the above procedure leads to the same results if 1-X is replaced by
1+,.

Some straightforward examples of Theorem 4 are Chebyshev polynomials of the
first and second kind, and the Jacobi polynomials P/’-/ and P-/’/ (see [5]).

5. Conclusions. The proof of Theorem is now a consequence of [2, Thm. ] and
the theorems in the previous sections. Starting with (1.7) and (1.8), one constructs the
spectral function using Theorem 3. To show the absolutely continuous part o(?,) of

At this point we wish to point out an error in the literature. [2, Thm. 3.1 and consequently Lemma 3.1]
are incorrect. The sufficiency part of [2, Thm. 1] follows from the argument in Appendix A of that paper.
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satisfies (1.10), one defines a new weight

dp(X)-o(X)dX(5.1)
where

o(0)(5.2) o(X) -;{no Id(0)l

It is a consequence of the above sections that the coefficients a(n) and b(n) associ-
ated with o() satisfy (1.7) and (1.8). o(X) also satisfies the conditions required in [2,
Thm. 1],2 therefore (1.10) follows. Sufficiency is proved by reversing the steps.
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HOW AN INITIALLY STATIONARY INTERFACE BEGINS
TO MOVE IN POROUS MEDIUM FLOW*

D. G. ARONSON’, L. A. CAFFARELLI: AND S. KAMIN

Abstract. The interface we study is the boundary of the support of the density of a gas flowing in a
homogeneous porous medium. It is known that for certain initial distributions the interface remains sta-
tionary for a positive time. We derive upper and lower estimates for this waiting time and give a condition
which is sufficient to guarantee that the interface begins to move in a smooth manner. In some cases our
estimates give the exact waiting time.

Introduction. Isentropic flow of an ideal gas in a one-dimensional homogeneous
porous medium is described by the degenerate nonlinear parabolic equation

Here u represents the density of the gas and mE[ 2, +) is a constant (see, for
example, [1]). For many mathematical questions concerning equation (0.1) the restric-
tion m_>2 is irrelevant. Most of the basic results for this equation hold with m> and
we shall make this assumption. The most striking manifestation of the nonlinearity and
degeneracy of equation (0.1) is the finite speed of propagation of disturbances from
rest. Specifically, if a solution u--u(x,t) of equation (0.1) is such that u(. ,0) has
bounded support in R, then u(., t) has bounded support in R for all >0. In general,
suppu(. ,t) expands as increases. Indeed this expansion always occurs if one waits
long enough and, once begun, never stops. However, for certain initial conditions
supp u(-, t) will remain unchanged for a positive time. This is the situation which we
shall consider in this paper. Our main results are criteria involving only the initial
datum u(-, 0) which allow us to estimate and, in some cases, predict exactly when
supp u(., t) begins to expand, and criteria which allow us to assert that the expansion
occurs smoothly.

We shall consider the initial value problem for equation (0.1). That is, given a
function u0: [0, +c) we seek a function u: ff [0, T)[0, +c) for someT+

which satisfies

0u_
8t-Sx2 ( u" ) in(0, T), u(-,0)-u0 inR.

If u0 is not strictly positive then, in general, the initial value problem (0.2) does not
have a solution in the classical sense. It is, however, solvable in a suitable generalized
sense. Specifically, u is said to be a weak solution of problem (0.2) in (0, T) if

(i) u is continuous and nonnegative in [ 0, T),
(ii) (um)x exists in the sense of distributions and is bounded in [0, T),
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(iii) u satisfies the integral identity

f ( O(u
(O,T) Ox Ox

for all qC(R [0, T]) which vanish for Ix] large and near T.
It is known [16] that problem (0.2) has a unique weak solution if, for example,
u Lip(R).

In order to discuss the behavior of supp u it is convenient to replace the density u
by the (normalized) pressure, v mu /(m 1). If u satisfies (0.1) then v satisfies

(0.3) Ov O2v (Ov) 2

1---}-= (m-- 1)v+
Ox x

We shall call v" NI 0, T) --, 0, + oe) a weak solution of the initial value problem

V O2V .. (OV) 2

(0.4) ----= ( rn- 1)v )x2 in (0, T )

v(., 0)- v0 in

if u-{(m-1)v/m}/(m-) is a weak solution of problem (0.2) with u0

((m-1)Vo/m}/(’n-). Kalashnikov [11] has shown that the weak solution of (0.4) is
unique in the class of functions v which satisfy O<_v(x,t)<_Ax2+B in N [0, T) for
some positive constants A and B.

Let v- v(x, t) be a weak solution of problem (0.4) where we assume that

-0Vo(X)
>0

for x[0,
for all sufficiently large x<0.

Define

Knerr [12] has shown that

t*--sup(t [0, T)" v(0, t)-- 0}.

Vo(X)>--c(--x) on (-8,0) for some cN+,8N+ and 3, (0,2)
implies that t*-0, while

Vo(X) <_ cx 2 on ( i, 0) for some c Nt + and i N +

implies that t*>0. On the other hand, Aronson [2] and Kalashnikov [12] have shown
that there exists a nondecreasing Lipschitz continuous function ’: 0, T) 0, + oe)
such that ’(0)-0 and

-0 for x_>’(t),v(x,t)
>0 for all sufficiently large x<’(t)

for each 0, T). The curve x ’(t) is the right-hand interface, and we shall focus our
attention on it exclusively. We are interested in estimating and evaluating t*, and in the
smoothness of ’(t).

Aronson [2] has shown that lim(t)v(x,t) exists and Knerr [13] has shown that
D+f(t) Vx((t) -, t) for each (0, T) where D+ denotes the right-hand derivative.
In addition, Knerr has proved that once the interface begins to move it must continue
to move. Caffarelli and Friedman [8] have gone even further. They have proved that
D+’(z)>0 for all z> t* and that " C(t*, T). We shall give a new and somewhat
simplified proof of this result, as well as conditions which guarantee that " C(0, T).
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Before stating our results, it will be useful to recall two explicit solutions of (0.3)
which will play an important role in our work. Let m- 1/2(m+ 1). For arbitrary
aR +,

tmX2
v*(x,t)-- (tm/a)--t

0

in (-- ,0] [0, tm/X),

inr+X[O, tm/a)

is the unique weak solution of problem (0.4) in [0, tm/a) with

aX in (-oo,0],v(x)-
0 in +.

This solution is due to Barenblatt [7]. For uniqueness, see Kalashnikov [11]. Here
T--t*-tm/a. As we shall show, for certain solutions v of problem (0.4), vv* in the
neighborhood of a vertical interface. The other special solution of (0.3) is the piecewise
linear function

Lv(x,t)(2t--x) +

for R+. In Lemma 2.1 we show that at each point where the interface is not
vertical, the right-hand derivative, D+, deternes the asymptotic behavior of the
solution of (0.3) in a uniform neiborhood of the point. Specifically, D+(t0)- 7>0
implies that Lv in a neighborhood of ((t0), t0). In addition to making comparisons
with these special solutions, we shall rely heavily on silarity transformations. If-(x, t) is a solution of (0.3), then for all a R + and + so is

2
(x

This observation permits us to use the liting values of solutions under various
deformations of the (x, t)-plane.

Our first result is an estimate for t* from above in terms of the local behavior of 0
near x- 0, and from below in terms of its global behavior.
THOM A. Let be a solution ofproblem (0.4) with o--0 in +. If

(0.5) Vo(X)-ax+o(x2) as x?O
and

(0.6) Vo(X ) fix in n
for some constants a + and fl +, then

tm tm
fl- a

An immediate consequence of Theorem A is the following result.
COROLLARY A. 1. If vo satisfies (0.5),

(0.7) Vo(X) ax in

and vo 0 in + then

t* t
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A remarkable feature of Corollary A.1 is that the waiting time t* is completely
determined by the conditions (0.5) and (0.7). It is therefore, in some sense, independent
of the "size" of %; for example, t* does not depend on the measure of supp v0.

A growth condition such as (0.6) is necessary in order to ensure the existence of a
solution of problem (0.4) (cf. [5]). However, it is by no means clear that a condition as
stringent as (0.7) is needed in order for us to conclude that t*- tm/a.

The remainder of our results concern the smoothness of the interface. We first give
a new proof of the following theorem which was first proved by Caffarelli and Friedman
in [8].

THEOREM B [8]. If v is a solution ofproblem (0.4) with vo=O in + and Vo(X)>O for
all sufficiently large x< O, then

C’(t*,T).
Our final results give criteria which guarantee that " cl(0, T) even though t* >0.
THEOREM C. Let v be a solution ofproblem (0.4) where vo satisfies Vo(X)=--0 in R +,

(0.5), and (0.6) for some a + and fl R +. If
tm(0.8)

and Vxx is a nondecreasingfunction ofx in (-6, O) (O, tm/a) for some 6 +, then

C’(O,T).
Note that, in view of Corollary A.1, if v0 satisfies (0.7) instead of (0.6), then (0.8) is

automatically satisfied. However, as noted above, we strongly doubt the necessity of a
growth condition as stringent as (0.7). The condition that Vxx be monotone near the
interface also occurs in diBenedetto’s work [9] on the regularity of vt. It is also probably
much too strong. The following corollaries to Theorem C give somewhat more practical
criteria for the smoothness of the interface.

COROLLARY C. 1. Let v and be solutions ofproblem (0.4) with v(x, 0)--Vo(X and
(x, O)-- 6o(X). Suppose that satisfies all of the hypothesis of Theorem C for some value
of a + and that v satisfies vo :-- 0 in +, (0.5), (0.6) and (0.8) for the same value of .
If vo <_o in , then

C’(O,T).
Corollary C.1 is useful only when one can construct a suitable comparison func-

tion . This can be done fairly simply in the following special case.
COROLLARY C.2. Suppose that vo satisfies Vo=--O in +, (0.5), and (0.7). If, in

addition vo has compact support, then

Lacey, Ockendon and Tayler [15] have recently constructed a class of similarity
solutions of problem (0.4) which can be used as comparison functions in Corollary C. 1.
Using their results, one can replace the compact support condition in Corollary C.2 by
a polynomial growth condition at x -. Specifically, it suffices to have v0-- O(Ixl2-fl)
as x $-o for some fl +.

The following example illustrates the scope and limitations of our results. Let

(1-O)sin2x+Osin4x for x[-r,0],v(x)-
0 forx[-r,0],
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where 0 [0, 1] is a parameter. It is not difficult to verify that v0 satisfies the conditions
of Corollaries A. and C.2 with ct- -O, provided that 0 [0, 1/4]. Therefore for 0 [0, 1/4]
we have t*-tm/(1-0) and ’ cl(R+). However, if 0>1/4, then there is no cR+ such
that

Vo(X)<_ax 2 in- and Vo(X)-ax2+o(x2) asxq’O,

and we are unable to calculate t*. Thus, in particular, we cannot apply Theorem C or
its corollaries for 0>1/4, and the smoothness of the interface remains an open question.
Of course, Theorem A can still be applied to obtain bounds for t*. For example, if
0 1, then a 0 and

t* _> 1.904538

We have recently received a preprint from W. L. Kath and D. S. Cohen, Waiting-
time behavior in a nonlinear diffusion equation, in which they do a formal asymptotic
analysis for m- small which leads to an estimate for the waiting time t* up to terms
which are o(m- 1). It would be useful to have more examples in which the waiting time
was known accurately. In particular, good numerical schemes for the determination of
t* are sorely needed.

1. Behavior near a vertical inter/ace. Our first result shows that a solution v of
(0.3) with a vertical right-hand interface is dominated in - by a multiple of x 2 for
each fixed (0, t*).

LEMMA 1.1. Let v be a soluti__on of (0.4) in (0, T) such that t* (0, T). For each
(0, t*) there exists a constant C- C(z) such that

x2
in - z t*)(1.1) v(x,t)<--t,_t

Proof. Suppose that (1.1) does not hold. Then for each integer n_> there exists

(Xn, tn)- X[ ’r, t*) such that

(1.2) V(Xn,tn)>

Since

it follows that

f(-Vx(X,tn) ) dx-l)(Xn,tn)>’
Xn

--Xn
(--19x(X,tn) )

Thus there exists n (Xn, 0) such that

(1.3)

Set x x.x’ and (t* t)t’ + t, and define

2X
l)(--XnXt,(t*--tn)tt--tn).
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Observe that v* is a solution of (0.3) in the variables x’, t’. Now

and

In view of (1.3),

19*x,x,(X’,l’)--(t*--tn)Vxx(--XnX’, (t*--tn)t’+

J’ ,0) < n(1.4) v;*,

By the Aronson-Benilan estimate [4],
t*-t t*

(1.5) v;,x,(x’,* 0)>_ k>_ --k---- -k(z).

For x’< -tn/X we have, according to (1.5),

x’ z,O)dz-v; x’X "X’

Thus, using (1.4),

v(x’, O) < n + k( ) ( )Xn

Integrating this inequality and using the fact that v*(-,/x,, 0)>0, we obtain

*(x’ 0)>n ----x’
Xn Xn

for x’<-ln/xn. In particular,

(1.6) v,( x, o) >n ( n ) n nx’ for _-’x’ <
’--2 x, X k(q’) x

Consider the Barenblatt-Pattle solution of (0.3) given by

a2(flt’ t- l)(m- l)/(m+ 1) (fit’+ )2/m+
for constants a [ + and/3R +. If we choose a and fl so that

suppB*(x’,0)-
2k(’)’2k(’) Bx*’ 2k(’r),0 ---then

a-2k(-) and fl_nk(z____)
2t

Observe that the right-hand interface for B*(x’, t’) moves one unit to the right in 4tm/n
units of time.

In view of (1.6),

v,( x,, O) >B, ( x, + l, (1 )2k.z-------z-, 0 in R.
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Hence by the comparison principle

(1.7) v*( x’, t’) >_B* ( x’ + X,---n+ )2k(’)
,t’ in R (0, 1).

The right-hand interface for v* is vertical for (0, 1). On the other hand, if n>4t
then the right-hand interface for B* is to the right of --n/Xn+ >0 for t-- 1. Thus the
right-hand interfaces for v* and B* cross in the interval (0.1), and this contradicts
(1.7).

The next result contains Theorem A, as well as additional information about the
behavior of solutions near a vertical interface which will be used in the proof of
Theorem C.

PROPOSITION 1.2. Let v be a solution ofproblem (0.4) where vo satisfies

Vo(X)--ax2+o(x2) as x?O, Vo(X)<_x2

for some constants a + and +. Then

and

in R and vo( x ) O in R +

tm <tm

tmx2V( X’ ) ( tm/O) +o(x2) as x?O

uniformly for in any compact subset of (0, t*).
Proof. Since vo <_ fix 2 in g and v0-- 0 in R +, it follows that

(1.8)
tmx2

-0

in (-o(, O X O, tm/fl )

in n + >( O, tm/fl ).

Thus, in particular, t* >_ t,,/fl. According to Lemma 1.1,

(1.9) <- t,-t

-0

for any (0, t*). Set z=t,,/2fl. Then, in view of (1.8) and (1.9), for each e(0, t*)
there exists a constant Cl(e) + such that

_<
(1.10) v(x,t)

--0

in (-o, O] X [0, t* e

in R+ X [O,t*-e].

For 8 R + define

Note that v* is simply a weak solution of (0.3); in particular, there are no a priori global assumptions
on its initial values or on its behavior as x’--*-o. Thus the application of the comparison principle in the
present circumstances must be justified. This is done in detail in [5].
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Note that v is a solution of (0.3) and that, for each e(O,t*), v satisfies (1.9) and
(1.10) for all 6 R /. Moreover, v0(x) v(x, 0) ax 2 + o(x 2 ) in 1, 0) for some R /

implies that

(1.11) v(x,O)--ax2(l+o(1)} in --,0
as --* 0.

Fix e (0, t*). For each integer n_> such that 1/n<t*-e, let

and

Let {}k } be a sequence such that 6k 0 as k oo. According to (1.10), for each fixed n,
the sequence { vsk } is uniformly bounded in S*. Therefore, as shown in [1 ], the sequence
{ vsk } is Lipschitz continuous with respect to x uniformly in Sn. Moreover, by the results
of [14], the sequence {v} is HOlder continuous as a function of (x, t) uniformly in Sn.

Define uk- {(m- 1)vs/m}l/(m-1). As we have shown above, the sequence {u} is
uniformly bounded and equicontinuous in S,. Note that

Ox U u -x V.
In view of the uniform Lipschitz continuity of v, there exists a constant c>0 such
that

-x -<c inst.

Therefore, the sequence {u} is weakly compact in L2[1/n,t*-e;II’(-n,n)]. Thus,
from each sequence {k.} we can extract a subsequence {k } such that kf ,

u. uniformly in S,,

and

weakly in L2[1/n, t* e; HI’2(- n,n)]

as j oo. By the usual diagonal procedure we can construct a sequence (li) such that
o0,

(1.12)
and

(1.13) 0 ’i --X/m

ut,a in X (0, t*--e],

weakly in L2oc(0, * -e; H,o’c(1))

as i--, oo. Moreover, the convergence in (1.12) is uniform on compact subsets of
x(0,t*-].

Each u satisfies

ot d dt-
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for all C(R [0, T]) which vanish for Ixl large and for near t*-e. Fix r/
(0, t*- e). Then, integrating by parts, we obtain

ft*-f f Oq Ou’
Ox Ox Ot OX 2

Itk --’Uk dxdt.

Since suppq0(-,t) is bounded for [0, T] and, in view of (1.10), uk is bounded on
compact subsets of R [0,t*-e], there exists a constant >0 depending only on
such that

t"

OX Ox Ot uk dxdt- Uk(X,O)p(x,O)dx <--rld.

If we set k- l and let , then it follows from (1.11), (1.12), and (1.13) that

O)dxdtfa(m_ ) l/(m-- l)

aX2 (X O)dxOt m

Now let /0 to obtain

Oq m --1 2 (x O) dx O.
Ot fi dxdt-

rn
ax q

By Kalashnikov’s uniqueness theorem 11 ],

{ (m--1)tmX2 }1a(x,t)- m((t/a)-t)

Therefore, we conclude that

(1.14) limv(x,t) tmX2 on (- 0](0 t*--e]
0 (tm/a)--t

where the convergence is uniform on compact subsets.
Suppose that tm/a< t*. Set r-t,/2a. Then, according to (1.9),

v(x t)<t(z)x2- in(- 0][r t*)t*--t

Thus, if e(t*-(tm/a),t*-r) it follows from (1.14) that

C(T)
(tm/Ot)--t* +e-- e

If we let e $ t*-(’tm/a), this leads to a contradiction, so we conclude that tm/a>-t*.
Fix e(O,t*) and to(O,t*-e). For each r/>0 there is a i0-80(e,,/,t0)>0 such

that 8 (0, io) implies

lm
<r/ fort[t0,t*--e].v( 1,t) (tm/Ot)__

In view of the definition of v it follows that

tm2 <r/8 2 fortC[t0,t*--e (0 o)"I)(,t) (tm-’$__t
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Therefore

tmx2 +o(x as x’0

uniformly on compact subsets of (0, t*- e]. 71

2. Behavior near a nonverticai interlace. In this section we show that in the
neighborhood of a point where the interface is moving we have v --Lv where Lv is the
linear solution of equation (0.3) described in the Introduction. To accomplish this we
need the following technical lemmas.

LEMMA 2.1. Let v be a solution of (0.3). Iffor some o (0, T), Xo- f(to) and

(2.1) lim -Vx(X, to)-V>O,
x’xo

then there exists constants C, Cz, o, andA R + depending on ", o, and T such that

Cl( Xo-- X ) Zv( x, ) C2( xo-- X )
for all ( x, t) such that

O<-to-t<A(xo-X)<o.

Proof. By Taylor’s theorem, for (0, o) and x< ’(t),

where x<2<f(t). If t_>,/>0 then there exists a constant C2- C2(,/) R + such that [1]

Then since ’(t)_<xo, it follows that

(2.2) v(x,t)<_C2()(Xo-X) for (x,t)(-m,xol[,tol.

In view of (2.1),

lim
’( to + h ) ’(to )

h0 h

Thus, there exists a , N + such that

(2.3) Xo+- ( t-- to ) <-- ( ) <--Xo +-- ( t-- to ) fort[to,to+, ].

For e (0, ,], define

tm(
0

X

to+e--t
in -,Xo+-, [to-e, to+e),

in(xo+Y,+oe)[to-e, to+e).

Then v is a solution of (0.3) with interface
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t+

x= (t)
X=Xo+ --(t-to)

X =Xo+’(t_ to)

Xo o/-7" Xo/"
FIG.

(X,to- 6)
V=V(X,t

x, (to-) Xo Xo +T y

FIG. 2

In view of (2.3), the interfaces x-’(t) and x-’(t) intersect somewhere on the interval
(to + e/3, o + e) (cf. Fig. 1). Thus we cannot have

v(X,to-e)_v(X,to-e) for all x_(to-e).
That is, there exists x-x(e)<(to-e) such that (cf. Fig. 2)

t(X,to--e)<e,(X,to--e) forx(Xl,(to--e)]
and

(2.4) V(Xl,tO--8)--Ve(Xl,tO--8)
Note that this implies that

(2.5) Vx(X,, o e) <_ Vex(x,, o e).
If t0-e_>/>0 then in view of (2.4)

-q(n)<_x(X,,o-)<_x(x,,to-) -(xl-x-/2) <_o.
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Therefore, there exists a constant C’= C’() such that

O<_xo-x<_C’().
On the other hand, by (2.2),

and (2.4) implies

v(, to-) <- c( )(Xo-X ),

trn f, 2 2

C2(r/)(Xo x,)--2e Xo--Xl-’]-- >

Thus we have shown that there exist constants C’(I), C" C"(I, Y) + such that

(2.6) O<C"eXo-Xl(e)<C’e for e[0, to- ].

By the Aronson-Benilan estimate [4],

Vx(,to-)- -- ()
to-e

for and e[0,t0-]. Therefore, for x<x,

-f(n)(x-x x(,o--x(X,o-l-(,o-l.

In view of (2.5) and (2.6),

x(X,o-)--- Xo-Xl+g +f(n)(x-x)-m c"+7 +f(l

Thus

provided that

x(X, to- ) <- T +- =-

Thus

Write

x>--Xo---2- C" +- =xo-B.

For x[ xo- B,x) it follows from (2.7) that

C’"(x x ) >_fxX’vx( l, to- e) dl- v( x, to- e) -v( x, to- e).

v(x,to-e)>-v(x,,to-e)+C’"(x,-x)>_C’"(x,-x ).

x,-x-(xo-x){1-x-xl }.Xo--X
If e<A(xo-x)<6o for some AR+ then

and

xo- <x<xo ----x-x!>l--AC’.
Xo--X
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Thus if we take A 2/C’ and 60 2B/C’ then

v(, t0- )->--(0-).
This together with (2.2) proves the lemma. 73

LEMMA 2.2. Under the hypothesis of Lemma 2.1 there exists a constant C R +

depending only on T, to, and T such that

119tt(X,t)]< C3
Xo--X

for all ( x, ) which satisfy
3

0<t0 t< A(xo x)--8o,

where A and 8o are as in Lemma 2.1.
Proof. For 8 (0, 4 80 /5) define

v(x, t) -=v(,x +0,t+ to).

Let D-- ((x,t):Ax <t_<0, -1/4 <x< 1/4 ). By Lemma 2.1, for (x,t)D

(2.8) 0< C,<v(x,t)-v(Sx+xo,St+to)<C2.

Thus w v is a classical solution of the equation

(2.9) wt= ((m-1)VWx)x+(2-m)VxW
in D. In view of (2.8), equation (2.9) is uniformly parabolic in D. Moreover,

Ivn(x, t)l- IVx( OX + Xo, 6t + o )l -< C2(7)
for 8t / t0-->/. Note that these bounds are independent of . By the results of [6], v and
v, have HOlder norms independent of 8 in any compact subset of D. We can now
apply the Schauder-type theory for parabolic equations [10] to the equation

w (rn 1)VWxx +VxW
and its derivative with respect to to conclude that v, vt, Vx, Vxx, vtx, Vstxx, and
all have HOlder norms independent of 8 in (cf. Fig. 3b)

DO- (x,t)" ---x<_t<_O, <_x<_ --to

x’=x()
Xo-8

Xo-- Xo-’
(a)

-5/4 -I -I/2 -.I/4

x=At
/x=+/-

FIG. 3
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Thus, in particular there exists a constant C depending only on ,, o and T such that

[n.(x.t)[-8[.(SX+Xo.St+to)[C3 inD.
If (x,t)D, then

3A (xo_x,)<_t,<_t xo <_x,<_x -(x’,t’) eD2---- (x’,t’)" o-

where x’- 8x +xo and t’- 8t + o (cf. Fig. 3a). Since

X’ --X0 Xo--X
X X

it follows that

]vtt(x,,t,)[< Ca
-xo-x’ inD,.

Finally, since t;(0,4t;0/5) is arbitrary and C is independent of t;, this proves the
assertion.

PROPOSITION 2.3. Let v be a solution of (0.3). Iffor some o (0, T)

lim -v(x,to)=7>O,
XXo

where Xo (to), then in a neighborhood of (Xo, to)

v(x,t)-t (x-Xo,t- to) / o(Ix-xol / It-tol)
where Lv(x, ) ( 3/2t lx )+

Proof. Let v, be as defined in Lemma 2.2. Fix /(0, to/ T-to). Then is defined
in the ,/-neighborhood of (xo, o) given by

( Xo "rl Xo -k- "q ) X ( o l O -]- l )
and v is defined in the corresponding //t;-neighborhood of the origin.

Observe that v is a solution of equation (0.3) satisfying

IVnx( X, )l <- C2(to- )
and [4]

8k 8k
(2 10) v,(x, t) 8v(Sx+x0, 8t + 0) > _>

8t+t to-l

for t_>-rt/& According to the results of [1] and [14], v is Lipschitz continuous with
respect to x and HOlder continuous with respect to t. Therefore, for each sequence (,}
such that i, $0, there exists a subsequence (i,,} such that 8,,$0 and v,,v* in R 2

uniformly on compact sets. Moreover, v* is a weak solution of the pressure equation
and all of the derivatives of v,, converge to the corresponding derivatives of v* on
((x,t):v*(x,t)>O}.

In view of our hypothesis, for each fixed x R-

v*(x, 0) lim v,,( x, 0) lim Vx( i,x / xo to) -/,
n’ n’ o

and for each fixed x_> 0

v*(x,O)- lim v,,(x,O)- lim v(,,X+Xo,to)-O
n’ n’ o n’
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Thus

Moreover,

implies

-Vx forx_<0,v*(x,O)-
0 for x0.

c2 - (St+to)l- -(8lxl+lXo- (st+to)l)
<-C2(Ixlq--ltl)

In particular, for any T R +, v* grows no faster than linearly in R (0, T). Therefore,
in view of Kalashnikov’s uniqueness theorem [11],

v*(x,t)-Lv(x,t) in R [0, +).
By Lemma 2.2,

[vtt(x,t)l-lvtt(x-+-Xo,&+to)] C
--X

for 0_< < -3Ax/4<48o/5& Therefore

C 3A
Ivt*t(x,t)l<__-z for x<t<_O.

For t<0 and x</t,

2 2

V*( X, ) V*( X, O) -+- tvt*( X O) -q- -Vt* (X, 0 Zv(x, O) -1- tZvt( x O) + "v (x, t’),

where </’< 0. Thus
2

v*(x,t)-Lv(x,t)- -vt*t (x,,
and it follows that

(2.11) lim (v*(x,t)-Lv(x,t))-O fort-.
x-o

Next we show that

v*(x,t)>_Lv(x,t ) fort-.

To prove this, first observe that (2.11) implies that v*(x, t)>_-,. Suppose for contradic-
tion that for some :< ’(t) and e>0 we have

In view of (2.10), v* --> 0. Thus for x<: and some (x, :)

v*(x,t)--v*(.,t) + (x-.)V*x (,t)>_v*(,t) + (-x)(,+e).
It follows that

v*(x,t)-Lv(x,t)>--v*(Yc, t)+(+e)-2t-ex
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and, letting x $-, this contradicts (2.11). The assertion now follows from (2.11) since

Lvx=-3, so that for each fixed x0

*(Xo,t)--L,(Xo,t)>--*(x,t)--L,(x,t)
for all x<x0.

Finally we show that

Consider a fixed (, {)- such that :_<),{. Let N be a closed neighborhood of (:, {)
such that (x, t)N implies that x<_Tt and N contains points with t>0. In N,*-
and achieves its minimum value, 0, on N (t>0). By the strong minimum principle

* Lv in N. Therefore

*(x,t)-Lv(x,t ) in((x,t)-’x<_t).
Suppose that *(:,/’)>0 for some (:, [) - with x>yt. By [12], (ff, t)>0 for all
> t. However, this contradicts the fact that the line x : must intersect the line x-

for some > and v- Lv 0 at that intersection.
Since -v* Lv, given e>0 there exists a 0 60(e)>0 such that < 80 implies

that

v(8+Xo,8+to)--Lv(1, 1) <e.

Set x + xo and 8 + 0. Then

L(1,1)--Lv(x--xo,t--to)
and

[v(x,t)-Lv(x-xo,t-to)
The assertion now follows, since I t- & (Ix-Xol / It- t01}.

3. Smoothness. In this section we shall prove Theorem B as well as Theorem C
and its corollaries. Theorem B was first proved by Caffarelli and Friedman in [8].

If v is a solution of problem (0.4) and v0 satisfies the hypothesis of Theorem B,
then the right-hand interface ’(t) is a nondecreasing Lipschitz continuous function on
(0, T) (see [2]). Thus " exists almost everywhere on (0, T) and, as was shown in [13],

(3.1) D+’(t)-- -Vx(( t),t)
everywhere in (0, T). Caffarelli and Friedman [8] prove that for each (0, T), there is
constant K>0, depending only on rn and the lower bound for vxx in R [, T), and a
positive measure/ such that

(3.2) "’ +K"-in the sense of distributions on (8, T). From (3.2) they derive the representation
formula

(3.3) ’=/+,
where /is Lipschitz continuously differentiable and " is convex on (6, T). In view of
this representation, to prove that " cl(i, T) for some i>0 it suffices to show that
and hence ( is differentiable everywhere on (i, T). This follows, since a convex function
which is differentiable everywhere on an interval is necessarily continuously differentia-
ble there. Thus to prove Theorem B it suffices to show that D+’(r)>0 for some
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rE(0, T) implies that " is differentiable on (, T). Here we shall give a new and
somewhat simplified proof of this fact based on (3.2), (3.3), and Proposition 2.3.

Since D+’- almost everywhere in (8, T), (3.2) implies that

(3.4) (ertD+)’>--O
in the sense of distributions on (i, T). In view of the representation formula (3.3),
D+ ’(t + 0) and D/’(t 0) exist for all (, T) and satisfy

D+’(t + 0)-->D+’(t)->D+’(t-0).

By a standard argument, it follows from (3.4) that

ert2D+(t2-O)>_eKt’D+(t, +0)
for 8< < t_< T. Thus, in particular, < < 2< T implies

(3.5) O+( 2 ) eK(t’-t2)O+ (t ).

Proof of Theorem B. We assume that D+’(r)>0 for some rE(0, T) and fix
(0, r). For arbitrary o (r, T), set Xo-(to) and ,{-D+(to). In view of (3.5),

(3.6) D+( o) >_er-to)D+( ) >0.

We shall show that D-’(to) D+ ’(t0).
If ,’>y, then there exists e’ (0,to-r) such that

(3.7) ’(-) > xo+ /’(t- 0)
for all t(to-e’,to). Otherwise there exists a sequence (en) such that en $0 and

( to-- en ) Xo-- en’y’.

By the definition of the interface ’(t) and Proposition 2.3,

O- v(xo ee’,to en)--Lr(--enT’, --en) + (en)-- --7
2en +r,Y ,En + O( En)"

Thus

as n

which contradicts 3’-,> 0. Therefore (3.7) holds and we conclude that

Xo- (t)
lim sup -< 3".

t?to o-
Since 7’>), is arbitrary, it follows that

(3.8) lim sup --<3’.
t_.to to--t

If 7" <{ then there exists an e" (0, to-z) such that

(3.9) ’(x) <Xo +3’"(t- o)
for all t(to-e",to). For otherwise there exists a sequence {e,} such that e $0 and

(to- en) Xo--Y"en>XO--[en

By the theorem of the mean there exists : (xo e.7, xo e.7") such that

Vx( fC,tO--gn)-- (1)(Xo--’’tEn,tO--En)--l)(XO--{En,tO--En) )/En(’y--’").
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Since 3’" < 3’ it follows from Proposition 2.3 that

Vx(,to--e):o(e)/e(--"):o(1 ) as n- o.

k
According to [4], v(x,t)+ - ((t)-x) is a convex function of x. Thus

Vx((to-e,),to-e, ) <--vx(,to-e.) + k((to-en)-,)/(to-en)-- o(1 )
as n oo so that

lim sup vx(’( ), ) _> 0.
ttt

However, this leads to a contradiction, since by (3.1) and (3.5) we must have

tx((t ), t) D+( ) <-- eK(-t)D+(’r ) < eK(z-to)D+( "r ) <0
for all ( z, 0). Therefore (3.9) holds. Since 3’" < 3’ is arbitrary, we conclude that

lim inf
’( to ) ’(t) _> 3’.

t$ o-
Together with (3.8), this shows that for each o (, T),

D-(to ) 3’ D+( to ) E]

Proof of Theorem C. By Theorem B we know that " cl(tm/a, T). On the other
hand, " C l(0, tm/C0 since ’------ 0 on [0, tm/a]. Moreover, D-’(tm/C0 0. Therefore, it
suffices to prove that D+(tm/a) O.

Set r/--tm/a and assume for contradiction that

(3.10) D+’(rl): lim-v(x,/) 3,>0.
x’0

Fix (0,,1). By Proposition 1.2 and Taylor’s theorem,

tmX2/( rl t)-b O(X2 ) lg( X, ) v(O, ) -b Xlgx(O, ) -+- X219xx( :, )/2,
where x< <0. Since v(0, t) v,(0, t): 0, it follows that

19xx(,t):2tm/(*l--t)-bO(1 ) asx’0.

By hypothesis, Vx is a nondecreasing function of x in (-8, 0)[ 0, /). Therefore

vx(x,t)<-2tm/(,1-t ) in (-8,0) (0,r/)(3.11)
and

19xx(X,t)’2tm/(l--t ) as x’0

for each (0, r/).
For e (0,/) set l=--Oe, where

0< 0< min(3’, 3’/4t ),
By Proposition 2.3,

v(x,rl--e)-L(x,e)+o(e) for x[h-e,h+e]
where h- -3’e. Since Lv(h,e)-O, it follows from the theorem of the mean that

(3.12) -3"l+o(e)--v(h,,1-e)-v(h-l,,1-e)--v(x’,l+e)l
and

(3.13) o(e)=v(h+ 1,-e)-v(h,-e)=v(x",+e)l
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where h <x’<x" <h + 1. Define

= max Vx(X,-e)- min Vx(X,l-e).
Ix-hl<-I

Then, in view of (3.12) and (3.13),

O_>+0(1) as$0.

Since 0 < 3’ we have h + (0 3’)e < 0 and Vxx(., rt e) is continuous on
[h-l,h+ l]. There exist x and x2 such that h-lx<x2h+ and

O-- Vxx(X,n-e)dx.

Since x-x 21, it follows that

rxvd O> (V+o())
X2Xl J-x X2Xl

On the other hand, according to (3.11), if (+0)e<8, then

(x,n-e)dx 2tm/e.x2 Xl

Thus for all sufficiently small e we have

2tm 20

However, since O<y/4tm, this leads to a constradiction and we conclude that (3.10)
cannot hold. On the other hand, D+’(r/)_>0, so consequently D+’(/)-- 0. []

Proof of Corollary C. 1. Since vo<50 in R, it follows that v <6 in R [ 0, T). Thus,
in particular,

(3.14) O<_(t)<_((t) for t [0, T),

where x--(t) is the right-hand interface for 3. By hypothesis, t* [* tm/a and
D+(tr/a)-O. It therefore follows from (3.14) that D+(tm/a)-O.

Proof of Corollary C.2. Since v0 has compact support, v exists on +. By
Corollary A.1, we have t* tm/a. Suppose that suppvo =[-M, 0]. Let be a nonnega-
tive even C() function such that supp=[-M,M], n)(+M)=0 for all n_>0, and

R--l.

Define g0 on [-4M, 0] by

(x)-- a(x+2M +4aM(I2(M)-I2(x+2M)}
and

where

for -M<_x<O,
for --2M<_x< --M

6o(-2M-h)=o(-2M+h ) for 0_<h_<2M,

Ii(x)--foXqO and I2(x ) I1.
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It is not difficult to verify that goC[-4M,0], --(02j--1)--0 at x-0, --2M, and -4M
for all integersj_> 1,

<0 on (-2M,0), v-)>0 on (--4M,-2M),
v"_>0 on (-2M,0), v%"_<0 on (-4M,-2M).

Let 3 denote this solution of problem (0.4) with initial datum o- Clearly Vo_<o.
Moreover, it follows from the calculations in [3] that *-tm/Ot and xxx-->O in
(- 2M, O) O, tm/Ot). In particular, xx is nondecreasing in (- 2M, O) O, tm/Ot) and
the assertion follows from Corollary C.1.
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DECAY TO UNIFORM STATES IN COMPETITIVE SYSTEMS*

PETER N. BROWN"
Abstract. Weakly coupled parabolic systems describing populations undergoing diffusion and competi-

tion in a spatial domain f are discussed. Assuming the existence of a unique critical point of the interaction
dynamics with all populations coexisting, sufficient conditions are given (on the dynamics) which guarantee
the global asymptotic stability of the critical point. These conditions imply the existence of a continuous
family of contracting rectangles which decrease down to the critical point and then the theory of contracting
rectangles developed in [2] implies the stability. General two and n species models are discussed along with
some illustrative examples.

1. Introduction. We consider systems of parabolic equations whose general form is

(1.1) O,u--diAu+uiM(u,’",Un) in fl+,
(1.2) u,(x,O)-q,(x) for x in f,

(1.3) )ui
0n:0 onOXl +

where i- 1,. .,n, f is a bounded domain in R with sufficiently smooth boundary, the
constants d,.. ",d are all positive, the M are all smooth functions of u-(u,...,u,,)
and OUi/Orl is the normal derivative in the direction of the outward normal at a point
xO2.

System (1.1)-(1.3) is an example of a system of reaction-diffusion equations, and
describes the growth of n populations which are both diffusing and interacting in 2.
The function ui(x,t ) (i-1,...,n) represents the ith population density, and the
boundary conditions (1.3) have the effect of confining the populations to the spatial
habitat 2, i.e., there is no migration across the boundary of f.

We study here the following problem: Given that the vector field (uM,.. ",unMn)
has exactly one critical point u* in the positive orthant, what extra assumptions on
M,...,Mn will guarantee that for all solutions u(x, t) of (1.1)-(1.3) with qi(x) _> 0 and
qi(x) 0 for x in f(i 1,-.., n), we have that

lim u(x, ) u*,
t--)

i.e., what conditions on the Mi will guarantee the global stability of u*? For example,
when n- 1, (1.1) reduces to

ut--dAu+uM(u ).
Then, assuming there exists a critical point u* >0, it is easily seen that a sufficient
condition guaranteeing the global stability of u* is just

(u-u*)M(u)<O for all u>0, u4=u*.

We will restrict attention here to competitive systems only, i.e., those for which

8M <0 for =/=j,
8uj

so that a growth in the jth population is harmful to the th population. In [2] we
considered competition models of Lotka-Volterra type, where the functions M,...,M
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660 PETER N. BROWN

all depend linearly on the components of u. There, the conditions assumed actually are
sufficient to imply the existence, uniqueness and global stability of a critical point u*.
In general, however, the existence and uniqueness of u* must be postulated along with
some additional assumptions which generalize those given in [2]. Recent other work on
global stability in many population (or species) systems includes that of Albrecht et al
[1], Gob [6], Hastings [7], [8] and DeMottoni and Rothe [5].

In 2 we begin with some preliminaries and then state some results on invariant
and contracting rectangles. In 3 we consider a general two-species competition model
and then show that, basically, the condition implying the global stability of a critical
point in the Lotka-Volterra competition model (given in [2]) also suffices for the more
general case. Finally, in [}4 we consider a general n-species model. We give conditions
guaranteeing the global stability of a critical point and then consider some illustrative
examples.

2. Preliminaries. In this section we give some background material on contracting
rectangles. We consider systems of the form

where U--(Ul,"" ",Un) F: R"--" is smooth, D=diag(d,...,d,}, di>O for all and 2
is a bounded domain in with sufficiently smooth boundary.

DEFINITION 2.1. An n-dimensional rectangle (u: a_< u_< b) (where a_< u_< b
means ai <- ui <_ b for 1,. ., n) with Do _< aj <_ bj <_ + DO is said to be invariant for
(2.1)-(2.3) if when u(x) Y for all x in f, it follows that u(x, t) Y. for all > 0 and x
in f.

A necessary and sufficient condition for Y. to be invariant (see [3] and [4]) is that
the vector field F=(F,...,F,) does not point out of , i.e., for u

(2.4) F(u)_>0 when ui=a

and

(2.5) F/(u)_<0 when ui-bi.

DEFINITION 2.2. X (u: a<_u<_b) is said to be contracting for the vector field F if
for each i, F>0 in (2.4) and F/<0 in (2.5). Note that X contracting implies that is
invariant.

DEFINITION 2.3. Let u* be an isolated critical point of the vector field F, i.e.,
F(u*)=0. Let E()=(u:a()<_u<_A()), defined for 0_<_<1, be a one-parameter
family of rectangles. Then Y(r) is said to be a decreasingfamily of contracting rectangles
for u* if

(i) Y,(1)= {u*},
(ii) a(r) and A(r) are continuous with a(r) increasing and A(z) decreasing,
(iii) E(r) contracting for 0-< r< 1.
Next, let E (u: a_< u_< b} be an invariant rectangle for (2.1)-(2.3). Associated

with Y, are the maximal and minimal functions

F+ (u)--max{F/(0,,.-. ,Oi_l,Ui,Oi+l," ,On)" aj<_Oj<_uj,j=/=i}
and

F- (u)-min(F/(0,,... ,Oi_l,Ui,Oi+l," ,On)" uj<Oj<_bj,j=/=i)
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for 1,. -,n. In [4] it is shown that FI-,’-" ,Fn+- are all locally Lipschitz continuous in
so that the ordinary differential equations

(2.6) dU--F+(u) u(O)--wdt

and
du(2.7) --d-- F- (u), u(Ol-v

have unique solutions. The following result is a special case of the comparison theorem
in [4]:

LEMMA 2.4. Let f] be a bounded domain in R with sufficiently smooth boundary. Let
F be smooth and let u(x,t) be the solution of (2.1)-(2.3). Let u+(t) and u-(t) be the
respective solutions of (2.6) and (2.7).

Then v<_u(x)<_w for all x in f implies that u-(t)<_u(x,t)<_u+(t) for all x in
and >_0.

In [2] the following local asymptotic stability result is proved:
TrIEOREM 2.5. Let f be a bounded domain in with sufficiently smooth boundary.

Let F be smooth and assume there is an isolated critical point u* of F. Let 5’.() be a
decreasingfamily of contracting rectangles for u*.

Then ifu(x, t) is a solution of(2.1)-(2.3) satisfying, for some in 0, 1), u(x, T) Y.( r)
for all x in f and some T>_ O, then

lim u( x, t) u*, uniformly for x in .
t--ot

and

We finish this section with some notation and a final definition. Let

R=((u,v):u>O,v>O},

R-{u’ui>Ofori-1,...,n),
DEFINITION 2.6. Let F(u)=(utM,...,u,M,) and let F(u*)=0. Then u* is said to

be a feasible equilibrium of F if u’ >0 for i- 1,..., n.

3. Two-species competition. In this section we consider a general model for the
interaction of two competing species, with diffusion effects included. Let u(x, t) and
v(x, t) be the solutions of the initial-boundary value problem

(3.1) ut----dAu+uM(u,v),
vt--d2Av+vN(u,v),

inX+

(3.2) u(x,O)=u(x),
for x in f,

v(,0) =v(),

(3.3) Ou
----0

i)v

On -------n for (x,t)+.
Here f is a bounded domain in m with sufficiently smooth boundary, and the
diffusion coefficients d and d2 are positive constants.

We will make the following assumptions on the functions M and N (see [1 ], [8] and
[9] for ecological interpretations of these conditions):

(3.4) M and N are both C in R with Mu, Mv, Nu, Nv<O in R (where Mu=OM/Ou,
etc.).
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(3.5)

(3.6)

There exist positive constants A and B such that
(a) (u-A)M(u,O)<O whenever u>_O, u=/=A and
(b) (v-B)N(0,v)<0 whenever v>_0, vvB.

There exist positive constants C and D such that
(a) (v-D)M(0,v)<0 whenever v_>0, v=/=D and
(b) u C)N( u, 0) < 0 whenever u _> 0, u 4: C.

(3.7) There exists a unique feasible equilibrium (u*, v*).

(3.8) The constants A, B, C and D are such that A < C and B<D.

We begin with two lemmas.
LEMMA 3.1. Assume that (3.4)-(3.6)hold. Then there exist continuous functions k(v)

and k2(u ), defined on O<_v<_D and O<_u<_C, respectively, such that

(3.9)

and

(3.10)

(a) k(0)--A, kl(D)-0, and O<k(v)<A for 0<v<D,
(b) kl is C on (O,D) with k’ <0 there,
(c) u > k(v) iff M( u, v) <0 and u kl(v) iff M( u, v) 0 in the rectangle Q1

((u,v):O<_u<_A, O<_v<_D}

(a) k2(O)-B, k2(C)-O, andO<k(u)<BforO<u<C,
(b) k is C on (0, C) with k<0 there,
(C) v>kz(u) iff N(u,v)<O and v-k(u) iff N(u,v)-O in the rectangle Q2

((u,v):O<_u<_C, O<_v<_B).

Proof. We prove only the results involving M since those concerned with N may be
shown analogously.

First, note that (3.4), (3.5a) and (3.6a) imply that M<0 in R\Q (see Fig. 1).

A u
M>0

FIG.

Next, M <0 implies that for a > 0,

(3.11 ) M( u, a) is a strictly decreasing function for 0 _< u<

Now, (3.4), (3.11), the fact that M(0,v)>0 for O<_v<D, that M(A,v)<O for O<v<_D,
M(O,D)-O and M(A, 0)-0 all imply that for each v in [0,D] there exists a u-k(v)
such that

M(k,(v),v)-O.
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The function k is defined on [0, D with kI(D) 0 and k1(0) A. The implicit function
theorem then implies k is differentiable at any point v in (0, D) and that

_Mv(kl(V),V)<o"k,(v)- Mu(kl(V)iV )
Hence, k is a continuous decreasing function on (0,D) with O<_k(v)<_A for v [0,D].
We show that k is continuous on [0,D]. Since k is continuous, decreasing and
bounded on (0,D), the limits

a= lim k(v) and b= lim kl(v )
vO+ vD-

both exist. Suppose that b> 0. Then by the continuity of M, M(b, D) 0. But M(0, D) 0
by (3.6a), which contradicts Mu<O in R0. Next, suppose a<A. Again, by the continu-
ity of M, M(a,0)--0, which leads to a contradiction of (3.5a). Therefore, we have
shown (3.9a) and (3.9b). Since (3.9c) follows easily, this completes the proof of the
lemma. D

LEMMA 3.2. Assume that (3.4)-(3.8) hold. Then there exists a decreasing family of
rectangles Y(z), definedfor 0 <_ " <_ 1, such that, when 0< < 1, ,() is contracting for the
vector field ( uM, vN)

(3.12) (1) ((u*,v*))
and

(3.13) Y(O)-- ((u,v)" (O,O)<-(u,v)<-1/2(A +C,B+D)}.
Proof. Since the conditions of Lemma 3.1 hold, there exist functions k l(V ) and

k2(u) satisfying (3.9) and (3.10). From the proof of that lemma we also have that N<0
in R\Q2 and M<0 in R\Q. By (3.7) and (3.8) we have that the graphs of k and k2

only intersect at the point (u*, v*) (i.e., u*- kl(v*) and v* k2(u*)). Furthermore,

(3.14) 0<u*<A and 0<v*<B.

Therefore, the phase portrait of the vector field (uM, vN) has the qualitative form

FIG. 2
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with kl(k2(0))>0 and k2(kl(0))>0. Note that these last two inequalities are equivalent
to (3.8).

We next show that

(3.15) k(kE(ru*)) >ru*
and

(3.16) k2( k,(’rv*)) >rv*,
whenever 0_< r< 1.

Suppose there exists a value z in (0, 1) for which k(k2(ru*))=ru*. Then by
(3.9c)

and by (3.10c)

M(r,u*,k2(r,u*))=O

N(,u*,,.(,u*))-O.
Since 0< < we have 0<ru* < u* and hence

k(,u*)>k(u*)=v*>0

by (3.10b). Therefore, (zu*, k2(’rlu*)) is a feasible equilibrium and hence must equal
(u*,v*) by (3.7) which implies =1. Since this is a contradiction we have (3.15).
Condition (3.16) can be proved similarly.

To construct ,(z)=((u,v):(a(r),b(z))<_(u,v)<_(A(r),B(z))) let a(z)=ru*,
b(r)=rv*,

and

k,(rv*) + k-l(rv,)A( )-’r
2

()_k(u*)+k;’(u*)
2

for 0_<r_< 1, where k7 and k-1 are the respective inverses of k and k2, which exist by
(3.9) and (3.10). Note that (3.15) and (3.16) imply

k2(ru*)<k-(ru*) and kl(rv*)<k(rv*) for0_<r<l.

Hence,

and

u* <k,(rv*)<A(r)<kT’(rv*)<-A

(3.18) v* <k2(zu*) <B( r ) <k7 l(Cu*) _<B

for 0_<r< with A(1)-- u* and B(1)=v*. Thus, (r) is decreasing,

(o)- (u v).(o o)<(u,v)< 2 2

and

()= ((u,,v*)}.
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It remains to show E(r) is contracting for 0<< 1. Let z(0, 1) and consider
M(a(’),v) for b(-)<_v<_B(,r). By (3.4), (3.9), and (3.18)

M( a(,), v ) --> M( a( ,),B(,)) >M(a(), k-( "u*))
=M(Tu*,k-(I(’rU*))--0.

Next, consider M(A(r),v) for b(r)<_v<_B(r). By (3.4), (3.9) and (3.17)

M(A (’r ), v) <_M(A(’r ), b(’r )) <M(k,(,rv*), b(,r ))
=M(k,(’rv*),’rv*) -O.

Similarly, one can show

N(u,b())>O and N(u,B())<O

for a(r)<u<_A(z). Therefore, for each rE(0, 1), Y(z) is a contracting rectangle for the
vector field (uM, vN), since a(’)-u* >0 and b(-)- -v* >0.

We can now prove the main result of this section.
THEOREM 3.3. Let f be a bounded domain in R with sufficiently smooth boundary,

and let d and d2 be any positive constants. Let conditions (3.4)-(3.8) hold, and let
(u(x,t),v(x,t)) be a solution of (3.1)-(3.3) with bounded nonnegative initial conditions
u(x) and v(x) satisfying

(3.19) u(x)0 and v(x)O for x in f.

Then

(3.20) lim ( u ( x, ), v ( x, )) ( u*, v*) uniformly for x in 2.

Proof. Since u(x) and v(x) are bounded, there exist constants Ao> C and Bo>D
such that the rectangle

((u,v): (0, 0)-<(u,
is invariant for (3.1)-(3.3) and

(u(x),v(x))Eo for all x in f.

Let (u/ (t), v/ (t)) be the solution of the maximal ODE (2.6)-(2.7) corresponding
to 0- Then by Lemma 2.4

u(x,t)<--u+(t) and v(x,t)<_v+(t)
for x in , t_>0 and

u+(t)’,A and v+(t)B

as t/. Hence, there exists a time >0 such that

and

A+C
A<U+(tl)<----

B+D
B<v+(tl)<-
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Now, 2 bounded implies 2 compact. Then, since (3.19) holds, the strong maximum
principle (cf. [4, Thm. 2]) implies

u(x,tl)>6>O and v(x,t,)>e>O forxinf

for some constants and e. Therefore, by (3.13), there exists a in (0, 1) such that

(U, (X,tl),V(X,t,)) (’rl) for all x in a,

where Y(), 0_<_< 1, is the family of rectangles given by Lemma 3.2. Thus, by
Theorem 2.5, (3.20) holds. U]

We note that condition (3.8) is essential in the proof of Theorem 3.3. The solution
(u+(t),v+(t)) of the maximal ODE’s (2.6) and (2.7) must enter Y(0) in finite time. To
see that (3.8) is also necessary, in some sense, we consider the following example:

Example 3.4. Let

M(u,v)-k(u)-v-ev(u-1)

and

N(u,v)---5(u-1)-v,

,where 0 < e< and

-lO(u- 1)
k(u)-

_(u_l)3,
O<u<l,

u>l

N=0

Fo. 3
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Conditions (3.4)-(3.7) are readily verified with

10
A=C--1, B=5, D--

and (u*, v*) is given by

and v* 5( u* l)

Let T= ((u, v): _< u_< + 6, 0 v (u- 1)2 }, > 0. For 8 small enough, it is easy to
check that the vector field F(u, v)=(uM, vN) does not point out of T, so that T is
invariant for the ODE

dvdU--uM(u,v) --vN(u v)dt dt

Any trajectory entering T must therefore stay there and converge to the critical point
(1,0) as t--, . Thus, (u*, v*) is no longer globally stable, even for the ODE. However,
(u*, v*) is locally stable (see Fig. 3).

4. n-species competition. In this section we consider a general model for the
competitive interaction of n-species. Let u(x,t)--(Ul(X,t),’",Un(X,t)) be the solution
of the initial-boundary value problem

(4.1) Otui--dimbli-+-uiMi(Ul, ",Un) for (x,t) in 2X+,
(4.2) u(x,O)--u(x) forx in f,

(4.3) 0u----0 for (x,t)02 +

for i- 1,..., n. Here f is a bounded domain in with sufficiently smooth boundary,
and the diffusion coefficients d1,. ., d are all positive constants.

We will make the following assumptions on the functions MI(U),’",Mn(u), u-
(u,,.-.,u,):

(4.4) (a) M,...,M,, are all C in a neighborhood of Rn,

(b) OM/i)uj<O in Rn for i=/=j (i,j- 1,...,n),
(c) OMi/Ou<O in a neighborhood of R, (i= 1,...,n).

(4.5) There exist positive constants Ao. such that

(ui--Aij)Mj(O," .,O, ui,O,. ",0)<0 for ui>_O ui=/=Aij i,j-- 1,... ,n

with u in the th place in (0,..., 0, ui, 0,..., 0),

(4.6) There exists a unique feasible equilibrium u*--(U’{,’’’,U*n) of the vector field
(uM1,. ",u,M,).

(4.7) The constants Ao. satisfy Aii<Aij for i4=j, i,j-- 1,...,n.

One can show as in the two-dimensional case the following lemma:
LEMMa 4.1. Assume (4.4) and (4.5) hold. Then there exist C functions kl,. ", k

such that for each

0 iff U ki(t), in the rectangle (O<u<(Ali,’" ",Ani)} where(4.8) (a) Mi(u)(<) (>)
(Ul," ",Ui--I,Ui+I,"

(b) ki/u()<O forj4=i, fi_>O and in the domain ofki,
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(c) O<-ki()<-Aii, ki()-A. and ki(O,. .,O, Aji,O,. .,O)-O forjvi,
(d) (t_>0. ki(ft)>_O and t in the domain of ki} is a closed and bounded set.

The next lemma gives the existence of a family of contracting rectangles, but this
case differs from the n-2 case in that now, the generalization of the conditions
kl(k2(0))>0 and kE(kl(0))>0 must be assumed to hold over a whole interval, not just
at a single point. (Compare (3.15) and (3.16) with (4.9).) We give an example below to
illustrate this fact.

LEMMA 4.2. Let V(,)-(k(,fi*),-.-,kn(,fi*)) for 0_<_<1. Suppose (4.4)-(4.7)
hold, and that

(4.9) ki(l?(,))>,u forO<_,< 1.

Then there exist an n-dimensional vector A and a continuous decreasing family of rectan-
gles ,( ), definedfor 0 <_ <_ 1, such that

(4.10) ](0)- (u’O<_u<_A) withA>(A,. ",Ann),
(4.11) (1)-(u*),
(4.12) () is contractingforO<,< for the vector field (uM1,. ",unMn).

Remark. Condition (4.9) actually involves an assumption and an implication. First,
condition (4.9) implicitly assumes that l?(0) domain of k (i-1,...,n), and since
V(,) is decreasing, this implies that V(,) domain of ki (i 1,.- -, n) for all 0_<_< 1.
Furthermore, this gives u* < V(,), 0_<,< 1, with u*-V(1). Second, condition (4.9)
actually implies (4.7), since (4.7) not true implies l?(0)$ domain of k (for some i). At
first glance, (4.7) may seem to be the natural generalization of condition (3.8). How-
ever, even in the case of linear M (i.e., Lotka-Volterra dynamics) it can be shown that
when (4.7) holds and (4.9) does not, a critical point stable for the ODE may be unstable
for the PDE, (i.e., the critical point can be destablized by the introduction of diffusion
terms).

Proof. We show below the existence of continuous functions a(),...,an( ),
defined for 0 <z< 1, such that

(4.13) ki(ai(z)l?(z))-ru, O_<z_<l, i-1,.-.,n,

and

ti(1)-1, a,()>l, 0_<<1, i-1,.-.,n.

Assuming this for the moment, we construct the family of rectangles () and show
that properties (4.10)-(4.12) hold. Let

(4.14)

Then let

and, for i- 1,...,n,

(4.15)

,(’r)- rnin ai(s ) fori-1,...,n.

A,(z)- (1 /min (())) V().

Finally, define Y(r) by

Y,(,r)- (u" a(’r)<_u<_A(,r) },
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where A(z)-(AI(Z),...,An(z)) with A-(A1(O),.. ",An(O)). Clearly, E(z) is a continu-
ous decreasing family of rectangles satisfying (4.10) and (4.11). It remains to show that
(4.12) holds or that Z(z) is contracting for 0<z< 1. To show this it is enough to show
that, for each i- 1,. .,n and z in (0, 1),

(4.16) Mi(AI," ",Ai_I,
and

(4.17) Mi( a ,... ,ai_ ,A ai+,. .,an ) <0.
Here we have suppressed the dependence for convenience.

To show (4.16) it is equivalent to show

(4.18) a,<ki(A).
But

a,(’r ) -’ru’]’ k,( a,(’r ) (,r ) ) <_k,( ,(,r ) l)’(,r ) )
by (4.8) and since i() -< ai(*) by (4.14). We show that

(4.19) a-/(z) l;’(z) >()
which will give us (4.18) by (4.8). Since at(z)> implies 5i()> 1 we easily see that
(4.19) holds by (4.15).

Next, to show the second inequality (4.17), it is equivalent to show

A,>k,(a)-k,(zft*)-
Again, by (4.15) and since ff(,)> we have that

Therefore, X(z) is contracting for 0< < 1.
Finally, we show the existence of the functions al(,),. .,a,(z) satisfying (4.13).

For each i- 1,. .,n define

Since the set (t_>0: ki()>_O) is closed and bounded, and since (4.9) holds, for each
in [0, 1] there exists a unique fli- fli(z) such that

Moreover, by (4.8) and (4.9) fli(,)> for - in [0, 1] and by the implicit function
theorem fli() is continuous in [0, ]. Hence, for each z in [0, 1]

hi(0,z)>0 and hi( fli( z), z) <O.
Since Oh/Oa< 0, for each in [0, 1] there exists a function a(,) such that

hi(oti(’r),’r)--O in 0<_<1.

The implicit function theorem then implies that a() is continuous in [0, 1], and (4.9)
gives a()> for 0_<< 1. Since we have equality in (4.9) when - 1, clearly ai(1)- 1.
This completes the proof of the lemma.

An argument similar to that used to prove Theorem 3.3 gives the main result of
this section.

THEOREM 4.3. Let f be a bounded domain in m with sufficiently smooth boundary
and dl,. ., d be any positive constants. Let conditions (4.4)-(4.7) and (4.9) hoM, and let
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u(x,t) be a solution of (4.1)-(4.3) with bounded nonnegative initial conditions u(x)
satisfying

(4.20)
Then

ui (x)O for x in f and i-1,. .,n.

(4.21) lim u ( x, t) u* uniformly for x in f.
t

Remarks. Condition (4.9) seems new even for the ordinary differential equation.
To our knowledge, this is the first list of sufficient conditions guaranteeing the global
stability of a critical point in a general n-species interaction model.

We next illustrate the use of the theorem on an example.
Example 4.4. For i- 1,..., n let

(4.22) Mi(u)-b-ui- f(uj),
j=l
j=/=

where b>0 is a constant and f(v), defined for all v in a neighborhood of [0, ), is C
and satisfies

(4.23) (a) f(0) 0,
(b) 0<f’(v)< 1/(n- 1) for v>0,
(c) the equation f(v) b has a solution,
(d) f(b)<b/(n- 1).

The function

(4.24) f(v) 1 + ev

where 0<8< 1/(n-1) and O<e<6/b, satisfies (4.23) and is also an interaction term
of Holling type 10].

We prove the following result:
THEOREM 4.5. Let be a bounded region in R with sufficiently smooth boundary

and d,. ,d be any positive constants. Let M,. .,Mn be defined by (4.22) and (4.23).
Then there exists a unique feasible equilibrium u* which is globally asymptotically

stable in the sense that for u(x,t) a solution of (4.1)-(4.3) with bounded nonnegative initial
conditions u(x ) satisfying

ui (x)-O for x in f and i-1,. .,n,

we have

lim u( x, t) u* uniformly for x in 2.
t-oo

Proof. We need only verify that conditions (4.4)-(4.7) and (4.9) hold. Clearly, (4.4)
follows from (4.22) and (4.23b). Letting Ai--b for i--1,...,n and Aj-- for ivYj,
where 5 is such that f() b, gives (4.5). Since f(b)< b/(n 1) < b implies that b<,
(4.7) holds.

To show (4.6) holds we argue as follows. Let u be a solution of M(u)--0 and set

s--f(u)+... +f(u,),
where u-(u,. "’,Un). Then from (4.22), for each i- 1,- .,n,

s-b-uiq-f(ui)



DECAY IN COMPETITIVE SYSTEMS 671

and so each component of u satisfies the equation

(4.25) f(v)-v+c-O,
where c-b-s. Since (4.23b) implies that 0<f’(v)< for v >0, we have that (4.25) has
at most one positive solution for any constant c. This then implies that all the compo-
nents of u must be equal. Let u un- c. Then c satisfies

(4.26) b-o-(n-1)f(a)-O,

which clearly has exactly one positive solution (see Fig. 4).

n-1

ct b " v

FIG. 4

So the unique feasible equilibrium is u*-(a,..-, a), where a satisfies (4.26).
It remains to show (4.9). Let

Vi(’r)-ki(’ra*)-b-(n- 1)f(’ct), 0_<-_< 1,

and let

Then

(4.27)
by (4.23d) and

(4.28)

h(O)-b-(n-1)f(b)>O

by (4.26). Finally,

(4.29)

h(1)-b-(n-1)f[b-(n-1)f(a)]-a
--b-(n-1)f(ot)-ot-O

h’()-ct[(n-1)af’(b-(n 1)f(t)).f’()-1]
<0

for 0_<< by (4.23b) and (4.27)-(4.29) then imply

h()>O forO_<<l,

which is equivalent to (4.9). Theorem 4.3 now gives the result. U]

We give an example which shows that one must assume condition (4.9) holds for
all r in [0, 1). (Recall in the two-species case that one only needs to assume (4.9) at
=0.)
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Example 4.6. Let Mr,... ,Mn be given by (4.22) but assume instead that f satisfies

(4.30) (a) f(O) O,
(b) 0<f’(v)< for v>0,
(c) f(v) = b has a solution,
(d) f(b)<b/(n- 1),
(e) f’(a)> 1/( n 1), where a is the solution to b v (n 1)f(v) -- 0.

An example of a function satisfying (4.30) is

ev 0<v<
b

-n-l’f(v)-- b b b
fl V--n +e v>.

n--1 n--1

where 1/(n 1) < e< and 0< < (1 e)/(n 2), and then smoothing out the rough
edge to makef C (see Fig. 5).

n-I

n-I

FIo. 5

Conditions (4.4)-(4.7) follow as before, and letting h(z) be defined as above, we see
that h(0)>0 by (4.30d) or that (4.9) holds with ’=0. We show that h’(1)>0. Indeed,
from what was done above (see (4.29)),

h’(1)-a[(n-1)2(f’(t))2- 1]>0
by (4.30e). Since h(1)=0, this implies that h(-)<0 for ’< and dose, thus showing
that (4.9) doesn’t hold for all z in 0, 1).

Finally, we note that a result analogous to Theorem 4.5 holds in the case that the
function f(v)=av2, a>0, provided ab<3/4(n-1). The proof follows along lines
similar to that for Theorem 4.5.
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EXPLICIT SOLUTIONS OF THE LINEARIZED KdV EQUATION*
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Abstract. Explicit solutions to the Cauchy problem for the linearized KdV equation are constructed when
the initial data is integrable. The method is analogous to the Fourier decomposition for a constant coefficient
equation and uses the connection between the one-dimensional Schr0dinger equation and the KdV equation,
as discovered by Gardner, Greene, Kruskal and Miura [2]. An expansion theorem expressing any integrable
function in terms of derivatives of squared Schr0dinger (generalized) eigenfunctions is proved. These func-
tions evolve according to the linearized KdV equation, hence the expansion of the initial data leads to a
generalized solution of the linearized KdV equation. Under suitable restrictions on the initial data, the
solution constructed is classical. The proof of the expansion theorem may be interpreted as the skew-adjoint
analogue of the more familiar process of simultaneously diagonalizing two self-adjoint operators.

AMS-MOS subject classification (1980). Primary 35C15, 35Q20, 34B25

Key words, linearized KdV equation, Schr/Sdinger eigenfunctions, skew-symmetric operators

1. Introduction. In this paper, we present an explicit solution to the Cauchy
problem for the linearized KdV equation:

(,) ut+Ux-6(qu)-O, u(x,O)-ck(x),
where q(x, t) is a solution of the KdV equation ((1.5) below). Our method expresses the
solution as a superposition of particular solutions and utilizes a completeness theorem
which we discuss below. The particular solutions we choose may be thought of as
derivatives of q(x, t) with respect to the scattering data for the Schr6dinger equation
with potential q(x, t). Hence we sketch briefly the inverse scattering method of solving
the KdV equation, as discovered by Gardner, Greene, Kruskal and Miura [2].

If we consider the one-dimensional Schri3dinger equation with potential Q(x),

d-.f+Q(x)f=k2f(1.1)
dx

and define the Jost solutions f_+ (x, k) by their asymptotic behavior

(1.2) f+ eikx as x + , f_ e-ikx as x o

then the relation

(1.3) r(k)f_(x,k)=f+(x, -k)+R(k)f+(x,k),
which defines the transmission coefficient T(k) and the reflection coefficient R(k)
implies T(k) is meromorphic in Imk>0 with finitely many poles, all on the imaginary
axis. The completeness theorem mentioned above expresses any integrable function q in
terms of (f+z)’(x, k), (f_2)’(x, k) and a sum of discrete terms related to the poles of
T(k). (While we could use (1.3) to eliminate (f2),(x, k), it is more convenient not to do
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sponsored by the U.S.A. under contract no. DAAG29-80-C-0041 and by an American Mathematical Society
Postdoctoral Research Fellowship.
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so.) We prove the theorem by solving the equation

/’" 4Q/’ 2Q’/+ 4k2/’
for k’ and integrating the "resolvent".

If we now consider a one-parameter family of SchriSdinger operators

d
(1.4) L(t) t-q(x,t),

dx 2

where the time evolution of q(x, t) is given by the Kd equation

(1.5) qt+qxxx-6qqx=O,

then it turns out [2] that for any t, L(t) is unitarily equivalent to L(0). This implies that
the spectrum of L(t) is invariant. Moreover, the scattering data associated with the
operators L(t) evolve in a very simple manner. Zakharov and Faddeev [16] interpret
the above facts in the context of completely integrable Hamiltonian systems and show
that the eigenvalues of L and k times the logarithm of T(k)l for real k form action
variables with appropriate conjugate angle variables. In [16], a formal calculation
appears which expresses the infinitesimal variation of q(x, 0) in terms of variations of
the scattering data. This formula suggests consideration of x-derivatives of the squared
eigenfunctions of (1.1) with their induced time dependence as solutions to the linearized
KdV equation. The fact that these derivatives satisfy the linearized KdV equation for
smooth potentials already appears implicitly in [2, Thm. 3.6]. Reference [12], besides
providing an excellent overview of inverse scattering methods for solving evolution
equations, presents several results closely related to ours. In particular, Newell derives
the orthogonality relations implied by Theorem 2.1 below. However, completeness of
these functions is not discussed in [12] or elsewhere, to the best of our knowledge. A
related expansion for the Zakharov-Shabat eigenvalue problem appears in Kaup [4].
Discussions of perturbations using the inverse scattering formalism appear in [5], [9]
(for the sine-Gordon equation), and [11]; for an application of this result to the
problem of water waves in a canal, see [13]. Squared eigenfunctions and their deriva-
tives also play an important role in the theory of the periodic KdV equation [8].

The completeness theorem is proved in {}2 below, while in {}3, the time evolution of
the eigenfunctions and the solution of (,) are discussed. Some of these results appear in
the author’s doctoral dissertation (New York University, October 1980). The advice
and encouragement of his advisor, Jtirgen Moser, is gratefully acknowledged.

We also remark that semi-group methods [3] will yield a solution of (,) for L2

initial data, so for a large class of initial data, we have constructed the "evolution
operator" explicitly.

2. L-completeness of derivatives of squared Schr6dinger eigenfunctions. After in-
troducing some notation and results from the scattering theory of the one-dimensional
SchriSdinger equation, we state and prove an expansion theorem for derivatives of
squared SchriSdinger eigenfunctions. (We shall use the term eigenfunction to include
generalized eigenfunctions as well as bona fide L2 solutions.)

Consider the SchriSdinger equation

(2.1) -f"(x,k)+ O(x)f(x,k )=k2f(x,k)
for k real. Our notation shall be:

f’(x,k)---xf(x,k ), /(x,k)- f(x,k).
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We assume the potential Q(x) satisfies

(2.2) IlQIl,=ff ( +x=)lQ(x)ldx<.

The fundamental discovery of Gardner, Greene, Kruskal and Miura [2], later for-
mulated abstractly by Lax [7], is that if q(x, t) evolves according to the KdV equation,
the spectrum of the SchriSdinger equation (2.1) with potential q(x, t) remains fixed in
and the associated scattering data evolves in a very simple manner. We shall use this
information below, but first introduce some notation and basic facts about scattering
theory for (2.1). This information (and much more) may be found in [1 ].

Let f_ (x, k) denote the Jost solutions of (2.1), i.e., f+ (x, k)
f_(x,k)e-ik as x--,-o, and both satisfy (2.1). The transmission coefficient, T(k),
as defined in (1.3) above, is represented in terms of the Wronskian off+ ,f_ by

(2.3) T( k ) 2i-- [ f+ (x, k ),f_(x k )] -f-f -f’-f

Formula (2.3) and the normalization of f+ ,f_ imply that T(k) is meromorphic in the
upper half-plane Imk>0 with poles at k-iflj, j 1,... ,N where each energy _fl2 is a
bound state energy in (2.1). N is finite by a classical estimate assuming (1 + Ixl)l Q(x)l is

integrable. T(k) is also continuous and nonzero for real k 4:0. For notational ease, we
also introduce forj- 1,... ,N the following pair of functions"

(2.4) F(x ) f Z+ ( x, iBj ), Gj(x ) cjf+ ( x, ij )" gj(x ),

ld[where gj(x)=--7-- f_(x,k)
f_(x,iflj) ]/+(x,k)

and cj is chosen so that f_Ff(x)Gj(x)dx-1 for j-1,-..,N. The expansion theorem
mentioned above is:

TrlEOmM 2.1. Suppose Q(x) satisfies (2.2). If q(x) is continuous and in Ll, then

(2.5a) ,(x)-limfm+i dk r2(k), f= K(x,y k)(y)dy
0 ,-+i 2rik -

N

+ E f? [Ff(x)G.i(Y)-Gj(x)F(Y)]rk(y)dy

and

(2.5b)

rk(x)--f? f? TE(k) [( f+ )’(x k)f_(y,k)-( f

_
)’(x,k)f+(y,k)]rk(y)dydk

4rik

N

+ . f? [Ff(x)G(y)-Gj(x)F(Y)]rk(Y) dy’
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where the kernel K(x,y, k) is defined as

x ( fE+(x,k)fE(y,k)-h(x,k)h(y,k))
(2.6) K(x,y,k) x (h(x,k)h(y,k)-fE(x,k)fE+(y,k))

for y<_x,

for y >_x,

with h(x,k)=--f+(x,k)f_(x,k).
We remark that for q- 0, f_ (x, k) e -+- kx and the above expansion reduces to the

ordinary Fourier transform. The latter representation (2.5b) is more convenient in
applications while (2.5a) is central to the proof of the theorem. Before presenting the
proof, we discuss the choice of the particular kernel K(x,y,k) of (2.6).

If f and g are both C solutions of the Schrtdinger equation (2.1) for the same
energy k 2, then their productf.g is a solution of the third-order equation

(2.7) +’"-4Q’-2Q’+- -4kEk’.

Two linearly independent solutions of (2.1) generate three independent solutions of
(2.7), e.g., f 2, fg, g2. We choose f+(x, k), T(k).f_(x, k). Then, solving the inhomoge-
neous form of (2.7) for a function (x) by variation of parameters leads to an
expression for k in terms of . The kernel K(x,y, k) is the "Green’s function" for this
problem. Differentiating, we obtain formally

(2.8) k’- (D2-4(Q- k2 ) 2Q’D- ) q,

which we integrate as though it were a bona fide resolvent and obtain a multiple of the
identity. The calculation of this integral is the content of the following lemma.

LEMMA 2.2. Let FR be the semicircle in the upper half-plane of radius R traversed
from -R to R. Then:

(2.9)

for all d which are continuous with L

Postponing the proof of Lernma 2.2 momentarily, we show that Lemma 2.2 implies
Theorem 2.1.

Proof of Theorem 2.1 (given Lemma 2.2). Apply Cauchy’s theorem. For Imk>0,
the integrand in k has poles only at the poles of T2(k); an easy calculation shows that
for k- ifll,’’’,iflN (recall, the bound state energies are _fl2< _fl2_ <’’" < --l2<0),
the pole of T(k) is simple [1]. Thus the integrand we consider has double poles at
k= iflj,j= 1,...,N.

For k-iflj, there is a constant etj such that f_(x, iflj.)-ogf+(x, ifli). Thus the
quantities

(2.10)
fE+(x,k)f2(y,k)-h(x,k)h(y,k) and f+(x,k)f_(y,k)-f_(x,k)f+(y,k)

vanish identically in x,y when k-ifl.
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Let Aj be the residue of T(k) at k= iflj. Then the residue of the left-hand side of
(2.9) at k= iflj. is precisely

(2.11) A d K(x y,k)q(y)dy
2r flj dk k flj

2Ag
2ri f_-x [f+(x’iflj)’f+(y’iflj)gj(y)

f+ ( x, iflj ) gj( x )f 2+ ( y, iflj ) + q(y)dy,

where we recall

d
gj( X )-- f (x,k ) ojf+ (x, k)] k--iflj"

The right-hand side of (2.11) comes from replacing f_(x, ifl) by ajf+ (x, ifl) after using
the remark below (2.10). Now we deform the semicircle to the real k-axis. By our
definitions above, the deformation contributes the terms .Uj=lf_[Fj,(x)Gj(y)_
Gj(x)Fj.(y)]q(y)dy which appear in the conclusion of Theorem 2.1, in addition to the
integration along the real k-axis. We also remark that despite appearances, neither real
k integral has a singularity at k--0. This follows from the fact that either (i)f+ (x, 0) and
f_(x,O) are linearly dependent, which by the same remark as above implies that
K(x,y, k) vanishes at least linearly in k as k--, 0 in Imk >_0; or (ii)f+(x, 0) and f_(x, 0)
are linearly independent, so by (2.3), T(k)-ak+ o(k) as k 0. In either case, there is
no pole at k=0. (See [1] for a further discussion of phenomena at k--0 in scattering
theory.) Thus we have proved (2.5a) assuming Lemma 2.2. To obtain (2.5b), we remark
that the difference between the two k-integrals integrates to 0.

The difference between (2.5a)-(2.5b) is precisely

f’ dk f I(x,y k)q(y) dy
4rik

_
where I(x,y,k)- sgn(x-y)O/x[T(k)f+ (x,k)f_ (y,k)- T(k)f_(x,k)f+ (y,k)] 2.
Using (1.3) to eliminate f_(x,k),f_(y,k), we see that K(x,y,k) is an even function of
k, so the integral vanishes. This proves (2.5b).

To complete the argument, we now prove Lemma 2.2. Consider

1 T2(k) {f K(x,y,k)dp(y)dy} dk(2.12) I.=gg/fr.
Write f+_ (x, k) m +_ (x, k)e +- ikx. We shall make use of the following estimates, taken
from Deift-Trubowitz [1 ], which hold for all k in Im k_>0

(2.13) (i)

(ii) m’+(x,k)+ e(’-Q(y)dy<_C/(+lkl) andsimilarlyform_,

(iii) T(
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In [1] it is also shown that m +/- are Hardy functions; in particular, they are analytic
in Imk>0. Recalling the definition of K(x,y,k) given by (2.6), we define"

(2.14)

----2 r-- dk

+fx[h’(x,k)h(y,k)
2m_ (x,k )m’_ (x,k )m2+ ( y,k ). e-2‘k(x-y)] dp( y ) dy }.

Thus IR IR(1) + IR(2).
By estimates (i), (ii), (iii) in (2.13), since IR(2) contains terms which have a factor

m’_ (x, k) and m +/- (x, k) is uniformly bounded for ]k] > c> 0, we have the estimate

(2 15) [IR(2)I< C Ilqlt g’
for all R_>R0 sufficiently large,

where C is independent of R.
Morover, by (2.13) (i), (iii), m +/-(x,k)- + O(1/R). T(k)- + O(1/R) for [k[-R

so

IR(1)-’ 2ike2ik(x-Y(y) dy

+ fx 2ike-2i(x-Y)(y)dy +0

The first terms converge to (x) as in the usual proof of Fourier completeness [15] and
the lemma is proved by taking R .

Remarks. (i) The expansion theorem above bears a strong resemblance to that of
the Fourier transform for L functions. However, since the underlying process is the
"simultaneous diagonalization" of the two skew operators d/dx and -(d/dx)3+
2(d/dx) Q+ 2Qd/dx, the analogue of the Fourier L2 theory is not obvious if Q v0. If
we define

(2.16) +/-(k) =f? q(y)f(y,k)dy,

the natural version of the Plancheral formula in this case relates the skew bilinear form
f_o +,(x)(x) to the standard symplectic pairing

_(k) -1 0 _(k)
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(ii) We also note that the skew operator -D3+2DQ+2QD (D=d/dx) was used
by Lenard to recursively generate the KdV conservation laws [2]. It seems to play a
crucial role in many aspects of the KdV theory--e.g., it is useful in proving that the
integrals are in involution.

3. Application of Theorem 2.1 to the Cauchy problem for the linearized KdV
equation. The expansion of (x) given by Theorem 2.1 will lead directly to a method
for solving the Cauchy problem for the linearized KdV equation:

(.) ut+Uxxx-6(qu)x=O, u(x,O)=(x)
with satisfying the hypotheses of Theorem 2.1. As the potential q(x,t) in the
Schrtdinger equation

-/"+qf=k2f
evolves according to the KdV equation, the corresponding eigenfunctions evolve in
time. Gardner, Greene, Kruskal and Miura [2] observed that the squares of the eigen-
functions satisfy the formal adjoint of the linearized KdV equation (which they called
"the associated linear equation"), namely
(3.1) vt+ Vxx 6qvx 0

from which it follows that u v satisfies

(3.2) ut+u,-6(qu)x=O (the linearized KdV equation).

In view of this fact, the expansion of Theorem 2.1 may be extended to include the time
evolution of the eigenfunctions. As we shall see below, this extension is the solution of
the Cauchy problem (.).

We begin by developing some necessary preliminary facts.
LEMMA 3.1. The functions

d
gj(x)--{ -[f_(x,k)-ajf+(x,k)], k-i

are (unbounded) solutions of the SchrSdinger equation (2.1) with k 2 -fl?.
Proof. Differentiating (2.1) with respect to k, we obtain an equation for (d/dk)f+_

(x,k)=f+/-(x,k):
(3.3) /’_+’ = (q-k2)/+/- -2kf+_.

Consider g=[_ -a]+]/i at k= ibm" g(x) satisfies

g’j’ = ( q+ fl: ) gj 2flj ( f ( x flj ) ajf+ ( x flj ) )
= (q+ fljZ)g, by our choice of aj.

Remark. gj(k) is exponentially increasing as Ixl- however, the product
f+(x, ifl)g(x) is bounded.

We now discuss the result in [2] mentioned above, and sketch the proof.
LElVtMA 3.2. (cf. [2, eq. (2.19)]). Let be a solution of the Schrbdinger equation (2.1)

with potential q(x, t) evolving according to the KdV equation. Then the function
(3.4)
is also a solution of the Schridinger equation with potential q(x, ).

Sketch of the proof. Use the equation ff"=(q-kE)ff to express q in terms of ft.
Substitute into the KdV equation and simplify the resulting expression, obtaining the
equation R"-(q-k2)R=0 after eliminating a factor of ft.
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Remark. The chief use of Lemma 3.2 is to show that R, for suitable eigenfunctions, is in fact 0. In particular, we have:
COIOLLARY 3.3. The expression R vanishes if we choose any of the following

eigenfunctions for
(i) f+__(x,k,t),-exp( +--i(kx+4k3t)} as x--,+_, oo, fixed,

(ii) ]+ ( x, iB, ),
d

(iii) g(x,/) 7 -[f_(x,k,t)--ajL(x,k,t)]k=taj.
Sketch of proof (see [2, Thm. 3.6]). Consider R in each case. By our choice of

asymptotics, we have R----0 since no other solution of the SchrOdinger equation with
that type of decay exists, namely R--,0 as x--,_+_ oo in (i), exp{lflx-4fl]tl)R--,0 in (ii),
(iii) as [8x-4ft[--, o. Thus from the spectral theory of the Sehr0dinger equation,
R----0 in each case.

LiMA 3.4. Suppose ,2 are to (not necessarily independent) solutions of the
Schr6dinger equation for the same eigenvalue. If 6t +g/xxx- 3(q+ k2)g/x =-0 for 6=j,
j 1,2, then the product /1/2 is a solution of the adjoint equation:

v + Vxxx- 6qvx O.

Proof. A direct calculation:

1 11/2 ) "+" (lq2)xxx-6q(

=6l(ff2, + 2,xx- 6q62x) +62(l,+61xx-6qg/lx) + 361xff2x +
=61( ’2, + 6,, 3(q+ k2)2x)+(llt+lxx 3(q+ k2 )6lx):0,

where we have used the Schrbdinger equation to eliminate the second derivatives.
Remarks. (i) An alternate derivation of these facts may be given using the follow-

ing idea of Tanaka [14]: The KdV equation may be written in the Lax [7] form

(3.5)

where L(t) is the operator d2/dx2 + q(x, t) and B(t) is the skew operator

d d d
-4 -x3 + 3q( x, ) -x + 3 -x q( X, )

The time derivative of the Schr0dinger equation (2.1) together with (3.5) implies

(3.6) L( ft-Bf )=kZ( ft-Bf ).
Choosing f=f+(x,k,t),,,eikx as x +o for fixed and analyzing the asymptotic
behavior offt- Bf as x --, + o for fixed implies

(3.7) (f+)t-B(f+)- 4(ik)3(f+)
SO (x,k,t)=e4i’3t f+(x,k,t) satisfies

(3.8) t-B=O, l"-’eikx+4k3t asx--, +o fortfixed

(a similar argument holds for e-4ik3t.f_ (x, k, t)). Using the Schr/Sdinger equation (2.1),
a simple calculation, as in Lemma 3.4 above, shows that products (with the same values
of k 2) of solutions of (3.8) satisfy the adjoint equation

v + Vxx-6qv= O.
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(it) If q(x, t) is a classical solution of the KdV equation, the formal calculations
above are sensiblemi.e., the eigenfunctions possess the necessary derivatives. This
follows from the inhomogeneous form of the SchrSdinger equation which these deriva-
tives satisfy.

Using these facts, we make the following definitions (extending (2.4) to include

(3.9) f+(x,k,t)eix+4it asx +, fixed,

f_(x,k,t)e-ix-4ig3t asx-, fixed,

f__+ satisfy (2.1)with potential q(x,t),

(x,t)=f2+(x,ifly,t),
,(x, ) cL ( x, i, ). (x, ).

The obvious candidate for the solution of (,) is the function u(x, t) defined as follows:

(3 I0) u(x t) dkT2(k) [( f )’(x k t)_(k)-( f} )’(x k t)+(k)]_ 4ik

N

+
j=l

where (k) are defined in (2.16) above. By Lemma 3.4, all of the functions of (x, t)
appearing on the right-hand side of (3.10) satisfy the linearized KdV equation. Thus we
have proved:
L= 3.. rh /.=ctio. =(=, t) d4i.d by (3. 0) boe =ti/i th ti=ri=d Kd

equation:

(.) .,+.xxx-6(q.)x=O, .(x,O)=(x)

in ,he o/ di=ibu,ionx.
To prove that u(x,t) is a classical solution of (,) for t>0, we need some additional

smoothness and decay on (x), the initial data. The situation is completely analogous
with the Fourier transform solution of the Airy equation:

(3.11) w, + Wxxx=O.
The x-decay of, is needed to have (k) be differentiable wNle smoothness of
relates to integrability of ka(k) for 0a2. As in the case of (3.1 l), one can prove
the following:
u.2o 3.6. rh /..ctio. .(=, ), gic. by (3.20) aboc,

lineari=ed Kd= eq=tio. /or >0 i/

(i) (= ) ho= co.ti..o. deriiice,

(it) a xl , :,(x ) O(Ixl- )/or= O, I, , 3,4.

Sketch o/proof. Using (i) and the definition of k), we integrate by parts four
times with respect to x, which implies that as kl , (k)= O(lkl-). Also, by (it),
(k) are C2. Thus u(x,t) has two continuous derivatives with respect to x. As in
Murray [I0], the factor k is written as (x + 12k=t)/12t-x/12t, where the first term is

2k x+4k n r n b rtsa multiple of the k-derivative of the exponentials e- I teg ati g y pa in
k, we find that u(x, t) has four continuous x-derivatives. Repeating the argument, we

time dependence):
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obtain six x-derivatives. From the linearized KdV equation, this implies u is continu-
ous, hence it is a classical solution. The only difference between this case and the Airy
equation (3.11) is the presence of the added factors

and these do not affect the necessary estimates.
A fuller discussion and an analysis of asymptotic behavior is presented for the

N-soliton linearization in [13], where the perturbation theory for the problem of water
waves in a canal is discussed. The KdV equation was first derived to model precisely
this situation [6].
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SOLUTIONS TO THE EQUATIONS OF ONE-DIMENSIONAL
VISCOELASTICITY IN BV*

.lONG UHN KIMf

Abstract. The initial value problem associated with the equations of one-dimensional viscoelasticity of
the rate type is studied. The system of equations is linearized and the solutions to the resulting linear system
are completely analyzed in the L-setting by the method of Fourier transform. This enables us to establish the
global existence of solutions to the original nonlinear system with small initial data in L (qBV. As a
by-product, we also obtain precise results on asymptotic behavior of solutions.

Key words, equations of one-dimensional viscoelasticity of the rate type, linear system, Fourier trans-
form, functions of bounded variation, global existence, asymptotic behavior, nonlinear system

Introduction. In this paper we study the equations of one-dimensional viscoelastic-
ity of the rate type,

uT-v,
(0.1)* v,-o*(u*)+v,
with initial conditions

(0.2)*
u*(x,O)-u](x),

where v is velocity and u* is the deformation gradient (the inverse of density). We will
discuss this Cauchy problem when (u](x), v0(x)) are close to a stationary state (U, 0),

def
where U is a positive constant. Hence we introduce new functions u- u*-U

def
ando() o*(+ U). Then (0.1)* and (0.2)* reduce to

(0.1)
Vt__ O( U)x__Vxx

and

(0.2)
U(x,O)--Uo(X ) de’-f U (X) U,

From physical considerations, u* u+ U should be positive, i.e., u> U.
The function o will be assumed to be C2-smooth and 6(0)>0, a condition moti-

vated by mechanics. The conservation of mass is expressed by the first equation of (0.1)
and the balance of linear momentum by the second one. For the initial-boundary value
problem for (0.1), existence theorems have been established in several function classes
(see [1 ], [2] and [5]).
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For the hyperbolic system of conservation laws

(0.3) Ut--t)x, 1)t"-O(U)x
associated with (0.1), it is known that the natural function space is the class BV of
functions of bounded variation. More precisely, in the case of initial data with small
total variation, the existence of global BV solutions to (0.3), (0.2) was established by
using Glimm’s scheme [4]. From the physical viewpoint, (0.3) can be visualized as the
limit of (0.1) as viscosity vanishes. So it is natural to assume that for initial data of
small total variation, global solutions of (0.1), (0.2) should exist in the same class of
functions. (For more details, see [3].)

The intent of this paper is to verify this conjecture. The main result is Theorem 2.1.
As explained in [3], it is very difficult to apply Glimm’s scheme to our problem.
Therefore, we shall approach the problem differently. First we consider the linearized
version of (0.1):

(0.4) ut= vx, l)t---l (O)Ux’-’l)xx
and then regard (0.1) as a perturbed equation with an extra term o(u)x-#(O)ux. This
approach is straightforward but effective, since we can study all the important proper-
ties of global solutions to (0.4), (0.2) so as to dispense with a priori estimates for the
nonlinear problem which are difficult in the Ll-setting.

We shall begin to analyze (0.4) in and return to (0.1) in 2.
1. Linearized equation. Without loss of generality, we assume 6(0)-- 1. Applying a

Fourier transform with respect to the space variable x, (0.4) yields

where

and
0, )

Throughout this paper we denote by II-II the Ll-norm of a function as well as the total
variation of a measure. We want to obtain precise estimates of E [et/l()]ij II, i,j- 1,2,
wlq,ere E- denotes the inverse Fourier transform. To simplify notation, we shall denote
e t’l() and Z-l[e//l()] by ( and G, respectively. It is easy to express each component ij
of ( explicitly:

for > 2,

for <2,

where

X2-- - ( --2--4 "’"42 ), k2__ .. ( __2__i4 2 );
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(1.4)

(1.6)

12 421
for Ill > 2,

for < 2;

for > 2,

for < 2.

hoMfor all t_>O, for some positive constant M.
Proof. Set

/-2(, t) --/’1(, t) e-2t/2COS(t )
and

H2( x, ) - II2
We shall show that H2(x,t ), (3/3x)H2(x,t) C([1, ); L(Rx)),

(1.7) IIH2(x,t)ll<_M2t-/6 and

(1.8) _M2t-

hold for all t_> 1, for some positive constant M2. Let I,P be positive constants (to be
fixed later on) such that 0< p << 2 << ri < o. Then we have the following estimates:

(1.9) fll>-nlI212(’t)ld<-L(te-’t+e-t) for all t_>l,

where L and ct are positive generic constants which depend only on and p,

(1.10)

(1.11)

(1.12)

fll-<.l&(’t)l dl<_Lt-1 for all t_> 1,

,t) d<_L(t2+l)e-’t forallt>_l

fll-<p -/-2(’t d<-Ltl/2 for allt_>l.
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Since t2(,,t).C([p,rl]R) and for some ct>0, )ki_<--a for 2_<ll_<n, Rei_<-ct
for p _< Il -< 2, i- 1,2, we conclude that

(1.13) 11I’?I2(l,t)ll<-Lt-’ and

In the meantime, we have

(1.14)

<_ Lt /’4 for all >_ 1.
L

fix In2(x’t)ldx+ fix ixn(x t)ldxIlnz(x’t){{
i<_r i>_-

V 0-% forallT>0.

Hence, by taking T=t5/6, Iln2(x,t)llM2t-/6 holds for all t_>l. By (1.14) and
Lebesgue’s dominated convergence theorem, it is easy to see that H2(x,t)
C([ 1, 0); L(Rx)). Similar estimates can be obtained for (’d/Ox)H2(x,t)"

(1.15) f 11I2(l,t)12dl<_L(t2+ 1)e-t for all t_>l,

(1.16)

(1.17)

(1.18)

By (1.15) to (1.18), we have

(1.19)

In combination with

(1.20)

and <_Lt-/4 for all t_>l.
L

_< 2ll2(,tllL2+-- (2(,t)
:

for all T>0,

(1.19) yields

0 -3/4(1.21) -xH_(x,t) <--M2 for all t>_ 1,

by taking T--t. The argument for O/OxH_C([1,0c);L(Rx)) is similar. Hence it
follows immediately that Hl(X,t ), (O/Ox)H(x,t)C([1,0);Ll(R)) and for some
positive constant M3, IlH(x,t)ll-<M and IlO/)xH(x,t)ll <-M3t-/2 hold for all t_> 1,
since

_(x+t)2/2t (x_t,2/2t(1.22) 0--1 e-t2t/2cos(t) 2 2 (e +e- ).
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We can show directly that

(.23)

for all [0, 2].

By a similar procedure, it is easy to see that H,(x,t), (O/Ox)H(x,t) C([0,2]; LI(Rx))
and so the proof is complete. V

Next we define

/3(, t) ,2-- ie-2t/- sin(t ),

I214(1, t) ,2 ie-t + ie-2t,

and

Then we have

I215 (, ) ld ,2 ie- ie-2t/2 sin(t )

Hi( x, ) -3- ’Ii(, ), i--3,4,5.

LEMMA 1.2. G,2(x,t)C([O,o);Li(Rx)), H4(x,t)C([O, 2];Li(Rx)), Hs(x,t)U_
C([ 1, ); L(Rx)) and (13/13x )Hs(x, t)

_
C((O, c); L(R)). Furthermore,

(1.24) IIa,2(x,t)llM4 for all t_>O,

(1.25) I[n(x,t)ll<--_M4t-/3 for allt>_l and

(1.26) -xHs(x,t) <-M4(ts/4+t’/2) forallt>O,

where M4 is a positive constant.

Proof. We first display the following list of estimates which can be obtained by
elementary computations"

2 2

<.27) f I&l d<_Le-% f_ I&l for all tl,

2 2

d<_L(t2+ 1)e-"t, d<_Ltl/2

d,(,,t)

&(’t)]l,-<
I&(,t)ld<_L(t+ 1)e-"t,

(1.32) flf I&(,t)l d<-Lt-3/2

for all [0, 2],

for all t_> 1,

for all [0, 2],

2

---I215(,t) d:<L(t+ 1)e-’’,

for all t_> 1,
2

d<-Lt-/2, for all t_> 1,
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2

(i.33) fll->,ls(’ t)l dl<-L(t + + t-3/2)e-’,
2

fl,l>-,I
1)-7/2(1.34) i_<0 i_<o

for all > 0,

2

dl<_L(t+ 1) -3/2

for all > 0.

_< tst

(1.37) -xHs(x,t) <__Mt for large t>O,

where M5 and M6 are positive constants.
We now proceed to get estimates for

II(O/OxZ)G2(x, t)ll by defining

/’6 (, t) 22-

LEMMA 1.3.

for small >0,

IIG22(x,t)ll, II(O/Ox)G22(x,t)ll and

7(, ) (22 e-2t/2cs(t ),

8(, ) 2(22+ e-t__ 2e-2t/cos(lt) and

Hi( x, ) --f- Ii(l, ), i-6,7,8.

H6(x,t ) U. C([O, 2];L(Rx)), HT(x,t ) C([1, o);Ll(Rx)),
(/x)H6(x,t)C([O,2];Ll(Rx)), (O/Ox)H7(x,t)C([1, c);L(Rx)) and H8(x,t)
C([ O, or3); LI(Rx)). For some positive constant MT,
(1.38) IIHv(x,t)ll <--M7t-l for all t>_ 1,

(1.39) -xHT(x,t) <_MTt-/4 ]’or all t and

(1.40) Ilns(x,t)llM7(t+tT/6) -’ for allt>O.

Proof. The proof is quite silar to those of the preceding lemmas and follows
from the following estimates"

fora  (1.42) (6(,t))
L

[0,2],

C((O, o); L’(Rx)),

(1.36)

From (1.27), (1.28), (1.29) and the identity

[ (x+t)z/2t t)/2t(1.35) -’ e-t/2sin(lt)
2i 2 (e- --e-(x- ),

it follows that Gl2(X,t)C([O, o); L(Rx)) and IlG2(x,t)ll<_M4 for all t_>0. By (1.31)
and (1.32), [lI215(gs, t)ll<_tt-3/2 and [l(O/)l)t5(gs, t)llL<_tt-1/4 for all t_>l. Thus,
substituting H for H2 in (1.14)and taking T--t 5/6, it is shown that Hs(x,t)
C([1, o); Ll(Rx)) and Ilns(x,t)ll<_M4t-2/3 for all t_> 1. Finally, with the aid of (1.33),
(1.34) and (1.20) (substituting ()/)x)H for H2), we deduce that ()/Ox)Hs(x,t)
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(1.43) II/(,)11L(+ 1)e-t+Lt-,

1[/-)7(e’t)]l t(t+ l) for all 1, ),

(1.44) III:I(,t)[l<-t(t+ 1)e-at+Zt-5/4,

t’/-/’, t
L
2-</., /’-i-" 1)e-at+Lt-1/4

(1.45) [[08(,t)llL(t+ l+t-3/2)e-at+L(t+ 1)-2,

for all 1, ),

<_L(t + + t-3/4)e-at+ L(t + 1)-3/4 for all t>0.
L

We conclude this section by recalling some elementary properties of functions of
bounded variation which will be used in {}2.

LEMMA 1.4. Let f be a function such that f C(R; R), ](. ) is locally Lipschitzian,
f(0)-0 and f(0)-0. Then for any u,vLINBV, we have f(u), f(v)LINBV. In
particular, for any given M>0, there exists a positive constant Cm such that Iluxll,
x <-M implies the following inequalities:

(1.46) [If(u)ll<_CMIlUxllllull, -d-xf(u) <--CMIlUxll,

(1.47) Ilf(u)-f(v)ll<_CM(lluxll/llvll)llu-vll,

-d-x f( U ) --x f( v ) <-- CM( llUxll / llvxll ) llux-vll
Proof. Let , denote the Friedrichs mollifier. Since uLBV, (u*i,)(x) u(x) as

e--,0 for almost all x and lu(x)l-lf_d(du/dx)l<_llull<_M< for almost all x,
where M is a positive constant. Therefore, f(u*8,)f(u) in the sense of distributions.
But f(u ,)11 < Cg II u ,

L U * II < CM U L U --< CM U U and
II(d/dx)f(u i,) ](u i,)(Ux * ,)11 < CM u LOO Ux -< CM Ux 2 hold for each e>
0, where CM is the Lipschitz constant of ](. ) on the interval [-M, M]. These inequali-
ties imply that f(u)LBV, f(u)ll<_fnllUxllllull and II(d/dx)f(u)ll<fMIlUxl] .
The remaining assertions can be proved in a similar fashion.

LEMMA 1.5. Under the same assumptions on f as in Lemma 1.4, f(u)
BV)A C((0, o);) for each uC((O, );Ll (qBV)fq C((0, c);) where 3L is the
Banach space of allfinite measures.

Proof. It is easy to see that u 8,C((0, c); C q wl’l)f3 cl((0, c); Coo L),
where the convolution is taken with respect to the x variable alone. Hence
(d/dt)f(u, 8,)=f(u, 8,)(ut, ). Now fix any 0<<< c. Since IlUx(t)ll is uni-
formly bounded on [, r/], we can choose a suitable constant C independent of e>0
such that

-d-f(u , 8,)(t) <-cllu(t)ll,llut(t)ll for all

-df( u i,)(tl)- --f( u 8,)(t2)

cllu( tl )II u, (tl) -u,( t= )11 + cllu( t, ) u(, )II u, (t=)11
for all 2

, /].
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By the generalized Ascoli theorem (see [6]), it follows that the closure of
((d/dt)f(u i))>o is compact in C([, /]" L), where is the vector space
equipped with the weak* topology. Since Co, the space of all continuous functions
vanishing at infinity, is separable, every weak* compact subset of L is metrizable.
Therefore, the closure of ((d/dt)f(u, )}>o is metrizable in the topology induced by
C([,/];%). Moreover, f(u,i)f(u) in the sense of distributions over R(0, ),
from which it follows that (d/dt)f(u)-lim_o(d/dt)f(u 8) C([,/]; ). From the
above inequality,

holds for all tl, t2[,il]. So we have shown (d/dt)f(u)C([,i];3TO). Since ,l are
arbitrary, (d/dt)f(u)C((O, oo); -). The remainder of the proof is simpler and will
thus be omitted.

Remark 1.6. In order to study -l[et)], we have used here the explicit expres-
sion for et). An alternative way would have been to analyze -[et()] indirectly
with the aid of asymptotic expansions and the Dunford integral, i.e., e t,)--

(1/2’n’i)fr,et[zI-ii()]-dz. This approach may be useful in other similar but more
complicated problems for which an explicit expression for et’) is not available.

2. Nonlinear problem. Equation (0.1) can be put in the form:

(2.1) u,-v, vt-O(O)u+v+[o(u)-O(O)u].
The basic properties of (0.4) established in will now be used to solve (2.1) by means
of the variation of constants formula. Without loss of generality, we normalize the
function o so that o(0)-0 and 6(0)- 1. Now we state the main result"

THEOREM 2.1. Suppose Uo(X ), Vo(X ) L N BV. Then there is a smallpositive number
such that u0 / Uox / Vo / V0x II-< implies the existence of a unique global

solution (u(t),v(t)) to (2.1), (0.2) in C([0,);L
C((0, ); W’l)]. Furthermore,

(i) Vx( X, t) Vox, as --, O, in the weak* topology of
(ii) vt, vxx C((O, ); ),
(iii) Ilu(t)ll<_K, IIv(t)ll<_K, IlUx(t)ll<_K(t/l)-/2, Ilvx(t)ll<_K(t/l)-/2,

Ilvt(t)ll<_It-/2 and Ilvxx(t)ll<_It-ll2 hold for all t>0, where K and I are
positive constants depending only 6’.n .

Proof. Let us define the function space X as follows:

(U(X,t),V(X,t))"
W’,’),

(2.2) X=
u(x,0)-uo, v(x,0)-vo, Ilull--<K, Ilvll-<K,

/2, [IVxll<_K(t+l) /2 for allt_>0,Ilull<K(t+l)

where K>0 is a constant which will be determined later and uo, v0 are given functions
in L A BV. X is a complete metric space equipped with the metric

d((Ul,(C)l), (u2, t)2)) de__f
sup

t[0,)

+ v/, + Ilu, -u:zll + (t+ IIv,x-,: ll).
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We shall consider the mapping T on X, where, for each (u,v)X, T(u, v) is the pair
( a, t) defined by

a-o, , uo+G , %+ f’o(t-) [o(u)-u]d,
"0

e=, Uo+, Vo+ fot(t-) [o()-]a.
(The convolution is with respect to the x variable only.) We want to show that T is a
contraction mapping on X into X.

By Lemmas 1.1 to 1.3, we deduce

(2.3) G,,, uoC([0,c);Z’t3 BV), IIa,,* uollXlluoll

where k is a positive constant,

e, voe c([o, ); w’,’),

--’X’x G2* vo -<,(t+ 1) l/=llvoll

IIa,= voll
for all t_>0,

for all t_>0,

(2.6) G==, Vo e c([o, ); Z’)c C((0, ); W’.’), II_ * Voll Xlloll,

xGz,Vol<_h(t+l)-l/([IVoll+[IVoll ) for all t_0.

It follows from Lemma 1.4 that, assuming K< 1,

(2.7) I1( u, ) o( u= ) ( u,- u= )ll c(ll u,xll + u=ll)IIu,- u=ll,

I1( u, )- o( u=)- ( u,- u= )11-< c( u,xll / u2ll) ul- u=xll,

where C is the upper bound of 10(. )l on [- 1, 1]. Hence it is obvious that

def fntGi2(t )*[O(U) u]xdrC([O,o) LNBV),(2.9) p= -r

M CK2
-.-----dz<_MK 2II p II t--,r+ +

<-M(t+ 1)- l/:ZK2

M CK2

v/t-r+ ,+--’----(d
for all t_>O, and
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def f0(2.10) q-- G22(t-’) * [e(u)-u]xd’ C([ O, 0); W’),

M CK2
Ilqll-<

/t’ dz<-MK2’

<-M(t+ 1)-1/2K 2 for all t_>0,

where, from now on, M will denote positive generic constants. By (2.3) to (2.10),
C([ 0, ); L f3 BV) and C([ 0, )’ L) f3 C((0, ); W’). Furthermore,

(2.11)

(2.12)

II, II ,3 gt(ll Uo II + Vo II +Kz),
II II, II x II-<KI( + 1)-/2(ll uo + Vo + II Uom + Vo +K2 )

hold for all t_>0, where K is a positive constant. So (a,)X if K<min(1/2K, 1),
0< <K/2K and Uo + Vo + Uom + II Vox -<. Next we shall show that T is a
contraction.

Let (a, tl)- T(u, v) and (a2, t2)- T(u2, v2). Then
M 2CK(2.13) IIt-211-< tL--i z+i"

d((Ul’Vl)’(u2’v2))d’r

u,, v,), (

(2.14) 11a,-a2ll<_d((u,v),(uz,v2))

min{ft M .2CKd
2 v/t- -+ ’+

+ fot/2M e-(’-’)+ "--+I" /t-1 z+
<_K2K(t+ 1)-’/2d((u,,vl), (u2,v2))

hold for all t_>0 by (2.7) and (2.8), where K2 is a positive constant. In the same way,

(2.15)

(2.16)

11-O211<-K2Kd((u,,v), (u2, v2)),

Ile--2llK2K(t+ 1)-/2d((u,v), (u2,v2))

hold for all t_>0. Hence d((l,tl),(t2,O2))<.4K2Kd((Ul,lgl),(u2,v2)), for which it
follows that if K<min(1/2K, 1, 1/4K2, U), O<6<K/2K and Iluoll + Ilvoll + Iluoxll
+ Vo <, then T is a contraction mapping of X into X. Here the condition K< U
guarantees that for each t>_O, u(x,t)> Uholds for almost all x.
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Thus T has a unique fixed point which is the solution to (2.1), (0.2). The local
solutions are unique in a larger space. Suppose (u 1, vl) and (u:, v2) are two solutions to
(2.1), (0.2) such that u l, u2C([O,T];L)fqL([O,T]R) and v, v:C([O,T];L).
Then

(2.17)

Thus,

u,-u=- , [o(u,)-u,-o(u=)+u=] e,.

(2.18) ][u,(t)-u2(t)[l<M’[[u,(z)-u2()lld and

(2.19) Ilv,(t)-v=(t)llM

hold for all t[0, T], from which it follows that Ul---u2 and 191 t)2. Finally, we shall
estimate vt and Gx II. It is obvious that

0--Gl:-- ---G22 and

Therefore,

(2.20)
3v (t)- -x x Gl2(t)ff- G22(t) * v+G223t X2

0 0x

/ Ga(t-,), [o(u)-u] (,)d for allt>0.
2

By Lemmas 1.2 to 1.5, we deduce that

(2.21)  Mt-’/=lluoll+M(t+
t/

0

+

M8t-l/2 for all t>0,

where M is a positive constant depending only on 8. From Vxx-Vt-O(U)x and the
above inequality, it follows that Vxxll NM9t-/ for all t>0 for some positive constant
M9 depending only on
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HOMOGENIZATION AND LINEAR THERMOELASTICITY*

GILLES A. FRANCFORT*

Abstract. We study homogenization of linear dynamic thermoelasticity with rapidly varying coefficients,
using a semigroup approach. The resulting homogenized problem exhibits an unusual change in initial
temperature.

A formal asymptotic analysis predicts fast time oscillations in the temperature field. These oscillations
explain the temperature shift, and show that, for our problem, weak convergence in time is the best
convergence that one can obtain.

Introduction. We discuss the problem of "homogenizing" the equations of linear
thermoelasticity when the mechanical and thermal properties are periodic and rapidly
varying. Following Bensoussan, Lions and Papanicolaou [1] and Sanchez-Palencia [7]
and using a semigroup approach, we show rigorously that, as the period of the coeffi-
cients goes to zero, the solution of these equations converges to the solution of a related
constant coefficient problem, the homogenized problem. Then using a formal multiple-
scales method, we give what we believe to be a satisfying interpretation of some
surprising features of the results.

Thermoelastic behavior is characterized by the coupling of hyperbolic equations of
motion and a parabolic heat equation. This leads to several interesting phenomena in
the homogenization process.

Fast time oscillations in the temperature field are observed; their phase is completely
determined. Thus the solutions can only converge in a weak sense in time to a slowly
varying homogenized solution.

Furthermore, the initial data for the homogenized problem are related to the initial
data of the inhomogeneous problem by a linear transformation which is not a projec-
tion. We know of no other examples of such a phenomenon.

In 1, we formulate and prove the existence of a homogenized thermoelastic
medium. Section 2 contains the more formal arguments and the fast oscillations results,
which are at the root of the observed change in initial data.

1. Homogenization of the thermoelastic problem. To reduce the overwhelmingly
cumbersome notations that characterize thermoelasticity, we will place ourselves in a
scalar setting, that is, one where the displacement field is taken to be scalar valued.
Duvaut and Lions [2] show, using Korn’s theorem, that this is no loss of generality.

We consider a domain 12 of R. The degree of smoothness of i will depend on
the type of boundary conditions adopted. We will always assume that if is smooth
enough for one to be in position to apply Rellich’s theorem on compact imbeddings of
Sobolev spaces (Folland [3, Chap. 6]).

We will refer to Y- lI’= l]0,y/0[ as the "reference cell"; YI is its volume.

*Received by the editors August 20, 1981 and in revised form March 11, 1982. This work was funded by
the Office of Naval Research under grant ONR N00014-76-C0054, through the Department of Mechanical
Engineering at Stanford University.

Division of Applied Mechanics, Department of Mechanical Engineering, Stanford University, Stanford,
California 94305.
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FIG 1.

If E is a smooth hypersurface dividing Y into Y and Y2 (see Fig. 1), we define
aij(Y), ’ij(Y), a(y), fl(y), p(y) to be real Y-periodic functions, smooth and bounded
on the closure of Y and Y2 but with Y. as potential surface of discontinuity.

Furthermore, a(y), ,(y) are assumed to be symmetric and strongly elliptic on
Y, that is, there exists a>0 such that for all ’s in g

ai(y) (resp.Xi(y)) ij>’a2 on Y,

/3(y) and p(y) are positive and bounded away from zero. We finally choose a such that
a- is a common upper bound of the Lo-norms of the coefficients. We extend all
coefficients to all of g by periodicity. Our equations are (Kupradze [5])

(1.2)

X )kiJ( X )aj( x 192U

In (1.2), u represents the displacement field and z the temperature increment
field. The first equation is the scalar version of the equations of motion and the second
is the heat conduction equation. The coupling between the equations results from
consideration of the interaction between deformation and temperature" a temperature
change induces strain and conversely. Finally, the rapid spatial oscillations in the
coefficients translate the periodic structure of the body which comes from the assem-
bling of e-scaled versions of the reference cell Y. This body has to be thought of as
made of a composite material where both constituents behave thermoelastically.

For the sake of simplicity we will only consider Dirichlet boundary conditions
throughout:

(1.3) u=0, z=0 ona.
And for initial conditions, we will have:

u"(1.4) u*(x,O)=f(x), ,r x ).

Our goal is to study the behavior of u and z as e, the period, goes to zero.
We define H to be"
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On H, we define the operator A:

(1.6)
0 0

with domain
(1.7) D(A)-{U=(u,ut,’r)H)()Lz(f)H)(f) such that

AU (taken in a distributional sense) belongs to H}.
Then the following proposition holds:

PROPOSITION 1.1. A generates in H a strongly continuous semigroup of operators
S( ) such that:

(1.8) I[s(t)[l- (vt>0).
Proof. We first consider for a fixed e the norm

(1.9) IU[2 Sa (x)u {)fi (x) (x) ]a j - 3N 3x---7 -+-0 u ft + fl 7 ’r+ dx

where denotes complex conjugation.
In view of the properties of the coefficients, I" I is a norm on H, equivalent to the

natural Sobolev norm on H, noted II-II, that is, if U is in H,

(1.10) ,lluIl_lul_,-llluII.
In the norm i" [, A generates a semigroup of contractions. Indeed, the domain

D(A) is dense, since, though (f) functions do not belong to it, (f) functions
whose conormal derivatives are 0 together with their third component on the only
possible surfaces of discontinuity for the coefficients (i.e., the e-scaled versions of E in
each of the cells making up f) do belong to the domain D(A). Checking that A is
closed, that the range of (1-A) is H itself and that A is dissipative offers no special
difficulties (see Francfort [4] for full details). Note that the measure of the dissipation,

(1.11) Re(AU, U ) Re X - -x -xi dX -<-11=)

(in view of the properties of the X ij’s), is precisely the physical dissipation due to the
heat fluxes through the domain.

The result then follows from the application of Lumer-Phillips’s theorem (Yosida
[8, Chap. 9]). Therefore,

(1.12) Is,(t)vl-<lvl for any Uin H,

and thus, using (1.10),

(1.13) IlmX t) vii_< ,-’ 11,
which completes the proof. []
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We now leave the time dependent formulation and examine the behavior of the
resolvent of A, Rx(A) as e goes to 0. At the end of this section we will reintroduce the
time dependence by using some basic properties of semigroups.

It is a direct consequence of (1.8) (Yosida [8, Chap. 9]) that the right half complex
plane belongs to the resolvent set of A, for every e. Let us consider F--(f, g, k) to be
an element of H. We take ) to be real strictly positive. The following string of
equivalences holds:

(1.14)
Rx(A)F=U (U (u,ut, ))

(1.15)
=f,= Xu u

h2p ( X)__ Ue --’X/ ( aij (x)(}ue_.xJ-Otj ( x ) ,re))_. --P (X)_. (hf+g),

.--x tij- +Xa aj- Ox

x x x Of=( )k+aij(- )tJ(- ) 3xi"
The last two equations (1.15) have a unique solution v=Xu, - in (H(a))2, since the
Dirichlet form d defined as

(1.16)

is strictly coercive on (H(f))2, in view of the properties of the coefficients.
If we manage to find a limit for u, r as e goes to zero, then going back up through

the string (1.14) will enable us to obtain the limit of Rx(A)F.
Performing the limiting process in (1.15) is the task of the homogenization method.

Rather than exposing all the details of the argument, we merely mention the different
steps that were performed, underlining only the ones that are not standard. For further
details the reader is to refer to Bensoussan, Lions and Papanicolaou [1, Chap. 1, esp.
3, 9 and 13], or, for our problem, to Francfort [4].

Firstly, one shows that u and z are bounded in (H(f))2, which immediately
implies the existence of a weakly convergent subsequence in (H(f))2 converging to
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(u, z). Since we ultimately show that any convergent subsequence converges to the same
limit, we do not distinguish between the sequence and subsequences of this sequence.

Then, defining

o_aj(x)(u (X))the stress,

-e- x the heat flux,

u-ai % x
it is easy to conclude that these quantities converge weakly in L() to o, xi, u, which
in turn satisfy"

(1.18) Xu--(Xf+g) BX-+av-fik+a% OX

where, from now on, will denote the Y-average frdy.
It remains to determine o, g, and v. TNs is the core of homogenization. To this

effect we define X(Y), O(Y), 9(Y) to be the unique periodic solutions, up to a
constant, in H(Y) of:

( OX}- Oai(y)

(1.19) ay XiJ(Y)
j Oy (y),

can be considered as nonstandard with respect to the "classical" case. The functions:

(120) w-x-ex e z-x-eO
satisfy:

(1.21)
aij )Xj aXi dX-O’

x Oz a for any o, in H(a).

Taking 0 and/ to be () functions and making use of (1.16), (1.21), we have:

(1.22)

d((Xu’r)’(ww’z))- ai2 7 ax ax i 7 ax dx

-p(- )(,f+g)(owdx+ fl( )k+aij( )aj(- ) -x zdx.

In (1.22), we have in essence subtracted from the variational formulation of (1.15)
appropriate expressions equal to 0 in order to eliminate products of weak convergences.
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It is then possible to go to the limit in (1.22) in a way identical to Bensoussan,
Lions and Papanicolaou [1, Chap. 1, 3]. Upon our performing this limiting process,
and x come out to be:

(1.23)

Determining v requires some additional effort and the use of q,. One defines g to
be:

(1.24)

then it satisfies, for any in H(f):

(l.25) faij(x) Oge 0o X X O’xjxidx--ffaij(--)tJ( e --ixi dx"

Repeating the procedure of (1.22) but with/ equal to 0 and w replaced by g, we
determine v to be:

(1.26) ( o ,)Ou (v-- aijaj-aij + akja ’r.

Defining aij A, B, kj, , o to be

OXi
aij- aij- akj Oyk

kiJ-- k iJ-- kkJ Oy----
(1.27) Ai- aia;- akaJ )Yk’ 7i-- aia--Ai,

O O
Bi- aa--aj ---,,, o-- akjOtj Oy.rj

it can be shown, using (1.19), that a and , are symmetric positive definite hence
invertible, that A and B are equal and that o is positive.

We set:

(1.28) ai= alAk--aBk
Recalling (1.18), (1.23), (1.26)-(1.28) yields"

(1.29)
2,r Ou Of+kaijtJ flk-i-aiJ(Y)aJ(y) Ox

and, in view of the properties of the ao.’s and ?’s, the Dirichlet form associated with
(1.29) is strictly coercive on (H(f))2, hence (1.29) admits a unique solution in (H(f))2.
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Then, using (1.14), we obtain the following proposition:
PROPOSITION 1.2. Rx(A)F converges weakly in (H())3 to the unique solution in

( H(f))3 of:

tl2 U f

(1.30)
)ut--

2.k( .3f_ O )g-- )kij OXiO
Ou Of-]- a j otj flk "- "Yi Ox

We then define A to be:

(1.31)

It is simply a matter of reproducing the proof of Proposition 1.1, but with constant
coefficients this time, to show that .4 generates a semigroup of operators S(t) such that

(1.32) IIs(t)ll’ for any t0.

Renaming a- the maximum of a’ and a-, we deduce from Proposition 1.2 and (1.32)
the following corollary:

COROLLARY 1.2. Rx(A)F converges weakly in (H(2))3 to Rx(A)F, where"

(1.33) ./7= f,g,

Now, (1.8) implies that, for any U, there is a bounded subsequence of S(t)U that
converges weak, in Loo(R+,H) to (t) an element of Loo(R+,H). This is a direct
consequence of the separability of LI( + ,H) and of Banach-Alaoglu’s theorem (Rudin
[8, Chap. 3]). Still identifying a sequence with its subsequences, we get that, for any V
in H,

(1.34) foe-Xt(S(t)U, V)udt e-Xt (t)’ V Hdl

where (.,.)n is the natural inner product on H. But the resolvent of the generator of a
semigroup applied on a vector U is equal to the Laplace transform of the semigroup
acting on U (Yosida [8, Chap. 9]), thus"

(1.35) foe-Xt(S(t)U, V)I_Idt-(Rx(A)U, V)I,
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which itself converges to

(Rx(A) .U V)tc=foe-Xt(S(t)U, V).dt.(1.36)

Since V is arbitrary, we finally obtain, using the uniqueness of Laplace transforms of
scalar functions:

(1.37) (t)-S(t)U. (t>--O).

We have proved in this section the following theorem"
THEOREM. The generalized solution of (1.2) with Dirichlet boundary conditions and

initial conditions (f,g,k) in H converges weak, in Lo(g + ,H) to the generalized solution

of:

(1.38)
O ’r ) 2’r(+O ) --- Xij OXiOXj

02U
aijot70tOx

with Dirichlet boundary conditions and initial conditions

(1.39)
flk+ "Yi -x

f’g’ +o
Before concluding this section, let us emphasize once more the rather unusual

change in initial temperature in (1.39).

2. Fast oscillations of the temperature field. Since, through a Lo weak, type of
convergence, a rapidly oscillating function (like eit goes to 0, it is fairly natural to
expect a t/e dependence of u and . This kind of problem is most easily addressed
using asymptotic expansion techniques. We have already mentioned the semiheuristic
character of this section, so that we will not dwell on the restrictions to the problem
that would make the argument totally rigorous.

Recalling (1.2) we now suppose that u and are functions of both t and - t/e; 0
becomes Ot + O/J" We then Laplace transform (1.2) with respect to both and i, the dual
variables being respectively ’ and/. From now on"

will denote the t-Laplace transform,
will denote the :Laplace transform,
will denote or ^.

In order to be able to perform these transformations, we need to impose initial
conditions on both and . We will set:

(2.1)

u(x;O,i)=f(x),
Ou
at

’(x;O,)-k(x),

u(x;t,O)=p(x,t),

Ou---(x’t O)-q(x t)

’(x;t,O)--O(x,t),
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where f, g, k are as before and p, q, O are unknown. We obtain:

(2.2)

-2 g)+2(/_/)+ }7

i)xi aij - --j--otj 7

7 --ff +

We seek an expansion of u and r in the form

x(2.3) u eiui(x,y,t,6), z gzi(x,y,t,6) wherey--.

The dependence of the ui’s and ri’s on y is taken to be Y-periodic. This is always what is
assumed when performing double scaling in space in problems related to homogeniza-
tion.

We also need to control the fast time behavior of u and i- Since we would like
them to be oscillating in 6, or, at least, to be such that

(2.4) lim - ,( x, t,y,6 ) d8 (respectively
7"---, /

exist and be finite, we are led through Wiener’s Tauberian theorem (Rudin [6, Chap. 9])
to suppose that

lim/; (respectively #+i) exists and is finite,
/+0

and we will furthermore assume that this limit is to be taken pointwise in x and weakly
in Hi(y) with regard to the y dependence.

With these considerations in mind we can proceed to replace O/Oxi by )/)xi
+ -} O/Oy and u and r by their expansions in (2.2).

We obtain two "series" in ascending powers of e starting at e-; we successively
identify the factors of each of these powers to 0. As factor of e- we get:

(2.6)

Since the Dirichlet form associated to the operator

(2.7) D- O(Y)/z2" y/ aij(Y)
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is strictly coercive on the subspace of HI(y) consisting of Y-periodic functions, the first
equation of (2.6) has a unique solution there; thus///+ //2 is the solution. Hence

(2.8) fi0-+ -0

But, in view of (2.5), (2.8) implies that 0 0, thus fi0 is equal to/// and does not depend
on y. Inverting (2.8) we obtain that uo does not depend on 6 either;

(2.9) Uo(X,t)=p(x,t ).
Then, from the second equation of (2.6),

(2.10) +o +0(x,/),
since the only periodic solution of that equation is a constant with respect to y.

As factor of e-t we get, using (2.8), (2.10):

(2.11)

Oaij Off0
Dill-- -yi (y)

xj Oyi (a,(Y)%(Y))+o,

fl(Y)(#’o--)) )’(Y) +’--y/( Y)-x--lag(Y)%(Y) Oy

Defining X and ’ to be the unique periodic solutions in Ht(Y) of

(2.12)
aki(y),
Yk
0 (akj(Y)aj(Y)),

we obtain from the first equation of (2.11):

(2.13) fi,- -X +

Then, integrating the second equation of (2.11) with respect to y and defining 3’ and o
to be the analogues of , and o for X and xI,’ as in (1.27),

(2.14) +o-
/) + Y/ OX-. (def.>

where denotes the Y-average fydy. We introduce A and H to be the unique
periodic solutions in Ht(Y), up to a constant, of:

(2.15)
OYi aiJ(Y)tJ(Y) )Yi

Xij(y )
OHm’

a,j()%(y) Oy

flCY)

The equations (2.15) are well posed since the Y-averages of the right-hand sides do
vanish by definition of 3’ and o".
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Recalling Oj(y), we obtain for ,:
10j( ) A +HO,+ an arbitrary function of x only.(2.16) ’ll- y /

Finally, as factor of e, we get:

f--g+ 2’/fi ) + Dfi 2

( /l ) 2/0,
Oy, aiJ(Y)-xj +aiJ(Y) )xi)xj

_aij( y)aj( y )
a(’o

+aiJ(Y) axay

Oy ( aiJ( Y)tJ ( y)I )’

a2l a2O
+Xij(Y) OOyj+Xij(Y) axiaxj

a( f)

We integrate both equations of (2.17) with respect to y; maNng use of all the previous
results of tNs section, we obtNn:

(2ff--f--g) + ix3Ofi2--aJ Oxiaxj

(2.18) OxOx

aijti "OX

-2ai(YlaJ(y) ai(y)%(y) Oy

where a,s, ct are to X and ,I,’ what as and % are to X and ,t, in (1.27).
We now consider the limit of (2.18) as # goes to 0. The following result holds:
PROPOSITION 2.1. X, ’, IXA], IXH’ go respectively to Xi, ,0 and 0 strongly in

H(Y)/R as Ix goes to O. Hence aij, ot, "yi, o go to aij Olj, "Yi, o.
The proof of this proposition, which involves some basic estimates in H(Y)/R,

will not be given here; refer to Francfort [4] for the details.
Proposition 2.1 together with (2.5) enables us to perform the limiting process.

Upon doing so, we come up with a set of two equations for/ and which, together
with the limit of (2.14), can be interpreted in the time dependent domain, p and O
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satisfy:

(2.19)

0p

02p_ 02p
P aij OxiOx3

(fi+) -07 x,; Ox

Opp(x,O)=f, -(x,O)-g, rt(x,O)-

where is the limit of ’ as t goes to 0.
It is clear that (x,t) can be identified with (x, t), the homogenized temperature

field, and p(x, t) with u(x, t), the homogenized displacement field. Replacing by its
value in (2.14) we also obtain an expression for the leading term of the asymptotic
expansion of , that is o; its &Laplace transform satisfies:

1( /+o (’-’/i) 0p(2.20) 40- fl+o...i+ fl+o" 0x

This expression is not explicitly invertible in general, in view of the complicated
dependence of , and o on/. It is, however, possible to show from (2.20) that 0 is the
solution of a Volterra integral equation of the second kind (see Francfort [4]). Such an
equation does not provide more information about % than (2.20) itself and it is
therefore of little value for our purpose. The following proposition holds:

PROPOSITION 2.2. o’ and] go to zero as I goes to /.
The proof of this last proposition uses the same estimates as the ones that establish

Proposition 2.1.
Propositions 2.1 and 2.2 enable us to conclude that, as goes to 0, P?0 goes to

whereas as p goes to +, t?0 goes to O. In a time dependent context, these facts
translate into statements on the behavior of 0 near infinity and near the origin,

(2.21)
fo ,)lim %(x ,3 d3’-(x t),

lim 8,-0+ - $(x’t’8’)dS’-O(x’t)’

provided these limits exist. The second equation of (2.21) is consistent with our self-im-
posed &initial conditions. The first equation shows that the fast oscillations of the
leading term r0 of the asymptotic expansion of r are centered about r(x,t), the
solution of the homogenized problem. The initial condition (x, 0) is the initial average
of the oscillating function r0. This average is generally different from the initial value of
r0 (or r). In other words, the shift in initial conditions is necessary if the initial
"phase" is not zero. This contrasts with the method of geometrical optics in which the
initial phase is arbitrary. It appears anyway that a geometrical optics type ansatz in
place of (2.1) will fail since, if the solutions of (2.12) are sums of terms of more than
one frequency in 8, the fast oscillations need not be periodic in 8.
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Note that the first equation of (2.21) is the only specific information that we
managed to obtain about the large time behavior of %. We do not know, in a general
case, for how long a time our expression of the fast oscillations remains valid.

Note also that fast oscillations do not appear in the leading term of the asymptotic
expansion of u, which could have been foreseen in view of the convergence obtained
for u and u in 1.

Conclusion. Numerical computations corroborate the results of 1 and 2 and
confirm that fast oscillations are indeed the phenomenon leading to this unusual
change in initial data [4]. It is the first time, to the author’s knowledge, that fast
oscillations in time are evidenced in a homogenization problem with time independent
coefficients.

If seeking a more physical explanation, one could examine the entropy associated
with the problem:

s--fl(x---e )’re+aij(xe )aj(x---e ) i"
It is fairly straightforward, using the results of 2 and some of the steps performed
there, to show that there is no fast dependence in time of the space average of the
leading term in the expansion of s. That the macroscopic entropy of this body is a
slowly varying quantity appears to be a sound idea and does fit our physical intuition. A
fast oscillation in the temperature field is the effect that balances the space oscillations
of the strains due to the inhomogeneities of the coefficients and allows the entropy to
evolve slowly at its own pace. In this respect the unusual initial change in temperature
is needed to insure that no fast change in entropy is taking place at time zero.

To conclude this study, let us point out that choosing the entropy as the natural
variable in place of the temperature introduces space derivatives of the third order and
thereby prohibits a rigorous analysis of the type performed in 1. A perturbation
analysis using double scaling is feasible but eventually leads to reintroducing the
temperature field as the proper variable.
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OSCILLATION PROPERTIES OF SOLUTIONS OF
SECOND ORDER ELLIPTIC EQUATIONS*

NORIO YOSHIDA

Abstract. Elliptic differential equations with variable coefficients are studied and sufficient conditions
are derived for all solutions to be oscillatory in exterior domains in Euclidean n-space. Both superlinear and
sublinear equations are considered.

1. Introduction. Oscillation theory for elliptic differential operators with variable
coefficients has been developed by several authors; see e.g. Allegretto [1], [2], Noussair
and Swanson [13], Swanson [18] and the references contained therein. We are con-
cerned with the oscillatory behavior of solutions of semilinear uniformly elliptic equa-
tions of the form

n

(*) Z[u] E Oi(aij(x)Dju)q-c(x,u)--f(x), X,
i,j=l

where f is an exterior domain in Rn, i.e., 2 contains the complement of some n-ball in
Rn. In [12, p. 79] Noussair and Swanson posed the problem of establishing superlinear
oscillation criteria for L in the case of variable coefficients aij(x ). An analogous open
question in the sublinear case is mentioned in the paper of Kitamura and Kusano [7, p.
174]. The purpose of this paper is to obtain sufficient conditions for every solution of
(,) to be oscillatory in f. Our method is an adaptation of that used in [9], [12] and the
key tool is similar to that used by Levine and Payne [10] and Suleimanov [17] in
studying the nonexistence of entire solutions of nonlinear elliptic equations.

The superlinear results in {}3 are obtained by using a fundamental lemma given in
{}2. In {}4 we consider sublinear equations in the case of variable coefficients aij(x).

Points in R will be denoted by x--(Xl,...,x,), and differentiation with respect to
x by Di, 1,. .,n. The notation Ix will be used for the Euclidean length of xR".
We assume that there exists a positive number a such that Rn(a)Cf, where Rn(a)
(x R: Ixl>a) (a>0). The domain (R)L(f) of L is defined to be the set of all real-val-
ued functions of class C2(fl). We assume that the following conditions hold throughout
this paper:

(A-I) c(x, ) is a real-valued continuous function in 2 X R1.
(A-II) f(x) is a real-valued continuous function in ft.
(A-Ill) DkDai(x) are locally uniformly H/bider-continuous in f (i,j,k,l=

1,...,n) and the matrixA(x)--(aiy(x))i,y= is symmetric in .
(A-IV) L is uniformly elliptic, i.e., for some positive constant/, (< 1), the inequal-

ity

<_rA(x)<_t ’ll
2

holds for all R and every point x f, where the superscript T denotes
the transpose.

DEFINITION. A function u @L(fa) is said to be oscillatory in if it has arbitrarily
large zeros, i.e., the set {x f: u(x) 0 } is unbounded.
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2. Two lemmas. Let x0 be a fixed point in R"(a). From (A-III) and (A-IV) we
conclude that there exists a fundamental solution E(x) C2(Rn(a)\(Xo}) of the opera-
tor P= E"i,j= Da(x)D with a singularity at the point x0, i.e.,

PIE(x)]-- -3(X-Xo) (: Dirac function)

(see [4, p. 84]). In agreement with what obtains for the Laplace operator A, we assume
that

(1) aij(x)(DE(x))(DiE(x))<_(E(x))
i,j--I

where, for some positive constant k k(n),

d/(t)_(k2exp(4rt), n-2, -<t<,

k2t2(-)/(-2), n>2, O<t<

and that (xR2(a):E(x)=-l/e) and (xeR"(a):E(x)--e) (n>2)are compact for
each small e>0 (cf. Levine and Payne [10]). We note that if n> 2, f=B(xo, 1) (the unit
ball) and E(x) is the Green function associated with P in B(xo, 1), then inequality (1)
holds for [X-Xol<_r< (see Aviles [3, Lemma 2.2]). We introduce the smooth function
p(x) (x Rn(a)) defined by

exp(- 2rrE(x)), n-Z,
p(x)- (On(n__Z)E(x)),/(2_n) n>2

and define a "P-sphere" as a set Sr (X Rn(a): p(x)--r). We note that S is compact
for large r. Since ORn(a+el) (el>0) is compact, E(x) is bounded on OR2(a+e) for
n 2 and there exists a number E2 > 0 such that E(x)>e on )Rn(a + e) for n > 2.
Hence, there exists a number r0>0 such that OR"(a+e)c (xRn(a):p(x)<ro}, and
consequently we have (x Rn(a): p(x)> r0} C Rn(a).

Let G(t) be a real-valued function of class C(R). For each function U@L(f) we
define the function M[u](r) by

M[u](r)=-- G(u) do,
o.r n-’ JSr IVO(x)I

r> ro,

where Vp(x) denotes the gradient of p(x), o denotes the measure on Sr and o, denotes
the surface area of the unit sphere in R, i.e. o 2rr’/z/F(n/2).

The following fundamental lemma is due to Suleimanov [17]. Since the proof is
omitted in [17], we give it here.

LEMMA 2.1 (Suleimanov 17]). If u (R)L(f), then we obtain

(2) n -r r -r (M u r ))

(3)

-1
do, r> ro.

Proof. Since Vp on p"- VE, we have

M[u](r)-- f G(u) (VE)rA(x)(VP)
do
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From Green’s theorem it follows that

(4)

M[ul(r)--- fro a’(u)(vu)  (x)(ve)dx-fs a(u) doo
<O(x)<r

---d{fx)=nG’(u)(Vu)A(x)(VE)lVOl-’do

Differentiating (4), we obtain

(5) -rM[u](r)

--(Onrn-1)-l fsrG’(u)(vu)TA(X)(-Onpn-lvE)IvI-’dO
fs Vp

do.__(Onrn_,) G,(u)(vu)TA(x)
IvPl

A simple computation yields

fro div(G’(u)(Vu)rA(x))dx(6)
<O(x)<r

=fro<p(x)<r[Gtt(u)(vu)TA(X)(vu)-[-’G’(u)P[u]] dX.

On the other hand, by the divergence theorem and (5), we get

(7) fr <p(x)<rdiV( G’( u )(Vu )A(x )) dx

Vp fs Vp
d%f G’(u)(Vu)rA(x) do- G’(u)(Vu)rA(x)

IVPl

=%r-
d
(M[u](r))-or

d
(M[u](r))

FO

Combining (6) with (7) yields

(8) Onyn_
d

(M[u](r))
0

--ro<p(x)<r[G’(u)(vu)TA(X)(vu)-[-Gt(u)P[u]] dx.

Differentiating both sides of (8), we obtain the desired identity (2).
Remark 1. In the case where P A, we choose

(2re)- log(lxl- ), n-2,
E(x)-

(%(n_2))_llxlZ_n n>2.
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In this case we have O(x)=lx and IXTOl 1. Hence, M[ul(r) reduces to the spherical
mean of G(u) over {xRn: Ixl-r). We note that Lemma 2.1 with p=A and G(t)=t
was established by Noussair and Swanson [12].

LEMMA 2.2. Defining

K( r =fXr( VP ) rA(x )( Vp )( onrn- ll vpl)- ldo,

we conclude that K(r) is a positive constant independent of r. Furthermore, if P= A or
f R", then we get K(r)= 1.

Proof. Since XTO0, we find that K(r)>0. Hence, it is sufficient to prove that
K(r) is a constant independent of r: An easy computation shows that

(9) K(r)=fsr(-onon-lvE)rA(x)(VO)(%r 11 7pl)--do

(vE)rA(x) IVP[
Using Green’s theorem, we obtain

fsr Vp(10) VE )rA ( x ) v)I do=
n(a)C3{p(x)<r} Rn(a) -R"(a) a

Combining (9) with (10) gives

Rn(a) a

where the right-hand side is a constant independent of r. If a R", it is easy to see that

(ve) A(x) ivOi do=  [e]dx- -1.
(x)<r

Hence, in view of (9), we get K(r)= 1. If P= A, we have 0(x)= Ixl and IVO[ as was
stated in Remark 1. A direct calculation shows that

K(r)=fx[=r(Vp)r(Vp)(onrn-’]Vpl) -1
do

--(nrn-’)-’ flx[=rd-1.
Remark 2. If P A, then (1) holds with equality for

(2r)- n--Z,
k-k(n)-

o-l(On( n 2))(n_l)/(n_2) n>2.

3. Superlinear equations. Lemma 2.1 in 2 will be used to derive sufficient condi-
tions for every solution of the superlinear equation (.) to be oscillatory in f. By the
same arguments as were used by Noussair and Swanson [12], we get the following main
theorem:

THEOREM 3.1. Assume that the following conditions are satisfied:
(i) c(x, -j)= -c(x,) for all (x,)a(O,
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(ii) c(x, ) --> q(p(x))() for all (x, ) f (0, o), where q is continuous and posi-
tive in [r0, ) and k is continuous, positive and convex in (0, ).

Then every solution u of (,) is oscillatory in if the ordinary differential inequalities

d(rn_ldZ rn(11) -r r + fl(n) -lq(r)ck(z)<-rn-’r(r)’

d ,-i dz ) n_lq(r)ck(z) < rn_lr(r )(12) r r -r +
fl ( n )

r

are oscillatory at r= o in the sense that neither (11) nor (12) has a solution which is

positive on r, )for any r> ro, where

fl(n)-
kZ(2r
k2%2(On(n- 2))2(n- 1)/(2- n)

n--2,

n>2

and

F( r ) ( Konrn-’)-’ fsf(X )[ Vp]- ’do,

where K is the positive constant defined in Lemma 2.2.
Proof. Suppose to the contrary that there exists a solution u which has no zero in

Rn(r,) for some r >0. First we assume u>0 in Rn(r1). For the number r there exists a
number r2>0 such that (xRn:p(x)>r2)CRn(rl). Lemma 2.1 with G(t)=--t implies
that

(13) rr r rr --(K%) [u
s

where

(Ka )--’fSr(--C(X, U) +f(x)) vPl- ’do,

f u
(vp)TA(x)(VP)

do.
Knrn- Sr v ,l

r>r2,

By hypothesis (ii) of Theorem 3.1 we get

(14) (Kon)-lf c(x,u)do->(K%)-’ q(r)
s

=rn-’q(r)

Using inequality (1), we easily obtain

Hence, it is true that

(15)

fsc( u) ( Konrn- 1[ VPl)-’do--> (n) (u)(vp)TA(x)(Vp)(K%rn-’IVpl) ’do.
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Application of Jensen’s inequality 14, p. 160] gives

(16)

Combining (14)-(16), we have

(17) (Ko) c(x,u)do2r’-q(r) (n) *([u](r))"

From (13) and (17) it follows that

d ( r dv ) fl (
r q( r ) ( v ) + r F( r )

which is equivalent to (11). Hence, v[u](r) is a positive solution of (1 l) in (r:, ). If
u<0 in R’(r), U-u is a positive solution of the equation L[U]=-f(x). Hence,
v[U](r) is a positive solution of (12) in (r:, ). Ts contradicts the hypothesis and
completes the proof.

Using a result of Kusano and Naito [9, Thms. 2 and 3], we obtain the following
results.

THEOREM 3.2. Assume that c(x, ) satisfies hypotheses (i) and (ii) of Theorem 3.1.
Moreover, assume that if n

liminf sF(s
r logr

log S ) sF( s ) ds-lim sup 1-1-
and if n > 2, then for all large

lim inf sF(s ) ds

lim sup sF(s ) ds

Then every solution u of (,) is oscillatory in
ToN 3.3. Assume that c(x, ) satisfies hypotheses (i) and (ii) of Theorem 3.1.

Moreover, assume that the ordinary differential inequality

d(r_d )(18)

has no eventually positive solution, and that there exists a C-function 0:[r0,)R with
the following properties:

(i) O(r) takes both positive and negatiee values for arbitrarily large r.
(ii) (r- (r-O(r)))-rF(r), rro.
(iii) lim r-O(r)=O.

Then every solution u of (,) is oscillatory in
Example 1. We consider the uniformly elliptic equation

(19)
i,j=l
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Here n 3 and q(o(x)) =-- 1. It is easily seen from Lemma 2.2 that F(r) (log r)sin r.
Since

s(logs)sinsds--(logr)sinr+B(r

where B(r, f) is bounded as r- m, we have

liminf s(logs) sins ds-

limsup 1-- s(logs)sinsds-

Hence, it follows from Theorem 3.2 that every solution u of (19) is oscillatory in
Example 2. We consider the uniformly elliptic equation

3

(20)
i,j=l

Here n= 3 and q(r)=r. Since

1-- s(2e-sins)ds<m (rm)

Theorem 3.2 does not apply to (20), but Theorem 3.3 does. In this case the ordinary
differential inequality (18) becomes

d(1 e (r+(
The above inequality may be reduced by the substitution w r to

(22) d2w-- r-Zw70
dr2 fl(3)

Since

r fl(3)r
the ordinary differential equation

d2w
dr 2

has no eventually positive solution (see [6], [11]). Using results of [5], [15], we find that
inequality (22) has no eventually positive solution, and therefore inequality (21) has no
eventually positive solution. It is easy to see that O(r)=--r-le-r(-sinr+cosr+rcosr)
satisfies hypotheses (i)-(iii) of Theorem 3.3. Hence, every solution u of (20) is oscilla-
tory in f.

Remark 3. In the case where P--A, it is easily seen from Remarks and 2 in {}2
that fl(n)= and (Vp)rA(x)(VO) 1.

4. Sublinear equations. The sublinear case was first discussed by Kitamura and
Kusano [7], and recently by Kura [8], Noussair and Swanson [13] and Onose [16]. We
consider the case where c( x, u) c(x)(u) and f(x ) 0, i.e.,

(**) L[u]-- Di(aij(x)Dyu)+c(x)(u)-O xa.
i,j=l

-- fl(3)
r-2wT--0
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We assume that the following conditions are satisfied in this section:
(B-I) @() is a real-valued function of class C(Rl)N CI(RI\(0));
(B-II) ()>0 and ’()>_0 for #0;
(B-III) fo+/- d/( ) < o for some

The n-dimensional sublinear Emden-Fowler equation

Di(aij(x)Dju)+c(x)lulVsgnu--O, 0<y<l,
i,j=l

is an important special case of (**) which satisfies (B-I)-(B-III).
THEOREM 4.1. Under assumptions (B-I)-(B-III), every solution u of (**) is oscillatory

in,if

for some ?> r0, where

lim sup IOn(r) !

logr, n- 2,
O,(r)--

rn-2, n>2,

and

g(r) (Konrn-l)-l fsrC(x)l Vtl- ldO-

Proof. Suppose to the contrary that there exists a solution u of (**) which is either
positive or negative in {x Rn: p(x)>_r2) for some r2>0. Defining

u d

we see that G(u)>0, G’(u)=dP(u)-1 and G"(u)=-dP’(u)/CP(u)2>-O. Hence, Lemma
2.1 in 2 implies that

(M[ul(r)) <-- (u) P[ulJvol
--1
do

or equivalently

-----0 fsf(X)lVp[-ldo----Krn-’g(r),

d( 3_n d n_2M ) Kr(r)r r r(r [u](r)) _<--

Using the same arguments as in [8, Thm. ], we conclude that

0_< liminf
rn-M[u](r)

<dn-- limsup 1--
r On(r ) r--, r2

r>r2,

sg(s ) ds for some ?> ro

where cn-1 (n-2), cn-(n-2)-l(n>2) and dn-cnr3-n-3-;d(rn-2M[u](r))lr=r2 This
contradiction establishes the theorem.

COROLLARY. Under assumptions (B-I)-(B-III), every solution u of (**) is oscillatory
in f if

8.(s) )Ks?(s)ds--On(r )
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Proof. Since

O.(r)

 (t)dt ts (s)ds 

where ’(t) t- (n 2) and ’(t) (n 2)t"- (n > 2), the conclusion follows from Theo-
rem 4.1.

Example 3. We consider the sublinear equation

(23) Z Di(aij(x)Dju)+(VP)rA(x)(VP)p(sinto)lulVsgnu-O, 0<2,< 1.
i,j--1

In this case we get ?(r) r sin r. Since

s
s(ssins)ds--rsinr+B(r,)

where B(r, ?) is bounded as r oo, it follows that

lim sup
s

s(s sin s ) ds o0
roo r

Hence, Theorem 4.1 implies that every solution u of (23) is oscillatory in 2.

Acknowledgment. The author is grateful to the referee who has kindly let him
know about the work of Aviles [3].
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ASYMPTOTIC SOLUTIONS FOR A DIRICHLET PROBLEM
WITH AN EXPONENTIAL NONLINEARITY*
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Abstract. We consider the two-dimensional nonlinear Dirichlet problem

-Au=Xe’, y2,
u= yO2,

where y--(y,y_), A is the Laplacian operator, 2 is a simply connected region bounded by a smooth closed
Jordan curve, the boundary data q, is continuous and X is positive. Our primary concern is with obtaining the
large norm (second) solution for X tending to 0+. This is accomplished by obtaining an asymptotic solution
which is used as a first approximation for a modified Newton’s method. In this paper we examine the implicit
constraints previously required for q--=0 and extend the results to the case of nonzero boundary data.
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(P)
Introduction. We consider the two-dimensional nonlinear Dirichlet problem

Au(y) ke u(y), y ,
u(y)--q(y), yf,

where y (Y,Y2), A is the Laplacian operator, 2 is a simply connected region bounded
by a smooth closed Jordan curve, the boundary data q,(y) is continuous and X is
positive. Our concern is with obtaining classical solutions (uC2(f)fqC(O)) for X
tending to C+, particularly the large norm (second) solution [17]. As in [17], this is
accomplished by obtaining an asymptotic solution which is used as a first approxima-
tion for a modified Newton’s method. The purpose of this paper is to examine closely
the implicit constraints required in [17] for the case q, =0 and to extend the results to
the case of nonzero boundary data.

Problems of type (P) have application in a wide variety of areas including the
theory of thermal ignition of a chemically active mixture of gases [6], the theory of
nonlinear diffusion by nonlinear sources [10] and the study of Riemann surfaces with
bounded Gaussian curvature [9].

Section summarizes the results of this paper as well as applicable results from the
literature. Sections 2 through 9 give the requisite development for the proof of Theorem
ofl.

1. Summary of results. The outstanding feature of (P) is that -Au--ke is ana-
lytic so that all solutions are analytic in [13]. If, in addition, the boundary and the
boundary data are analytic, all solutions to the boundary value problem are analytic
in 2 [13]; however, this is too restrictive for our purposes.

To obtain an equivalent problem with zero boundary data, we let u :u-uo,
where u0 is the solution of the associated harmonic problem (k--0):
(P’) --Au--XeUo+u,, yea,

Ul 0 yO,
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with )>0. The existence of a solution of (P’) for X sufficiently small is well known
([4, p. 373]). All solutions of (P’) are superharmonic and hence positive.

The technique of Keller and Cohen [10] can be applied to (P’) for any X in the
"spectrum" (the set of all X>0 such that (P’) has a solution) to obtain the minimal
solution. Keller and Cohen’s results also show that the spectrum is a finite interval with
least upper bound )* satisfying X*</z, where/z is the least eigenvalue of the linear
problem

--Av=laeUov, yf,
v=0, y.

Bandle’s results [2] show that for some e >0

X,>4 -ao_e-
where o maxea(Uo(y)) and A is the area of . For0 she has also shown that [3]

2 2
<*,

where Ro is the maximal conformal radius of . For ts case she gives the estimates

X 2<2e-,()/a<l+ R,
where R is the conformal radius of y with respect to a.

Crandall and Rabinowitz’s results [5] show that X* is in the spectrum and that
there are two solutions for every X (0,X*). This second .result is obtained by applying
a nonconstructive topological technique having its origin in the Ljusternik-Schnirel-
man theory of critical points.

For the case 0 and a circle, we have that the symmetric solutions of (P’) are
given by

eu-
+bor2/8)2

withb0 ..X;324. XR
4

1-
2

e’- withb -Xa34 XR2 XR2
l-

where R is the radius of the circle and r is the radial variable [2]. In this case X* 2/R
and it is easy to see that u0 is the nimal solution, u increases without bound at the
origin as X0 and the two solutions coincide at X*. By a technique described in [7] it
can be shown that these are the only solutions.

The general integral of -Au=Xe" may be wtten as

Xe._ gle’(w)l
(l+]f(w)]2)2’

where F is a meromorphic function of w=y +iy2 whose Schwarzian derivative is
holomorphic (see [11] and [14, Appendix A]). Weston 17] used ts to develop an
asymptotic approximation of the "large norm" solution when is an arbitrary simply
connected bounded domain with smooth boundary (continuously turning tangent) and
0. However, three additional implicit constraints on the domain (in terms of the
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conformal map of the unit disc U onto ) are required. As with U given above, the
distinctive feature of the asymptotic solution is the existence of a single maximum at
which the solution increases without bound as 20. For 2, sufficiently small, Weston
also showed that if the asymptotic solution is used as a first approximation in an
appropriate modified Newton’s iteration scheme, then an exact large norm solution is
generated provided that the asymptotic solution is taken to order greater than or equal
to three.

In this paper we examine more closely the three implicit constraints given in [17]
and extend the results to the case of nonzero b. Specifically, we remove one of the
constraints by using a different form of the general integral. The two remaining
constraints are associated with the order of the asymptotic solution.

As given by Weston, the first order constraint requires the existence of a complex
number in the unit disc U= (z C: Izl < } such that

(1.1) (I --I{l2 )f"( )-- 2-f’()--0,
where f is a conformal map of U onto g with f the homeomorphic image of U (i.e., f
characterizes ).

As no difficulty will arise, we will consider a region c_ R 2 to also be a subset of 12
throughout this paper, using y--(yl,Y2)CR 2 and w=Yl+iY2_C. When the
region is the unit disc U, we will use x-(xl,x2) UC_R 2 and z-x +ix2C. For any
region C_ t2 with smooth boundary, we let H() be the holomorphic functions on f,
A() be the functions in H() which are continuous on , A() be the functions in
A(f) that satisfy a Lipschitz condition (as a function of arclength) of order a on ,
0< a_< 1, and AN() be the functions in A(f) which are nonzero in ft. Additionally,
Hp, 0 <p <-oe, are the usual Hardy spaces on U and we let HN be the functions in H
which are nonzero in U. If the region is not specified, it is assumed to be U.

If f is the conformal map of U onto fl, then f’ Hp for 0<p< oe [8, p. 425].
LEMMA. Iff’ HN, then 80 U is a solution of (1.1) if and only if

R()-If’( )1( -I[2 )
has a relative extremum at io.

If f is the conformal map of U onto fa, then R(8) is the conformal radius of fa at
f(6). Thus, 80 =f-l(w0) satisfies (1.1), where w0 is a point of maximal conformal radius
for fa. If 0 is any solution of (1.1), then the use of a normalized conformal map fN such
that fN(O) =f(80 ) converts (1.1) to

(1.2) f’(O) O.

This simplifies the computation of the asymptotic solution as well as the modified
Newton’s method. Some examples where (1.1) can be solved explicitly are given in {}7.

Using fN, the second order constraint in [17] simplifies to

(1.3) I:’",N (0)1 =/= 21fN(0)l"
If f is convex, then an application of the area theorem [15] yields

,N (0)1--<2 1--y
if M=sup .l f;v( z )/ffv(O)l < .

To handle the case of arbitrary (continuous) boundary data, we let h(w)= uo(y) +
ivo(y ), where u0 is the solution of the associated harmonic problem (X O) and v0 is its
conjugate harmonic function. Next we let f be the conformal map of U onto and
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f(z)-exp((1/2)h(f(z))}. The function f characterizes the boundary data and we
will show that by letting f satisfy f’=ff,, we can reduce (P) to the (conformal
transplantation of the) zero boundary data case. Again, the first order constraint is the
existence of a satisfying (1.1).

We refer to f, where f’ =ffq, as an associated map for (P). Since f’ /-/N implies
that (1.1) has a solution (0 andf Hu (the real part of H is continuous on U) we have

fHu as a sufficient condition to satisfy the first order constraint for arbitrary
boundary data. As before, if 80 is any solution of (1.1) for a given associated map a
normalized associated map can be obtained such that fu(O)=f(iO) with (1.2) being
satisfied. The second order constraint again becomes (1.3). Sufficient conditions for
(1.3) will be given later.

The above can be used to obtain a somewhat simplified asymptotic solution
together with an associated modified Newton’s method which converges to an exact
large norm solution for , sufficiently small. In order to maintain uniform control over
the boundary behavior of our asymptotic solutions (repeated use of Schwarz’s formula
[1, p. 167] is required) and hence the kernels for the operators used in the modified
Newton’s method, it is convenient (if not essential) to assume stronger smoothness
conditions on q) and 8f. As indicated below, we require f’ Au-

THEOREM 1. Let the associated map f for (P) satisfy f’AN and the normalized
associated map fu satisfy (1.3). If gu is the inverse offu, where fv--ff, then an nth order
large norm asymptotic solution can be obtained in the form"

(1.5) e-u(w’x)/2--
Ia(g.(w);X)l2

where

G(z;,)= l+G,(z)+... +n-’Gn_(z ),
the functions G being given in 8. Furthermore, an exact solution of (P) can be generated
via a modified Newton’s method for a conformal transplantation of (P) provided is

sufficiently small and the asymptotic solution is taken to at least order 3.
We call Of] Dini-smooth if in addition to being smooth, the tangent angle/3(s) as a

function of arclength s satisfies [($2)--(S1)1<09($2--S1) for s <$2, where o(x) is an
increasing function for which fdo(x)/xdx<o. If is Dini-smooth, then f(z)AN
(and g(w)AN()) [16,p. 298]. Note that if fl(s) satisfies a Lipschitz condition of
order a, 0<a_<l, then Of is Dini-smooth and, in fact, fuA. If, in addition, q)
satisfies a Lipschitz condition of order a as a function of arclength, then foA. If 2
is Dini-smooth and h uo + ivo is in A(f), we say that (P) is conformally smooth. Thus,
(P) conformally smooth implies f(, foAN.

COgOLLAR 1. If =--0, f is convex and is Dini-smooth, then the conclusion of
Theorem is valid.

COROLLARY 2. Assume (P) is conformally smooth, 2 is convex and f and f, have
been normalized separately (thus f’(0)=f(0)-0). If [f(O)/fo(O)l<Z/M2, where M=
maxlf(z)/f(O)], then the conclusion of Theorem is valid.

COROLLARY 3. Assume (P) is conformally smooth, f] is convex, Df is symmetric with
respect to two perpendicular axes and f is the odd conformal map of U onto f with

fu(O) O, f(O)> O. Ifq is symmetric with respect to both axes and

4
(1.6) Ih" (O)l <M---5
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where M=max[f(z)l, then the conclusion of Theorem is valid.
COROLLARY 4. The requirement (1.6) in Corollary 3 may be replaced by MoM2<

4 [f’(0)[, when Mo=maXw[h’(w)l<.
The proofs of the corollaries are straightforward and contained in [14].

2. Solution to the Dirichlet problem via the general integral. The general integral
for Au-- ke with >0 is given by

(2.1) eu=
I/v=(w)l IF’(w)l

(1 +(X/8)lfWd/v2()l=)=
or

(1-+- (X/8)lF(w)l=)=

2

(2.2) e u/=-lv(w)l=+- v(w)
vZ(w)

where, as a function of w-y "-b iY2, 19 is holomorphic, F is meromorphic and F’(w)-
1/v2(w)@O (see [11] and [14,Appendix A]).

This representation holds globally in a simply connected region f provided the
equivalent conditions"

(F"(w) ) 2_ 2v"(w)-- r(wt v(w)
is holomorphic in f, where S(w)-(F(w); w) is the Schwarzian derivative of
F;

ii) v(w) has at most simple zeros in f and if V(Wo)-O, then v"(w0)- 0;
iii) F(w) is holomorphic in f except for simple poles

are satisfied. Note that u has removable singularities at the zeros of v (poles of F).
The use of (2.1) or (2.2) rather than the general integral given in removes one of

the constraints in [17]. Also, the computations required to obtain u asymptotically make
(2.2) more desirable than (2.1). We, therefore, formulate our results in terms of v using
(2.2) and require ii).

For ?>0 let Bx(f) be the set of all v(w)-v(w;X) in H(fl) such that u(w)-u(w;X)
as defined by (2.2) is continuous in fl; thus v Bx() implies ii). Note that A(fl)Bx()
provided ii) is also satisfied.

A classical solution of (P) is obtained provided v(w)Bx(w) can be found to
satisfy the boundary condition"

(C1) e-*(w)/-lv(w)lZ+g v(w) waa.

When (P) is solvable, the existence of some v is assured, but in general, v will not be
unique (for example, see [14,Appendix B]). This will not be a problem (but rather a
blessing) as our concern is with finding v’s which yield solutions of (P), in particular,
the large norm solution for X--, 0+.

To illustrate this approach we first consider the harmonic case (;k --0):

(L1) Au-O, w2, u-, w32.

To solve (L 1) we seek v B0(f) {v H(f)" lnlv[ is continuous in f} satisfying the
boundary condition (w) 2 lnlv(w)l- for w
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For the case where is the unit disk U= {zcC’[zl< 1} (q continuous), the
solution of (L1) is given by u(z) Re(h(z)), where

f’__ (ei-k-z) (eiO)dO+ic
,rt u -z 2. dd()d.+ic

and the imaginary part of the integral is interpreted in the Cauchy principal-value sense
if necessary. Defining fq,-el/z)h) we obtain q(z)- Reh(z)-ln If(z)]2 for z
Hence, we may take v(z)-(f,(z))-2-e-h), zC U. Note that the continuity of q, will
not assure that vCAu (e.g., the imaginary part of h may diverge to + [18,p. 253]).
However, h CA implies v CAv.

For arbitrary f we consider a conformal transplantation to the unit disc. As
before, let fe CA map U onto f and geCA(f) be its inverse. Then, if Ul(Z)-u(fu(z)),
u(w)- u(gu(w)), then (L1) is equivalent to

(L2) Au--0, zCU,

where ff0(z) q(fu(z)). By equivalent we mean that we may solve (L1) by solving (L2),
although q0 is not unique since it depends on the choice of fu. Now u(z)-lnlL(z)l
solves (L2), where f is as above except that , is replaced by q0 in the formula for h.
Thus, the solution of (L1) is given by u(w)-lnlf,(gu(w))l-Reh(gu(w)), and we may
take v(w)-(f,(gu(w)))-2, wCf. As before, it is not the case that VCAN(f) for
continuous q, and smooth 2. However, (L1) conformally smooth implies V CAN().

For (P) we only consider v satisfying:

(C2) v(w)CA(f) has at most simple zeros in f and if for w0C v(w0)-0, then
v"(Wo)-O.

If there exists v satisfying (C1) and (C2), then we say that (P) is solvable via the general
integral.

Clearly it is the allowance of simple zeros of v in f that leads to the possibility of
large norm solutions. If for a given q, and fl we assume that v depends continuously on
;k in a neighborhood of ,=0 and that the zeros of v are independent of X, then u
increases without bound exactly at the zeros of v as ,--, 0+.

In order to develop asymptotic solutions of (P) it will be convenient to require, in
addition to (C1) and (C2), that v satisfy:

(C3) v(w;,)4:0 for wC0f, where ,c[0,A*], *>0; v(w;,) is continuous on
[0,,*]; the zeros of v(w;,) in fl are independent of ,; and v(w;,) can be
expanded in a power series about ,-0 that is, v(w; ’)-Yi% ;vi(w).

We say that (P) is power series solvable via the general integral if there exists v
satisfying (C1), (C2) and (C3).

3. Equivalent formulations of (P). In this section we discuss equivalent formula-
tions of (P) (in the sense described in the p_reviou_s section) via conformal transplanta-
tion. If fe cH(U) is a homeomorphism of U onto f, then (P) is equivalent to

(P0) mu k If12e ul Iz[ < 1,

u- q0, Izl- 1,
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with general integral

where

u)-u(/,,)), 0)-(/.()), v,)-v(f.)).
We note that solutions of (P0) are essentially independent of fs(0) and the argument of
f(0) (i.e., rotations and translations of f).

Letting f,;,-e1/2)h), where h(z) is given by (2.3) with q, replaced by qo we rewrite
(P0) along with two additional formulations:

where

u2 u -In ILl=, u- u, + in Ifl=, u- u. + In ILfI.
with corresponding general integrals

x fdze u,/2_lv +--ff[vf v

where

e-U/2 lv212 +-ff

e-U/2-1v3[+-ff

vff6f*d,,v

vz ) ( y.z )),

vz)-v( y.z))(z))
v)-v(/.(z))( 6(z))

Since q continuous and )f smooth implies lnL(l is continuous on u, we have the
equivalence of (P1) and (P2) under this mild hypothesis; although it is not true that
v2 CA(U) exactly when v is. However, asym_ptotic solutions of (P2) which are in C(U)
will yield asymptotic solutions of (P) in C(f). Hence we proceed only with (P2) and
modify (C1), (C2), (C3) and the definition of power series solvable to apply to v2 rather
than v. Note that if f, fe,, CAN (e.g., if (P) is conformally smooth), then all equivalence
difficulties are obviated.
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4. Nonuniqueness of the associated map. In this section we consider the non-
uniqueness of f’ :ff,. For [r[ < the functions

z--r z+r’;(z)- -{z -’()- +z
are inverse conformal maps of U onto U. Iff,o :fu A(U) is a given conformal map of
U onto f, then we define a family of such conformal maps by

fu,,=fu,o _.
Furthermore if we define zo z and z=k(Zo), then

f,.,( z, ) f,.o( -,(z, )) f,.o( Zo ).

Following this notation we define

(z,)-(f,,(z,))-(f,,o(.Zo))-o(Zo)
and

frr eit,-I--zr
,r(eit’)dtr+icr

It can be-shown that h(z) ho(Zo) exactly when we take

f= 2 Im(reit) o(eit) dto,G- Co+- - (1 + Irl2- 2 Re(re-ito))

and we always choose c in this manner. Hence we may define

fl,,*(z ) e(/2)h,(z*) e(’/2)h(z) f,o( Zo )-

Now let fo satisfy fd =f,0f,0 and definef =f0 p_, so that f’(z,) =f,,(z, )f,,( z, ).Thus
from a characterization fo (fd=f,ofq,,o) of a region with boundary data , we
construct a family of characterizations via

f,.,=f,.o-,. L.,=L.oO_,. /,=foo_

withf =f,,f,,,. Any of these characterizations is acceptable when formulating (P2).
Note that f), f; CAN if f,u, f0,, are. Also since solutions of (P2) are independent of

f,(0) and the argument of f’(0) we may always reformulate to obtain f(0)--0 and
f’(0)> 0.

5. A special case. In this section we consider the special case where f is the unit
circle with zero boundary data. Hence we take f’= (f(z)=z,f,(z)--1) so that (P2)
becomes

(P4)

with general integral

Au Xe u, Izl < 1,
u=0, Izl= .
e-U/2--1v +-ff v --
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where v has only simple zeros and if v(z0)-0, then v"(Zo)-O. We make two choices
for v and the integration constant:

v0(z), CoO,a

v(z)=z, c-0.a

Thus

e-u/2 + (X/8)l/a2 dl2 + (2,/8) lalalzl
lal lal

e-W,/2= Izl 2 + (,/8)lzf(a2/?,) dl2 I1= + (x/8) lal4

are solutions to (P4) provided lal2 satisfies the boundary condition which requires that
lal2- (4/,)( / x/i-,/2 ). It can be shown that changing the sign of the radical simply
interchanges the solutions and we lose nothing by taking

Thus it is clear that a may be taken to be holomorphic in for both solutions; thus for
more general q and 0f we expect (P2) to be power series solvable with both the
minimal and large norm solutions obtainable in this manner. However in this paper we
consider only asymptotic solutions.

6. Asymptotic solutions for (P2). For convenience we rewrite (P2) as

(P5) Au f’le u, z U,
u-O, zOU,

with general integral

(6.1) e-"/2-lvl+- v dz
where v has only simple zeros in U and if v(z0) -0, z0 U, then

(6.2) v"(zo ) f"(Zo_Q_)
v’(zo) f’(zo)"

For (P5), (C1) implies the boundary condition

(6.3) 1-1vl+-g
and (C2) requires v CA(U) and (6.2).

To implement (C3) we define

v0()v(z)- (;x),
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where vo CA, GAN and G(z;X) is to be expanded in a power series in X. Hence the
general integral (6.1) becomes

(6.4) e-u/z=
[v(z)[2+(h/8)lv(z)fz[(G(2;h))/(v(2))9] f’(2)d12

ia(z;X)l2

Since we are to solve the boundary condition asymptotically we take G(z; X) to be a
finite series:

G(z;X)= l+XG(z)+ +Xn-lGn_l(z).
Thus we require"

2

(c’) IG(z; X)l- [Vo(Z)[a + Vo, [z [G(2; X)]zf,()
dz zOU.

d

(C2’) vo CA has at most simple zeros in U. If for z0 U we have Vo(Zo)-0, then

Vo"(Zo) f"(Zo)
V)( Zo ) f’( zo )

and

G;(Zo)-O, i-1,...,n.

(C3’) GilA, i-1,...,n and Vo(Z)4=O for z3U.

First order conditions (which involve only Vo) are obvious and are given in the next
section. Detailed computations for G are given in [14] and summarized in 8.

7. First order solutions of (PS). Implementing (C1’)-(C3’) to first order yields:

(FC1) IVo(Z)l2 for z 0U.
(FC2a) "o CA has simple zeros in U.

(FC2b) If Vo(Zo)=0, then v’(Zo)/V)(Zo)=f"(Zo)/f’(zo).
(FC3) Vo(Z) v 0 for z 0U.

Conditions (FC1), (FC2a) and (FC3) imply that vo is a finite Blaschke product:

P

vol ( Z ) ko H p- 1,1,2,...
i= 8iz

where Iko1-1 and i=/=j for vj. Since u is independent of the choice of ko, we take
ko-1 (thus %0 -= 1). The condition (FC2b) is left as a constraint on f for p>_ 1.
Specifically, at the zeros of vo (8, i- 1,...,p) we require

f"(6i)
f’(Si) =Ci( i" i- |,. .,p,

where

-+2
1-1 ’12 j:,

j=/=l
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Examples of associated maps f (with zeros 6i, i- 1,...,p) satisfying (7.1) for p >_ 2
(e.g., multiple maxima for =--0) are not in evidence. Hence for the remainder of this
paper we consider onlyp-0, (the minimal and large norm solutions). Forp- let

so that (7.1) becomes

(7.2) f"(8)_ 2g

f’(8) 1--ll2

(the first order constraint of Weston, see (1.1)).
For f’ CAN, (7.2) has at least one solution. To investigate how a solution 8 varies

with the choice of associated map f (see 4) we consider a solution of (7.2) to be an
ordered pair (f, 8). It is a straightforward computation to show that if (f0,80) satisfies
(7.2) then (fc, 8), where f=fo o q_ and 8=q_(8o) does also. Furthermore, since
f(,) =fo(8o) for all rE U (fSo, 0) satisfies (7.2); that is fo"(0)- 0.

To simplify further computation of the asymptotic solution as well as the modified
Newton’s method, if ( f, 8) satisfies (7.2) we normalizefby

fN( Z )-- ei#[ f( -8( z )) --f(

_
8(0))],

where/3 is the argument of d(f(_(z)))/dz evaluated at zero. Hence fN(0)-0 and
f(0)>0 as well as f"(0)- 0.

We consider some examples:

(EX ) f(z)- l_zoz Iol <, Z,Zo = l,

I1 -zlZol--o, fu(z)--k, z,
1_ iz0i2

(EX2) f(z ) k(z + az ), lal <-,

fu(z)--k, z(l+2k2z)
(1 +k2z)2

1-3lk2l2

1 + 121al- )k2-a 6lal2

(EX3)
eaz-1 )f(z)-k

fN(Z)--2 exp
l_k2z

Ikl(1 Ik=l-)exp
lal2 1-1k21-
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(EX4) f(z ) k( z + az ), lal <3’
-0, fu(z)--k(z+az3).

(EX5) f(z)--
lq_aZ 2 I1<1,

-[-OtZ 2

We note that for all of the above f is in fact univalent on U.

(EX6) If f"(0)-0 (e.g., if f is odd), then we may take 8-0.

(EX7) Assume zero boundary data and take f--fu. If f is symmetric with respect to
two perpendicular axes which we may choose to be the real and imaginary axes
in the w-plane, we can construct (by the Schwarz reflection principle)f: U f]

which is odd. Hence take 8-0.

(EX8) Assume zero boundary and take f-fu. Let f] be symmetric with respect to a
line which we may choose to be the real axis in the w-plane. We construct f (by
the Schwarz reflection principle) such that f(x) is real for x real. We look for a
real solution 8 to (7.2) at the intersection of the curves f"(x)/f’(x) and
2x/(1 x 2 ) on the interval ( 1, 1). If f"(x)/f’(x) is bounded, the curves must
intersect at least once.

For the remainder of the paper we drop the subscript on f and always assume that
f is normalized; that is

(7.4) f"(0)-0, f(0)-0 and f’(0)>0.

Using (7.4) and (6.4) we obtain the first order asymptotic solutions

(7.5) e-ul/2- +]f(z) + COOl2 (minimal),

;_f,(7.6) e u"/2-1z[2-[-[ (O)+zlo(z)+coZl2 (large norm),

where

(7.7) Io(z) (f’() --if(0))
2

and Coo and Co are constants of integration. If f’AN then it can easily be shown that
Io(z) is continuous on U, in fact, Io(z) A/2.

THEOREM 2. Iff’AN satisfi__es (7.4), then (7.5) and (7.6) define first order asymptotic
solutions of (P5) which are in C(U) fq C2(U), satisfy the partial differential equation

-Au-Xlf’(z)le
exactly in U and satisfy the boundary condition

u-O onlz[-1
to order as )t 0; that is

max [Ulp1- O( X ), p-O, 1.
xl
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Furthermore

maxlulo O() (minimal),

maxlu,, O(ln(1/X)) (arge norm single maximum).

8. Second and higher order results for (P5). In this section we consider second and
higher order asymptotic solutions for the minimal and large norm single maximum
cases (p-0, 1). We illustrate the procedure using the second order case. Detailed
computations are given in [14].

The second order requirements on Glp are given by"

(sc)

(SC2)
(SCS)

2ReG,o-(Icool-+2Re(oof(z))+lf(z)l2} onlzl-1 (minimal),

i2ReG,,-- {ICo, +2Re(-f’(O)co,Z+eollo(z))+[f’(O)+zlo(z)l2}
on ]z[- (large norm).

Since Io A/2(U)

G’,(0)-0 (large norm).

alo _.A(U) (minimal),
G l, CA(U) (large norm).

oo(Z)-If(z)l, o,(Z)-I-f(O)+zlo(z)l
are both continuous on OU, and in fact, for p-0,1 we have op(ei)A1/2, where
A-(q: R R, where q is periodic of period 2r and satisfies a Lipschitz condition of
order a}. Hence using Schwarz’s formula we obtain"

(8.1)

(8.2)

Glo(z)__l ICool2 +?f(z)+l =15(2) -z 22
d2

i:ICo, -?’(0) Z+olo(Z)Gl(Z)=g 2 col

’() 2-z 22d (large norm)/- I-

(minimal),

with Glp A/2 for p-0, 1. To satisfy (SC2) we require that

where

f’(O)Zo, + ( f"(O)/2)Zo,
Cl det

$o,(Z) _5,Z 2ri i=1

12det-If’(0) -lf’"(0)
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Hence we require

(8.3) If’"(0) 2If’(0)
(the simplified second order constraint of Weston, see (1.3)). We can thus write the
second order solutions as

(8.4) e-"2/2
+ ()t/8) ICoo +f(z) + gol2

I1 +XGIo(z)I2

with (0-- t(Clo + Ilo(Z)) + 2fZG2o(,)f’()d?. and

e_U2,/9. Izl = + (x/8)l--f’(0) + ColZ + zlo( z ) + ,1

with l-(-2Go(0)f’(0) + ctz +zlt(z))+ ’2zg.fZ(G(3)f’(-)d2/39.), where

o()- a,o(’()e,

,,(- (a(()-al(O)’(ol) ?7
and Clo and Cll are arbitrary integration constants. Recall that Col is determined above
but Coo and all higher order ()tg.) integration constants are arbitrary.

The higher order requirements for Gip, 2_<i_< n- 1, p-0, 1, are similar to those for
Gip. The constants cil, _< i_<n- 2 are determined similar to Co and no further require-
ments, other than (8.3), are needed to satisfy G;(0)-0 for 2<_i<_n. Also Gp can be
shown to be in All9.. The explicit formulas for G and cg_ for 2_< i-<n- are given in
[14]. Hence we obtain the nth order asymptotic solutions:

y,2(n-l)iMn]
2IVop[9. +-In= NMp+ "i=n ipl

(8.6) e-U.,/9.
9. p 0,1,

where for i-- 2,..., n and p 0, 1

Voo(z)=l,
Vo,()=,
Go(Z)- 1,

,o(Z ) Co+ io( Z ),
t,,(z )= -f’(0);,(0) + ClZ + zii,( z ),

Z

deM,()-z Lr(e)f’(e) ,
I,o( z ) =/ZLo( )f’( ) de,

.’o

/il(Z) (Lil(Z)/’()-Lil(O)f’(O)) ,
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and for i-2,..., n-2 and p-0,

,p( Z) --.,p( Z) "["(ip( Z),

exactly in U and satisfy

to order n as X 0; that is

Furthermore,

$,o( z )- 2 Re[Moo( z )Iio( z )] 2 Re[( Coo +f( z ))Iio( z )],
$il(Z)-- 2 Re[eol(Z)( f’(O)Lil(O) + Ill ( Z ))]

i-I

@lip(Z)----8 2 Gjp(Z)--j+l,p(Z)+ 2 %’p(Z)Mi-j,p(Z)"
j--I j=l

We summarize our results in the following:
THEOREM 3. If f’ CA(U) and satisfies_(7.4) and (8.3), then (8.6) defines nth order

asymptotic solutions of (P5) which are in C(U) f3 C2(U), satisfy

-au-lf’(z)12e"

lul-0 on lzl-1

maxlu,,pl- o(x" ), p-0, 1.

max U,o O(h) max l- O(ln(1/h))
z _<11 z <1

[unl

as X-,0.

Straighforward computations show that for (EX1)-(EX4) the normalized functions

fu satisfy (8.3) as well as (7.4). However for (EX5)-(EX8) (8.3) remains as an additional
constraint.

9. A modified Newton’s method for (PS). In this section we show that the large
norm asymptotic solution for (PS) given in the previous section, (8.6) withp- 1, has the
ability to generate an exact solution via a modified Newton’s iteration scheme provided
that the asymptotic solution is taken to order n (n _> 3) and that ) is sufficiently small.

To convert (P5) to the equivalent integral equation (u C(U) with u II- maxlxl_<l
lu(x)l, X--(XI,X2), dx=dx,dx2)
(P6) u--Nu,
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where

and

(Ku)(x)=fxl<_,g(x’x)eU(X)lf’(z)[Zdx

g(xo x ) --4-- ln
Z--Z0

-ZoZ

is the Green’s function for the Dirichlet problem associated with the unit disk. Here x
and xo are two-dimensional vectors with components given by the real and imaginary
parts of the complex numbers z and zo r__espectively_ Note that since the singularity of
g(xo,x) is weakly polar that K maps C(U) into C(U).

The modified Newton’s method

(9.1) Un+I--(U.)
where

5;( u)- (I--114’uo)-l (N(u)- l’uo(u)),

(’.oh)(Xo)=f(o,X)h(x)x
and

k(xo, x ) 2t g( xo, x )eU(X)lf’(x )l 2

(i.e., ’uo is the Fr6chet derivative of K evaluated at u0) may be developed in the same
manner as in [17] to yield:

THEOREM 4. If U0--(u0)ll _<ln(1 + (l/F))- 1/(1 F), where

ii(i-’uo)-’’uoll<_r,
then the modified Newton’s method (9.1) will converge to a unique solution u* of (P6) such
that

Ilu-u*ll<ln l+-f
Under the conditions of Theorem 3 we take the large norm asymptotic solution,

(8.6) with p 1, as the initial approximation u0 in (9.1). By following the procedure of
[17] we easily have

for h sufficiently small, where n is the order of the asymptotic solution. Furthermore,
the methods of [17] (also see [14]) yield

II’uoll-<M2 In II(I-’uo) II-<M3 h-l
and hence

(1)I’_Mln
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for , sufficiently small. Now for F>

In 1+ I+F n=12 (-- 1)n+l ----nl -2 2

Hence if , is sufficiently small we may apply Theorem 4 provided

Iluo-g(uo)ll<_MsX2 In X
This is attained if n _> 3 and , is sufficiently small. Thus we have:

THEOREM 5. Let the conditions of Theorem 3 hold and the large norm asymptotic
solution (8.6) with p- and n>_3 be used in the modified Newton’s method (9.1). Then u
will converge to a unique large norm solution u* of (P6) such that

Ilu0-u*ll
Clearly u* is also an exact solution of (P5). Furthermore iff’---f f,, where fu andf, are as
in 1 with gu the inverse mapping for fu, then u*o g is’ an exact solution of (P2) and
u* o gu + lnLf gul is an exact solution of (P).
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BIFURCATING INSTABILITY OF THE
FREE SURFACE OF A FERROFLUID*

EVAN EUGENE TWOMBLY" AND J. W. THOMAS

Abstract. Consider a slab of ferrofluid bounded below by a fixed boundary and above by a vacuum. If
the fluid is subjected to a vertically directed magnetic field of sufficient strength, surface waves appear.

The equations which describe this phenomenon are derived. In the physical space no natural Banach
space structure is available due to the free surface. In order to use the available bifurcation theory, a

transformation of coordinates is made, mapping the surface flat. In the new coordinate system the equations
define an operator between Banach spaces. The minimum eigenvalue of the linearized operator is the critical
magnetic field strength where the planar surface loses stability.

Using a generalized inverse of the Frtchet derivative of the operator and the implicit function theorem,

the existence of a nontrivial branch of solutions is proved. A local stability criterion is also obtained and

applied to three periodic structures: rolls, squares and hexagons.

1. Introduction. Fluids with strong magnetic properties have been produced via
colloidal suspension of ferromagnetic particles in a suitable carrier fluid. When a
horizontal slab of such a "ferrofluid" is in the presence of a vertically directed static
magnetic field of sufficient strength, a horizontal plane surface will change. Analogous
to Benard cells, both rectangular and hexagonal periodic surface relief patterns have
been observed, though the rectangular pattern is rare [1]. In the electrical analogue, a
dielectric in an electric field, both lattice structures can be obtained [2]. For a general
article on ferrofluids see Moskowitz [3].

Over the past 15 years this and related phenomena have been under investigation.
Formal mathematical techniques have produced results in agreement with experimental
data. Cowley and Rosensweig [1] develop a set of equations which describe the phe-
nomena and, by assuming linear stability theory [4], are able to find a critical magnetic
field strength where the planar surface loses stability. The experimental results they
achieve agree with the predicted values. When second order effects are considered, both
Gailitis [5] and Kuznetsov and Spector [2] find that the hexagonal surface pattern must
jump to a (possibly small) finite height since no hexagonal pattern near zero height is
static when the critical magnetic field is exceeded. The same argument produces a static
nonplanar solution close to zero when the magnetic field is below the critical field
strength, but no stability analysis has been made.

Simplifying the problem to two dimensions, analogous to "rolls" in the Benard
problem, Zaitev and Shliomis [6] found static solutions above and below the critical
field strength. Which of the two solutions occurs is given as a function of the magnetic
permeability of the ferrofluid. Experimentally, rolls can be produced if an additional
magnetic field is present. When Barkov and Bashtovoi [7] added a horizontal field, the
rolls appeared parallel to the applied field.

In another paper by Gailitis [8] the relative stabilities of the different surface
patterns are determined using energy considerations. They asume existence of conver-
gent expansions of hexagonal, square and roll type periodic branches of solutions. The
hexagaonal surface pattern was at a lower energy than the other relief patterns, except
in the case of a higher magnetic field strength in a ferrofluid of low relative permeabil-
ity. In that case the rectangular pattern was favored.
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Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523.
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Some analyses have been made with the physical setup slightly modified. Bash-
tovoi [9] let the ferrofluid have both the upper and lower sides of the fluid free to
deform. When the thickness of the fluid is small the interactions of the two interfaces
affected the critical magnetic field strength. Zelazo and Melcher [10] again used a single
free surface but allowed the magnetic field to be oriented at an arbitrary angle. The
critical magnetic field strength increased as the horizontal component of the field
increased. The above analyses have not been carried out with the mathematical rigor
available for analysis of nonlinear phenomena. For a bibliography of papers concerning
ferrofluids see 11].

The problem considered in this paper is similar to that considered by [1], [2], [5],
[6], [8]. Ferrofluid is placed below a less dense fluid (or vacuum) both having a large
finite depth D. The interface between the fluids is restricted only by the physical
properties of the fluids. The upper and lower surfaces (at --+D) are flat and any
perturbed magnetic field does not extend through the surface.

Through the application of rigorous mathematical techniques we intend to prove
that the planar surface loses stability when the critical magnetic field strength is
exceeded, and that a new static surface pattern appears at that point. The linear
stability associated with the new surface provides conditions for the local stability of
this new surface. Note that this stability is the stability of the new surface relative to
any other surfaces with identical symmetry properties (i.e., hexagonal, rectangular or
rolls), not the stability of one symmetry pattern to another.

The existence and stability proofs will be proved using some standard bifurcation
techniques. However, the presence of the free surface complicates the problem. It is for
this reason that there are almost no rigorous treatments of nonlinear free surfaces. We
remove the difficulties caused by the free surface by using a variation of the method of
domain perturbation in Joseph and Fosdick [12], and model our approach after the
application of this technique by Sattinger [13]. This method consists of mapping the
surface flat and proceeding with the analysis.

The surface patterns to which the stability criterion will be applied are those
mentioned above: rolls, rectangles and hexagons. Some general results on these types of
patterns [14] indicate that the second-order approximation should be adequate to
determine stability of the hexagonal pattern while rolls and rectangles will require
third-order approximations.

An outline of the paper is given in the following paragraphs.
Equations must first be obtained which describe the fluid properties of the inter-

face and the interactions of the magnetic fields with the shape of the interface. Since we
are looking for static solutions the equations will contain no time derivatives. The
constant magnetic permeability provides a continuous magnetostatic potential which
satisfies Laplace’s equation. Additionally the gradient of the potential when multiplied
by the local permeability, V(/q), must be continuous normally across the interface.
An additional condition at the fluid interface is derived which balances the fluid’s
internal stresses so that a static situation is maintained. A Neumann condition is added
at the upper and lower boundaries so the perturbation field does not extend beyond the
boundaries.

Under the above conditions, when the surface is planar, a potential can be found.
We look for perturbations from this "trivial" solution. This "trivial" solution is sub-
tracted and boundary conditions are set. The expected periodicity of the nonplanar
interface allows us to reduce the horizontal domain to a finite region and add Neu-
mann conditions on the sides of the reduced domain. At this point the potential is only
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determined to within a constant. A normalizing condition is added and the equations
describing the phenomena are complete.

The next step in the process is to apply the domain perturbation technique to the
system of equations described above. A transformation is constructed which leaves all
the external boundaries fixed but maps the interface to a plane, parallel to the upper
and lower surfaces. The normal vector (a contravariant tensor), the gradient (a co-
variant tensor) and the Laplacian (the divergence of the gradient) are transformed
using tensor techniques. When the equations are rewritten in the new coordinate system
using the new forms of the normal vector, gradient, and Laplacian, a continuous
operator, F, between Banach spaces can be constructed so that solving F= 0 is equiva-
lent to solving the desired equation. The Banach space which is the domain of the
operator contains many of the linear boundary conditions, and the remaining informa-
tion is included in the operator, F, itself.

We are finally in a situation where we can apply the standard techniques of
bifurcation theory. The first step is to obtain the Fr6chet derivative, Fq,(0), at the trivial
solution and find its lowest positive eigenvalue. The linearization of the equations
before the transformation and F,(0)u=0 are the same; hence, comparisons can easily
be made with other linearizations. The minimum eigenvalue that is found has been
called the critical magnetic field strength, and as D approaches m the critical magnetic
field strength that we find approaches the value found by other authors in the case of
infinite depth. The associated eigenfunction is also found. The dimension of the null
space of F4,(0) is one, so the eigenvalue is simple. A linear functional, bounded on the
Banach spaces mentioned here, is found which maps the image of Fq,(0) to zero and will
be used later to define a projection to the null space of Fq,(0).

To obtain stability and existence results similar to those in Sattinger [4], we need a
projection and a generalized inverse of Fq,(0). To this end, a series of lemmas are
proved. The generalized inverse depends on the Fredholm alternative and a compact
embedding theorem for spaces defined over finite domains. If D were allowed to be
infinite the embedding would, in general, not be compact, and other techniques to
obtain the generalized inverse would be needed.

The existence of a bifurcating branch of solutions to F=0 extending from the
trivial branch is proven as follows. An operator between Banach spaces is defined. The
operator takes three components (a parameter, e, the magnetic field strength as a
function of e, and a vector of the potential and interfacial perturbations as a function
of e) to two components (the image of F projected into the null space of F, and the
generalized inverse of Fq, applied to the image of F). When the implicit function
theorem is applied to this operator, two results are realized: the existence of the
bifurcating branch of solution to F=0 and the local convergence of a power series in e
of the branch.

To obtain stability conditions of the branch, a solution, v, along the branch
sufficiently close to the bifurcation point is chosen. If the power series is substituted in
F and the coefficients of the powers of e are set to zero, expressions for the coefficients
of the power series are obtained. To relate these coefficients to the conditions of
stability in the linear theory we consider F,(v)u= ou. Perturbations tend to grow when
o is positive and decay for negative o. By applying the implicit function theorem ({}5) to
the stability equation, we obtain convergent power series expansions for u and o which
allows us to determine the sign of o and hence the stability of the solution v.

The expansion results show that nontrivial branches initially extending towards
smaller magnetic field strengths (subcritical) are locally unstable. Branches extending to
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greater field strengths (supercritical) are locally stable. When these results are applied
to the hexagonal pattern, unstable (subcritical) branches are found. When the ap-
proximate stability criterion described earlier is applied to analyzing rolls, the branch is
found to be stable (supercritical). For squares, the approximate analysis shows the
stability to be a function of permeability. These results are compared with other papers
and a summary is given.

2. The mathematical formulation. Our mathematical description of the phenomena
is based on Maxwell’s equations in electromagnetic theory and on the fact that total
stresses and total forces equal zero for a steady state condition.

In this article the fluid has many idealized properties. Since the effect studied is a
surface deformation and the ferrofluids are liquid, the fluid is assumed to be incom-
pressible and of large but finite depth, D. After any short-term effects have died out
[15] (say, two seconds) and prior to any long-term separation of carrier fluid and
suspended particles [16] (say, two hours), it is reasonable to assume that the ferrofluid
is magnetically linear, isotropic and free of internal currents when a magnetic field of
limited strength is applied [17]. Furthermore, the magnetic permeability is taken to be
constant throughout the field.

Under the above assumptions, when all time derivatives are set to zero, the
following forms of Maxwell’s equations hold:

(2.1) cH tdl-O

around a closed curve C where H is the magnetic field and t is a unit vector tangent to
C,

(2.2) QB ndo-O

over a closed surface Q where B is the induction field and n is a unit vector normal to
Q, and

(2.3) //0H- B,

where/ is the relative permeability and/0 is the permeability of space.
We choose a coordinate space (Yl,Y2,Y3) SO that gravity acts in the negative Y3

direction. Let the interface Y3 =z(Y,Y2) separate the ferrofluid below with constant
permeability / from any other less dense fluid above with constant permeability
normalized to one (Fig. 1). Except at the interface and at the upper and lower
boundaries, (2.1) and (2.2) are equivalent to the following:

(2.4a) 7 H-0
and

(2.4b) {7 -B-0
where {7 -()/0yl, )/OY2, O/OY3)T, and superscript T indicates vector transpose. Pois-
son’s theorem and (2.4a) guarantee the existence of a scalar potential, +, with a negative
gradient H. The constant permeability and (2.3) and (2.4b) force the potential to satisfy
Laplace’s equation:

(2.5) 72k’-0 in S+- (ylz(y,y2)<_ya<_D),
+24,-0 in S-- (yl-D<--y3<--z(yl,Y2))
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Equation (2.1) provides two equivalent conditions across the interface [17]:

(2.6a) [H.T]=0
and

(2.6b) k’-k 0 aty3=z(y,y2)
where T is any vector tangent to z and, in this section, [-] represents the jump across
the interface, the value above less the value below.

FIG 1. The interface z when a hexagonal surface reliefpattern has been established. Also, the sets associated
with this pattern in the physical (yt,y2,Y3)r space.

From (2.2) we get the condition

(2.7) [B-N]=0
for N a vector normal to z. Specifically, we shall use

N-(-z,-z2,1)r

where the function’s subscripts represent partial derivatives with respect to y, i- 1,2, 3.
We next consider the stress tensor [1]

o- ( p* +1/21oHrH)I+HBr

where p* is an effective pressure, to be eliminated presently, and I is the identity
matrix. Any change in stress across the interface, [oN], must be balanced by the surface
tension, rsN 8], where

Zl,(l+z22)+Zz(l+z21)-2z,zz,2
S-"

and r is the coefficient of surface tension.
Equation (2.6a) allows us to write

In] (q-P3)N.
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Thus [oN] can be expressed as follows:

[aN]- -[p* + 1/2IXIXoHrH]N + [HBrN]

= -[p* +1/2#g0HrH]N+ [H]BrN

( P* + 1/2IXIXonrH] BrN(P-P3 ))N.
Therefore the equality of the stress difference to the surface tension is equivalent to the
equation

(2.8) p* + 1/2/2IXoHrH] -(-tP3 )BrN- zs 0.

Note that this has reduced the vector equation involving the stress tensor to a single
scalar equation.

We now consider the total forces, i.e., the body forcesmgravity and the divergence
of the stress tensor. With the following identity,

r. HBr=H(r. B) + (B 7)H

=H(+ B) + (7 H) B+---- ’(HrH)
:/2ix----O- Z (HrH)2

setting the sum of the forces equal to zero yields

47 o + pgTy ,(7 (p*--1/2ixo(/2--1)HrH-ogy3)-0
or

( P* 1/2ix0(/2- 1)HrH- ogY3 ) constant

where 0 is the fluid density and g is the acceleration due to gravity. Using the
expression above to eliminate [p*] from (2.8) we get

(2.9) Aogz-1/2[BrH] (--3 BrN- --’s + constant

where Ao is the change in density across the interface such that Ao is positive. We
assume when no magnetic field is present the planar interface is stable. No change in
these equations would occur if the ferrofluid were less dense and gravity acted in the
positive Y3 direction.

To put the problem in its final form we must include the bifurcation parameter H,
the magnetic field strength at the lower boundary of the ferrofluid when the interface is
a horizontal plane surface. This is accomplished by subtracting a trivial solution

z 0 (a planar surface), 4" xHY3, Hy3

and since the planar surface was set at zero the constant is now forced to be
-(IXIX0/)((IX- 1)/2)H2. Only a moderate amount of complexity would be added if a
constant horizontal field were added to the trivial solution for linear stability of that
case (see [10]). If we now replace H and B by the appropriate gradients, q’ by
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if p,HY3, and q by q+Hy3, we get

(2.10) -72+’-0 inS+,
72+-0 inS-,
Vog

z P’o [2 2)

0 (.-) 2+._0 aty3-z(y,,y)2
’-++(.-)Uz=O at y3=z(y,,y2),
+(+’-+)- N-0 aty3-z(y,,y2)

in place of (2.5), (2.6b), (2.7) and (2.9).
We also now restrict the range of values y and Y2 and impose boundary condi-

tions. Experimental results produce two different surface patterns: squares and hexa-
gons. To study one or the other of these we restrict (Y,Y2) to a set R, where R is either
a square or a hexagon in R 2. To study the two-dimensional problem of rolls, let R be a
rectangle with all function values independent of the Y2 coordinate.

Using an appropriate region R, we replace S+ by + and S- by - where

+- {rl(y,y)e} s+,
--{rl(y,,y)a}s-.

To reflect the anticipated periodicity of the solution, we require that

Oz_(2.1) 07-0 onO,

+’=0 foryS+and(y,y2)oROn

=0 for yS- and (y,y2)OR

where is the normal derivative.
The magnetic fluid must satisfy conditions at the upper and lower boundaries

similar to those at the interface. Since ’ and are perturbations which decay toward
the boundaries at Y3 D,

(2.12) -0 atY3-D,
+3=0 aty3=-D.

To ensure uniqueness of the solutions of equations (2.10) with boundary conditions
(2.11) and (2.12) we also require that

(2.3) ’1y3=+13=_-0.
The five equations (2.10) and the boundary condition (2.11)-(2.13) are the state-

ment of the problem which will be considered throughout the remainder of this article.

3. Mapping the free suace. In order to obtain a solution to equations (2.10) and
the associated boundary conditions, we must determine the magnetostatic potentials +’
and + and simultaneously the regions in wch they are defined. In this situation the
problem cannot easily be placed in any of the usual Banach spaces. To circumvent this



BIFURCATING INSTABILITY OF A FERROFLUID SURFACE 748

difficulty, we eliminate the free surface using the transformation

and

Y2 -- X2
Y3 X3

Yl

Y3--z D
D--z

for z <Y3<D

Y3 x3

Yl

Y3--z D
D+z

for D<y3 <z.

The techniques of tensor analysis [13], [19], [20] will allow us to map equations
(2.10)-(2.13) to the (xl,xz,x3)T space (Fig. 2).

FIG 2. The sets associated with the hexagonal surface reliefpattern after the transformation has been made
to the x l, x x space.

Let
D-y D

KI=(D_z)2D and K2-Dz’
where in this section, when a or symbol occurs, select the upper or lower symbol
of the pair when the reference is in the volume above or below the interface, respec-
tively. If we denote a function of (Y,Y2,Y3) by and the same function in terms of
(XI,X2,X3) by f, then

fl -Zlglf3

7f--.(vf--VZKlf3) f2-Z2Klf3K2f3 K2f3

+V- vf v/,f-z/,vz v/+lvz rf
+ 2 21 vz[

2
K2fv ,rf/D+ vz[’- f,//(zvz )
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and

-Oz/Oy
-Oz/ay2

Z

Z2

(1-]VzIK,)/K
where V-(O/Ox1,19/)x2)T and the function’s subscripts represent partial derivatives
(one-sided if necessary) with respect to xi, i= 1,2, 3.

Using the above quantities, (2.10) is equivalent to (3.1):

(3.1)

and the boundary conditions remain unchanged"

(3.2)

for xR+ and (xl,x2) OR,

Z
---=0 on OR,

0----0 for xR- and (x,x2) OR,

-0 for xa-D,
3 0 for x3 D,

-0

where g}’ and, g} are p’ and p under the new coordinate system. This transformation
leaves (’, g},z)r=0= (0, 0, 0)r as a solution to (3.1) and (3.2).

The problem can now be placed in a HOlder space setting. Let II g/ denote the
usual norm on the HOlder space cK+’(R) [4]. Similarly, let I1:/ and I1/ denote
norms on cK+’(R+) and Cr+"(R-), respectively. Let

Br,t,,-Cr+’(R+) Cr+’(R-) cK+’(R) Ct+’(R) Ct+’(R)
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be a Banach space whose norm on |=(fl,f2,f3,f4,fs) is defined as

+
Ifl.,.-IIf’ I1/o / II/=ll,/ / 11/311,+ / 11/411,+o / II/11,/.

Let B2+ be equal to the subspace of B2,1,, such that

Of0---n-=o forxR+ and (xI,x2)OR

of:=0 forxR- and (x x2)

0f=0 on OROn

fs=O at xs=D,
fs:=O at xs= -D,

f4 4

with I" 12+ denoting the associated norm and w the solution to (4.2). The above
conditions define f4 and f s. These functions are used to normalize the linear operator
defined in {}4. Finally, let Be = Bo,0, and I" I be the associated norm.

Using the above definitions, the following operators continuously map B2+,, to
and will be used extensively in the remaining sections:

L0ff=

0
0

0
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U(,)=

0
0

T

0
0

U(,,)=

Vzl:q3( x3/D) 3q3z:/D: ( V :z)z/D(x3/D 1)
2 Vz Vrk’ z/D(x3/D 1) + vzl%;/D(1 x3/O )

Vzl:q33(1 + x3/D)- 333z:/D2-(V2z),3z/D(x3/D+ 1)
2 Vz. ’Z3z/D(x3/D+ ) Vzl:q3/D(1 + x3/D )

ZIIZ Z=Zal+2Z,ZzZz+3IXTzl2 z

where

"-4 q’3
x3=O

and H. is a constant to be determined later. These operators allow us to write (3.1) as

F( H, +)-Lo++ (H-Hc)L,++U,(+, +) + ( H--Hc)N:(+,
+Ns(q, q, q) + Rem(H,) 0

where Rem contains all higher order terms of F. The linear boundary conditions (3.2)
are contained in the domain space

4. Linearized eigenvalue problem and associated adjoint eigenvalue problem. We
will now determine the first possible value of H for which the trivial solution could lose
stability, that is, the minimum positive eigenvalue of the Fr6chet derivative of F. The
associated eigenvector will be used later as the first term in a series expansion of a
bifurcating branch of solutions. Also associated with the Fr6chet derivative at the
minimum eigenvalue is an adjoint operator with the same eigenvalue. The eigenvector
of the adjoint operator will allow us to define a projection and ultimately use the
implicit function theorem to prove existence and stability results.
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The Fr&het derivative Fo(Hc, 0) with respect to q at (He, 0) is Lo where H is the
minimum eigenvalue (the critical magnetic field strength) for which we are searching.
Thus we must find a nontrivial vector qo and the minimum positive value, H., such that
Loo--0.

Since q, and ,’ must satisfy Laplace’s equation and the normal derivative must be
zero in the horizontal directions, x and x, we look for solutions of the form

dp’-- , (Aje-J’x.+CjeJ’x3)Trj(xl.x2).
j=l

k-- 2 (BjeJ’X3+Dje-J’xs)Trj(x..xg_)
j=l

where Aj., Bj, C and Dj. are real constants and Trj. satisfies, for all j, the following:

v2Trj --t2j2Trj in R,

8Tr 0 on 0R.

With the appropriate choice of Trj.’s and R the results can apply to either rolls,
rectangles or hexagons. Hence the results in the following sections apply equally to all
three cases.

If we use the above to solve L00 0 in B2+ we get

l( e-.OX + e-.o(2D-x) ) Tr
(e.OX+e-.o(2D+x3))Tr
/+1 2wD

/-- H (1 +e- )Tr

4/x(1 e-2D) Tr

(/x--1)w(1 e-2’D) Tr

where Tr= Tr and

1+ ( Aog +to2 ) cothwDH"=
(/x- 1)2 //0 " w

is the associated eigenvalue. To obtain the nimum positive eigenvalue we minimize

H with respect to . This minimum occurs when

(4.2) f(w.D)--(og+w2)D--(Aog--2)cosh2wD,
is equal to zero. For u-og/ ,f(u,D)is positive. When -D/(D+ I)og/r,

f( L, D) AO
D+I [2D2+D-csh2D]

is less than zero for large D (since the hyperbolic cosine grows more rapidly than D).
Hence,

D og
<<D+I r r
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and

D+I(/ 1).______2//oH<
2(/z+ 1) (At)g; D coshD/Aog,r

for large D.
We note that for D infinite, this forces the same value of H as obtained by Cowley

and Rosensweig [1] in their linear stability analysis.
We next define a linear functional on B, and B2+:

(,U)---fR+tU dl)--fR_fu2dl)-qt-fR(zU3-qt-’u4q-u5)do
for a fixed U-7-(ul,u2, bl3,U4, U5)T. Let u* satisfy {L0q,u*) =0 for all in B2+a. Solving
for u* using integration by parts, we obtain

With the additional condition { 4o, u*)= we find that

k_ O0,ku,)_ {_ (20_/+1)_20 460D (/+ l)0(l--e- )--
Apg/,r+ o2 (1--e-4D)

+4/0(1- e-:’o)2+ 2D(#+ 1)e-2’} f.Tr :z.
For D sufficiently large, k is positive. We now restrict D to this range and define the
continuous linear functional [-] by

5. Preliminary lemmas. Some standard results and several lemmas are presented
in this section. These will be used in the proofs of the stability and existence of the
bifurcating branch.

Operators carrying a vector subscript are Frchet derivatives of the operator with
respect to that vector.

The proofs of the existence and stability theorems rely heavily on the implicit
function theorem. We shall use the following form [4].

THEOREM (implicit function theorem (IFT)). If T: gt X B -B2 is continuously
differentiable in (, x) in a neighborhood of (0, 0), T(X, 0)=0, and Tx(0, 0) is continuously
invertible from B). to Bl, then there exists for small I1 a function x(Jk): INt - B such that

a) x(0) 0,
b) x has a continuous derivative with respect to ,
c) T(X x(X )) 0.
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When we use IFT, , and x are expressed as power series expansions. The conver-
gence of these expansions follows from the analyticity of T [4]:

THEOREM 2 (analyticity). If the operator T in IFT is analytic in some neighborhood
of (0, 0), then x is also analytic in , in some neighborhood of O.

We cannot apply the IFT to the function F since we already know that F,(0, 0) is
not invertible (h H-H,.=0 is an eigenvalue). We must reformulate the problem to
project along this eigenfunction using [. ]. The reformulation allows us to obtain a
generalized inverse to F,(0, 0). The continuity of the inverse is the subject of Lemmas 2
to 4, and is based on a priori Schauder estimates given below.

THEOREM 3 (a priori Schauder estimates). 1) Let

V2U--t2u=f on R

and

u
=0 on ORn

where u C2+a(R ),f C(R ) and 09
2 > O. Then

ul12 < const(Ilfll ).

2) Let

72u--f in R+,
u-- g when x3 O,

Ou
Ox h when x D

Ou_
On-- on--O when (x x2)OR andO<x3 <_D

O_.g Oh
0n-O=0 onOR,

where u C2+(R+ ),f C(R+ ), g C2+(R), and h C +(R ). Then

ull -< const(Ilfll + )/llgll2+ /[Ih[l 

Proof. The above estimates follow from using the usual interior estimates for
elliptic problems, the boundary estimates for Dirichlet problems, the boundary esti-
mates for the oblique derivative problem and the periodicity of our domains. (See [21,
Thms. 6.2, 6.6 and 6.30].)

Some needed facts are stated in Lemma 1. Condition i) implies that H,. is an
algebraically simple eigenvalue [4].

LEMMA 1. Let Lo andL be the operators defined in 3, and let tho and [. be as given
in 4. Then, for sufficiently large D, the following hoM:
(i) [01 1,
(ii) [Lq0] >0,
(iii) L0q] 0 for all q B2+.

The proof is straightforward and will not be given here.
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LEMMA 2. The operator A" B2+ B defined by

has a continuous inverse.

A-A z

Y

V 2,__ qb;3

72_ qb33

V2z + Apg
z

fl
f2
f3
f4

Proof. If we make the following change of coordinates

Xl X2 X2
x --x3+D inR+ +DX3 X3

then the following equations must be satisfied.

-Va(q,’+lq,)=f+f2 inR+

q,;+/q,3-0 atx3-D,
,/,’ +/4,=f at x3 0.

Using the a priori estimates, we get our first relation:

IIq,’ / ,112+.< const(llA + f211o +
Similarly, with the following change of coordinates:

Xl XI X2 X2
+ in R-X X in R x x3

we obtain the equations

inR-,

V2(q"-q)=fl-f2 inR+,
q ’3 0 at x D,
q/-- q’=f4 at x3=0-

Then the a priori estimates result in

11’ 112 +,,-< cnst(llf --f2[la +
Finally, we have immediately from Theorem 3

lzl12+ constllf !.
These inequalities can be combined with the backwards triangle inequality to show that

I+l=+.<constlAl.
LEMMA 3. If ( Lo--I) 0 has no nontrivial solutions, then Lo -AI has a continu-

ous inverse.

Proof. Let

0
0
-o 6

0
(.- 1)ncZ
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where (q,’, , z, "1’, 8)r. Then
Lo-XI=A+(M-XI ).

Since A has a continuous inverse and M-)I is bounded from B to Ba, then A-l(M_
I) is bounded from B to B2+a. If we apply Adams [22, Thm. 1.3.1], we see that B2+
is embedded compactly in B since the domains are finite. Hence the operator A-l(M

I) is compact from B2+ to B2+a-

LetfB and consider the equation:

(L0-;kI)O=f
where B2+ is unknown. The hypothesis that the equation (L0- kI)O=0 has no
nontrivial solutions allows us to apply the Fredholm alternative [4] and obtain the
existence of a unique such that

or, equivalently,

(L0-I)=t

( I--A- I(M-XI)th=A- II)
which satisfies the following inequality:

I,/,12 constIA- lf[2 +a.
Then, by Lemma 2, we obtain

Iq12+a -< constlfla const[ ( L0 XI ) qla,
which is what we were to prove.

We shall now prove the existence and continuity of the generalized inverse of L0.

LEMMA 4. Let

Pu=[u]o and Q=I- P.

The operators P and Q are bounded projections from B2+ to B2+a, and there exists a
bounded linear operator K: B B2+ such that KL0 Q.

Proof. Consider the equation

Lo=f
or equivalently

(5.1) ( I+ ,(Lo ,I )- i) if_ ( Lo ,I )-f
where is not in the spectrum of Lo. Equation (5.1) has a nontrivial solution (-o
for f-0) which is not in the Banach space

In fact, Lo is one-to-one from / since H was a simple eigenvalue. In Lemma 3 we
showed that (L0- I)- was bounded from B to B2+ a- Thus (L0- I)- must be
compact from/ to B2+ since the domains are bounded [22]. By applying the Fred-
holm alternative we know that I+(L0- ,I)-1 has a bounded inverse. Let/ denote
the composition of (I+(Lo--I)-l)-1 with (Lo-XI)-1. Then for q/,/ satisfies

/L0 q.
Using Lemma it can easily be shown that P is a bounded projection. Since P and I
are bounded projections, Q also has this property. Also note that Q maps B2+a to/. If
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we define K-/Q, then K is the bounded generalized inverse of Lo and

KL IQL iLoO O2 Q.

The proofs of Lemmas 3 and 4 required that the functions’ domains be of finite
extent. If D is allowed to be infinite, other techniques must be used to obtain the
existence of the generalized inverse of L0.

6. Existence. In this section, we prove the existence and analyticity of a bifurcat-
ing branch of solutions emanating from the trivial branch at Hc.

THEOREM 4 (existence). There exists a nontrivial branch of solutions to F(H, q)-0
which can be expressed parametrically as (H(e), (e)) where H(0)--H and q(0)-q0.

The series representations ofH and are convergent for small I 1.
Proof. This proof is based on an application of IFT to the Lyapunov-Schmidt

equations. Recall that

F( H, ?) Lo+ (H-H)L+Nl(q, th) + N(H, th)
where

N(H,O)-(H-H,.)N2(,O)+N3(,O,)+ Rem(H,).
If we set H-H,.-el and q-ew, where w is normalized so that [w]-1, then N is of
order e and Pw-4o. We now write q as e(qo+) where =Qw and []-0. Substitut-
ing this into F and applying [. and K, we get

(6.1) [L(o+)+Nl(gPo+f,dpo+l)+e-zU(H, ck)] --0,

+ eK(lL,(o+t) +U(?o+, tho +) +e-N(H, th) } -0.
Equations (6.1) are the Lyapunov-Schmidt equations. Individually they contain the
same information as projecting by P and Q, respectively. Thus, they are equivalent to
the original equation. If we define

by

l t+ eK{ L ( o + ) +N ( cko + lij o +l ) + e N(H @) }
one solution to T(e, /,/j) 0 is

e-O, //=0, no
[N,(o, o)]

Since [Ll0]>0 by Lemma 1, /o is well defined. In order to apply IFT we note that

Tn,,)(O ’% 0)--(/0[L’’]+[N’(’’+o)+N(q0’ ")] ILl’o])I 0

which is invertible since [L/,o]>0. The existence of a branch of solutions is then a
result of the IFT.

The convergent series representations for H and q are obtained from the analytic-
ity of F and Theorem 2.

7. Formal stability theory. In this section we prove our second major theorem. The
stability is "formal" since we assume the physical stability of the system is equivalent
to the linear stability. Proving this equivalence is a topic for future consideration. We
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should also add that the stability given here is along the nontrivial solution branch
whose existence was shown in 6, and not the stability of the trivial solutions, which is
what most previous authors have considered.

THEOREM 5 (stability). Consider the following expansion ofH and in terms of e:

H-H +eHo+eH +-eo+el, + ....
Then Ho N(tko, ko )]/[Lo], and the branch is stable ifHo> 0 or unstable ifHo< O.
In the case that Ho- O,

[N,(ffo, 1) + Nl(ff, o) +N3(o, o,o)]

and the branch is stable or unstable ifH is greater or less than zero, respectively.
We note that these results imply supercritical branches are stable and subcritical

branches are unstable.
Proof. The convergence of the expansions of H and for small [e is a result of the

existence theorem. Expressions for i and Hi, i=0, 1,2,-.. follow from the equation
F(H,q)-O:

(7.1) F( H, k) eLotko + e2( Lol +HoLlO+N,(o,o))
+e3(Lo2+ HoLed? +HL o

+Nl(O,1) +N,(,,o)
+HoN2( 0o, q’o + N3(o,o, 00 ))

+ higher order terms in e.

Equating the coefficients of e and e: to zero gives the following equations:

LoOo=0
and

LoO +HoL Oo+ N, (o Oo ) O.

The first equation has already been satisfied. Operating on the second equation by [. ],
we obtain the desired expression:

[NI(*O,+O)]
Ho--- [L,/,o]

(Recall that [Loq,o]-0 and ILl,o]>0 by Lemma 1.) If Ho=0, applying the same
technique to the coefficients of e2 and e in (7.1) yields

Loq,(7.2)
and

Hi
[NI(O,1 ) - NI(I, +o) + N2(+o, +o, +o)]

To study the stability of the solution (H, q) of F(H, +)- O, linear stability requires that
we consider the equation

(7.3) F4,( H, tk)u- ou
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where

u-o+ eu +eua + ,
a--eo!+e2o2+ ’’-,

g’ g’o + N’ + e24’ + "’",

H-H.+eH + e2H2 +
and [u]-1. When o<0 any local oscillations around q would decay or when o >0 the
oscillations would grow.

If we now substitute the expansions above into (7.3) we get

(7.4) F,l,(H,C,)u-ou-(Lo+(H-Hc)L!)u-ou
+NI(+, u) +NI(U, +)
+ (H-Hc)(N2(0, u) + N:(u,
+N(u, q, +) +N(+, u, + ) +N(+, q, u)
+ higher order terms in q

Loo+ e(LoUl + noLlo+
+e2(Lou 2 + noLlU +HL+o

+Xl ( *o, U ) "- Xl (*o,l ) -- N1 (l,o ) ’t- m (u o )
+ 2HoN2( +o, *o ) + 3N (*o, *o, *0 ) olUl 02*0)

+ higher order terms in e

--0.

Equating the coefficients of and e to zero we obtain

Loo=0

and

CoU + noL1o+ q,o)- Olq,O O.

The first equation is already satisfied. Operating on the second by [-] and using the
expression for Ho determined above, we get

o!-- -Ho[L!o].
Since [L!qo]>0 the sign of e is opposite that of Ho. Hence the stability associated
with nonzero Ho is established.

In the case of zero Ho, o is also zero. By equating the coefficients of e and e2 to
zero in (7.4) with H0- o!--0, we get

(7.5) L0u
and

(7.6)
+Nl(Ul,o ) + 3N2(qo, o, qo) o2qo 0.

Combining (7.2) and (7.5) yields

Ul--2l.
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This allows us to rewrite (7.6) as

(7.7) Lou 2 +HL o+ 3(N(o ) +N( o ) + N3(o gPo d?o ) ) O2o
Using the expression for H and operating by [. on (7.7) produces the following
expression for 02:

02 2H L0]"
This expression gives the same stability conditions on nonzero H as obtained for H0.

The above analysis assumes the expansions for o and u are convergent. We now
prove the local analyticity of these expansions.

Let U=o+ where [/j]=0. Then, we use the Lyapunov-Schmidt equation associ-
ated with F(H, q)u 0 to define F:

n

( i ) ( (H- Hc) L ( + + terms invlving e )._..)

+ K{ (H-Hc)Le(o+1) O(o+1) + terms involving e}
where H is a function of e such that H H when e 0. In this case T(0, 0, 0)= 0 and

0 O)- [ -1 0
o,(0 -K0 I

is continuously invertible in R /, so IFT and the analyticity of F provide convergence
of (e) and o(e) for small

This completes the proof of the stability theorem.

8. Resultsmroils. The existence and stability theorems provide results for several
types of perturbations. Each class of perturbations corresponds to a choice of R and a
related function Tr satisfying conditions (4.1):

OTrV2Tr--co2Tr inR, On -0 onOR.

In general, according to the stability theorem, we must consider H0

N(bo, 0)]/[Lb0 where

(8.1) N,(,/,o, /,o) _ff+l
He (1 +e-2’)

4 coD
60
2 Tr do

1(q- 3 + 2e-2’-- 3e-4’+
coD

/-
IV Tr[Trdo

In the case of rolls (R [-, 5] [0, 1] and Tr cos cox,) and rectangles (R
[--5,5,] [--,5] and Tr-1/2(coscox +coscox2)), [N(6o,qo) is zero. This can be seen
by calculating the above expression.

Then, according to Theorem 5 we must next consider H which involves finding
q. To find is computationally an extremely difficult problem. One approach is to
compute , and hence H, numerically. We have decided upon another alternative,
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that of calculating q and H for infinite D. Assuming D infinite is logical since all of
the experiments and the assumptions we have made are for very large D.

To further justify allowing D to become infinite for the stability calculation we
prove, below, Theorem 6 which states that H with D= o, H, is O(Xo) of H. Thus,
given any combination of magnetic parameters, there is a D so that for depths greater
than D the stability of the finite problem is the same as that indicated by the infinite
problem.

Let

_g+ 1HcocTr H2oc=g+ 2oqo -/*e- Tr, o e’X Tr, z g- 1 g- /*/*o

and denote by qo and H the values calculated using (7.2) with fro replaced by oo
in the space B2+ defined in 3 with D--

THEOREM 6.

Proof. Write o and N as

and

HI--HIoo +0(-).
o o0+ e- 2,,,Oko

N,(’,.)-N,o(’,’)+-N,,(’,’),
where

-e-,OX3Tr
e,Xs Tr

g+l Tr

--/.te’X3 Tr
e-,OXs Tr
g+l 1Tr
-4oTr
(- 1)oTr

--2z Ox----
2z ax

0
0
0

NIO(" ’)-N,(’, ")--NII(" ").

Note that in the expression for Zoo contained Hco while qo0 and the expressions
not generally depending on D contain an H,. (which does depend on D). This is for
convenience and is correct since as D grows large, Hc approaches Hco, which is
constant. Hence, the appearance of H in an expression will never affect any order
argument concerning the expression.

Recall from Theorem 5 that satisfies

Lo -N(qo,o).
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For notational covenience, denote qo by q and note that, in this notation, q must
satisfy

(8.2) LoII- N(boo,oo )"

Then, if qi, i- 2, 3, 4, 5, 6, are defined to be solutions to the problems

(8.3) Lo*,2- e-2’(N,o(oo, o, ) + N,o(01,00 )),

(8.4) L013 e-4ONlo(o, qol ),

Zob 14 -N(o0, qoo ),

-2wD((8.6) Loq,5-- e W,,(q0o,qo,)+N,,(qo, qoo)) and

(8.7) Lob,6 e-4’ON, (0, 0,)

respectively, we have

6

m=l

Equations (8.2)-(8.7) are quite similar if we multiply them by -1, -e2’,e4’D,
D, De2D, and De4’D respectively and absorb this expression into the unknowns q to
6, respectively. All the above expressions are special cases of the general equation:

(8.8)

where

N(oo, bol)

e_OOx3 eOX3

m= ,2,4
Klm Hc Kl lm Hc

eOX3 e-X3
K2om "c -l" K21m- e-Ox3 eOX3

--Kl2mX Hc +Kl3mX3 Trm
eOOX3 e-X3

" K22mX3 -c "[- K23mx3 He Trm

2 K3om Tr.,
m=0,2,4

2
m=0,2,4

0

KsomTrm

and, in the case of rolls,

Tro-1, Tr2-0, Tr4:cos2x,
or rectangles,

Tr- 1, Tr2 cos wx cos 0)X2 Tr =1/2(cos2ox + cos2ox2).
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Then as D varies, Kij remains constant. For example, if we consider (8.5), the
right-hand side of the equationis

I+ 0)3 X3e-x3
/--1/ Tr2 H

Nt(00 qoo)
/ +____1 0)3 Tr 2 x3ex3

/-1 H

+2 l+ 0)
2 2 e-X3

/_lt Tr H,.

-2+ 0)2Tr2 ex3

I-I H

SO Klom, Kt2m, K20m, and K22 for m-0,2, and 4 are the only nonzero coefficients in
N.

To be able to analyze the order of growth of H, it is necessary to know which of
the Kij are identically zero. This can be done by evaluating each of the right-hand
sides of equations (8.2)-(8.7). The results of these calculations are presented in Table 1.

TABLE

Coefficients Kij which are zero (0) or nonzero (-) in the operator N of (8.8).
KUm

Equation

(8.)
(8.2)
(8.3)
(8.4)
(8.5)
(8.6)

/jm--10m llm 12m 13m 20m 21m 22m 23m 30m 50m

0 0 0 0 0 0
0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0
0 0 0 0 0 0

Next, given the general expression for N, we can solve (8.8) for a function of the
form

f(q’, q)

wheref and g are determined by the boundary conditions,

t ( Plome-x3 at- PI lmex3 -i- el2mX3e-x3 nt- el3mA3e ) Trm
m=0,2,4

-k- ( Pl4me-l-x3 + P15meVX3 ) Trm -Jr- x3 P140-f- P150
m--2,4

e ome + + + )  rrm
m=0,2,4

-}- 2 ( P24mevx3 d- P25me-xf-x3 ) Trm -t- x P240 d- P2,o,
m=2,4

and

(/-- 1)He
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When L0 is applied to q and the result is set equal to N, certain coefficients, eijm,
can be found explicitly. It is not hard to see that

(Klom/Hc+(2i-1) 2K,2m/6O(m-1)Hc)
2(m-- 1)

Pilm--
(Kllm/Hc-(2i-1)2K3m/(m-1)Hc)

gl2m
Pi2m and

gl3m

o2(m-- 1)H,.

for i- 1,2 and m-0,2,4. The coefficients which are identically zero are given in Table
2.

The remaining coefficients are defined implicitly in terms of D, o and Kijm, i- 1,2,
j 0, 1,2, 3, and m--0, 2, 4, by the four equations that were not readily solvable. These
equations are linear in the unknowns eijm and, since the gijm’S are constant, the order
of growth of the numerator and denominator for each coefficient can be determined by
Cramer’s rule. The results of this process are given in Table 3.

For example, if we again consider equation (8.5), then -Pi44 and Pi54, i= 1,2, are
estimated from the following equation:

-20e-’2 0 20e’2 0 P144
0 2oe-’’2 0 -2oe’’2D P244
o 20 /o 2/o P154

K1--K2 KI--2K2 --KI--K2 -K1-2K2 P254

oe-’DPlo4 + 60DP194e-D
--oe-DP204+ oDP244e-D
Plo4-- PI24 +/xe204- 9P224
-gl(Plo4--P2o4)--g21Po4+ Po4--

where

and

K2 0 Hcoa"

If we write the above equation as

MP-R
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TABLE 2
Coefficients Pi7m which are determined explicitly to be zero (0) or nonzero (-).

Pijm

Equation

(8.1)
(8.2)
(8.3)
(8.4)
(8.5)
(8.6)

ijm=iOm ilm i2m i3m i4m i5m

0 0 0
0 0

0 0 0
0 0

0 0

TABLE 3

Order of growth of numerator and denominator of the implicitly determined Pijm coefficients.
Numerator/denominator, PIT,.

Equation

(8.1)

(8.2)

(8.3)

(8.4)

(8.5)

(8.6)

/jm= i40 i50 i42 i52 i44 i54

and denote the matrix defined by replacing the first column of M by the vector R by N,
then

detM-4o3gle4O’D[1 .+-/.te-4o,D(1--e-4o,D ) e-4,D]
>_203Kle4o (for sufficiently large D),

detN-O(e4D),
and

P144- O(1).
It is not difficult to use the growth conditions on the coefficients Pijm tO give growth
conditions on the functions (’,,0’/0X3,0/0X3, 02(’/0X and Oq,/Ox. These re-
suits are given in Table 4.

TABLE 4

The functions shown represent the lowest order terms in expressions for qm qlm their first and seconY.
derivatives with respect to x

0’/0x3

02b’/X2/

m=l 2 3 4 5 6

e- x3 e-oD e-3wD X3 93e-wD e- oD

D e

e-Ox3 e-OD eO(x3--2D) ---363 e-Ox3 e-oD ._.
e-WX3 eO(x3-2D) eO(x3-2D) X3 X3--e X3e(x3-2D) "-e(x3-aD)

eOX3 e-oD e-3toD reX3 etOX3 x3e-wD e-3D
D

etOX3 e-oD etO(--x3-2D) .--X3 eOX3 e-oD ._
etX3 et(-x3-2D) et(--x3--2D) 963D e ,ox3 x3etO(-x3-2D) __X3 eO(-x3-4D
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And finally, one last step is to estimate H. Recall H is given by

NI(o,! ) + NI ( 11, I}0 ) +N(o,o,o)]H,-

Write the functional[. as

[. [. ], +e-2’[. ]2
where

-e-X3Tr
eUX3Tr

+1 Tr
t- o H

wTr
2 Tr
-1

-eX3Tr
e-’x Tr

Tr
u’ - lZ o H

Tr
2Tr

/-1

and K is defined in [}4. Also, let [-] denote the limit of [. ] for infinite D. This limit
involves H,. approaching Hc, u* approaching u’ and the space in the x direction
becoming infinite. To obtain an estimate of H we write H as

NI(bo, bl ) + Nl(bl, bo )]I + N3(bo, bo, bo )]l
HI [L,o] + e-2D[Ll0]2

e-2[N,(tho,, ) + N,(,, o)]2 -t- [N(o,o,o)]2
L,tlio ], + e-2"D[ L,tko ]2

and proceed to estimate each of the above terms. For example,

[Lo]-

0
0

/_._0(_ 1)(1- e-2o) Tr

(/z+ 1) (1- ,-

0

Tr
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In this case, since lettingD o in [LIo0]I involves Hc--, Hc, it is easy to see that

,ol ,,/,oo1 + o(3--).

Similar estimates give

N,( dpo, , ) + N,(, O )] N,(oo,,o ) + N,(,o oo )] + O(De-2’D ),
IN,( qo,, ) + N,(,, qo )]2-- O(D ),

11 )[N(Oo,Oo,Oo)],-[N(Oo,Oo,o)]+0 5
[N(Oo,Oo,Oo)]-0(D),

[L,o], [L,qo1 +O(e-2"D),
[L,o]::0().

It should be noted that several of the above expressions involve integrating over an
infinite region instead of the finite region. Each time that this substitution must be
made, there are exponentials being integrated which preserve the desired order. There-
fore

H,=
[N’(’)] +O(1/D)--H, +O(1/D),

L,ool + O( e-2’D )

which is what we were to prove.
Let us now return to the calculation of the approximate stability criterion for

solutions in the form of rolls. Using the approximation made in Theorem 5, use the
following expressions to determine q. When we solve

L0,= -N,(q0,q0)

/+1 w3(1/-- H,.- --cos2ox e-

/+1 B(1-- He.- ---COS2WX e

oa2 )2
/,-1 4 (2(/*+1 -8ucos2oXl)
/,+ 1oa2{l_cos2,oxl
t*--I H

we get

r 4 (/,-- 1) e"x- + e’X+ I 3 e2Oax, COS2OOXl/,+1

/#o (/,- 1)
Zlz ’r 2 cs2oaXl"
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We then calculate H by the expression

(8.9) Hl U(oo, dpoo ) + U,( dplo,, oo ) + N3(oo, poo,oo )]o/[Ld?o]o
=H. /0 w 11 )2 25

4

where H,.2-2o(+ 1/(/- 1))-)(r///z0). Since Ha is greater than zero for all/, the
bifurcating branch is stable.

To this level of approximation we obtain

H’Hc+e2H1 and z,zo+e2za.

By combining these two approximations to eliminate e we find

where h--(- 1)2 +-.
This two-dimensional case has been considered in a previous article by Zaitsev and

Shliomis [6], who obtained different results. The brevity of their article makes a
comparison difficult.

9. Results--rectangles. In this section a class of perturbations is considered which
corresponds to a choice of R-[-,5][-,] and Tr=1/2 (cosox +cosox2). This is
the physically observable square relief pattern found quite often in the electrical
analogue of the ferrofluid problem. Again as in the case of rolls, H0 =0. Also, in this
case, H is extremely difficult to calculate. The proof that H is equal to Hl + O(1/D)
is the same, using Tr, as given above. Thus we again use the approximation that we did
in the case of rolls and calculate Ho instead of Ha.

With D infinite we find that

_/x+l’’o e-’x3 Tr, 0 eX3 Tr, Zo -1 "’HcTr"
When Lo- --Nll(O ooo) is solved, we find that

o (l- l) {1 -,ox3 ( e-,Ox
" 4

H (e 1)+
6(/x-- 1) + (4-- 3)]-

Tr

{’ (H,. -(e’x3- 1)+ e’X3+

+_1 ( e_,Ox_ 3--/+11
6(/-1) + (3-4)V/ eVC,ox3t Tre/+1

+- e’X+/x+le Tr4

/x0 (/--1)((5+4f-)Tr2+Tr4 }"r 4
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where Tr2--coswxlcosox2 and Tr4--1/2(cos2xl+cos2wx2). Then the appropriate
stability criterion H can be calculated using the form of (8.9), and we get

NXo o
Hloo Hcoo h

6#+1

where h- (36-4 +
In this case H1 is positive if # remains between approximately .69+ and 1.44+

where the branch is stable. Outside this range the branch is locally unstable. To this
degree of approximation the expression for z in the stable region is

(/+ 1)vC3- (_h)-,/ZTrz-
Hc

We note that the stability results for finite D would follow in an analogous
manner. However, the amount of work necessary is prohibitive.

No previous results for this case had been obtained.

10. Hexagons. In this section we consider the final class of perturbation relief
patterns" hexagons. Set R-((x,,x2)llx2_l<-2r/oCF, Ix,-Cx2l<-2r/o and IX1
+ v/-x21_<2r/lo) with Tr- 1/2(cos0(x +/3x2))/2+cosoa(x-vxz)/2+cosox. As
we shall see below, Ho is not zero in this case. Hence we have an analytic result and
need not resort to an order argument. We obtain

= -#Tr(e-3+
o-- Tr( eOX3 + e-o(2D+x3) ),

Zo= /x+. Tr(l+e-2).1H,.

If we define

Tro 1,

Tr Tr,

3ox O-X2
Tr3- cos 2 COST -1" ""cOS0V/X2’fTr4- cos lox coslo x2+ -cos2lox,

then

1(3 )Tr2-Tr2- -Tro+2Trl+2Tr3+Tr4

[vTr[
2 l2( 3 )- Tro/ Tr Tr Tr4

TriTrj- 0 for =/=j.
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Using these facts, in this case (8.1) can be simplified to

-[N(o o)]- /.t+l w2

18H k (1 +e-2’0)

( 22e-2’+ e-4’0

_8/toD(l_e_4,,,o) + +1 2,,,)2)P’-
(1 +e- Trdo.

Also

Hence

[Lo]_2 + w 2oD /R 2

H K(l-e- ) Tr do.

w [ +1H-- 3-cthwD 1-22e-V-"+e-4"-8/D(1-e-4")+/x- 1 (1 +e )

Since H0 is less than zero for large D, the branch is unstable. This agrees with the result
obtained by Kuznetsov and Spector [2] and Gailitis [5] who considered the case of
infinite D.

11. Summary. Under the assumptions applied in this article, we have proved in 6
that the operator F defined in 3 has, in addition to the trivial branch of solutions
(0,H), another branch emanating from (0,H). This branch is locally analytic, and
stability conditions along the branch are obtained in 7. These results agree with
assumptions made by previous authors who used fluids of infinite depth.

When the stability conditions were applied to three selected periodic forms, quali-
tative results were obtained. The simplest of the periodic forms to analyze, hexagons,
produced no local stable branch of solutions. The results have also been obtained
elsewhere with fluids of infinite depth.

The other two analyses required simplification of the equations. The resulting
stability criterion is equal to the desired stability criterion plus a term which is O().
The branch of the square periodic pattern of nontrivial solutions was found to be stable
or unstable locally as a function of the magnetic permeability. No previous results had
been obtained for this case. As for the rolls structure, the local branch was found
always to be stable in a neighborhood of the trivial solution. This disagrees with the
results previously reported in an infinitely deep fluid.

The major assumptions we have made for this analysis which apply to the physical
situation are the following. The trivial solution must be hydrodynamically stable; the
magnetic permeability of the ferrofluid must remain constant throughout the range of
the magnetic field strength under consideration; the fluid carries no electric charge; the
fluid has a large depth; the magnetic field is initially directed vertically, and all
solutions are static.
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A CHARACTERIZATION OF THE RANGE OF THE
DIVERGENT BEAM x-RAY TRANSFORM*

DAVID V. FINCH" AND DONALD C. SOLMON"
Abstract. In this paper we give a characterization of the range of the divergent beam x-ray transform

when the source set is a sphere. The result is analogous to the theorem of Helgason [Acta. Math., 113 (1965),
pp. 153-180] and Ludwig [Comm. Pure Appl. Math., 69 (1966), pp. 49-81] on the range of the Radon
transform.

1. Introduction. For aR and 0 S 1, the divergent beam x-ray transform of a
functionf from the source point a in the direction 0 is defined by

(1.1) 6af(O)-- f(aq-tO)dt.

Physically, one thinks of a as the x-ray source and as the direction of the photon
beam.

The main result of the paper is a characterization of the range of (R) when the set of
sources is a sphere. The characterization is similar to and is derived from the Helga-
son-Ludwig theorem on the range of the Radon transform.

2. The parallel beam x-ray transform. It is assumed throughout that f is a bounded,
open, convex subset of n-dimensional Euclidean space Rn, n >_ 2, with closure f. Unless
otherwise statedf is a square integrable function vanishing outside of f, i.e., f L(f).

The parallel beam x-ray transform of f in the direction 0 at the point x in 0+/- (the
subspace orthogonal to 0) is defined by

(2.1) of(x)--f(O,x)-- f(x+tO)dt.

(Here one can think of 0 as the direction of the photon beam and x as a point on the
x-ray film.) The parallel beam x-ray transform of a function f is a function of on
T(S"-I)--((O,x)’O_S"-I and (x,0)-0}. This may be identified with the tangent
bundle to the sphere. When n-2, apart from notation, the parallel beam x-ray trans-
form is the Radon transform.

Remark 2.2. In the initial device for computed tomography [4] a parallel x-ray
beam was used and two-dimensional cross-sections were reconstructed. In the second
generation of scanners two-dimensional cross-sections are still reconstructed, but a
two-dimensional divergent beam is used in place of the parallel beam in order to allow
faster scan times.

With the Fourier transform on R defined by

f()--(2"/r)-m/2f f(x)e-i<x’ti> dx
UR

one readily obtains the so called "central section theorem,"

(2.3) (of )^()-(2"tr)(l-n)/2f of(x)e-i(x’) dx

=(2rr)l/2f(), where (0,)-0.

*Received by the editors October 6, 1981, and in revised form March 4, 1982. This research was
supported by the National Science Foundation under grant MCS 8101586.

*Department of Mathematics, Oregon State University, Corvallis, Oregon 97331.
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The Sobolev space H’(R"), s_>0, consists of the measurable functions u on Rm

such that

The Sobolev space H’(T(S-)) is obtained by putting the Euclidean Sobolev space s

norm on each fiber, so that

IIg(O ")11 =- H’(o)dO.

The following result, wch for n 2 is contained in the theorems of Hclgason [1]
and Ludwig [7] on the range of the Radon transform and for n> 2 is contained in the
results of [11], will be needed. See also Helgason [2].

THEOM 2.4. The map @" L() H’/(T(S-)) is continuous and has a con-
tinuo inverse. Moreover, if g is a measurable function on T(Sn-) then g @ffor some
/ i/ana ont i/

(i)
() g(O, x)= 0 if the line through x in the direction 0 misses ,
(iii) for each nonnegative integer m and eachR and 0 with (0,)=0, Pm,o()

fo(X,)mg(O,x)dx is independent of the choice of 0 and the function pm()=Pm,o(),
which is therefore well defined on Rn, is a homogeneous polynomial ofdegree m.

Remark 2.5. The preceding result remains valid if L() is replaced by H(),
s0, prodded that H’t/(T(Sn-)) is replaced by H"+/(T(S-)). Here H()
consists of those functions in HS(R) wch vash outside of . Ts extension follows
immediately from Theorem 2.4 and the identity [10, p. 1256]

A being the operator of Calderon defined in terms of the Fouler transform by

(2.6)
and

2,n.(n- 1)/2

(2.7) [Sn-21= r((n 1)/2)
the surface area of the (n 2) sphere.

The Helgason-Ludwig theorem (n=2) plays a central role in the procedure of
Louis [6] for reconstructing a function from x-rays from a limited range of view.

3. Formulas. The set of sources for the divergent beam x-ray transform is taken to
be a sphere S with center at the origin and radius r>0. If B is the open ball in R" with
center at the origin and radius r, then we assume that f cB.

It is convenient to introduce the line integral transform

The following relations follow immediately from (1.1) and (2.1):

(3.2) eaf(Y)--@af N ) +a
(3.3) Eaf( O)=f(Ea),
where E is the orthogonal projection in R" on 0
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Several formulas will be simpler to state with the introduction of the operator

(3.4) af(Y)-f(a,Y)-Eaf(Y)l(a,Y)[[Y[ -.
By the assumption on f and the source set either (R)a f(0)=0 or af(--O)=0, SO here
the three operators (R), E, , are equivalent.

LEMMA 3.5. Let p be a measurable function of one variable. If p((a,))E[f[(a,O) is

an integrable function of a, then

(3.6) fs,P((a,f;))f(a,O)da-2rfR,P((x,))f(x)dx,
provided (0, ) O.

Proof. Let S+ (a Sr: (a, 0) >0} and write a x’ + (a, 0) 0 so that x’ Eoa.
Then da= r(a, 0) -I dx’. Now (3.3), (3.4) and the fact that Sr surrounds f shows that
the left-hand side of (3.6), with Sr replaced by Sr+ is equal to

Writing out o-)0f as an integral and applying Fubini’s theorem gives one half of the
right-hand side of (3.6). Adding the contribution from the lower hemisphere (computed
similarly) gives the desired result.

This lemma has several useful consequences, one of which is the analogue of (2.3).
LEMMA 3.7.

(2rr)-n/:ZL e-i(a,ti)f(a,O)da-2rf(),

provided (0, ) O.
Proof. Take p(t)= e-it in Lemma 3.5.
Remark 3.8. The Fourier transform formula above was first discovered in two

dimensions by K. T. Smith [9] by computing the Fourier transform of both sides of
(3.11) below.

Lemma 3.7, together with Semyanistyi’s formula [8,p. 61] for the Fourier trans-
form of even functions homogeneous of order -n,

(3.9)

lead to an inversion formula for the divergent beam x-ray transform. A different
derivation of the inversion formula and approximate inversion formulas more suitable
for numerical implementation are given in [5], [9].

THEOREM 3.10. Let c(n)= F((n+ 1)/2)/(2(n- 1)r(n+ D/2). Then

(3.11) f(x ) c( n )r-AfSrf(a ,x a ) da.

Proof. Let F(x)-c(n)r-fs,f(a,x-a)da. Since f(a,y) is even and homoge-
neous of order 1-n in the second variable, (3.9) gives



7"/0 D. V. FINCH AND D. C. SOLMON

This, together with Lemma 3.7, gives

(3.12) fi() c(n)r-(2cr)-n/:rrll-f[ e-i(a")f(a,q)dckda

e-i(a,6)f(a,ck)dad

the last equality following from (2.7). (Since f(a,x-a) is locally integrable and of
polynoal growth, so is its integral over S,. The interchange of Fourier transform and
integration in (3.12) is then justified since fs,f(a,x-a)da is a tempered distribution
which acts on test functions by integration.) The result follows from (3.12) and (2.6).

4. e Helgason-Ludwig theorem. For s0, the Sobolev space Hs’(SrXSn-I )
consists of the measurable functions u on SrX S such that fs- II u(. )11 H(Sr)dO<"
See [3,2.6] for a discussion of Sobolev spaces on manifolds. The Helgason-Ludwig
theorem for the divergent beam x-ray transform is the following:
TnoM 4.1. The map ’L()H/Z’(SrXSn-) is continuous and has a con-

tinuous inverse. Moreover, if h is a measurable function on S X S , then h- ffor some
f L() if and only if

i) hHI/2’(SrXSn-I),
ii) h(a, )-0 g the line through a with direction misses ,
iii) h(a,O)-h(b,O) gEoa-Eob,
iv) for each nonnegative integer m and each R and 0 with (0, )-0, qm,o()--

fsr(a,)h(a,O)da is independent of the choice of O and the function qm()--qm,o(),
which is therefore well defined on R, is a homogeneous polynomial of degree m.

Proof. From (3.4) and (3.3)

(42) I(a, 0 )l-l f(a, 0 ) -%f( Eoa ).
Since cBr, [(a, O)[- is infinitely differentiable and bounded on a neighborhood of
the support of Ef. This, together with the sontinuity of and its inverse mentioned in
Theorem 2.4, establishes the continuity of E and its inverse.

The necessity of i), ii) and iii) follows from (4.2), (3.1), and the above remarks.
The necessity of iv) is established by taking p(t)-t in Lemma 3.5.

To establish the sufficiency, first use iii) to define g(O,x) on T(Sn-) by

(4.3) g(O,x)-h(a,O), where x-Eoa.
CLAIM. There exists an f L() such that

(4.4) f(O,x) l(a, O >l-lg( o,x) ( r2-1xl2 )- /2g( O,x).
To establish the claim, we check the conditions of Theorem 2.4. Conditions i) and

ii) of Theorem 2.4 follow from (4.3), the fact that CBr, and conditions i) and ii)
above. To verify iii) in Theorem 2.4, proceed as in the proof of Lemma 3.5 to obtain

2rP,o(6)- 2r2(x, )mg( 0, X )( r2- Ixl=)  /=dx

fsr(a,)mh(a, O) da- qm,o()"
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So, condition iii) of Theorem 2.4 follows from iv) above. This establishes (4.4). Finally,
(4.3), (3.3) and (3.4) give that f(a,O)-h(a,O) completing the proof.

In light of Remark 2.5 the following extension of Theorem 4.1 holds. The proof is
identical.

COROLLARY 4.5. Theorem 4.1 is valid if L( ) is replaced by H(f), s >-- O, provided
that H1/2’(SrXSn-l) is replaced by Ht’(SrXSn-1 ) with t--s+1/2.
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ASYMPTOTIC INTEGRATION
OF ORDINARY DIFFERENTIAL EQUATIONS*

PHILIP HARTMAN

Abstract. This paper concerns asymptotic integration of nth order linear differential equations which are
perturbations of equations having constant coefficients and which have zero as a characteristic number.
When the unperturbed equation has no other purely imaginary characteristic number, Dunkel’s general result
has been successively improved by Hartman and Wintner and by Prevatt. A generalization of Prevatt’s result
is obtained when other purely imaginary characteristic numbers are present. It is also observed that results on
integration by Laplace-Stieltjes transforms suggest some questions about asymptotic integration.

1. Introduction. Let Q(h) be a polynomial of degree n with constant complex
coefficients,

(1.1) Q(,)-hn+an_ln-l + +ao, ao=/=O, n>--O.

Consider the linear differential equation
n+d--I d(1.2) Q(D)Ddu , fj(t)DJu, where D=-7, d>0,
j=0

and the coefficients f(t) are continuous complex-valued functions for large t. Suppose
that the multiplicity of any purely imaginary zero of Q(,))td does not exceed h (->d). It
follows from a theorem of Dunkel [2] (cf. [5, Chap. XI, pp. 304, p. 321 ]) that if

n+d--I

(1.3)
j=0

then, for fixed k-0,...,d-l, (1.2) has a solution satisfying u--.t k as tz. When
Q()) has no purely imaginary root (in particular, h = d), Hartman and Wintner [7] (cf.
[5, Thm. 17.3, p. 316]) have shown that even if the assumption (1.3) is relaxed to

(1.4) f
j--O j=d

for some a_>0, then, for fixed k-0,..., d- 1, (1.2) has a solution satisfying

(1.5) tJ-k+"D(u-tk)L for 0_<j<d,

td-*-l+DuLlNL for d<_j<n+d.

More recently Prevatt [9] has shown that, in this assertion, (1.4) can be further relaxed
to

j=0 j----k+
(1.6)

n+d--l

limsup ftt+ x Ifj(s)lds<eo,
t--, oe j d

where e0> 0 is a number depending only on Q(;k).
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The object of this paper is twofold. The first objective is to generalize Prevatt’s
result to the case when Q(,) has some purely imaginary roots; see Theorem 2.1 below
and the remarks concerning it. The second objective is to raise a related question which
unfortunately we shall have to leave open.

In order to state this question, we make some explanatory remarks. Prevatt’s result
was suggested in part by Hartman [4] where it is assumed that the coefficients f are
representable as Laplace-Stieltjes transforms of suitable functions and it is asserted
that (1.2) has solutions with similar representations. These results can also be viewed as
results in the asymptotic integration of (1.2). For example, if (1.2) is the equation

(1.7) (D-i)2Du=fo(t)u withfo(t)-t--, e>0

(so that h=2 and d= 1), neither the results mentioned above nor those below are
applicable. Nevertheless, it follows from [4] that (1.7) has a solution satisfying u- 1, tu’,
t2u"=o(1) as t--, o. The open question which I should like to pose is the following:
Can parts of the results of ], [4] be translated into a theory of asymptotic integration, free
of the theory of Laplace-Stieltjes transforms? I would guess that hypotheses in such a
theory might be of the type

n+d--I m

f= ta+klDkfj( )l dt<
j=0 k--0

for suitable a=a(j), m=m(j). (The part of Prevatt [9] on asymptotic integration and
the results below were motivated by this question.)

2. Notation and main result. Let Pro(h) be a polynomial of degree m with constant
coefficients having only purely imaginary zeros,

(2.1) Pm()) -)d I (,_i)p)k(p), 0-,o,21,"" ",k distinct reals,
#:1

(2.2) m-d+ k(,), d=/(0)>0, k()>0, _>0.
p:l

Let Q(X) be a polynomial of form (1.1) having no purely imaginary zeros,

(2.3) Q(i,)vaO for -<,<, degree a:n>_O.

We shall consider the linear differential equation
n+m--1

(2.4) Q(D)Pm(D)u- fj(t)DJu+g(t),
j=0

in which f, g are complex-valued functions continuous for large t, say >_ T (_> 1).
We deal with rn + factorizations of Pm into polynomials as follows"

(2.5) Pm(X)-pm-j(,)Pj(,) forj-0,. .,m,

where po(,) and the polynomials

(2.6) Po(’),"" ,Pm(’) are linearly independent

over the complex number field, 0_<degreePj_<m. These polynomials will be enu-
merated so that

(2.7) 0--< r(O) --<... _< r(rn) d,



774 PHILIP HARTMAN

where r(j) is the multiplicity of =0 as a root of P(,). Let h(j) be the maximum of
the multiplicities of the roots of pm-j(), so that

(2.8) O<_h(j)<--h (=max(d,k(1),...,k(r))),
The differential equation (2.4) can be written in the form

n--I m--1

(2.9t Q(D)Pm(D)u- j(tlDJem(Dlu+ j(t)Pj(D)u+g(t),
j--0 j--0

where qj,qj are linear combinations of the fk with constant coefficients. Our main
results will be stated in terms of (2.9), rather than (2.4).

Remark 1. The factorizations (2.5) can be chosen to satisfy

(2.10) P0-P0, Pm-Pm, P divides P+I, degreeP-j,
so that

h=--h(O) >-h(1) >- _>h(m)--0,
and to satisfy
(2.11) h-h(j)>-r(j)
forj-0,. .,m. In fact, if P0 -= 1, then (2.11) holds forj-0. For a given k, suppose that
P0," "’,Pk have been defined and satisfy (2.11) for j-0,...,k. If h-h(k)>r(k) or
h-h(k)>_r(k)=d, we can define P+=(X-iX*)Pg, where ,=iX* is any root of
P"-. If h-h(k)-r(k) (<d), then we can choose ,*---0 (i.e., r(k/ 1)--r(k)+ 1) if
and only if this makes h(k+ 1)-h(k)- (i.e., if and only ifX--0 is the only root of
pm-k of maximum multiplicity).

Remark 2. In particular, we can attain (2.5), (2.10) and (2.11) forj--0,.. -, m if the
polynomials =P0(,),.. ",Pm_d(k) do not vanish for X--0 (so that r(0)-- -r(m-
d)-0) and we choose Pm_d+j(k)--kJPm_d(k ) for j-- 1,.--,d (so that r(m-d+j)=j,
h(j)=d-r(j), and h-h(j)=h-d+r(j)>_r(j)). In this case, the conditions on qj. in
(2.17) in Theorem 2.1 become

m-d--1 k

(2.12) a+h-I ta+h-l-Jlbm_d+j(t)[zl
j--O j--O

Remark 3. In the case

(2.13) h-d>max(k(1),... ,k(-)) =x,
we can choose P(h)- hJ for j- 0,..., d- x and the other P suitably to satisfy (2.10)
and (2.11) for j 0,..., m. The conditions in (2.17) for j 0,-- -, k(<d- x) then be-
come ta+d-j- lj _.Z1.

Below Lp denotes the set of functions belonging to LP[ T, o) and L the set of
(continuous) functions in L tending to 0 as

THEOREM 2.1. In addition to the assumptions of continuity and notation (2.1)-(2.8)
above, let k be an integer,

(2.14)
(2.15)

(2.16)
(2.17)

0_< k_<d- 1, a_> O, c an arbitrary constant,

limsup ftt+’l.)l for O<_j<n,

th(j)-ljZ for O<_j<m,

t+h-r(J)-ltjL ifO<_j<_m and r(j)<_k,

(2.18) t+h--k--g(t)L
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where eo in (2.15) is a number depending only on the polynomial Q(,). Then (2.9) has a
solution satisfying

(2.19) t+h-hj)-kp(D)[u--ctk]L forO<_j<m,

(2.20) t+h-hJ)-k-lPj.(D)[u--ctg]L ifO<_j<mandh(j)<_a+h-k,

(2.21) t+h-g-IDJp,,(D)uLNL forO<_j<n.

Remark 4. The applicability of Theorem 2.1 may depend on the choice of the
factorizations (2.5).

Remark 5. The conditions (2.15), involving e0, are vacuous if n=0 (i.e., Q()= 1).
If n > 0, the existence of a suitable e0 is deduced below from a theorem of Schiffer [10]
on the persistence of exponential dichotomies under certain perturbations; cf. Step (c)
in the proof of Theorem 2.1 below.

COROLLARY 2.1. When the factorizations (2.5) in Theorem 2.1 satisfy (2.11)for a
given j, 0 <_j <_ m, then the corresponding assumption in (2.16) is implied by

(2.22) th-r(j)- j( ) L

(which is redundant if r(j)<_k by (2.17)), and (2.19), (2.20) imply that

t+)-kp(D )[ u-- ct k L,
(2.23)

for the given j.
In some cases, it may be more convenient to state results in terms of (2.4), rather

than its equivalent (2.9). Such a result is the following.
COROLLARY 2.2. In (2.1) and (2.4), assume that (2.13) holds with x>_ and that the

coefficient functions g andf satisfy (2.18) and

(2.24) ta+d-j-lfjL forO<_j<_k (<d--K),

(2.25) ta-J-fjL for k<j<d-x,

(2.26) tk-fj.L for d-x<_j<m+n.

Then, for a fixed integer k, 0 <_ k<d- x, and a constant c, (2.4) has a solution satisfying

(2.27) t+J-kDJ[u--ct] L7 forO<_j<d-x,

(2.28) t+d--kDuL for d-x<_j<n,
(2.29) t+d--k-lDuL for d-x<_j<n.

The proof of Theorem 2.1 below uses the contraction principle, so that the solution
u(t) can be obtained by suitable successive approximations. By using Tikhonov’s fixed
point theorem, it is possible to obtain an analogue of Theorem 2.1 for a nonlinear
equation:

(2.30) Q(D)Pm(D)u--(t,u,P(D)u,...,Pm(D)u,DPm(D)u,...,Dn-Pm(D)u).
THEOREM 2.2. In (2.30). let (t,z), Z’--(ZO,’’’,Zn+m_l) be continuous for large

and arbitrary z satisfying
n--I n--I

(2.31) I(t,z)l-< dpj(t)lZj+ml-+- pj(t)lzj[-+-g(t),
j=0 j--0
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where rkj>_O, />-0, g>_O are continuous for large and satisfy (2.15)-(2.18). Then (2.30)
has a solution u u( ) for large satisfying (2.19)-(2.21).

The proof of Theorem 2.2 will be omitted. It follows a variant of the proof of
Theorem 2.1 similar to those in [6] and [9]; cf. [5, pp. 441-447]. Tikhonov’s theorem
can be replaced in this proof by the contraction principle if, in addition to (2.31), one
assumes a Lipschitz condition of the form

n--I m--1

(2.32) Iqz(t,x)-ee(t,z)l< q,j(t)lxj+--z+l+ , @(t)lxj-zjl.
j=0 j=0

3. Proof of Theorem 2.1. We shall assume n>0. It will be dear that the proof can
be .simplified if n = 0. For in this case, Step (c) involving exponential dichotomies can
be eliminated and Step (d) only requires w B= rather than w B3.

In the differential equation (2.9), let

(3.1) U--V-I-Ct k

to obtain
n-I

(3.2) Q(D)Pm(D)v= , kj(t)DJP,(D)v+F(t),
j=0

where F(t) (t, v(t )),

(3.3)
m--I

(t,v,PI(D)v,’",Pm(D)v)- 2 tj(t)Pj(D)v+c
j=0

We rewrite (3.2) as a system of a pair of equations

r(j)<-k
/2( ) [ P.(D )t k] + g( ).

n-I

(3.4) Q(D)w= (t)Dw+F(t),
j=0

(3.5) Pm(D)v--w.

(a) The spaces BI,B2,B3. Let Bl be the Banach space of functions v(t)
C"-[ T, m) with norm

m--1

(3.6) }lvl[ , Ilta+h-h(J)-kPj(D)VllLg <.
j=0

Let B2 be the Banach space of functions F(t) such that ta+h-*-F(t)L with norm

(3.7) IIFII= = lit+h--’FIIv,
Finally, let B CB2 be the Banach space of functions w(t) C"-[ T, ) with norm

n-I

(3.8) Ilwll = I1+h--DjwllLmL’.
j=0

(b) The affine map TI’BB2, where vF(t)=(t,v(t)). For vB, the terms
t+h--tkj(t)Pj(D)v of ta+h-’-lF(t) in (3.3) are in L by virtue of (3.6) and (2.16).
Correspondingly, the terms t+h--l/j(t)[P(D)t] are in L, by (2.17) and
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tk-r(J)[Pj(D)tk]L. Thus FB2 when vB. It is also clear from (3.3) that for
t) I)2B1,

(3.9)

where

(3.10)
m--I
j=0

(c) The linear operator T2: B2 B3. Since n>0 and none of the zeros of Q(X) is
purely imaginary, it follows that we have an exponential dichotomy for the equation
Q(D)w=F(t) on any half-line t>_Tin the sense of [3]; (cf. [5, pp. 478-484]). It follows
from results of Schaffer [10] (cf. [8, 72A and 72C]) that there exists an e0>0 with the
property that if (2.15) holds, then we also have an exponential dichotomy for (3.4).
From this, it follows that there is a constant C23 =C23(’) for ,_>0 such that if
tVFL[T, oo), then (3.4) has a unique solution w=w(t) satisfying W(to)--0 for a fixed
to, tVDw(t)L NL forj=0,. .,n- 1, and that

(3.11) ilwll C=311FII.
if /=a+h-k-1. The correspondence Fw defines the bounded linear operator
T2:B2 - B3.

(d) The linear operator T3:B3- B. A basis for the set of solutions of P,,(D)v--0
are the functions tJexp(iXot) for j=0,..-,k(o)-1 and o=0,. .,z, where 0-0 and
k(0) = d. Hence there is a unique set of constants c such that

k(o)-

(3.12) Gin(t) c)tJexp(ihot)
o=0 j=O

is the unique solution of Pm(D)v= 0 satisfying

(3.13) v=Dv=... =D"-2v=0 and

For a given V->0, write G"-G+ G2mv, where
Dm-lv 1 at t-0.

(3.14)

It then follows that if vw L1, then

(3.15) v-f:G(t-s)w(s) ds-ftG(t-s)w(s)ds
is a solution of (3.5). In particular,

(3.16) ,>_h- =G(t)----O, G=--Gm,
and (3.15) reduces to

(3.17) v= Gv(t- s )w(s ) ds.



778 PHILIP HARTMAN

Note that, for suitable C and t_> T(_> 1),

(3.18) Ia,mv(t)]<-Cth-’ and ]a2mv(t)]<-Ct min([v]’h-l),
where [7] is the largest integer not exceeding 7.

If v is a solution of (3.5), then y--Pj.(D)v is a solution of Pm-J(D)y=w. Corre-
sponding to (3.15), (3.16) and (3.18), we have (for example, by applying Pj.(D) to
(3.15))

(3.19) Pj (D) v-- Gv-J(t-s)w(s)ds-- Gv-J(t-s)w(s)ds

(3.20) 7>-h(j)- Gv-J(t)=--O, Gv-J--Gm-j,

(3.2a) and [a-J(t)ictmin([v]’h(j)-l.).

For those j for which 7>_h(j) 1, it follows from (3.19) with G-J-0 that, if
tVwL, then

(3. II, ’-"’’’ + ’6( v -< cll,,wll ,,

(3.23) vll ,-< cll,,wll ,

for a suitable constant C.
For thosej for which 7<h(j) 1, it follows from (3.19) and (3.21) that

IPj.( D ) v( ) [<_ C( -(v-h(j)+ ) + IIs  w(s ) I1,’

Since the first exponent of is positive and the second nonpositive, we see from (3.19)
that v-hO)+ 1Pj.(D)v(t)L, and that (3.22) holds forj-0,. .,m- 1.

Hence, if 7--ct + h- k- in (3.22) and w B C B2, then (3.6) gives

(3.24)

for a suitable constant C31. The operator T3:B B is defined by wv, where v is
given by (3.15).

(e) Completion of the proof. The map S T T2 T B B is well defined and is
a contraction for large Tin view of (3.9)-(3.10), (3.11) and (3.24). If v=v(t)B is the
unique fixed point of S, then (3.1) is a solution of (2.9) satisfying (2.19) and (2.21). Also
(2.20) follows from (3.23). This completes the proof.

4. Proof of Corollary 2.2. Under the assumption (2.13), select the polynomials P
as in Remark 3, so that Pj.-2, for 0_<j_< d-x and Pj. has a factor d- for d-x <_j <_ m.
Thus h--d and r(j)=j, h(j)=d-j for O<_j<_d-x, while r(j)>_d-x, h(j)<_x<d-k
for d- x<j<_m.

If we rewrite (2.4) in the form (2.9), then we see that +j.--f for 0 <_j <_d-x and p is
a linear combination of fj.,.. ",fm+n-I for d-x<j<m. Thus (2.17) is equivalent to
(2.24), and (2.25)-(2.26) imply (2.16) (i.e., (2.22)) for d-x<j<_m. Also q,j is a linear
combination of fm+,’" ",fn/m--1, SO that (2.26) implies (2.15). Hence Theorem 2.1 is
applicable.

Since Pj.(D) D for 0 _<j_<d- x, (2.19) (i.e., (2.23)) implies (2.27). Also Pj.(D) is a
linear combination of Dd-, .,D for d-x<_j<_m, so that (2.19) implies (2.28) for
d- x_<j<m and (2.21) implies (2.28) for m_<j< n. Similarly (2.20) gives (2.29) for
d-x<_j<m and (2.21) gives it for m<_j<n.
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THE LOCAL GEOMETRIC ASYMPTOTICS OF
CONTINUUM EIGENFUNCTION EXPANSIONS

II. ONE-DIMENSIONAL SYSTEMS*

S. A. FULLING*

Abstract. For the solutions of a system of ordinary differential equations of the type "(x)+[E(x)+
pa](x)=0, where is vector valued and E(x) is an Hermitian matrix, we construct a phase-integral
expansion, valid as ]p[-, oo, of the form e/(x).-A(x)v(x), where v(x) is a unit vector and A(x) is a positive
number depending only on E and its derivatives at x. The terms in the series expansions of A(x) and of the
first-order differential equations determining v(x) can be obtained as elements of a matrix series N(x),
which relates the basic solutions to their derivatives. If E vanishes at infinity, initial data consisting of a basis
of eigenvectors of N(xo) are mapped by the phase-integral approximation into an orthogonal set of vectors at
x-- c.. It follows that the spectral densities (normalization factors) in the eigenfunction expansion associated
with the operator -d:/dx2- E(x) and the point x0, and hence the corresponding heat-kernel series, can be
simply expressed in terms of N(xo), in analogy to the scalar results reported in [this Journal, 13 (1982), pp.
891-912], The recursive calculation of the numerical coefficients in all these series can be efficiently
computerized.

1. A vectorial WKB expansion with local amplitude. Fr6man [5] has shown that the
best higher-order extension of the WKB (or phase-integral) approximation of the
oscillatory solutions of a second-order ordinary differential equation of Schr/3dinger
type is a form in which both the amplitude (modulus) and the phase (argument) are
taken to be power series in the expansion parameter. The amplitude function then turns
out to be a local functional of the potential function, as opposed to an expression
involving integrals ("secular terms"), and the phase function is proportional to the
indefinite integral of a power (-2) of the amplitude. (We consider here only regimes of
the independent variable and/or the expansion parameter which do not involve turning
points.) This feature entails a number of virtues: (1) The absence of secular terms
implies slower growth of the error in the approximation as a function of the interval
length. (2) The identification of the derivative of the phase as the natural frequency of
oscillation of the solutions near a given value of the independent variable (interpreted
as time) has played an important physical role in the quantization of fields in a
time-dependent background geometry [15], [8 and references therein]. (3) In Paper I of
this series [9], the WKB-Frtman expansion was shown to be a natural tool for
investigating the high-frequency asymptotic behavior of the spectral densities (normali-
zation factors) of the Titchmarsh-Kodaira eigenfunction expansion [see [9] for refer-
ences]. (This also has an intended application to general-relativistic quantum field
theory, this time with a spatial interpretation of the independent variable.) Indeed, the
spectral densities were seen to be intimately related to the WKB-Fr6man amplitude
function.

The present paper extends the conclusions of [9] to selfadjoint operators on
vector-valued functions--in other words, eigenvalue equations of the form

(1.1) m;(x ) =_ -q,"(z ) ( x ),;(x ) q,( ),
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tion and PHY77-27084 to the Institute for Theoretical Physics.
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address: Department of Mathematics, Texas A&M University, College Station, Texas 77843.
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where k belongs to the space C(R; C r) of smooth functions taking values in C r,
and E(x) is an Hermitian rr matrix. For this purpose a generalization of the
WKB-Fr6man expansion to ordinary differential systems (1.1) is needed. Presumably
such an expansion has many other potential applications. Some preliminary work in
this direction was published earlier [7], but the problem (1.1) is slightly different from
the one treated there (see Remark 1.2).

The expansion will be developed through two complementary formal approaches,
which eventually will merge into a rigorous asymptotic theory.

1.1. The logarithmic-derivative matrix. We begin with a formal ansatz’ Assume
that there is a matrix-valued function N(x) (dependent on p) such that

for all belonging to a certain space of solutions of (1.1), and that N has the
asymptotic expansion

(1.3) N... E P-Ns.
s=0

The scalar counterpart of (1.2)-(1.3) is the assumption that can be written as

(1.4) ,(x)--.exp ip
x

2 P-SNs(x’)dx’ (r=l)
X0s=0

(cf. [5, Eq. (2)]). By analogy with the scalar case, one anticipates that half (in the sense
of linear independence) of the solutions of (1.1) will belong to the space characterized
by (1.2), say withp >0, while the others belong to the other sign of p.

Substitution of ( 1.2) into (1.1) yields

(1.5) pZ(1 -N) + ipN’ +E=0,
or, with insertion of (1.3),

(1.6) 1-- X X P-SNtNs-t+i X P-N;-I+P-E:O.
s=O t=O s=

Setting to zero the coefficient of each power of p we obtain recursion relations which
define the formal series (1.3).

The first three recursion relations are

(1 .Ta) No= (the identity matrix),
(1.7b) NoN +N No= N[
(1.7c) NoN:+NzNo= iN{- NZ+ E.

There is a no loss of generality in satisfying (1.7a) by

(1.8a) No--- 1.

(Choosing No to be some other square root of the identity would merely associate with
p some solutions of (1.1) which are more naturally associated with -p.) We then have
from (1.7b,c)
(1.8b) U =0,

(1.8c) Nz-1/2E.
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The higher-order recursion relations can now be written as

s-,2NtNs_t,(1.7d) Ns--N’_,--
t=2

One obtains

E(1.8d) N3-

E" 2(1.8e) N4- ( -+-E ),

(1.8f) Ns-- 16 (E(3)+ZEE’+ZE’E)’

(1.8g) N6 2 [E(4, -- 3EE’-t- 3E"E -Jr- 5(E’)2 -- 2E3],and so on (see Tables 2 and 3).
Now recall what happens [5] in the scalar case (r-1). The N for even s--2n

reduce to the quantities Y described in [9, Thm. 4.1]. Moreover, (1.2) has the closed-form
solution (1.4). Finally, the N for odd s are derivatives of local functionals of E"

(1.9) iN2n+,-- - (ln Y)[n (r-- 1),
where the (In Y)12n are defined by

(1.10) In p-2nY2n(X ) p--2n(lnY)12n(X)
n--0 n----0

(cf. [5, Eqs. (5)]). This allows (1.4) to be rearranged into the form

[ x

(1.11) q(x)-, Y(x)-’/2exp ip foY(x’)dx’
Y=-- , p-2nY2n (r-- 1)

n-0

(cf. [9, Eq. (4.4)]). Thus the expansion factors into a phase factor of modulus and an
amplitude which is a local functional of E; this is the property which we wish to
generalize to the vector case.

1.2. The polar decomposition. That goal is reached most easily by starting over and
developing the expansion in a different way. Let .,. ) denote the standard inner
product on C , taken to be linear in the right-hand variable"

(1.12) <k,)- -The following are easily verified [7, 2]"
LEMMA 1.1. Let /(x) and #,(x) be solutions of (1.1) with p2 real and E selfadjoint.

Then the generalized Wronskian

(1.13)
is independent of x.

LEMMA 1.2. Any nonvanishing C r-valuedfunction has the decomposition

(1.14) /(x ) -A(x )u(x )e is(x),
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where u(x) is a vector satisfying

(1.15) (u,u)=l, (u,u’)=O
for all x, and A(x)>0 and S(x) are real.

COROLLARY 1.1. For given by (1.14), one has

(q,+’)-(+’,/)--2iS’A2.

Therefore, if q solves (1.1), S’ is proportional to A .
Taking

(1.16) S(x)=p A(x’)-dx
in (1.14) and substituting into (1.1), one obtains the equation

U(1 17) (1-A-4)u+2ip-lA-2u’+p-2 E+ u+2 +u -0,

which, together with (1.15), is equivalent to (1.1). If u is a unit vector in C r, then uu*
is the orthogonal projection operator onto u, and

is the projection onto the orthogonal complement of u. We split (1.17) into components
parallel and peendicular to u:

(1.19) A2-A-+p-2[ ( E ) A +AA" +A ( u,u")] -0,

(1.20) u’ ip- Aa’u’ + eu+ u")].
In (1.19) the notation (M) is introduced for u, Mu), for any matrix-valued function
M. So far, no appromation has been made.

Remark 1.1. If one sets A B, (1.17) becomes

u

+2p- +p -0.

Any nonzero, power of A may be expanded as an asymptotic series like (1.21), with
entirely equivalent results. The choice of is a matter of convenience. If --, the
expansion reduces when r= to the formalism of [5] and [1] (with B= Y). The choice- - is most closely related to the treatment in [7].

Now introduce the ansatz

(1.21) A(x) E P-SAs(x),
s--O

(1.22) u’(x) Z P-sU’ls(x).
s--O

In deriving recursion relations for the A and u’[s, u itself (undifferentiated) is to be
treated as formally independent of p. Truncated at any finite order, (1.22) will become
a nonlinear differential equation for an approximate u(x) which satisfies (1.15) exactly.
This is the closest analogue for vector functions of the representation of a scalar
function as the exponential of a power series, as in (1.4). Since the A and u’[s generally
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depend upon u, each term of the derivatives of the series (1.21) and (1.22) will itself be
a power series. This makes the calculations cumbersome. Since a tremendously more
efficient algorithm will emerge in 1.3, only enough steps will be carried out here to
demonstrate how (1.19)-(1.22) do determine a series in principle.

When (1.21)-(1.22) are substituted into (1.19)-(1.20), the zeroth-order equations
yield immediately

(1.23) Ao= 1, u’10=0,
and the equations of orderp- and p-2 then become

(1.24) A-0, A2=-(E),
(1.25) U’] -- aEu,

and

( 1.26) u, Qu"= ,--O[u’l’Oll / u’l 10]- au’l 10.
What is u’l 10? From (1.25) and (1.18) one obtains

u’l] =- (QE’u+ aEu’-u’ ( u,Eu ) -u ( u’,Eu ) ),

(1.27)

hence a sequence of equations of which the first two are

u’l ,lo Qe’u,

(1.28)

= (QF aeu- aF u(R)u*eu + u,u*eaeu)

EQEu+= -- Q(E2-EQE)u.
(The second step in (1.28) uses (1.25); the third step uses (1.18). By systematically
eliminating u(R)u* in favor of Q, one obtains formulas for A which obviously reduce to
the corresponding expressions from the scalar theory (where A-- Y-/2) when Q=0.)
Now (1.27), (1.26), and (1.19) yield

1
(1.29) u’[2- -QE’u, A3-0,

and (1.28) and some further calculations in the same vein lead to

(1.30) u’13- -Q(E" +E)u,

(1.31) A4--2 (2E"+5E2-3EQE )
A by-product of the calculation of the A coefficients by (1.19) is a list of the expansion
coefficients of YA-Z:

(1.32a) Yo- 1, Yu- ( E ),
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(1.32b) Y Y3 =0,

E" 2(1.32c) Y4- - ( +E ).
Remark 1.2. An expansion of the type constructed here was outlined in [7, 5] for

an equation of the form

(In the vector case, such an equation cannot generally be transformed to the form (1.1);
contrast [9, Remark 4.2]). In [7] the matrix M(x) was assumed independent of p, but
the treatment can easily be generalized to a matrix with an asymptotic series

M,-Ep-M.
s=0

The present situation is then the special ease

Mo=l, M2=E, M,=0 if s=/=0,2.

1.3. Fusion of the two approaches. Since the derivative of (1.14) is

(1.33) ’-- ( ipA- ’u +A’u+Au’)e’s,
consistency of (1.2) with (1.14)-(1.16) requires

(1.34) u’ = ipQNu,
A’(1.35) A-2- ip- -- (N )

Since iSNs is selfadjoint, these equations lead to

(1.36) u’l,=iON+u,

(1.37) A-21 Y- 0,
s even,
s odd,

(N+1 ), s even,(1.38) (lnA)’ls-
0, s odd.

Our previous results, such as (1.32), verify (1.36) and (1.37). The expansion of A (or any
other power of Y) can be obtained from that of Y by the binomial series. The relation
(1.38), suitably rearranged, provides an alternative method of finding the expansion of
A’, or a check on the calculations; (1.38) is, of course, the r-dimensional analogue of the
crucial equation (1.9) of the scalar theory. Incidentally, (1.36) and (1.37) explain the
"miracle" that formulas for u’[ and Y never contain the projection Q in their "inter-
iors". (Contrast ( 1.30) and (1.32c) with ( 1.31).)

TEOgEM 1.1. The differential equation

"(X ) -- E( x ) -- OO2] I(x ) O

possesses, in a neighborhood of any point xo where the coefficient matrix E is C, a basis
of 2r solutions, each of which is asymptotic as w +o to an expression qno of the form
(1.14)-(1.16) ( p o for r solutions, o for the other r), where A and the derivative of u
are given by truncations of series of the form (1.21) and (1.22). That is, in the 2-norm on
C r,

(1.393)
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(1.39b)

uniformly on finite intervals of smoothness of E. In particular, if E is everywhere C and
has compact support, then (1.39) holds uniformly on R. Every solution can be approxi-
mated by a linear combination of these 2r expressions. The coefficients in the expansions
can be calculated by the algorithm expressed in (1.8a, b, c), (1.7d), (1.36), (1.37). Thus
every solution is approximated by a sum of two terms, each satisfying (1.2) for one choice
of sgnp.

Proof. (1) The recursion relations stemming from (1.19)-(1.22) can always be
solved, and A is always real. (This is clear from (1.19), since

(1.40) (u,u")= --(u’,u’)
by (1.15).) Since A0 1, when w is sufficiently large

will be defined and asymptotically calculable by the binomial series. (If E and its
derivatives are unbounded, such manipulations may not be valid uniformly in x, and
one has a "turning point" problem. When E C, that can’t happen.) Also, (1.22)
(truncated) always has r linearly independent solutions for u locally, and since u is
confined to the unit sphere, which is compact, these solutions extend to the entire
interval of R considered. Thus the 2r expansions exist.

(2) Let H,---d2/dx2-E-to2. By construction, each expression +.o satisfies

Ho+.o- O(-2no) if enough terms are included in the series. Let be a true solution
with initial data at xo agreeing with q.o there, at least up through order 2n o. Then the
bounds (1.39) follow as in [6, [}5]: One has

II/no(X)-+(x)ll<_o(o-"-)+fXllG(x,x’)ll. O(,-:’o)dx ’,
Xo

where G,0 is the (retarded) Green matrix for the inhomogeneous system H, q J; but it
is shown in [6] that

(1.41) a,oll- 0(,,- 1), O( too ).

In general the error terms in (1.39) grow as Ix-x0] if E and its derivatives are
bounded; when E, hence HPno, has compact support, the error bound is uniform in x.

(3) Given the validity of the expansion based on (1.19)-(1.22) and the formal
consistency and uniqueness of the approach based on (1.2)-(1.3), it is clear that the
latter is also valid and related to the former by (1.34)-(1.38). The two final claims of
the theorem follow.

Remark 1.3. As in [9, Cor. 4.1], if E C the reflection and transmission coeffi-
cients vanish to all orders of the WKB approximation.

2. Inner products of basis elements. Consider now a smooth potential of compact
support on . Let (u,(o)} be an orthonormal basis for C r, and consider the evolution
of u(x) to finite values of x under (1.22). Subscripts will be minimized by adopting the
Dirac notation

(2.1) (alfl)--(u,(x),u(x)), (alfl’)=(u,(x),u(x)),
(,IM(x) IB ) --(u.(x),M(x)uB(x)).
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Although (ala)- for all x by definition (1.15), it is not true that (alfl)-O if
a :/: fl" Solutions which start out orthogonal in need not remain orthogonal. To see
this, recall (Lemma 1.1) that k, q) q, ka) is a constant, which is 0 if q, +a) 0
outside the support of E. If + and qtt are of the form (1.14)-(1.16), one has

(2.2)

+=(( <<ln’) ( <’ln ) )}
If (alfl) were zero for all x, it would follow that (alfl’) (a’lfl)-0. On the other
hand, it would also be true that (aifl)’- (alfl’) + (a’ifl)- O, and hence that (aifl’) -0
-(a’l/7 ). But that, of course, is generically false, since u(x) is in general a nonzero
vector orthogonal to u(x).

Nevertheless, the u can be chosen so that (asymptotically) {u(x0)} is an ortho-
normal basis of eigenvectors of the Hermitian part of N(xo). The calculations which
show this appear rather "formal", since the series (1.3) which would define N usually
does not converge. They are to be interpreted as shorthand for order-by-order recursive
relationships among the terms of asymptotic series.

One can derive a differential equation which is satisfied up to the appropriate
order by the inner product of any two solutions of truncated equations (1.22). By (1.34)
we have

( IB )’- ( lit’) + ( ’IB ) ip(( alOnNIB ) ( alN*Q.IB )),
from which we note in passing that (aifl)’ is of order O(p-l) by virtue of (1.8a, b) (or
(1.23)). Using (1.18), this is reduced to

(2.3) (,I>’-ip((,IN*I,>-(INI>)(,,I>/iP(,,I(N-N*)I).
On the other hand, it is easy to show from (1.5), (1.34), and (1.18) that

< alNIB )’- ip <
+ ip (( alN* a > ( BINIB )) ( alNIB >,

and hence the matrix element of (N+N*) satisfies a homogeneous variant of
(2.3)"

(2.4) ( aiifl )’- ip( ( aIN*la ) ( flINlfl ) ) ( allfl )
Outside the support of E, N(x) reduces to the identity. Therefore, if (alB)-0 at, then (allB)-0- at , and hence at all x because of (2.4). As a corollary (or by a

parallel argument) one has

(2.5)
for all x, if (
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Now let ua(x) be an eigenvector of/(x0), and suppose that the eigenvalue is
nonzero (as will certainly be the case if to is large enough). Then (al/3) at x0 is a
numerical multiple of (al(x0)lB), and it follows from the preceding paragraph that
(alfl) 0 at oe if and only if (alfl) 0 at xo. (At intervening values of x, (alfl) may be
nonzero.) Therefore, if we choose {u(x0)} to be an orthonormal basis of eigenvectors
of the Hermitian matrix/(x0) (truncated), then the corresponding vectors (u(oe)}
will also be orthonormal (up to the order of the approximation). By Remark 1.3 (or by
symmetry) the same is true of (u(- oe)}.

3. The mean spectral measures. In [9], the local spectral asymptotic problem for
an arbitrary selfadjoint operator that looks locally like H (1.1) was reduced to a
scattering problem for H, where E C. In terms of continuum eigenfunctions q,o
normalized at oe according to [9, (4.1)], H has a spectral decomposition given by [9,
(4.2)] or, ,equivalently (cf. [9, (4.6)]),

(3.1)

(There is an implicit tensor product in the left-hand side of (3.1). Recall that
ol .) Spectral densities are defined by

(3.2) d. ( X;x0 ) =-’0( ;x0 )

THEOREM 3.1. Let H be a selfadjoint operator in an r-dimensional vector bundle over
a one-dimensional manifold M, with the local representation

d 2

14 e(x)
dx2

in a neighborhood of an interior point xo where E is C. The spectral densities of H
relative to xo have mean asymptotic expansions

(3.3)

(3.4)

(3.5)
where

(3.6)

oOO(xo)(Xo)-,
IoIO(Xo) to]Q(Xo)]Q(Xo) -1 i00l to]Q(Xo)- l]Q(Xo),

o"(Xo)[(Xo)+(Xo)(Xo)-’(Xo)],

even

--(v-v,) -i E
odd

andN is defined in 1.1.
Warning to physicists. N* is the adjoint, not the complex conjugate.
Remark 3.1. The last two sentences of [9, Thm. 4.2] apply here as well.
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Proof. (1) If M=R and E has compact support, the form of in the limit of
large to is given in Theorem 1.1 and Remark 1.3. Thus (3.1) is

(3.7) r-|o(xo)dto----dEx(xo,Xo)

=+/- [ oo(xo  . o(xo (R)uoo(xo 2r ot--I

2+a_0 u_oU_o*] d.

By (1.37), A is an even function of w, and in fact A-(alexia)-. (Recall that the
terms of Nv wch are even under Hertian conjugation are precisely those wch are
even in p.) The point of 2 is that {u(x0)) can be chosen to be a basis of
eigenvectors of (xo), consistently with the orthonormalization at required for (3.1)
to be correct. Then (3.7) becomes

(3.8) (Xo)- (l(xo)l)-u(Xo)U(Xo)*,

which is recognized as the spectral decomposition of the matrix fi(x0) -l. Thus we
arrive finally at the basis-independent formula (3.3).

(2) The other densities are obtained by differentiating (3.1) before setting x=y=xo
(see [9, (3.1)]). But by (1.2) we have

(x) ipN(x)pa(X ), p*(X ) ipp*N(x )*.

In p0 and p0 the sum over p selects the anti-Hertian part of N, and formulas
(3.4) result. In p we encounter the combination

N-N: +N_-N (+i)-(-i)+(-i)-’(+i)
=2(+-),

whence (3.5).
(3) As explained in [9], the general case can be replaced by a locally equivalent

scattering operator of the type just treated. The expansions (3.3)-(3.6) are valid (unless
x0 is an endpoint of M or a point of singularity of E) in the "mean" or "effective"
sense: They correctly reproduce purely locally deterned entities such as the heat-kernel
expansion (e.g. [11], [12]) and the short-distance dNergences of Green functions (e.g.,
[4], [0]).

In the scalar case we have

(y-l)’/y-’)Q= 2--
(see (1.35), or (1.37) and (1.9)). Thus (3.3)-(3.5) are consistent with the results [9, (4.9),
(4.13), (4.14)].

4. Computational considerations. The number of terms (linearly independent
monomials in the noncommuting variables E,E’,...,E(n), ) in the asymptotic for-
mulas for N, p’k, and the heat kernel

(4.1) K(t,Xo,Xo).-(4rt)-m/Ean(Xo)tn
n
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increases rapidly with order. ("Order" is defined, as in [9, Thm. 3.2], to be the sum of
the differential order of each factor, plus twice the number of factors; for example, N6

(1.8g) consists of terms of order 6. In the expansion of a quantity such as N or 01, the
terms multiplying a given power of the expansion parameter are of a fixed orderme.g.,
a in (4.1) is of order 2n. Typically the terms are all even-order or all odd-order and are
reindexed accordingly.) Hand calculation soon becomes time consuming and error
prone, and even listing the results in print presents practical difficulties beyond a
certain point. These effects are even more noticeable for the heat-kernel expansion on a
manifold of dimension m> 1; a practical barrier has been reached at around orders 4
and 6. See Table 1.

TABLE
Number of linearly independent terms potentially contributing to N2n, On or a (order 2n)

m-----l, m--l,
n r--l, r>l m>l re>l*

reference [1],[9] Table 2 [l l] [3]

2 2 2
3 4 4
4 7 9
5 12 21
6 21 51
7 34 127
8 55 322
9 88 826
10 137 2135

2 13
8 100

46

Background metric (used to define curvature and covariant derivatives)
4: metric determined by principal symbol of operator.

For the terms of simplest structure, E(s-2) and Es/2, it is easy to determine the
coefficients once and for all as a function of the order, s ([1], [12]), and this could
probably be done for some other classes of terms. It is clear, however, that a complete
solution in closed form of the recursion relations is unlikely to be achieved, since new
types of terms arise in each order, and even to devise a convenient notation, or labelling
scheme, for all the possible terms is a nontrivial problem in higher dimensions, where
contractions over tensor indices are involved. Furthermore, it should be remembered
that recursive schemes are often more efficient in practice than evaluation of explicit
combinatorial formulas; the usefulness of Pascal’s triangle for the binomial coefficients
is a familiar example.

Beyond the lowest orders, therefore, resort to machine calculation is inevitable.
Not only is a computer needed to obtain the coefficients in the first place, but also one
anticipates that in most applications of such lengthy lists of numbers, it will be better to
generate them by subroutine within the computer program which uses them, rather
than to copy them out of published tables.

The computation of the one-dimensional expansions, defined in the present paper,
at orders > 8 provides an instructive exercise preliminary to attacking the more difficult
higher-dimensional problems.

Previous computations of this nature (e.g., [1], [7]) have made use of general-pur-
pose algebraic symbol-manipulation programs such as FORMAC, TRIGMAN, and the
current favorite, MACSYMA. These require entire algebraic expressions to be entered
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into and processed by the computer. The author’s experience [7] has been that the
machine’s memory capacity is exceeded within very few orders beyond the limit of
feasible hand calculation. It seems more sensible to develop programs specifically
adapted to these rather specialized and (once the theory of each series has been worked
out) stereotyped calculations. As much as possible, the machine should manipulate lists
of coefficients instead of whole expressions. Because of the recursive structure of the
computation, a programming language that admits recursive subroutine calls is highly
desirable.

In addition, in the project reported here an "analytic" approach (as opposed to
"synthetic") was adopted: The program was written to calculate, as a self-contained
problem, the coefficient of a single given monomial in the expansion of a given
quantity, by enumerating all possible ways in which a term of that form could arise in
the synthetic calculation of the entire expansion. For example, to calculate the coeffi-
cient of E in N6 (see (1.8g)) from (1.7d), one first finds all occurrences of E in N
(namely, none), and second considers all ways (namely, two) in which E can be
writtten as a product of two terms, one of order and one of order 6-t; then the
coefficients of those terms in N and N6_ are found (by recursive subroutine calls) and
multiplied. Each expansion is regarded as a function with the monomial as argument; a
conveniently coded representation of the monomial (e.g., 0-1 for EE’) is the argument
passed to the subroutine. The attitude taken here was that the highest priority was to
hold intermediate storage and recovery of data to an absolute minimum. This method is
probably not the most efficient for producing a list of all coefficients of several
successive orders, since coefficients of low order are not saved after output, but must be
recomputed in finding those of higher order. However, this technique would be pre-
ferred in an application where only certain coefficients are relevant--or whenever
memory is at a premium. Note also that there are tricks for calculating certain classes
of coefficients by examination of special cases [12], [13]; a program of the type
described can be used in a complementary way to calculate the remaining coefficients
efficiently.

The computations were done on a small computer (VAX-11). The programming
language used is named "C" [14]. The algorithms will now be described briefly.

The first step is to generate a list of all possible terms of a given order, encoded as
described above. This was quite routine in the one-dimensional case. This input file (or
its even or odd part) is passed through the programs which calculate the coefficients for
N, 00, 10, 0, and 0 1.

It is convenient to introduce for the terms in the asymptotic series the notations

(4.2a) N + E P 2-7_ Ns,
s--2

(4.2b) pOO.. 1+ 0
-2n p00,

n--I

OO

(4.2c) O’ to-2"
(- 1) 0;,1

n=l 2:Zn

(and similarly for 0
1 ),

(__1) n-’
(4.2d) pll,,2_t._ o92-2n

22n-1
i0.11

n=l
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Then the coefficient of each monomial in N or O,Jg is a positive integer. The fundamen-
tal recursion relation (1.7d) becomes

s-2

(4.3a) Ns-_ I-F 2 NtNs-t (s>2).
t=2

As described previously, the program calculates the coefficient of a given s th-order
monomial in N by calculating its coefficient in each term on the right-hand side of
(4.3a) and adding the results. Next, according to (3.3), we must obtain 0 as the matrix
inverse of the even part of N; that is,

2,,-n=l

(-1)" n, (_ 1)’-’
N2n-’k" 22n_ IDn00 + 22n--2m=l

whence

n--I

(4.3b) 0 N2,,+2 2 oo 0)NzmP_m (n>
m=l

This relation can be programmed similarly to (4.3a). (Of course, the recursion relations
for # have an explicit solution in the form of a geometric series in 1-/, but
evaluating the terms of that series in practice turns out to be virtually equivalent to
working with (4.3b).) The formulas (3.4) and (3.5) for the other 0

jk series require merely
multiplication of known matrix series, and the order-by-order formulas have a structure
quite similar to (4.3b):

n--I

(4.3c) #o_ N2,,+, + 2 ] N2._2m+ llOmO0,
m=l

n--I

(4 3d) ion01-N2n+,+2 2 oo
lO N2n-2m+ 1,

m--I

n-2

(4.3e) p’- N2n -+ 2 ] ,o
iO N2._2m_ 1, (n>0).

m=l

In evaluating the sums in (4.3b-e) it is necessary to check each possible factorization of
the monomial for proper parity of the orders of the factors.

The VAX was able to compute all coefficients through order s= 14 before time
became a problem. The results through s---10 are presented in Tables 2 and 3. (They
extend (1.8) and generalize the formulas for the commutative case in [9, [}4].) Orders
11-16 and program listings are available on request.

The relation between the spectral density p00 and the heat-kernel expansion (4.1) is
stated in [9, Thm. 3.1]. Combining [9, (3.11)] with (4.2b), one finds that the coefficient
of each term in a, is obtained by dividing the corresponding number in Table 2 by

(4.4a) h=-- 2"- (2n 1)!!,

(4.4b) h,, 2(2n 1)h,,_,
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(Table 4). For example,

(4.5) a4--g (E6+7(EE4+E4E)+ la(E’E3+E3E’)

+ 21(E")2 + 21(E2E"+E"E2) + 28EE"E

+28[E(E’)2+(E’)2E] + 14E’EE’+35E4)
(cf. [12, Thm. 2.2]).

TABLE 2

Coefficients of terms of even order, s-- 2 n (*--adjoint of term= reversedfactor ordering.)

Term N 0 0

Order 2 (1 term):
E

Order 4 (2 terms):
E"
E 3

Order 6 (4 terms):
E(4)

EE" + 3 5 3
(E’) 5 5 7
E 2 10 2

Order 8 (9 terms):
E(6)

EEt4) + 5 7 5
E’Et3) + 14 14 16
(E") 19 21 19

E2E + 9 21 9
E(E’) +, 18 28 22
EE"E 12 28 12
E’EE’ 14 14 26
E4 5 35 5

Order 10 (21 terms):
Et8)

EE(6) q- 7 9 7
E’EtS) + 27 27 29
E"E(4) q- 55 57 55
(EO)) 69 69 71
E2E(4) +, 20 36 20
EE’Eta) + 68 96 72
E(E") -t- 102 150 102
EEO)E + 80 108 88
EEt4)E 30 54 30

E’EE0) + 48 48 64
E’)2E + 140 150 158
E’E"E’ 162 162 202
E"EE" 62 78 62
E3E + 28 84 28

E2(E’)2 + 60 126 70
EZE"E/ 42 126 42
EE’EE’ + 56 84 84
E( E’)ZE 76 168 84
E’E-E 42 42 98
E 14 126 14
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TABLE 3

Coefficients of terms of odd order, s 2 n + 1. (The coefficient ofM =--AB in po
equals that of M* BA in 01. In N the coefficients ofM and M* are equal.)

Term N 010
Order 3 (1 term):

E’
Order 5 (3 terms):

E(3)

EE’ 2+* 2 4
Order 7 (8 terms):

E(5)

EE(3) 4 + 4 6
E’E" 9+* 11 9
EZE 5+* 5 15
EE’E 6 10 10

Order 9 (21 terms):
E(7)

EE(5) 6 + 6 8
E’E(4) 20 + 22 20
E"E(3) 34 + 34 36
EZE(3) 14+ 14 28
EE’E" 38 + 42 56
EE"E’ 42 / 42 70
EE(3)E 20 28 28
E’EE" 28 / 42 28
(E’) 60 70 70
E3E 14 + 14 56
E2E’E 18 + 28 42

TABLE 4
Denominators of the heat-kernel expansion

n h

2 6
3 60
4 840
5 15,120
6 332,640
7 8,648,640
8 259,459,200
9 8,821,612,800
10 335,221,286,400

It is not claimed that the most efficient way to calculate the pjk is to obtain them
from N (i.e., the phase-integral expansion) as has been done here. The DeWitt-Chris-
tensen-Perelomov algorithm [4], [2], [16], similarly mechanized, would give the expan-
sions of the heat kernel and its derivatives (hence 0Jk) more directly. The methods of
[12], [13], when applicable, are even quicker, but it is not always easy to find such a
method to determine every coefficient of interest. The method of the present paper is
certainly feasible, however, and has the conceptual advantage of demonstrating the
close connection between the spectral asymptotics and a phase-integral approximation
of independent interest.
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GLOBAL PROPERTIES OF PROPER LIPSCHITZIAN MAPS*

B. H. POURCIAUf

Abstract. Equations of the form f(x)=y, where f is a locally Lipschitz continuous map from R into R n,
arise naturally in the study of nonlinear electrical networks and integrability questions in mathematical
economics. In such contexts, properties of the image f(Rn) become important. In this paper we use a
generalized set-valued derivative and a special degree function to study the ontoness and interiority of locally
Lipschitz continuous maps.

1. Introduction. Equations of the form f(x)=y where f: R -- R arise in the study
of nonlinear resistive and dynamical electrical network equations. If f is onto, these
equations are solvable for every input signal y, and if f is one-to-one, the solution signal
x is unique. Since state equations for dynamical systems come from inverting resistive
equations and Lipschitz continuity makes the differential equations uniquely solvable,
it is natural to suppose f is locally Lipschitz continuous. Facing researchers in electrical
network theory then is the problem of determining global mapping properties of locally
Lipschitz continuous mapsf: Rn R". For example, look at Chua and Lam [3], Fujisawa
and Kuh [11], Haneda [13], Kawamura [15] and Kojima and Saigal [16]. The same
mathematical problem is met by economists investigating integrability questions and
the existence and uniqueness of equilibria in competitive economies. Read for instance
Arrow and Debreu [1 ], Berger and Meyers [2] and Dierker [9].

In Pourciau [21], [22], [23] global properties of locally Lipschitz continuous maps
are studied using a generalized set-valued derivative. The present work continuous that
study.

Let us say f: R" R" is Lipschitzian if it is locally Lipschitz continuous: each point
has a neighborhood U and a constant M such that If(x)-f(z)l <_Mix-z for all x and
z in U. By a deep theorem essentially due to Rademacher (see Federer [10]), the Fr6chet
derivative f’(z) of a Lipschitzian map of finite-dimensional spaces exists almost every-
where (). Here stands for n-dimensional Lebesgue measure. The generalized deriva-
tive Of(x) of f at x is the set

("1 c--(f’(z)" [z-xl<6,f’(z) exists}.
8>0

The notation co means the closure of the convex hull. For details concerning this
generalized derivative and its many pleasant properties (chain rules, inverse and im-
plicit mapping theorems, necessary conditions in optimization theory and so on) peruse
Clarke [7], where the generalized derivative was first introduced, Hiriart-Urruty [14] or
Pourciau [20].

A few of these properties should be recorded here. For any x, 0f(x) is a nonempty,
convex, compact set of linear maps (or matrices if you prefer). As we shall be extending
certain results for C maps, it is crucial to us that 3f(x) reduces to the singleton
{ f’(x)} whenever f is continuously differentiable on a neighborhood of x. Another
result vital for the present study is the following extension of the classical (C) inverse
function theorem. Consult Clarke [8] or Pourciau [20] for the proof. We call f(x)
invertible provided it contains only invertible linear maps.

Received by the editors September 21, 1981.
Department of Mathematics, Lawrence University, Appleton, Wisconsin 54912.
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INVERSE MAP THEOREM. 4 Lipschitzian map f having an invertib[e generalized
derivative Of(x) at every x is a local homeomorphism.

2. Global properties. Information about the generalized derivative will enable us
to predict global mapping properties for Lipschitzian f. For continuous f: R"- R" it is
well known (see Hadamard [12] and Palais [18]) that f is a homeomorphism if it is a
proper local homeomorphism. (We say f is proper when f-I(K) is compact for all
compact sets K. In finite-dimensional spaces, this is equivalent to requiring that If(x)l
o if Ix[--, oe.) In view of our inverse map theorem, we have
THEOREM A. A proper Lipschitzian map f:RR is a homeomorphism if the

generalized derivative Of(x) is invertible at every x.
In applications to electrical network equations, one often meets Lipschitzian maps

whose generalized derivative is invertible off some (usually "thin") set S. Either one
knows Of(x) is singular (that is, contains a singular linear map) on S or one knows
nothing about Of(x) on S. Under these conditions, which global mapping properties of
f remain? From Plastock [19] (see also Church and Hemmingsen [6]), f is a local
homeomorphism at x if f is a local homeomorphism at each point in a punctured
neighborhood of x. This hands us

THEOREM B. A proper Lipschitzian map f:RR is a homeomorphism if the
generalized derivative Of(x) is invertible everywhere off a discrete set S.

In applications, unfortunately, when S is not empty it is usually not discrete either.
It is safe to assume, though, that S has measure (/) zero. Moreover, in applications to
electrical network equations and economic equilibria the maps f often satisfy a sign
condition on the determinants of the derivatives, a condition generally at least as strong
as this:

CONSTANT SIGN PROPERTY. For all x in R and all A in Of(x), detA is nonnegative
nonpositive ].
With this in mind, we shall prove the theorem below. Whyburn [25] calls f quasi-interior
if y lies in the interior of f(U) for every y and every open U that contains a compact
component of f-(y). To see related results for C maps, consult Church [4], [5],
Plastock [19] and Sternberg and Swan [24].

THEOREM C. 4 proper Lipschitzian map f: R R having the constant sign property
is onto and quasi-interior if the generalized derivative is invertible off a set S of measure
(l) zero.

3. Lipschitz degree. The proof of Theorem C (below in {}4) will call on properties
of Brouwer degree for continuous maps and a degree function for Lipschitzian maps
introduced in Pourciau [22]. If V is a bounded open subset of R, if f: V--,R is
continuous and if y is not in f(bdy V), then the Brouwer degree degn(f, V,y) is defined.
For the definition and properties of the Brouwer degree, read Lloyd [17]. When f is C
and f’(x) is invertible for each x in P-(x V:f(x)-y}, then P is discrete, by the
classical (C l) inverse function theorem, and hence finite, since is compact. In this
case there is a pleasant formula for the Brouwer degree:

degn( f, V,y) I sign detf’(x),

0 if P is empty.

This formula motivates the definition of a degree function for Lipschitzian f.
When f is Lipschitzian and Of(x) is invertible at each x in P--(x V:f(x)=y}, then P
is discrete, by the inverse map theorem (1), and hence finite. For any x in P, the sign
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of detA is then constant as A runs through Of(x). In this case we define the Lipschitz
degree off on V with respect to y"

deg( f V,y) { E
xP

0

sign det Of(x),

if P is empty.

In Pourciau [22] it is shown that degB- degL whenever the Lipschitz degree is defined.

4. Proof of Theorem C. We begin with an observation: if for some 37 we find that
degB(f, F,f)v0 whenever F is an open ball containing f-l()7) and centered at the
origin, then f is onto. To see this, choose any y in R and let 3’ stand for the line
segment connecting 37 to y. As f is proper and 3’ is compact, f-(3’) is compact. We can
therefore find a ball F= {x: Ixl<8} containing f-(3’). Now by the homotopy invari-
ance of degree, if 3"(t)-(1-t)+ty for 0_<t_<l, then degs( f, V,y)-degs(f, V,3"(t))

degs(f, V,)7) v 0. By properties of degree this impliesf(x)=y for some x in V, sofis
onto.

Thus to prove the first assertion of Theorem C, that f is onto, we must produce
such a point )7. Since S has measure (/) zero, the generalized derivative Of(x) must be
invertible at some ft. By the inverse map theorem, the image f(R) must then contain
an open set W. Now f(S) has measure(/x) zero, for S has measure(/) zero and f is
Lipschitzian, so there is some )7 in W that is not in f(S). Then f-(fi) is nonempty, and
it is compact because f is proper. Suppose V is any open ball centered at the origin and
containing f-1(). As )7 is not in f(bdy V), both degs(f, V,)7) and degL(f, V,37) are
defined. We have

degB(f, V,fi)= deg(f, V,f)-- E signdet 0f(x).
x @f- 1()7)

Because f(x) is invertible for each x in f-(f), sign det 3f(x)4:0 for these x. But then
the constant sign property implies the sum

sign det f(x )
xf-l(fi)

is nonzero. Thus degn(f, V,fi)v 0, and this completes the proof that f is onto.
Now we show that f is quasi-interior. Choose any y in the image f(R) and

suppose C is a component of f-l(y). Because f is proper, C is compact. Let U be an
open set containing C. We can then find a bounded open set V containing C with
VC U and f-(y)bdy V-- . Now the Brouwer degree deg(f, V,y) is defined. By
the properties of degree and the properness of f, there is an open neighborhood W of y,
disjoint from f(bdy V), on which degs(f, V, ) is constant. Since f(S) has measure(/)
zero, we can choose some which is in W but not f(S). Then deg( f, V,) is defined
and

deg( f, V,) degL( f, V,) E sign det f(x ),
xP

where P= {x V:f(x)--). Notice P is nonempty becausef is onto. As the generalized
derivative Of(x) is invertible for each x in P, sign det Of(x) is nonzero for these x. But
now the constant sign property implies the sum

sign det 0f(x)
xP
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is nonzero. Therefore degB(f, V,)4:0. Yet degB(f, V,-) is constant on IV, so
deg(f, V, w) :/: 0 for all w in W, and this implies WCf(V). Thusy lies in the interior of
f(U), which tells us f is quasi-interior.

5. Remark. The proof of Theorem C presented here depends on the interior of
f(S) being empty. The assumption/(S)=0 ensures that the interior of f(S) is empty,
but this assumption may be unnecessary. Said differently, if f: RnR is Lipschitzian
and S--(x: Of(x) contains a singular linear map), must the interior of f(S) be empty?
This is a Sard-like question. The answer to the C-analogue is trivially yes: if f is C
and T=(x:f’(x) is singular}, then the interior of f(T) is empty, indeed f(T) has
measure (/) zero, because

/.t[ f(T )] -fdetf’(x) d/t( x ).

When f is Lipschitzian, this argument still works to tell us f(T) has measure(p) zero,
yet it tells us nothing about f(S). Of course, S-T when f is C 1, but not when f is
Lipschitzian.
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MEAN CONVERGENCE AND INTERPOLATION IN ROOTS OF UNITY*

A. SHARMA AND P. VERTESI$

Dedicated to Professor I. J. Schoenberg on his 78th birthday

Abstract. In 1940, Lozinski [Mat. Sb. (N.S.), 8(50) (1940), pp. 57-68] showed that if f(z) is analytic in

tzl < and continuous in Izl-< 1, then the Lagrange interpolants to f in the nth roots of unity converge to f(z)
in the p-norm on the circle as n---, , p>0. Here we provide a different proof of this result and extend a
recent result of Saff and Walsh [Pacific J. Math., 45 (1973), pp. 639-641] in the same spirit.

Key words. Lagrange interpolation, mean convergence, roots of unity

1. Introduction. Let Sn--(Zln,Z2n,’’’,Zn, n) denote a set of n points for each
positive integer n and let Ln(f; z) denote the Lagrange interpolation polynomial for a
given functionf(z) defined on Sn. Then

where o(z)--II’(z--zk,,). In 1937, Erd6s and Turhn [4] showed that if S2,+l
{2kr/(2n+l),k-O, 1,...,2n} and if IZn+l(g;O ) is the unique trigonometric poly-
nomial which interpolates a real 2r-periodic continuous function g(O) on $2,+, then
Izn+ (g; 0) converges to g(O) in the sense of mean square convergence. Later Erd6s and
Feldheim [3] showed that even more is true if Sn is the set of Chebyshev abscissas and
f(x) is continuous on [- 1, ], viz.,

(2) fl [f(x)_L.(f;x)lp dx
-0

-! /1--x2

In 1964, Walsh and Sharma [11] gave an analogue in the complex plane of the
1937 result of Erd6s and Turhn. An extension of this to analytic curves with an
extensive bibliography is due to J. H. Curtiss [5]. More general results, however, had
been given much earlier by S. Lozinski [6] and Y. Alper [1].

Recently Saff and Walsh [10] have extended the result of Walsh and Sharma [11]
to functions which are meromorphic in [z < 1, and continuous in [z _< with precisely v
poles in Izl < 1, If rn,(z) is the rational function of type (n, ,) which interpolates f(z) in
the n + ,+ roots of unity, they show that

(3) f lf(z)-   (z)l ldzl--o.
For a detailed bibliography and general results on a real interval we refer to two
significant papers of R. Askey [2] and G. P. Nevai [9]. There has been a recent revival
of interest in such problems (see Varma and V6rtesi [12]).

*Received by the editors September 8, 1981, and in revised form December 9, 1982.
University of Alberta, Edmonton, Alberta, Canada T6G 2HI.

*University of Alberta, Edmonton, Alberta, Canada T6G 2H1. The research of this author was sup-
ported by the National Research Council grant 3094.
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The object of this note is to provide a different proof of the general result of
Lozinski [6] by the method of Erd6s and Feldheim [3]. We extend this result to linear
operators which were studied by Motzkin and Sharma [8]. We also give a generalization
of (3).

2. Statement of results. We shall prove
THEOREM 1. Let f(z) be analytic in Izl<l and continuous in Izl <_ 1. If Ln(f; z)

denotes the Lagrange interpolation polynomial of degree n- which interpolates f(z) in
the n roots of unity, then

(4) n--,olim fclf(z)-L(f;z)lPldz[:O, p>O,

where C is the unit circle Izl 1.
COROLLARY. Let 21,22, ,Z be v (not necessarily distinct)points in [zl< 1. Iff(z)

satisfies the conditions of Theorem and if L")(f; z) is the polynomial of degree n-
which interpolates f(z) in (n-v) roots of unity and in the points z,z2,. .,z, then

lim fc[f(z)-L(f;z)lPldzl=O.n--.

For a given integer r, consider the linear operator Ln, r(f; z) given by

n--1

(6) Zn,r(f;z)-- E f(ok)lkr(Z), n--1
k--0

where

o(r+ l)k zn--r 03k(n--r)
(7) lkr(Z)"-

n zmo3
k

These operators were studied by Motzkin and Sharma [8] in connection with polynomi-
als of best approximation on the roots of unity. For r--0, leo(Z ) is the fundamental
polynomial of Lagrange interpolation of degree n- given by (10).

We shall prove
THEOREM 2. Iff(z) is analytic in Izl < and continuous in Iz[ <_ 1, then we have

(8) noolim fclLn,r(f;z)-f(z)lPldz[--O, p>0.

THEOREM 3. Iff(z) is meromorphic in Izl < and continuous in Izl <_ with precisely v
poles in Izl < 1, tet f; z) denote the rationalfunction of type ( n, v )

r.,.(f;z)--p..(z)/q..(z), qn( Z ) monic,

which interpolates f(z) in (n + v + 1) roots of unity. Then

(9) lni_+rn f;z)l"lazl=o, p>O.

Remark. For p 2, (4) was proved in [11] but the general case had been proved
earlier by Lozinski [6]. An independent proof of (4) for Jordan arcs with p= 2 was
given by Curtiss [5], but the general case was done earlier by Y. Alper [1]. Formula (9)
was proved for p--2 by Saff and Walsh [10].
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3. Some lemmas. The fundamental polynomials k(Z ) of Lagrange interpolation
on the n roots of unity are given by

(10)
z"-I ok

Z--O)
k n

We shall prove
LEMMA 1. If v,li (i- 1,2,...,s) are 2s distinct integers <n, then we have

(11) fclpi( Z )’’" lps( Z )/1( Z )’" ls( Z ) IdZl---" O.

From (10) and (11), we get
COROLLARY 2. If 0 <_ 0< 2r and if

sin(no/2) 2kcr
(12) tk(O )- sin((O_ok)/2), Ok: (k--O, 1,’." ,n-- 1),

n n

then we have

(13) tvi(2rt 0)’’" tv2s(O)dO--O Pl =/&P2 =/=’’" =/=P2s.

This corollary follows immediately from (11), on observing that for z-ei, and
off e ion, we have

l,,( z ) ei(n- 1)0/2 ei"/2 sin(n/2)
n sin((O-O,)/2)

Proof ofLemma 1. Since r 4 vj, #j, we have

-i elk Ak--fiH;(7-’-Ovk) k=l Z--OOv j=l
jk

Ov bovj ) 1.

It follows that

(14) j=I lvs( z ) g(zn-1)s-1 inS_ Ak60--Vklvk(Z),
k=l

Similarly, we have

(15) I lp,j(Z)--boU(zn-- |)s-I
j’- n

Bk-’lk(z )’
k=l

where

Bk---I (Wg-- wgj) -1
j--1
jk

It is known [11] and is also very easy to verify that

(16)
0,

fc  (z)  (z)tdzl-
n

I =/= v
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Since

where

and since

(zn__l)S-l(zn--1)s-’--
s-1

X CkZkn
k-----(s-- 1)

it follows from (16) that

(17)

Formula (11) follows from (14), (1 $) ad (17).

4. Proof of eorem 1. In order to prove (4), it is enough to prove

(18) 2i 0,

where r is any positive integer. If P,_ (z) is the polynoal of best approximation to
f(z) on C, set

A(z)=f(z)-P,_(z) and maxlA(z)l:E,_( f ).
Izl

Then from a known inequality [13, p. 93, formula (10)], we have (with Idz] dO),

<- f la(z)l "aO+

Moreover, we have

_< 22"-12r(En_ l(f))2" +2’-lfclL,,(A;z)12"dO.

n--1

k=O

where

n--1 ]2X A( ok )eiOk/2tk( O ) S,2, n( O ) + S:2, n( O ),
k=O

n--I n--I

Sln(O)-- X 24ktk(O), S2n(O)-- E Oktk(O)
k--O k=O
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and

A,- Re A( tok )eik/2, Bk--ImA(k)e’Ok/2.

For k-0, 1,. .,n- 1, we obviously have IAgl<-En_l(f), Hence we
have (by 13, p. 93, formula (10)]),

fclgn( A z )12rdO<__2r- fc[Sln( O )12rdO-ff 2r- lS2n( O )12rdO.

Here the relations

Jirno fo2’lSgn(0)12"d0-0 (k= 1,2)

follow mutatis mutandis from the reasoning of ErdOs and Feldheim [3] on using
Corollary 2 and the fact that

n--I

(19) 2
k=O

which can be verified from (12). This completes the proof of Theorem 1.
Proof of Corollary 1. If p(z) is the polynomial which interpolates f(z) at z, set

F( z ) [ f( z ) --p,( z )]/II( z ),

Then F(z) is analytic in Izl < and continuous in [z[ 1. If Pn_(z) is the polynomial
which interpolates F(z) in (n- r) roots of unity, we have from Theorem

lim LlF(z)-P._(z)ledO-O,n--- oo

which yields

dO-O.lim
If(z) -p.(z) II(z. )Pn-.(Z)I

Since L(f)(f; z)=p,(z)+ II,(z)Pn_(z ) and since II(z) is bounded on C, we have (5).

5. Proof of Theorem 2. It follows from (7) that

k 2k o)rk
lkr(Z)--lko(Z)----zn--l--Zn-2

n n nzn--r

where lo(z)-l(z) is given by (10). Since

n--1

zn-v-- E oP(n-)lpo( Z ),
p=0
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we have

__1 dk n__,l oOP(n--V)lp0(2)n
v=l p=O

n--I

pr pO\Z),
p=0

where

(20)
1__

r

pr

ifp-k,

k-p) ifpvak.

From (6), we then have

(2)
n--I n--I n--I n--I

Ln, r(f;z) E f(okllr(Z) X f() E a()tpr ’p0k Z) E prlpo(Z),
k=O k=O p--O p=O

where

n--I

(22) pr
k=0

It follows from (20) that Iflp, ri<_2maxl)q. Since Ln, r(f; Z)--f(z)if f(Z)is a polynomial
of degree _<n- r- 1, we can follow the method of {}4 to complete the proof of Theorem
2.

Remark. A slight variation on the above proof depends on the following estimate,

(23) fclvlr(Z) lvsr(Z)lglr(Z)’’" l.,r(z)ldzl-O(n-Z).

The proof of (23) can be given on the lines of the proof of Lemma 1, but is more
tedious.

Proof of Theorem 3. If f(z) is meromorphic in [z[< and has precisely v poles
al,a2,. .,a in [z[< 1, then following Saff and Walsh [10], we set

k

Qo(z)- 1, Qk(z)-jl-I1"= (z-aj), <_k<_v,

q.(z)-Q.(z)+ a(n)Qk_,(z).
k--I

In fact, limn_oa(")-0. For large n, Saff and Walsh have shown that there exists
number a(") such that Q.(z) divides L.+(qnQf; z). Then

Fnu(Z) Ln+v(q.Qf; z)/(qn(z)Qu(z))
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is a rational function of type (n,,) for large n. From Theorem 1, we have for k--
l,2,...,,+

lim fclL,,+,(Qk_,Q,,f;z)-Q,_lQ,,f(z)l’dO-O,n-- oo
p>0,

so that since

fclL,,+,,( q,,Q,,f z) q,,Q,,f( z )ldO

e0

k=l

the result follows immediately.

6. Final remarks. If we consider the trigonometric interpolatory polynomials
I2,,+l(g,O ) based on the nodes 2kr(2n+ 1) -l, k-0, 1,.-.,2n, using Corollary 2, (16)
and again the reasoning of [3], we can prove

TgOlN 3. Let g(O ) be any 2e-periodic continuous function. Then

1,i_. fo=llz,+,(g,O)-g(O)lPdO-O, p>O.

Theorem 3 was first proved by J. Marcinkiewicz [7]. Our proof is different from
his.
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TURAN INEQUALITIES FOR ULTRASPHERICAL
AND CONTINUOUS q-ULTRASPHERICAL POLYNOMIALS*

JOAQUIN BUSTOZ" AND MOURAD ]2. H. ISMAIL"
Abstract. Paul Turhn discovered that Legendre polynomials satisfy the inequality

P2-P,+IPn_1>O for -l<x<l.

It was then discovered that such an inequality holds for Jacobi polynomials, generalized Laguerre polynomi-
als, and Bessel functions. In this paper we prove that the continuous q-ultraspherical polynomials satisfy this
inequality also.

Writing Fff(x)= P’(x)/P’(1) where P(x) is the nth ultraspherical polynomial we prove an inequality
similar to the above,

<--fl<--a+l.(n+I)FFnO_,-(n-1)Fna+,Fn#_2>O, 0<x< 1, i<a

1. Introduction. It is well known that the classical orthogonal polynomials, as well
as Bessel functions, satisfy inequalities of the form Q2_ Q,+ Q.-1 >0 on the spectral
interval. An inequality of this type is called a Turhn inequality after Paul Turhn who
first observed it in Legendre polynomials. A somewhat similar type of inequality was
studied by Bustoz and Savage in [3], [4]. These inequalities involve two parameters. For
example, if P(x) is the ultraspherical polynomial defined by

(1-2xz+zZ)-’- E P’(x)z"
n=0

and if F’(x ) P2(x)/P’(1), then the following inequalities hold:

(1.1) F2rf+l-r,"+lrf>o, <x< 1, --1/2<a_<fl_<a+ 1,

(1.2) FFf-F+IFf_I>O, -1 <x< 1, -1/2<a_<fl_<a+ 1.

Note that (1.2) reduces to the usual Tur/m inequality when a- ft. In this paper we will
prove another inequality along the lines of (1.1) and (1.2), namely,

F. Fn#_2>0, 0<x<l 1/2<a<fl<a+(1.3) (n+l)F’rf_, (n 1),+1
Notice that the indices in the second term of inequalities (1.1), (1.2) and (1.3) differ by
one, two, and three respectively. It is worth noting that there can be no similar
inequality with the indices differing by four or more since the roots of the polynomials
will no longer interlace.

In 3 and 4 we will prove a Turhn inequality for the continuous q-ultraspherical
polynomials. The proof runs along the lines of a proof by Otto Szgtsz [9] for the case of
ultraspherical polynomials. The continuous q-ultraspherical polynomials have a long
history dating back to Rogers and Ramanujan and have been studied recently by Askey
and Ismail [1], [2]. The polynomials are defined by the recursion

Co(x;fllq)-l, Cl(X;fllq)--Zx(1--fl)(1--q) -1,
(1 qn+ )Cn+ l(X; fllq ) 2x(1 flq" )Cn( X; fllq ) (1 fl2qn- )c._ l(X; fllq )"

Received by the editors October 20, 1981, and in revised form January 29, 1982. This research was
partially supported by the National Science Foundation under grant MCS-8002539-1.

Department of Mathematics, Arizona State University, Tempe, Arizona 85287.
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The inequality to be proved is

( fl 2q ) ( flq -1) - (1-nE2n(X))E2n(x)-En+l(X)En_l(X )

1/2 1/2_<(1 q)(flq2 q) (q;q)-, Ix[--<-( +fl ), 0<q<fl<l
(qfl2;q)n(fl;q)n-I

where E,(x)-(q; q),C,(x; fllq)/(fl2; q),. We shall always assume 0<q< 1.

2. Positivity of S.(x;a,l)--(n+l)FF_l--(n--l)F+F_z. We will need the
following identities. These identities and their proofs may be found in Rainville [8].
Usually we will suppress the independent variable and write Fx for FX(x).

(2.1) ( n + 2X )FnX+ 2( n + , )xFX nFX_ n >_ 1,

where Fox- 1, Fx- x,

(2.2) (I-xZ)(FX)’-n(F,X__,-xr,X), n>_ 1,

(2.3) (n+2X+ 1)(1-x2)FX+-(2X+ 1)(FX-xFX+), n_>0.

We will say that the roots of two polynomials A(x) and B(x) interlace if between
every two roots of A(x) there is precisely one root of B(x) and vice versa.

LEMMA 2.1. If Sn(x; a, fl) > 0 for 0<x< then the roots ofF and Ff_2 interlace.
Proof. Let x>x2>..- be the positive roots of Ff_ 2. Then Sn(xj;a, fl)-(n+

1)F(xj)Ff_l(X). Since sgnFf_l(X)--(--1)J and S,(x;a, fl)>O we have that
sgnF(xj ) ( 1)J.

LEMMA 2.2. Let

Then

(n- 1)(2+a--fl)
(n- 1)(2+a--fl) +2a+

d [(1 X2 a+l/2(2.4) xx ) S,(x;a,fl)]

Proof. Solve for nF,X_ in (2.1) and replace in (2.2) to get

(2.5) (1-x2 )(Fx )’-(n+ 2,)(xFX-FX+ ).
Using (2..2) and (2.5) we find after simplifying (1-xZ)s-(2a+ 1)xSn+ 2[(fl-a-2)n
+ 1-a-fl](Fna_l-CnxFna_z)F+l This is equivalent to (2.4). [2

LEMMA 2.3.

S,(x;a,a+2)>0 forO<x<l, a>-1/2,n-2,3,....

Proof. When fl-a / 2 then C,-0 and (2.4) becomes

(2.6) -x 1-x ) S,(x;a,a+2 --2(2a+ 1)(1-x2) n--I n+l"

According to (2.6) S,(x; a, a + 2) is positive in (0, 1) if S,(x; a, a + 2) is positive at the
roots of F__+2- 0 and E -0. We consider two cases.n+l
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Case 1. Suppose Fn._+l2 0. In this case S, (n 1)F+ F+ Replace , by a + 2
and n by n- in (2.1) and use the fact that F__+I2 -0 to get

Fff+2 n+2a+3 Fna+ 2

n-1

Hence at points where F_+l2 -0 we have

(2.7) F..a 2S. (n+2a+3).+,F+

Applying the identity (2a + 1)F- (n + 2a + 1)F+t nxF__+ twice we get

(2.8)
(2a+ 1)(2a + 3)r’+,-(n+2a+Z)(n+2a+4)rd’++(-(n+ 1)(2n + 4a + 5)XFn+.

Replacing , by a + 2 and n by n + in (2.1) and using the fact that Fna_+12- 0 gives

(2.9) Vna++l2 2(n + a + 2)x Fna+ 2

n+2a+4

Replacing (2.9) in (2.8) finally gives

(2 10) FY -(2a+3),+ (n+Za+3)xF,+2
Then replacing (2.10) in (2.7) shows that S,(x; a, a + 2)>0 at the roots of F_+- 0.

Case 2. Suppose F,+ 0. In this case S, (n + +1)F, F,_ . From (2.3) we have

(2.11) (n+2a)(n+2a-2)(n+2a-1)(1-x2)2F_+2

(2a + 3)(2a + 1)[(n + 2a- 1)F,%- (2n + 4a- 3)xF].
Since Fff+ 0 it follows from (2.1) that F,% (2(n + a)x/n)F, and hence (2.11)
becomes

(2.12) n(n+Za)(n+Za-Z)(n+2a-1)(1 x2)2F_+12
(2a+ 3)(2a+ 1)[(2a+ 1)n + (2a--1)a] xFff.

Hence S,-(n+ 1)FffFff_+l2 is of the form S,-Anx(F_+I2)2 with A,>0. This completes
the proof of the lemma. [2]

LEMMA 2.4.

S,(x;a,a+l)>0 forO<x<l, a>--1/2, n-2,3,--..

Proof. When fl-a + then (2.4) becomes

d[( 2 a+l/2xx 1-x ) S,(x;,aq-1)

x2),-,/2[ ,,+, n--1
=--2(n+2a)(1-- _F’- n+2a n--Z] n+l"

We distinguish two cases.
Case 1. Suppose F_+= f_-F_+2. From the identity (2a + 1)F,% (n + 2a)F_+

". L-’,a +-(n-lr,_2, we conclude that F,_-0. In this case S, becomes S,(x;a,a+ 1)
#U}[(n+ 1)xF’-(n+2a)F’+]F_+2. Since F,%-0 we have from (2.1) that (n+

XXF.a -,a+2a)F+-2(n+a)xF’ so that S,(x; a,a+ 1)-(-(n- 1)(n+ 2a- 1)/(n + 2u)) hr,-2

Now from the identity (2a + 1)F (n + 2a)xF’_+ (n 1)F’_+ we have that (2a +
1)F- (n- 1)(x- 1)Fff_+z. Hence in this case S,(x; a, a+ 1)-((n- 1)2(n + 2a- 1)/(n
+ 2a))(1 x 2 )(F’_+z )2 >0.
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Case 2. Suppose Fn+l--0. Then Sn(x;a,a+ 1)-(n+ laF-P+’Jn’n-l" Since Ffl+l-O it
follows from identity (2.1) that 2(n + a)xF-nF_ 1. Using this equality in the identity
(n+2a)(1-x-)F_+-(2a+l)(Fn%l-xF) we conclude that Ffl_+ll--((2a+l)(1
x2)-/n)xF so that S,(x; a,a+ 1)-((n+ 1)(2a+ 1)(1--x2)-l/n)x(F)2. This com-
pletes the proof of the lemma.

LEMMA 2.5. Let A
n -F,F/,_1-F/,+1F/,_2 Then An>0 for 0<x<l a>--1/2 n--

2,3,....

Proof. By using the identities nF/,_ (1 x2)(F/,) +nxF, (n+2a)n+l--
(n+2a)xF--(1--x2)(F) and n(n- 1)Fn%2-[2(n- +a)x2-(n +2a)]nF+
2(n- + a)(1-x2)(F)’, we can write

n(n--1)(n+2a)An-A,(F)2+BnF’(F)’+Cn[(F)’] 2

where A,-2(n+2a)(n- +a)nx(1-x2), Bn- -2a(1-x2)[1 +2(n- +a)x2], Cn--
2(n-1 +a)x(1-x2)2. Next, using the identity (which follows from the differential
equation satisfied by the ultraspherical polynomials)

(l _xZ)Z[(V:),]2_(2+
(F’)

we get

(2.13) -n(n--1)(n+2)(1--x

=[(n_m+aa)x2_a (F,) (n+a_l)x(l_x2) (F,)’ ]’r: r:
Letting Xl >x2>"" >x, denote the roots of Fn and recalling the symmetry of these
roots, we find

(F)’ [n/2] 2x (F)’ L+ [n/z1 2x
2 2’ n even, X x2 2’ n odd,F k-I x --xk r x

k--1 --Xk
and differentiating gives

(F)’ 1’ In/2] X2_{_X

F2
----2

)2’
neven,

k-- (.X 2 2--Xk

(Fff)’]_____l- In

F x2
2

x +xk

k-- (X2-xk:z)2’
n odd.

Replacing these sums in (2.13), we get for n even,
In/2] fk( X )n(n--1)(n+Za)(1--x2)-l(F)-ZAn--Zx ,=, (x 2 --x2 )2

and for n odd,

2 n(n--1)(n+2a)(1--x2) l(f)-2An -nl--
x

In/21- 2x f(x)

where f(x)- In- 2(n +a- 1)x]x 2 +(n +2a- 1)x. It is easy to see that f(x)>0
for a > -1/2, 0 <x< 1, n- 2, 3, . This proves the lemma. V1
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Note also that for odd n we have a positive lower bound for An, that is,

LEMMA 2.6.

2(1-x2)(F)2

0<x<l.
n(n+2o)x

Sn(x;a,a)>0 forO<x<l, a>-1/2, n-2,3,....

Proof. Setting/3-a in (2.4) gives

d )+/2(2.14) xx [(l-x2 Sn(x,t,a)]
-2(2n-1 +ot+)(1-xZ)a-1/Z(F.an_l CnxF-2)a F-Otn+l

where Cn-2(n-1)/(2n+ 2a-1). We separate the critical points in (2.14) into two
cases"

Case 1. Suppose F/"__- CnxF/%2. Then

(2 15) Sn-[(n+ 1)CnxF-(n-1)Fn+l]Fn--2"
From (2.1) we find that if FYn_I nxf-- 2 then

F-(n-1) 4(n+a-1)x2-(2n+2a -1)](2n+2a- 1)(n+2a- 1) F,% 2 and

2(n-llx[4(n+al(n+a-llxZ-(n+al(2n+2a 1)-n(n+2ct- l)]rn--2
(n + 2ct)(n + 2a 1)(2n + 2a 1)

Replacing in (2.15) we find that

(2n + 2a 1)2(n + 2a 1)(n + 2ot)S (AnX2 + Bn )(Fa_ 2 )2
2(n- 1)-x

where An--- --4(n+a- 1)[n2+2(a 1)n+c(2a--3)] and Bn--(2n+2a- 1)(n+a)(2n
+2a--3). Hence Sn>0 at the critical points F_=C,xF_2 if x>-B,/An Since
0< -B,/An< 1, this does not fill out the complete interval (0, 1).

Next we will establish that S, >0 in an interval (b,, 1) with O<b <-B,/A and
thus prove that S, >0 at all the critical points in question in (0, 1). Recall , as defined
in Lemma 2.5. We have

Sn(x,a,a)=(n-1)An+2FF_I.
By Lemma 2.5, A,>0. Now at the critical points Fff_ CnxF_2 we have by (2.1) that
(n+2a- 1)F=[2(n+a- 1)CxZ-(n 1)]F 2, so that

S,-(n-1)A +2[2(n+a-1)Cnx2 (n--1)]CnX(Fn_
n+2a--1

Now 2(n+a-1)C,xZ-(n-1)>O if (2n+2a-1)/4(n+a-1)<xl. Since (2n+
2a-1)/4(n+a-1)<-A,/B, ts proves that S, >0 at the critical points

Fn CnxF2 in (0, 1) for a > ), n 2, 3, .
Case 2. Suppose Fff+l= 0. Then S (n + 1)FF_ . From (2.1) we find in this case

that nF,-2(n+a)xF. Hence S-(2(n+a)x/n)(F)2>O for 0<x< 1, a>-, and
n 2, 3, . This completes the proof of the lemma.
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In proving Sn(x; a,/3) positive for the continuous range a _</3_< a + 2, 0<x< 1, we
-E lFff, 0<x< for -1/2 <will need positivity of the expression Dn(x a, fl)-FF+ +

a<_fl<_a+ 2. As mentioned in the introduction, D was proved positive in [5] for the
range 1/2 < a _</3_< a + 1. The same proof will carry over to a + _< fl_< a + 2 if we prove
D>0 where fl-a + 2. We do this in the next lemma.

FYF."+ FY +2LEMMA 2.7 Set D n+l n+lF Then Dn>O for 0<x<l, a>--1/2, n
0, 1,2,..-.

Proof. From [5, eq. (2.1)] we have

d[ 2 ot--1/2 2 ez--3/2xx (1--x) D -4(1-x ) F++lZ(F.’+Z-xF+2)n+l

We have two sets of critical points which we consider in two cases:
Case 1. Suppose FnI2-xF+2. Then On-F+2(xF-Fna+l). From the identities

(1 x2)(F) (n + 2a)(xF F. x) -l, we find+1) and (2a+l)(F)’-(n+2 F.’+1

(2a+I)Dn-(1-x2)F+2F._+11. Next, from the identity (2a+3)F+l-(n+2a+
2)F_+2- (n 1)xF_+ we obtain (2a+ 1)(2a+ 3)Dn-(1-x2)F+2[(n+ 2a+ 2)Fna_+12
--(n-1)xFff__+22]. Setting ,-a+2 in (2.1) we find that if FY+2-xF+2, then Fna_+l2-n+l

xF+2 and (n-1)F_+22-[2(n+a+l)x2-(n+2a+3)]F+2. Hence at the critical
points in question, (2a+ 1)(2a + 3)D,-x(1-x2)[2(n + a + 1)(l-x2) + 2x+ 3](Fn+2)2,
and D,>0.

Case 2. Suppose FY -0. Then D,-FF++. By iterating the identity (n+2a+n+l

2)(1-x2+1-(2c+ 1)(F. -xF+ ) we find that if Fff+l-0 then- n+ n+ 2

(n + 2ot + 1)(n + 2o+ 2)(n + 2ot + 3)(n + 2ot + 4)(2a + 1)- l(2a + 3)-1(1 x2)2 F++,2
=(n+ 1)x[Z(n+a+2)(1-x2)+2a+ 1]F.

This expresses FY+2n+l as a positive multiple of F (positive when a>-1/2, 0<x<l,
n- 0, 1,..- ) and hence Dn> 0. This completes the proof of the lemma. V1

By Lemma 2.7 and [5, proof of Thm. 2.1] we have:
--F Fn. Then Dn(x; a, fl)>O for O<x<THEOREM 2.1. Let D(x; a, fl) FFff+ n+

n--0,1,2,-.., if-1/2<a<_fl<_a+2.
We can now state and prove
THEOREM 2.2. (a) If 1/2 <a<_8<_a + then S(x; a, fl) >0 for 0<x< 1, n 2, 3, .
(b) If- <a_</3_<a+ 2 then Sn(x; a,/3)>0 for 0<x< 1, n-2,3, .
Proof. First we prove part (a). By Lemmas 2.4 and 2.6 we have S(x; a,a)>0 and

Sn(x;a,a+ 1)>0. Suppose a</3<a+ 1. Write tp_I-F_1-CnxF_2. By Lemma 2.2
[(1- x2)’+ l/2Sn(x; ot,18)]’- 2[(- ot- 2)n + 1- ot- ](1- x2)a- l/2PnBF+ 1. We have
two cases.

Case 1. Suppose F+ 0. Then S-(n+ 1)FF_ 1. If x >x2>. are the roots of
F.",+t in (0, 1) then sgnF(xj)-(-1)j. By Lemmas 2.1, 2.4 and 2.6, the roots of Fff+
interlace the roots of Fa__l and Fna_+l1. Since the roots of Vn_l are monotone decreasing
functions of/3, it follows that the roots of F+ and Fff_ interlace for a<8<a+ 1.
Hence sgnF_l(xj)- (- 1)j for a<8<a+ and S(xj)>O.

Case 2. Suppose tpff-0. Then so-[(n+ 1)CnxF--(n-1)F%]Fff_2. Let 21>22>
be the roots of kff in (0, 1). Then sgn Fff_2(zj)-(- 1)j+ 1, and to complete the proof

we need sgn[(n+l)CnzjF/,(zj)-(n- )Fn+l(zj) (-1)j+l Set gX(x,a,O)--
(n+ 1)CnxFX-(n 1)FnX+. In this notation we need sgng(zj) (-1)j+l. Note that
Cnzj-F_I(zj)/F_2(zj) so that gX(zj)-S(zj,,,8)/F_2(z). Since S(x,),/3)>0 in
(0, 1) if A-/3, A-/3- (by Lemmas 2.4 and 2.6), we have sgngX(zj)_ (- 1)j+l if X--/3
or A--B-1, where we must require/3>1/2 by Lemma 2.4. It follows that g and gff-1
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vanish exactly once between each two positive roots of q_ 1. Let y >y2>-.. denote
the positive roots of g, and let x >x2>. denote the positive roots of g-. We will
prove that if/3-l<A<fl then sgngX(yj)=(- 1)j+ and sgng(xj)=(-1)J+2; from
this we can conclude that gX vanishes exactly once between xj and yj.. Since g(yj)-O
we have that (n+ 1)Cnyj.- (n- 1)F+(y)/F(y), so that

(2.16) g ( .Vj ) ( n --1)Dn( yj A. fl )/F( Yj )

where D is defined in Theorem 2.1. Now by Theorem 2.1, Dn(Yj;X,fl)>O if -1/2 <,<fl
<,+ 1. Hence we require fl > 1/2 so that/3- <,</3 is consistent with the hypothesis of
Theorem 2.1. From (2.16) we then conclude that sgngX(y)-sgnF(y)-(-1)+.
Similarly since gff-(xj.)-0 we get

(2.17) gn ( Xj ) ( n -1)Dn(xj fl- 1, , )/Fff- l( xj ).

From (2.17) and Theorem 2.1 we get sgngX(xj) -sgnFnO-l(xj)-( 1)j+2. We have
now proved that if fl> 1/2 and fl- <X<fl then gX vanishes exactly once between each
two roots of +if-l, or that is, sgngX(zj)-( 1)j+. This completes the proof of (a).

The proof of (b) is virtually identical so we omit it. We point out only that in
proving (b), equation (2.17) involves Dn(x, fl-2, A), which is positive by Theorem 2.1 if
-1/2<fl-2<,<fl-1;henceweneedfl>- instead of fl>1/2 as in (a).

F. Eft_ 2> 0, 0<x< is cleaner and moreThe inequality An(x; a, fl) FFf n+
natural than the inequality stated as Theorem 2.2. Lemma 2.5 proves this inequality
when fl-a>- 1/2. The special case fl-a-1/2 was proved by Forsyth [6]. It is probably
true that An(x; a, fl)>0, 0<x< 1, --1/2 <a_<fl_<a+ 1, although we can only prove it at
the end points a-fl and fl-a + 1. We state these cases in the next theorem.

F Fff_ 2 Then An(X; Ol, Ol) > 0 andTHEOREM 2.3. Let An(x;a, fl) FFff_ n+l

An(x;a,a+ 1)>OforO<x<l,n--2,3,..., anda>
Proof. An(x;a,a)>O was proved in Lemma 2.5. By using the identity (n+2A+

1)(1--xZ)FX+’-(2X+ 1)(F)- Fxx n+ ) and proceeding as in the proof of Lemma 2.5,
we can write

(2.18)

Letting xk denote the roots of F, we have from (2.18)
[n/2]

n(n_l)(n+Za)An(X;a,a+l)_4(Za+l)x(l_x2)(F)2 x >0.

This completes the proof.

3. The continuous q-ultraspherical polynomials. Recall that the continuous q-ultra-
spherical polynomials Cn(x; BIq) satisfy the recurrence relation (Askey and Ismail [1],
[21).

(3.1) (1-qn+’)Cn+,(x;fllq)-2x(1-flqn)Cn(x;fllq)-(1-flZqn-l)Cn_l(X;fllq)
when n> 0, and the initial conditions

(3.2) Co(x;/lq)- 1, Cl(X; fllq)-2x(1-fl)(1- q)-l.
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The generating function

(3.3) C(cos0;/31q)t
__ (tflei; q)oo(tfle-i; q)o

o (tei;q)oo(te-i;q)o

and the q-binomial theorem lead to the following representation of Cn(cos 0; fllq):

(3.4) Cn(cos0;/31q ) q)k(fl;
0 (q; q)g(q; -i-- cos[(n-2k)O].

This implies the inequalities

(3.5) ]Cn(COSO;lq)l<_c(1;lq),

(3.6) ICn(x’Blq)l<fn(’ B1/2/B-/22 ;/3lq ), lxl<-//-/ 0</3_<1.

The value of C,,((fl/2+ fl-/2)/2; fllq) is (f12; q),,fl-,,/2/(q; q),,, but unfortunately we
cannot evaluate C,(1;fllq ) in general when q4 1. Luckily, however, we shall need only
the asymptotic behavior of the bound C,(1; fllq) as n, which can be obtained from
applying the asymptotic method of Darboux to (3.3) with 0-0. A comparison function
(Olver [7, p. 309]) is

(fl; q) a

(l_t)2(q;q)2oo 1--t

where a is a suitably chosen constant. This implies the existence of a constant b such
that

(3.7) Cn(l’fllq)- (fl; q)2 [ b -2

(q;q)
n+l+a+--+o(n )

n

The existence of a and b will be used in the sequel but their exact values are not
important. The exact values of a and b, if needed, can be computed by first using
Cauchy’s formulas to represent C,(1;/3lq) by a contour integral, then applying Laplace’s
method for contour integrals (Olver [7]). We next derive a recurrence relation for the
sequence of polynomials D(x) defined via

(3.8)
Dn(X)- (1- 2qn--1)(1--qn)E2n(X)--(1- flZq")(1--flqn-1)En_l(X)En+l(X )

where

(3.9) E,,(x ) ( q; q )nCn(x; fl[q )/( [3

The E,’s depend on/3 and q as well as x. It is straightforward to obtain

(3.10) (1-fl:Zq")En+,(x)-Zx(1-flq")E,,(x)-(1-qn)En_(x),
from (3.9) and (3.1). The multiplication of (3.10) by En yields

2x(1--flqn)E2n ((1-fl2qn)En+,(x)W(1-qn)En_(x))En(x)

--(1 _fl2qn- )- ((1--fl2qn)En+ l(X)--(1- qn)En_l(X)}
(2x(1-flq"-)E,,_(x)-(1-qn-,)E,,_z(X)};
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hence

2x(1 -,Sq")(1 _fl2q,,-)E(x)
2x(1- flq"-’ )(1- q")E_ l(X)
+ 2x(1 flq"-’ ) (1 B2q" )E._ 1(X )En+ 1(X )
-(1-qn-)En_2(x)((1-fl2q’)En+l(X)+(1-q’)En_l(X)}
2x(1 flq"-)(1 q)n-E2 (x)+2x(1-flqn-1)(1-fl2q")E.- l(X)En+l(x)
-(1--qn-l)En_2(X)2X(1--flqn)En(x ).

Taking (3.8) into account we can rewrite the above identity as

D(x)- (1- flq"-l)(1-q")E_l(X)-(1- qn-l)(1-flqn)E,_2(x)E,,(x )
(1- q’*-’)(m-flq’)

=(1 q")(1 --flq-l)En2_ (X)+ (-,qo-)(-qo-)
e (x))(O_l(X ) (1 fl2qn-2)(1 q-1) n-1

(1--qn-1)(1-flqn) DnO_(x)+ (1--flqn--l)p(fl) EnLl(X),
(1--fl2qn-l)(1 __flqn-2) (1--fl2qn-l)(1 _flqn-2)

where

p( fl ) (1-- fl )( q-- fl ) qn-2(1-- q ) + q2"-3(1-- q )fl]
The above manipulations lead to

(3.11) (fl2;q)n(fl;q)-! D(x)(flq;q)n(q;q)n-

holding for n _> 2. Set

(3.12)

(2",.;q)n-l(;q)n-2
qn--’(1--fl)2(1--fl/q)(1--q)(fl2;q)n--

(1(1- Cq"-)(-q.)

Expressing the D’s in (3.11) in terms of the ’ ’s we discover, upon iterating (3.11), the
following relationship"

(3.14)
n

’ff(x)- ’f(x) + (1 fl)2(1 fl/q)(1-q) Egk--I E2"k- I(X)
2

The series Z g,E(x) converges absolutely and uniformly on [- 1, 1] because

suplE,(x)l-O(C,,(1;BIq))-O(n ) asn, --lxl
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(see (3.7) and (3.9)) and gn--O(qn) as n (see (3.13)). Furthermore, when fl>q,
E,,((fll/2+fl-/2)/2)-fl-n/2 and the series ,’gkE(x) converges absolutely and
uniformly on the interval [_(fl/2 + fl-/2)/2, (fl/2 + fl-1/2)/2]"

4. The Turin inequality or the q-ultraspherical polynomials. The existence of
limn_ ’ff(x) follows from (3.14) and the convergence of the series on its right side. We
now evaluate this limit explicitly and also compute ’(x). It is obvious that

(4 1) lim ’(x)- (fl; q)oo(fl; q)o
lim Dff(x).

n-. (flq;q)(q;q) n--,

When x- 1, the limit limn D(1) can be evaluated by using (3.7), (3.8) and (3.9). An
easy calculation gives

(fl" qnlrnDfl(1)- (q;q)o(fl2;q)o

hence

(4.2)
(1--fl)(fl;q)L

lim ’ff(1)-
(f12 q)o(q; q)3r/- O0

Or3

The q-ultraspherical polynomials are symmetric polynomials in x, that is, Cn(--X; fllq)
=(--1)nC(x; fllq)" Hence D(x) is an even function of x. It thus suffices to restrict x
to the interval [0, 1]. When x(- 1, 1), the asymptotic behavior of C,,(x; fll q) is (Askey
and Ismail [2]),

(4.3)

where

C,(cosO" fllq)2] (fl; q)( fle2i; q)
(q;q)o(eZiO;q)o

cos(nO-C), O<O<’n’,

-arg( (fl; q)(fle2i; q)/(e2i; q)).
This establishes, via (3.8) and (3.9),

(4.4) Dff(cosO),-,4l (fl;q)(fle2i;q)
2

(fl2;q)o(eEiO;q)o
sin20, n, 0(0,),

which when combined with (4.1) shows that lim, ff(x) exists and

(1- fl)(fl; q) ( fleEi; q)(fle-2i; q)
(4.5) lim ff(cos0)- a(x)

n (q; q)(fl2; q) ( qe2iO; q) ( qe-2io; q)

holds when 0<0<r. When 0-0, r formula.(4.2) implies the validity of (4.5) at those
two points.

We now compute ’(x). The polynomial C2(x; fllq) is

C2(x;fllq)_" 4(1-fl)(1--flq) 2__ (1-f12)
(l_q)(l_q2)

x
(1_q2)

hence

(4.6) ’(x)- (1-fl)(1--q)(1- f12)/(1-flq).
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Combining (3.14), (4.5), and (4.6), we obtain

(4.7)

fa(x)-(1-)(1-fl2)(1-q)/(1-flq)+(1-)2(1-fl/q)(1-q) ,g,E(x).

We now consider the cases/3> q and/3< q separately.
Case 1. >q. In this case the inequality

Dnfl(x)>Dnfl(fll/2+f1-1/2) ill/2 -1/2
2 Ix[--<- ( +fl )’

follows from (3.6), (3.14) and (3.12). The above inequality can be rewritten as

(1--fl)(1--q) " (l_flEn2(X))(4.8) E (x ) E,+ ( x )E, ( X ) >_
( - 7, -)-( -1- -_ -B-q- )

Clearly the right member of (4.8) is nonnegative for q<B<l,
Another inequality follows from observing that ’(x) is a decreasing sequence, so
’n(X) --< ’(X). This establishes

(1-q)(1-Bq")(q;q)n-I(4.9) (x)-En+l(X)En_l(X)<
(qfl2;q),(1--flq)

1/2 1/2Ix1_<7( +- ), B>q,n>l.

Both sides of (4.9) tend to a constant as n- when x --+ (see (3.7)). Although the
constants are different, the right member of (4.9) is the correct order of magnitude.
This establishes the following result:

THEOREM 4.1. We have

(4.10) (1-q)(1-flqn)(q;q)n-I >__E2n(x)-En+l(X)En_l(X)
( qfl2; q)o(1-- flq)

>
z ")’

q)
n-’) ()n--l(1 __nE2n(X))--l,l_lj2q-)t,,ljq

holdingfor 121_< 1/2(B/2 + B-/2), fl>q.
Case 2. fl< q. In this case f(x) increases as n increases. Thus fn(X)-> ff(x).

Moreover, gn(X)<__gan((B/2+B-/)/2) for ]x[<_1/2(fl/+fl-l/ ). These inequalities
prove:

THEOREM 4.2. The inequalities

(4.11) E2n(x)-En+l(X)En_l(X)

_>
(1--q)(1 __flqn)(q; q)n--1 (1--q)(1 __fl)flqn-I En(x)

(1 _flq)(qfl2; q),, (1--flqn-l)(1 __fl2qn)
and

(4.12) (1--/3)(1--q) ()n--I(I-)i7’)(i 7)}-q-n-- 1) (1 fl"E2(x))

hold for fl<q, n> and X--(--(Bl/2+ fl-l/2)/2, (BI/2+B-1/2)/2).
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COHEN TYPE INEQUALITIES FOR
JACOBI, LAGUERRE AND HERMITE EXPANSIONS*

C. MARKETT

Abstract. Cohen’s inequality was the first result on the way to the solution of Littlewood’s conjecture. It
is an estimate from below for the norm of a trigonometric polynomial in terms of the number of its nonzero
coefficients. Inequalities of this type have been established in various other contexts, e.g., on compact groups
or for Jacobi expansions. The purpose of this paper is to prove such inequalities for the classical orthogonal
expansions in the appropriate weighted Lp spaces, here in terms of the highest coefficient. The results are
best possible, apart from certain limiting values of the space parameterp.

1. Introduction and main results. By a "Cohen type inequality" we mean an
estimate from below for the (weighted) L norm of an (algebraic) polynomial Pn, as well
as its generalization to the (weighted) Lp norms, <p_< o, which can be deduced from
the L estimate by means of corresponding Nikolskii type inequalities. Moreover, since
one can often interpret a given polynomial p as kernel of a convolution operator, and
the L norm of pn as the corresponding convolutor norm, also the extensions to Lp

convolutor norms are usually called inequalities of Cohen type.
The above terminology comes from Cohen’s contribution to the study of Little-

wood’s conjecture, which concerns the corresponding trigonometric problem. Little-
wood [13] conjectured in 1948 that for any trigonometric polynomial FN(X)=
EV=l ake_i,,,,x, where 0<n <... <nN, N>2,_ and [al >_ for <_k<_N, there holds the
estimate from below

fo:Z]Fv(x)l dx>_ ClogN,
where C is an absolute constant.

The first result in this direction is due to Cohen [3] who proved that
C(logN/loglogN)1/8 is a lower bound for the norm in (1.1). Several other authors
made contributions to the problem by establishing larger bounds (cf. Fournier [7] for
references), and recently, McGehee, Pigno and Smith [19] succeeded in confirming the
Littlewood conjecture (1.1). Similar inequalities are also valid on compact groups (cf.,
e.g., [9], [19], [20]).

Giulini, Soardi and Travaglini [9] seem to be the first who formulated Cohen type
inequalities in the sense of convolutor norm estimates and, recently, Dreseler and
Soardi [4], [5] proved such estimates for Jacobi expansions (cf. Theorem A below). The
purpose of this paper is to establish Cohen type inequalities for Laguerre and Hermite
expansions. Our approach also admits a simpler proof of Theorem A. n each case, the
result will be given in terms of convolutor norms (Theorems A, 1,2) as well as in terms
of weighted LP norms of algebraic polynomials (Theorem 3).

We use the following notation. The Jacobi polynomials are given by

=o n-k k 2 2
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89.0 C. MARKETT

where a, fl > 1, x [- 1, 1], n P (0, 1,2,..- }. If a function f belongs to one of the
spaces

(1.2) PLw(,,#)

< l_<p< o,
--1

{f; esssup If(x)l< },
--l<x<l

with w’#(x) (1 x)(1 + x)#, a,/3 > 1, its Jacobi expansion is given by
k=of k)P’#(x ), where

(1.3)

f(k)- hk’afl f(t)pff,a(t)w,,#(t ) dt

r(k+ 1)r(k+a+#+ 1)
2’+#+’ F(k+a+ 1)1-’(/+ #+ 1)

In the following, [X] always denotes the space of all bounded, linear operators
from a space X into itself, endowed with the usual operator norm, I1" Ilts1.

THEOREM A. [5]. Let a>_fl>_-1/2 and l<_p<_. For a given triangular matrix

(Ck,n}O<_k<_n, n@P of complex numbers with Ic , l>0, Zet the operators T’# on LPw(,#) be
defined by T’#f ,=oC,,nf(k)P’#. There exists a positive constant C, independent of
n, such that

(1.4) IlZn’lltw,.,,lflcn,nld(, p, n),

n(2a+ 2)/p--(2a+ 3)/2,
d(a, p, n) (log(n + 1))(2’+ 1)/(4a+4)

n(2a+ 1)/2--(2a+2)/p,

<-p<po(a),

P =Po(a), p-qo(a),
qo(a)<p<-- o.

Here we have set P0(a) (4a + 4)/(2a + 3) and q0(a) (4a + 4)/(2a + 1).
In the particular case a-fl (-1/2,1/2) and p- or p- the estimate (1.4) can be

deduced from a result of Kal’nei [14],
n

2 Ic ,.l(k + n+ l-k) -3/2-
k=0

It will be noted that Theorem A does not include the Chebyshev case a-/3- -1/2
for p-1, i.e., the analogue of (1.1) for cosine polynomials. Besides the fact that the
methods of proof of (1.1) and Theorem A are entirely different, the lower bound in
(1.4) is given in terms of the highest frequency n whereas in (1.1) it is given in terms of
the number of nonvanishing coefficients, N<_n. Thus, in the Jacobi case, one still has
norm divergence if all Ck,, O<_k<_n--1, are zero; this obviously does not hold in the
trigonometric case.

Laguerre expansions have been investigated mainly in the following two sets of
weighted Lebesgue spaces, namely in the classical spaces (cf. [2], [22])

(1.5) Pru(ot (f; f(x)u(x,ol)llZp(O,ot)<OO,U(X,Ol) e X/2x’/2}
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for a> - if _<p< and a_>0 ifp- , as well as in the spaces

(1.6) PLw()
f: fo If(x)e-X/2lPxdx

x>O

<c}, l_<p< c,

for a>- 1; the latter have recently been shown by G6rlich and Markett [12] to be
particularly suited for introducing a convolution structure. Both types of norm will be

Pconsidered here. A typical result for the spaces Lw(,o, a>_O, will be that the lower
bound for the operator Tff obtained in (1.8) below is the same as the one for the Jacobi
case. For the particular case of the partial sum operators a similar effect has been
observed in [12].

Denoting the Laguerre polynomials for n P and a> by

{(Al)-lexx-’X(d/dx)"(e-Xx’+’),x>O,L’(x)-- _( n I’ x--0,

the Laguerre expansion of a function f is given by Xk0f(k)L](x), where

(1.7) / ( k ) =/(k, a) hf( )L( )e-tt dr,

h- [L(x)]Ze-Xxdx -r(+l)/F(k+a+l),

as far as these expressions make sense.
Our first main result is
THEOREM 1. Let a>_O and <_p<_ c. For a given triangular matrix (Ck,n)O<_k<_n,np

P be defined byof complex numbers with Ic ,nl>0, tet the operators T on LPw(,O or Lu()
T/Tf--,=o ck,n f (k)L. There exist positive constants Cl, C2, independent of n, such that
(with d(a,p, n) as in Theorem A)

(1.8) T#llt >- c, ICn,nld( a,p,n ),

n2/p-3/2,

(1.9) Ilz#l{t..,o,]>-Czlc...I (log(n+ 1)) 1/4,
nl/2-2/p,

Finally let the Hermite polynomials be given by

H,,(x)--(-1)’eX( d ) e-X
To a functionf belonging to one of the spaces (cf. [2], [22])

(1.10) LPu, I_I) {f; f(x)u(x)J[,,(_,o)<oc,u(x)-e-X/Z),
one associates the Hermite expansion Eke__0 f (k)Hk(X), where

(1.11) /(k)-h f(t)H(t)e-

l_<p<,

p-, p-4,

4<p_< o.

(xU_R,nP).

l_<p_<,
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THEOREM 2. For a given triangular matrix (Ck,n}O<k<n,nP of complex numbers with

[cn,nl>0,^ let the operators T be defined on LPu(H), l<_p<_ 0, by Tf--
Y=0Ck,n f (k)Hk. There exists a positive constant C, independent of n, such that

n 2/(3p)-1/2, <_p<,
IIZ,llt,,,>flCn,,[ (log(n+ 1)) 1/’ --,p p-4,

n1/6-2/(3p) 4<p_< o.

Remarks. i) Theorem A is best possible as far as the exponents of n in case
_<p <p0(a) and q0(a)<P _< o are concerned, as may be seen by choosing for T’ the

partial sum operators of the Jacobi expansion (ck,- l, O<_k<_n). In the limiting cases
p =p0(a) and p q0(a), however, the question as to whether the exponent of log(n+ 1)
is sharp cannot be decided in this way (cf. Lemma 3 below).

ii) A similar remark applies to Theorems and 2, as follows from known lower
bounds for the Laguerre and Hermite partial sums (cf. [12],[15],[17]).

iii) When applied to Cesato summation operators (C,8), i.e., Ck,n--hn_k/ASn,
C,n- (n H oz), Theorems A, 1 and 2 also yield sharp results with possible exception
of the limiting cases (cf. 10], 12], 15], 17]).

With some additional arguments one can derive from the above theorems:
THEOREM 3. Let (Ck,n}O<_k<_n,p be a triangular matrix of complex numbers with

cn, > O. Then for <_p <_ o, n N one has
a) in the Jacobi case for a>_ fl>_-1/2, a >-1/2,

(1.12) Ck,nP’fl(X)[ Clcn,nln-l/2;
k=0 Lg,t

b) in the Laguerre case for a, fl> 1,

(1.13)
n

Ck,nLOk(x) >--Clcn,nln(a+)/P-/2
k=0

and, for fl> 1, a> - if <_p< oo and a>_O ifp- ,

LPw(a)
>__ Clcn,nln /p+(a-1)/"

c) in the Hermite case,

(1.15) Ck,nnk(X)l Clcn,nl(-2nnl) 1/2 nl/(2p)-l/4.
k=0 Ln)

Moreover, these bounds are best possible in the sense that triangular matrices

{Ck,n)0_<k_<,,, can be gven for which the estimates are sharp.
We proceed as follows. In 2 we supply some properties and norm estimates of the

orthogonal polynoals required. The proofs of Theorems A, and 2 will be given in
3, and the proof of Theorem 3 follows in 4. Principally, the proofs of Theorem A,
and 2 have the common feature that they start with the upper p inteals, i.e., for
p qo(a) in Theorem A and (1.8) and for p4 in (1.9) and Theorem 2, respectively,
and the assertions for the lowerp inteals then follow by duality.

For the proof of Theorem A, Dreseler and Soardi used the test functions

f,#(cos@)_sin(n+m)sinm-(2+,) COS
m-@(2fl+ 1)’@
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0_<q_<r, denoting by m the smallest odd integer for which m->2a+ 1. Here the crucial
step of the proof was to show that (f’a)^(k)-O for O<_k<_n-1 by representing
P’t(cosq,) and sin(n + m)qsin q as cosine polynomials and to find the exact rate of
growth of (f’t)^(n). We will give another proof of Theorem A by means of the test
functions

2a+2(1.16) g’B’J(x)--P+J’B+J(x)(1--X2)j, jD, j>aq
2 p

the Jacobi expansion of which immediately yields that (g’/’J)^(k)-O for O<_k<_n-
and (g,,J)^(n)>C>O (see (2.8)).

A similar construction may be made in the Laguerre case. For the proof of (1.8) we
use the test polynomials

((n+l)(n+2))1/2L+J(x)xJ(1.17) gn’J(x)--L’+J(x)xj

(n+a+j+ 1)(n+a+j+2) n+2

with jD, j>a-1/2-(2a+2)/p, the first term of which is of the same type as the
function in (1.16), whereas the second term does not affect Tngn",j but serves for
smoothing the norm behaviour of g’J. Using the Laguerre functions

n! ) 1/2

(1.18) E(x)-- r(n+a+ 1) L(x)e-X/2x"/2 (a>-l, nP, x_>0),

the g,S may also be written as

(1.19) g:’J(x)--( F(n+a+j+n! 1)),/2 .,n +2, X) }eX/2x(j-a)/2

In the case of (1.9), it suffices to use the test functions g,O.
Similarly, in the Hermite case the test functions

(1.20) g.H(x)--Hn(X)--[4(n+ 1)(n+2)]-l/2Hn+2(x )

(l/22nr !)1/2 {_,n(X)__,n+2(X)) eX2/2

will be used to establish Theorem 2. Here n(x) denotes the Hermite function

(1.21) CJn( X ) (’n’l /2 2nn !)- l/2 Hn(x )e-X2/2.

2. Preliminaries. Let us recall some properties of the Jacobi polynomials for
a, fl>-l.

(2.1) P’B(x)--(--1)npnO’a(-x)

(2.2) Pfl’(x)(1 x) v
LP(0,1)

n-/2 3,>q----7
n ’/2(logn) 1/p

"y --+-a--7
na_2v_2/p a

"<-q---- (n ),

where 7> -3 if l_<p< c and 7_>0 ifp c. Here, an,-b stands for an- O(bn) and
bn-O(an) as nc. For p-1 see [23,(7.34.1)]. Relation (2.2) was formulated for
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general p >0 in [23, Problem 91] without proof and can be verified by using the bounds
for Jacobi polynomials given in [23, (7.32.5)], [21, (2.4), (2.5)].

In the following, the Jacobi expansion of the test functions g’a,J in (1.16) will be
derived. We start from the formula [23, (9.4.3)],

nr(.++ 1) t-. r(n+k+a+B+t+ 1)
(2.3) ?otn--k r(n+k+a+B+2)

(2k+a++ 1) r(+++ 1)
r(k+B+ 1)

which can be inverted to give (cf. 1, (13), (14)])

(2.4) (l_x),p#+,.(x)_r(n+a+t+ 1)
2 ] A/_Y(n+ 1) ,:o

F(2n+k+a++l)
F(2n + k+ a + + l+ 2)

r(n+k+l) .,a(2n+2k+a+fl+ 1) F(n+k+a+ 1) P"+k(x)"

For/=j P, the series in (2.4) terminates, so that

J
(2.5) (1 x)JP+J’(x) E ak,j(a,fl,n)P,,+k(X)’’t

k=O

with certain coefficients a,,j, the first and last of which read

(2.6) ao,j(a, n)-2jF(n+a+j+ 1)
r(n+a+ 1)

F(2n+a+B+2)
F(2n + a +13 +j+ 2)

n_t_2JF(n+j+,,,] 1) F(2n+j+a+fl+ 1)
I’(n+ 1) r(2n+2j+a+B+ 1)"

In view of (2.1) this also implies

J
(2.7) (l +x)JP"#+J(x) E ( --1) ak,j(fl,a,n)P’_;(x ).

k=O

Combining (2.5) to (2.7), it follows that

(2.8)
2j

(1--x2)JPn+J’B+J(x) E bk,j(a,fl,n)P;$(x),
k=O

bo.j( a. fl.n ) ao.j( a. fl +j.n )ao.j( fl. a.n )

=4jr(n+a+j+l) r(n+B+j+l) r(2n+a+B+2)
r(n+a+l) r(n+B+l) r(2n+a+B+2j+2)’

b2j,j(a,fl,n)-aj,j(a,fl+j,n)(-1)Jaj,j(fl,a,n+j)

=(_4vF(n+2j+, 1) F(2n+2j+a+fl+ 1)
r(n+ 1) r(2n+4j+a+fl+ 1)"
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In the Laguerre case, the following properties will be used [22]. For v-u(n, a)- 4n
+ 2a + 2, n N, a> 1, there exist positive constants C and 3’, such that

(2.9) IL,(x)-:_,(x)l-<C-

pal2-- lxa/2 0

vp--3/4xl/4 --X--
-2’

1--3/4( vl/3 "-" x- Pl)1/4
3u

e-VX

(2.10) n+l(X)-- ,(x) -25/2(- 1)"-I 1/4

qT. 1/2p3/4
sing+ O --+--

P X l_<x_<-,
where g--g(,xi/2) --COS-I(()I/2)-’-}(X(P--X))I/2-]- and the O-term holds uni-
formly with respect to x 1, v/2] if n .

LEMMA 1. For >_ 0 and qo(a) (4a + 4)/(2a + 1),

a/2-1/4(logn) l/q, P--qo,
(2.11) L(x)ll Lw,, n_</ )/p, q0<P -<

For a> 1,/3> -min{a/2, 1/4} 1/p if <_p< and >_ -min{a/2, 1/4} ifp- oe,

(2.12) I][E.+ (x) --E",_l (x)] xa r(0, )n/-/2+/P (n ).
2aProof. Concerning (2.11), use 16, Lemma 1] with a,/3 replaced by and a p,

respectively. For/3-0, relation (2.12) has also been proved in [16,Lemma 1]. In the
general case, we follow the same lines as there. The upper estimate is obtained by
applying the various bounds of (2.9) to the integrand. For the lower estimate, we
restrict the interval of integration to [1,bu/2] and use the asymptotic expansion (2.10).
Here we suppose that u is large enough in order to apply [22,Lemma 15], whereas
b (0, 1) has to be small enough, such that the principal term exceeds the two other
terms. K]

In order to find the Laguerre expansion for the test functions gn’J of (1.16), we
start with formula

(2.13) L’+(x) An-L(x),
k=O

which can be inverted to give

(2 14) x.L2+.(xl_r(n+a+t+ 1) A_,_r(+ 1) =o

r(n+k+ 1) L (x)r(n+k+a+ 1) n+,

(cf. 1, (9)] or [6, 6.15.1 (1)] for a more general formula on confluent hypergeometric
functions). For =jP the series terminates as in (2.4), (2.5), so that by definition
(1.17)

(2.15)
j+2

Lg;’J(x) E bk,j(a n) n+k(X)
k=O

bo,j(a,n)_F(n+a+j+ 1)
r(n++l)
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bj+2,s.( a n)_(_l)j+,( (n+ 1)(n+2) )l/2F(n+j+3)(n+a+j+ 1)(n+a+j+2) F(n+3)
For any algebraic polynomial of degree not exceeding n d, Pn Pn, the following

general inequality holds. In particular, for 7-alp, it is of Nikolskii-type.
LEMMA 2. Let <_p<_ and let parameters a, 7 be given such that 7>- 1/p if

<_p< c, and 7>_0 ifp= , as well as a>_7 ifp-- 1, and a>7+ l/p- if
There exists a positive constant C such that for each p, P,, n

<Cn-V+-/Pll p.(x)e-X/2xVll LP(0,(D)p ,(-

Proof. For , ,(n, 7) 4n + 27 + 2, we write

PnII L,,.,
0 +3v/2 IPn(X)e-X/2x dx--I +12

say. H01der’s inequality yields

I 11 pn(x)e-X/2xVll tP<O,3/2)llx-m[[ Lq(0,3/2)

--y+ 1/p< C II Pn(X)e X/2x’ ,(o,oo)n

and, in view of the exponential decrease of IE,(x)l, O<k<n, for x>3u(n,7)/2
[22, (2.5)], one has

12
,/2 k=0

n

<--k_o Pn(t)LV(t)e-tVdt lL (x

--<ll p,( )e-t/2tv

h llL (t)e-t/211..o. .
k:0

CII p,,(t)e-t/2tll (o,).
The norm behaviour of the Hermite functions (1.12) and their differences can be

taken over from 17, Lemma 1].

n-l/8(logn) /4 p--4,
(2.16) %n(X)ll LP(-- o ’) --I/(6p)--I/12n 4<p_<oo (noo),

(2.17) ,+,(x)--9C,_,(x)II LP(_o,)"n1/(2p)-1/4 (n oo).
3. Proofs of Theorems A, 1 and 2, Lemma 3.
Proof of Theorem A. Let a>_fl>_ -1/2, a> -1/2. By duality it suffices to assume that

q0(a) <-P -< c. Then Theorem A will be established by applying the operators Tn’/ to
the test functions gn’E’j for some jP, j>t+1/2--(2t+2)/p. In view of (2.8), they
satisfy (g"’/)^(k)-0 if O<_k<_n-1 and -bo,/>_C if k-n. Moreover, by (2.1) and
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Lemma 1, one has for n N

(3.1) g’’J C( P++"++(x)(1 x)++/P

+ P++’+(x)(1- x )+#/P
<Cn-/2

sincej>a+1/2-(2a+ 2)/p>B+1/2-(2fl+ 2)/p. Thus,

(3.2)

An application of Lemma with 3’- then yields (1.4).
Proof of Theorem 1. By duality, we may again restrict p to qo(a)<_p <_ o in (1.8)

and to 4_<p_<o in (1.9). Concerning (1.8), we apply the operators T to the test
functions g’J of (1. !7) for somej P, j> a 1/2- (2a + 2)/p. Their Laguerre expansions
(2.15) give that (g’J) (k)-0 if O<k<_n- and (g’J)^(n)-bo,j(a,n)>_CnJ. Further-
more, in view of (1.6), (1.19) and (2.12) of Lemma 1, with a, fl replaced by a +j and
(j- a)/2+, respectively, one has

+j

<_Cn/-/+(:+l/p (nN).

>_ Clcn,nlnJn-j+
The assertion now follows by Lemma and (2.11).

Concerning (1.9), we use (1.5), (1.19), (2.12) with fl 0 and a lower estimate of the

Lff(: norms of the L given in 16, Lemma ], to deduce

Clc’ln-"/2+/2-/P{n/2-/2+/p(lg(n+na/2-1/p 4<pN m.

)) i/p p-4,

Proof of Theorem 2. Applying the operators Tf to the test functions gff as given in
(1.20), Theorem 2 is proved analogously to the estimate (1.9), in view of (1.10), (1.21),
(2.16) and (2.17).

We conclude this section with a lemma wNch gives rise to the assumption that, in
contrast to the cases p <P0(a) or p> q0(a), the exponent in Theorem A may possibly be
enlarged in the limiting cases (cf. Remark i). The proof of tNs lemma will be dual to the
one of Theorem A in the following sense. Whereas the test functions g’a, of (1.16),
wNch were used in proving Theorem A for the upper interval p [q0(a), m], may be
considered as differences of orderj of Jacobi polynomials P2, with respect to both the
parameters a and fl (cf. (2.4) to (2.8)), the test functions to be used for Lemma 3 will

This implies
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work in the lower interval p [1,po(a)], and they will be sums of order j of Jacobi
polynomials.

LEMMA 3. Let a>_fl>_--1/2, a>-1/2 and let po(a) and qo(a) be defined as in Theorem
A. For each n N the Jacobi partial sums satisfy

n(2a+2)/p--(2a+ 3)/2 pPo
(log(n+ 1))(2a+3)/(4a+4) P=Po,P qo,
n(2a+ 1)/2--(2a+ 2)/p, qo<P -< o.

Proof. Applying S’’ to the test functions

(3.5) p2.+1+ l,(x ), j-
2a+2 2a+3
p 2

+1

([b] denoting the greatest integer less than or equal to b) and using (2.3) with/z=j+ 1,
one obtains, after aj-fold partial summation,

F(2n + fl + 1) "F(2n + a + fl +j+ 2) ’__oA’-k
F(2n+k+a+fl+j+2) (2k+a+fl+ 1)F(2n + k+ a + fl + 2)

r(k+a+B+l)
r(k++)

F(2n++ 1) j_mF(3n-m+a+fl+j+2)
F(2n + a + B+j+ 2) m:o

A’+m r(3n + a + fl + 2)
F(n+a+fl+2) ,a(x)F(n_m+B+l)

P+m+ln--m

Taking norms on both sides, the term for rn-0 on the right-hand side turns out to be
the principal one, so that

Since j>(2a+ 2)/p-(2a+ 3)/2, Lemma yields the assertion for 1 <_p<_po(a). The
assertion for q0(a)<p< oo then follows by duality. Vq

Analogous results also hold in the Laguerre case (cf. [11]).

4. Proof of Theorem 3. a) Jacobi case. Let a_>fl_>-1/2, a >-1/2 and, first of all,
p= 1. For a triangular matrix (dk,,}O<_k<_,,,, with Id.,.l>0, we define a convolution

byoperator on Lw(,O)

T."’f dk,,,f(k)P;’O=/*k’’0,
k=0

with the kernel function

o,,#p,(1)p;,#(x )k’’(x) E dk,,,hk
k=O

(xe[- 1,11).
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Setting in particular dk --Ck,n(ha’Ba’Bt -1
,n k k 1)) where h’ak and Pff’(1) (k-a)"ka

as k- o, it follows by the convolution theorem for Jacobi expansions [8] and Theorem
A that

CId,,,,,In’+’/ ClCn,nln-
Forp> 1, we apply the trivial norm inequality

(nN).

Lwta,B (pP, <_p<_oe),

to derive (1.12).
In order to show that the estimate (1.12) is best possible for each _<p_< o, we can

choose the test functions (1.16) with n replaced by n- 2 j,

g"’O’J ( x ) P’_+)O+J(x )(1 x 2 )Jn--2j

where n>_2j+ andj>max(a+1/2-(2a+2)/p, fl+1/2-(2fl+2)/p}. Indeed, in view of
(2.8), an application of (1.12) gives

>_ Clb,( a,fl,n 2j )ln- ’/ >_ cn-’/2

whereas by (3.1) and the assumption onj it follows that

:’-%’;11 <Cn-’/2g LPw(,,#}

b) Laguerre case. First of all, we prove (1.13) for fl-et, starting with p-1 and
a_> 0. Defining a convolution operator as

n

r.-=r(,+ 1) E Ck,,,f(k)Lk=f * k’
k=0

with the kernel function

g.-(x)-r(+ 1) E Ck,nh’L(1)Lk(X) Ck,nLak(X)
k=O k=O

the Laguerre convolution theorem [12] and Theorem yield

(x_>O),

(4.1)
k-’-O ,,L]w()

>-Clc.,.In"+’/ (,>_0).

Though the convolution theorem and therefore (4.1) are only given for a_>0, one can
also deduce this assertion for < a< 0. Indeed, using

fo L+,(x)x.+ (a>-l)XL( )t" dt- k+ a +-
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(cf. [6, 10.12.(30)]) and Fubini’s theorem, one obtains

(4.2)

Since a + >0, (4.1) can be applied to the left-hand side of (4.2) so that

(4.3)
n

c,,,,L
k=O

CIc.,.l(n/a/ 1)-Ina+l+l/2
Llw(a)

>CIc,,,,,]n’+’/z (-- l<a<0).

Let us mention that there also holds a fractional version of (4.2), i.e.,

? c,r(++B+l)g/ _<2 c, (>-,B>o).
=0 L(+) k=0

The estimates (4.1), (4.3) remain valid if the parameter a of the Laguerre polynoals is
replaced by an arbitrary > 1, since, in view of (2.13),

Ck,nLk(X)
k=O Lw(a)

The assertion (1.13) for <p_< o can now be deduced from (4.4) by applying
Lemma 2 with 7- to p,- :’k=oCk,,L P,, i.e.,. Ck,nLBk Cn(a+l)(1/p-l) C,nL

k=0 LPw(,,) k --0 Lw(,)

>_ Clc,,,nln(,,+ )/p- /.

Concerning (1.14), we replace a by ap/2 in (1.13) for _<p< o. For p: o, we
apply Lemma 2 to (4.4) once more, setting V- now.

In order to show that (1.13) is best possible, choose, e.g., the test functions (1.17)
with n replaced by n- 2-j and a by/3> 1, thus

g_S2_s(x)_Lt+j (x)xJ_ ( (n-j--1)(n--j) )1/22 --j (F/’’-- 1)(n+fl)
L +-s"( x )xJ’
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where n>_j+ 3,j>fl-1/2-(2a+ 2)/p,jP. In view of (2.15), it follows by (1.13) that

[Ig#’A-sll e,o,- bk,J(’n-2-j)L#n-2-J+"
k--0 IItw()

>-- Clbj+ 2,j( fl, n 2 -j)ln+ l)/p--1/2

Cnj+(a+l)/p-1/2 (a> 1),
and this bound can be seen to be sharp by considering the appropriate modification of
(3.3).

2Similarly, applying (1.14) to the above test functions with j>fl-a-1/2--, jP,
one obtains

g --j Lu(a)

the exponent of which is the correct one in view of (1.19) and (2.12).
c) Hermite case. Since for each k P [23, (5.6.1)]

Hzk(X)- ( 1)’22’k!L-l/Z(x2), H2k+l(x)-- (- 1)k22k+lklt’l/2(X2)Xk

the polynomial p,,(x)-Enk=OCk,nOk(X) can be divided into its even and odd parts by

[n/21

p,,(x)-- E c,,,,(- l)’22’k!L-l/2(x2)
k--0

[(n 1)/21

k=O
Czk+, ,(-1)’22k+’k’tl/Z(xZ)x

=p,(x) +p(x),

say. Taking norms, we have

[Ip.ll,’,.,-- Ip.(x)le-x/=dx

0

f0
00

X2/2Ip,(x)+pg(x)le x-/2dx+ [pe.(x)--p;,(x)le- dx

>2maX(folp,(x)le-X2/2dx, fo]p(x)le-X2/2dx}.
If n-2m, ml, we use the even part estimate of (4.5), set xZ--y and apply (1.13) for

a-fl- -1/2 to derive

Ilp.ll,?.,.,_>2 Ipg(x)le-x-/2dx

m

2 >ClCn,nlNnm!
k=O /2w(-- /2)
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If n--2m+ 1, mP, we use the odd part estimate of (4.5), set x2=y again, and apply
(1.13) for fl 1/2, a 0 to deduce

>2folp,,(x)le-x/:Zdx
] c2g+,n(- 1) k22k+kli’l/2[’’gy)
k=0 Lw(o)

>_ C[c,,,,,12,,m !mI/2.

In view of Legendre’s duplication formula for the gamma function, F(2z)=
2:-w-/:F(z)F(z+1/2), one has

(Vl-2"n!)’/z-(2"F((n+ 1)/2)F(n/2+ 1)) ’/2

m’(F(m+. 1/2)/F(m+ l)) /2, n-2m,
=2"

m(F(m+3/2)/r(m+. 1)) /2, n-2m+

(m).

Thus, for each n, one obtains

(4.6) E Ck,.nk >__Clc.,nl(fNnn,) 1/2 1/4n
k=0

Applying the Nikolskii type inequality

(cf. [8]) to the left-hand side of (4.6), we arrive at (1.15).
These estimates are best possible since, when applied to the test functions (1.20)

with n replaced by n- 2, they yield

IIg_(x)ll..,,,,>_c[4(n- 1)nl-’/z(Tr-2’nl) n1/(2p)--1/4

n n1/(2p)-1/4.

On the other hand one has, in view of (2.17),

gff-(x)II.5-- (r-2"- (n- 2)!)/all3C,. (x)- %,(
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WEIGHTED NORM INEQUALITIES FOR CERTAIN INTEGRAL
OPERATORS*

K. F. ANDERSEN" AND H. P. HEINIG :

Abstract. Conditions on the nonnegative weight functions u(x) and v(x) are given which ensure that an
inequality of the form (fl(Tf)(x)u(x)lq dx)l/q<--f(flf(x)v(x)[p dx)1/p holds where T is an integral opera-
tor of the form f_x K(x,y)f(y) dy or f K(x,y)f(y) dy and C is a constant depending on K,p, q but
independent of f; the inequality being reversed in case p, q< 1. In particular, new inequalities and a unified
treatment of several known inequalities are obtained for a class of convolution operators, various fractional
integrals and the Laplace transform.

1. Introduction. Let K(x,y)>_O be defined on A={(x,y)R::y<x} and define
the operator K and its dual K* by

(1.1) (Kf )(x)-f
x
K(x,y)f(y)dy, (K*f )(x)=fxK(y,x)f(y)dy.

The purpose of this paper is to give conditions on the nonnegative weight func-
tions u(x), v(x) in terms of the kernel K(x,y) and the indices p,q which imply
inequalities of the form

f l(7f )(x)u(x)lqdx <_c f lf(x)v(x)lPdx
where T is either K or K* and C is a constant independent of f; the sense of the
inequality being reversed if p, q< 1.

The particular case of the Hardy operators given by the kernel K(x,y)= was
considered by Andersen and Muckenhoupt [1] and independently by Bradley [3] for the
case p,q>_ 1, while Beesack and Heinig [2] dealt with the case p,q< 1. This paper
extends these results to a general class of kernels K(x,y).

The class of operators considered here includes several classical operators, among
them the Laplace transform and the fractional integrals of Riemann-Liouville and
Weyl. For these, our results at once provide new inequalities and a unified treatment of
various known inequalities, particularly those involving power weights as given in [4].

Applications to other operators, including a class of convolution integrals, are also
given. The discrete analogues of our integral inequalities are briefly considered; these
generalize results of Leindler [5].

The plan of the paper is as follows: In the next section we prove our principal
results (Theorems 2.1 and 2.2) for the case p,q>_ and give various applications.
Section 3 contains the integral estimates for the cases 0<p, q< and p, q<0. In the last
section we discuss the discrete cases.

Throughout, p’ denotes the conjugate index of p,pvaO and is defined by I/p+
1/p’- with p’- o if p- 1. The conjugate of q is defined in the same way. Further-
more, products of the form 0-o are taken to be zero. A,B and C denote constants
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which may be different at different occurrences, while Z and Z+ denote the integers
and the positive integers respectively.

2. Weighted integral inequalities for 1 <p<_q<_ o. The weight functions we con-
sider depend on the kernel of the integral operator.

DEFINITION 2.1. Let u(x)>_O, v(x)>_O, <_p<_q<_o, and suppose K(x,y)>_O is
defined in A= {(x,y) R2:y<x}.

(a) We say (u,v) satisfies A(K,p,q) with constant C if there is a fl, 0_</3_< 1, such
that for all real a

(2.1) [K(y,a)#u(y)]qdy [K(a y v(y)]-P’dy <_C<o,

holds. If --p <_ q< o (2.1) takes the form

(fa(2.2) [K(y,a)u(y)]qdy ess sup [K(a,y)-’e(y)] - -<C,
y<a

with the usual modification if q .
(b) We say (u,e) satisfies A*(K,p,q) with constant C* if there is a B, O-<B-<I,

such that for all real a

a 1/q o )fl-ll)(y)]-P’dy _C*<oo(2.3) f [K(a,y)#u(y)]qdy [K(y,a <
0

holds. For =p<_q< o the modification in (2.3) is similar to that of (2.2), except that
the essential supremum is over y> a.

Before stating the main result of this section we give the following integral form of
Minkowski’s inequality [4, Thm. 202, p. 148].

LEMMA 2.1. If g(x,y ) >_ O, 1 <_p <_ o and b>_ -o then

and

(fbO fxO ]p
lip

fbO[fby ]l/p(2.5) g(x,y) dy dx <- g(x,y)Pdx dy,

with the usual modification if p= o0. If p< 1 the inequalities in (2.4) and (2.5) are
reversed.

THEOREM 2.1. Let K be the integral operator defined by (1.1) where K(x,y)>O is

defined in A with K(x,y) nonincreasing in x and nondecreasing in y. If <_p<_q< and
( u, v ) satisfies A(K,p, q) with constant C, then

(2.6) ( f_]u(x)(gf )(x)[qdx)l/qAf( f_o[19(x)f(x)[Pdx)l/P
where A =((p’ + q)/q)/P’((p’ + q)/p,)l/q if <p<_q< o andA otherwise.

Proof. Assumef_>0 for which the right side of (2.6) is finite.
Consider first the case <p_<q< o, and define h by

h(y)_(fy_oK(y,z)(l_#)p,v(z)_p,dz )l/(p,+q).
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If the left side of (2.6) is denoted by I, HOlder’s inequality shows that

( (x )q/PI<_ f_u(x) q f_[K(x,y)#f(y)v(y)h(y)]Pdy

f [K(x,y)’-lv(y)h(y)]-p’dy dx
--00

The second inner integral has the form

x (f )-p,/(p’+q)f K(x,y)-)P’,(y) -p’ Y K(y,z)(-)P’,(z)-P’dz dy,

and since y<x implies K(y, z) _>K(x, z), this is bounded above by

(2.7) f g(x,y)(l-B)P’l)(y) -p’ Y g(x,z)(1-fl)P’1)(z)-P’dz dy

( )(f__x )q/(P’+q) (p,+q)h(x)q+ q K(x,z )(l-fl)P"l)( z )-P’dz
q q

which was obtained by integrating. Hence (2.4) and the definition of A(K,p, q) yield

q f_=[u(x)h(x) (_oK(x,y)’P[f(y)v(y)h(y)]Pdy)q/Pdx
1/q

[f(y)v(y)h(y)] p g(x,y)flqu(x)qh(x)q/P’dx
q

(p’+q)’/P’cq/(p’+q)q

(f_[f(y)v(y)h(y)](mK(x’y)Bqu(x)q

Againy<x implies K(,y)NK(z,x), so that on replacing K(,x) by K(z,y) in the
inner integral and then integrating, one obtains

I<_
q

Cq/(p’+q)
p,

l/q

f [f(y)v(y)h(y)] p

(fY )pp,/q(p,+q) )lipg(z,y)’Squ(z)qdz dy

<-(-P’+q ) l/P’ ( P’+q )
/q

( f [f(y)v(y)]Pdy) l/P

q p’

where we used (2. l) and the definition of h. This completes the proof if <p _< q<
Now suppose <p<_q= . For each x we have

u(x) fx K(x,y)f(y)dyu(x) esssupK(x,z)af
x
K(x,y)-Bf(y)dy,- z<x
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so that H61der’s inequality and the definition of A(K,p, o) show that this is bounded
above by

u(x) esssupK(x,z)a(f [K(x,y)-lv(y)]-P’dy
z<x -o

(LL[f(y)v(y)]Pdy) lip

<-C esssupK(x,z)#u(x) esssupK(t,x)#u(t) [f(y)v(y)]Pdy
zx tx -o3

so that it suffices to prove that the product of the first two factors on the right side is
bounded above by 1. To see this, observe that

ess sup K(x,z)tu(x) ess sup K(t, x)tu(t
z<x t>x

t=esssupK(x,z)u(x) esssupK(t,x)u(t)

<-esssupK(x,)u(x) esssupK(t,)u(t)
zx

since K(t, z)NK(t, x) for z<x. This is now clearly bounded above by

esssupK(x,z)au(x)(K(x,z)au(x)) -l- 1,
zx

as required. This completes the proof if <p<q- o.
If =p_< q, define h by

h(y)- ess sup [K(y,z)#-lv(z)] -l

Again (since x >y), the monotonicity condition on K implies that

I--( f=u(X)q(fx-o -oog(x’Y)f(Y)h(y)essinf[g(Y’Z)-lz<y 19(z)]dy)qdx)
1/q

-<( fu(x)q( fX K(x,y)f(y)h(y) essinf[K(x,z)/-lv(z)] dy)qdx- -o z<y

1/q

<--(Lou(x)q(fLg(x,y)Bf(y)lg(y)h(y) dy )qdx ) l/q.

We now apply (2.4) and (2.2) to obtain

I-Lf(y)v(y)h(y) g(x,y)flqu(x)qdx dy

_<c

It is clear that this last argument also holds if q-m. This completes the proof of
Theorem 2.1.

Our next result is the dual of Theorem 2.1.
THEOREM 2.2. Let K* be the integral operator defined by (1.1) where K(x,y) >_ 0 is

defined in A with K(x,y) nonincreasing in x and nondecreasing in y. If <_p<_q<_ o and
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( u, v) satisfies A*(K,p, q) with constant C*, then

(2.8) ( )(K*f )(x)[qdx) l/q

-o
X AC*(f_[l)(x)f(x)[Pdx)

1/,

where A =((p’ + q)/q)/P’((p’ + q)/p,)l/q if 1 <p<_q< o andA 1 otherwise.

Proof. H61der’s inequality and its converse show that (2.8) is equivalent to

(2.9)

f-og(x)(K*f)(x)dxAC* f-oo[v(x)f(x)]pdx f-g(x)q’u(x)-q’dx
for all nonnegative f and g. Fubini’s theorem shows that the left side equals
ff(y)(Kg)(y)dy so that Theorem 2.1 implies that (2.9) holds if (v-,u-) satisfies
A(K,q’,p’) with constant C*; that is, if (u,v) satisfies A*(K,p,q) with constant C*.
Ts proves Theorem 2.2.

An important class of operators are those ven by convolution integrals of the
form

k(x-y)f(y)dy and k(y-x)f(y)dy.-- X

For these we have the following result.
Coogg 2.1. Let p q , k(x) 0, be nonincreasing, and suppose that

u O, v 0 satis

(2.10) SUp k(x-r)Bq.(x)qdx

for some 0 B 1. Then

.(xl ex

where A =((p’ + q)/qf/’((p’ + q)/p,)l/q if <pNq< andA otheise.
There is a silar result for the dual operator.
The corolla and its dual follow at once from Theorems 2.1 and 2.2.
If we take k and f supported on (0, m), then we obtain the generalizations of

Hardy’s inequality Nven by Andersen and Muckenhoupt [1] and Bradley [3]. In fact, in
this case (2.11) implies (2.10) and silarly for the dual.

From Corollary 2.1 and its dual one easily obtains inequalities for fractional
integral operators and some of their generalizations, such as the Erdlyi-Kober opera-
tors I2, and Jn defined by

r( l
x fx x )- -(B+nl+-

r( l
We give the details only for I2, since J,n may be treated by a dual argument.
Elementary variable changes show that the inequality

[u(x)(I,f)(x)lqdx C ]f(x)v(x)lPdx
lip
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is equivalent to

(f0 [U()(Iotf)(x)[qdx)
l/q o0 l/p

where U(x)=xl--+l/-)/qu(x/), V(x)=xl-+I/-lVev(xl/) and I denotes
the emann-Liouville fractional integral (If )(x) x(1, f)(x). For I, Corollary
2.1 yields the following result:

THEOREM 2.3. Suppose p q 0<a< 1, and there is fl, 0 fl 1, satising

-x

for all r> 0. Then there is a constant B>0 such that

Theorem 2.3 may be applied, in particular, to obtain weight functions U(x), V(x),
each of the form x(1 + x)--, for wNch (2.13) holds. For simplicity, we illustrate this
only for the case of power weights.
Coogg 2.2. Suppose <pNq<, l/q= 1/p++-, >0, < lip’ and

0< + 1. There is a constant B>0 such that

x( IX--’(/af)( )[qdx)l/q l/p

If we take l<p=q, 8=0, 0<a<l, we obtain [4, Thm. 329]; the choice l<p,
0<a<l/p, V=(p-q+pqa)/(pq), V>0, =0 yields [4, Thm. 402] for the range
pq<p/(1 -ap).

Proof of Corolla 2.2. The result follows from Theorem 2.3 if we show that for all
r>0

ex

for a suitable choice of fl, 0_<fl_< 1, to be selected presently. Let x-r/t in the first
integral and x-rt in the second. Then the left side of (2.14) becomes
r-r+ /q+--+ /P’ multiplied by the product

(l__t)(a-1)flqt(1-a)Bq+vq-2dt (l_t)<l-#)<-l)P’t-P’dt

Now the definition of q shows that the exponent of r is zero, while the integrals
converge if (a- 1)flq+ >0, (1 -a)flq+,[q- 1 >0, (1 -fl)(a- 1)p’+ >0 and 8p’ < 1.
Since p> we have 1/p a< a, and since 8< 1/p’ it follows that 1/q-/- 1/p +
a 1/p’ + a< a, while 3’ > 0 and 3’ + 8> 0 imply that 1/q>max(1/q-,, 1/p a). Hence, there is a fl, 0 _< fl _< 1, satisfying max(1/q- [, 1/p a)< (1 a)fl<

1/q. For this fl the integrals converge and the corollary follows.
Observe that

(x--y) -h
If(y)ldy (0<h<x)
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so that the left fractional maximal functionMfgiven by

(Mf)(x)- sup h-’ If(y)ldy
0<h<x --h

satisfies Mf<F(a)(Ili]). As a consequence, Theorem 2.3 yields two weight function
inequalities for M also. A dual argument yields similar inequalities for the right
fractional maximal function.

As a final application of Theorems 2.1 and 2.2, consider the Laplace transform
given by

If

(ef )(x)=fome-Xyf(y)dy (x>0).

(Kf )(x) fxe-y/xf(y) dy,(Kf)(x)=f;f(y)dy and

then for f(y) _> 0

e (Kf) -It follows that

(fo]U(X)(f)(x)lqdx) 1/q

if and only if both

are bounded by a multiple of

Thus, Theorems 2.1 and 2.2 yield the following result.
ToN 2.4. Suppose 1Npq andfor all r>0

Iffor some B, 0 B 1,

<_(ef )(x)<_(Kf ) -C(fo[f(x)(x)]Pdx)
I/p

u (K’f)(x)
X X 2

(2.16)
o

flrqxu(x)qdX e-(l-)P’x/rl)(x)-P’dx C

for all r> O, then

(2.17) (f0 [U()(-f)(x)JqdX) l/q oo
X C( lf(x)V(x)[Pdx) I/p.

The conditions (2.15) and (2.16) imply the required inequalities for K and K
respectively. Moreover, as we obseed following Corollary 2.1, (2.15) is also a neces-
sary condition for the inequality involving K, and hence is also a necessa condition
for (2.17).

If u(x) is nonincreasing and v(x) is nondecreasing, then (2.15) is both necessary
and sufficient for (2.17). To see ts, obse’e that (2.15) and the monotone conditions
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imply that u(1/r)q/r]!/q[ v(r)-P’r]!/P’<_ C, while for 0< fl< the left side of (2.16) is
clearly bounded above by

e-Bqu(1/r ) q/flqr] l/q[ e_(l-B)P’( r )-P’r/(1 fl )p’] l/p’.

Thus (2.15) implies (2.16) in this case, and the result follows.
It is easy to verify that u(x) x !/q, v(x) x-a+ l/p’ satisfy the requirements of

Theorem 2.4 provided a> 0. The particular case a-- 1/p’, <p_<q< o, is [4, Thm.
360]. The case <p=q< o, a= 1/p or lip’, is [4, Thm. 350] while the case <p_<2,
q=p’, a= 1/p is given as [4, Thm. 352].

3. The integral inequalities forp,q< 1. In this section we prove results correspond-
ing to those of the previous section for indices less than 1.

Let u(x)_>0, v(x)_>0, K(x,y)>_O, p,q< 1, pva0, qv0 and fl-0 or 1. For any real
r we define Ktand Jt by

’/q

)fl-- V( )]-P’dsK(r)- f_[K(r,s)u(s)]qds f_o[K(r,s s

and

l/q oo

)fl_lv(s)]_P,dsr)flu(s)]qds [K(s r

DEFINITION 3.1. We say a nonnegative function f is K-admissible, respectively
K*-admissible, if (Kf)(x), respectively (K’f)(x), is finite for all x.

Our first result deals with the case 0<q_<p< 1.
THEOREM 3.1. Let K(x,y)>0 be defined in A and suppose 0< q<_p < 1.
(a) If K(x,y) is nondecreasing in y and (u,v) satisfy infrJ!(r)=--B>O, with Jl(r)

either bounded above or nonincreasing, then

(3.1) (f_[V(x)f(x)]Pdx) lip
_<c

holds for all K-admissiblef and some constant C.
(b)/f K(x,y) is nonincreasing in x and (u,v) satisfy infrKl(r)=--B>O, with Kl(r )

either bounded above or nondecreasing, then

(3.2) [v(x)f(x)]Pdx -C [u(x)(K*f )(x)]qdx

holds for all K*-admissiblef and some constant C.
Proof. Assume the right side of (3.1) is finite and f is K-admissible. We shall carry

out the proof assuming that Jl(r) is nonincreasing; the required modification for the
alternate hypothesis will be self-evident. Define h by

h( y )PP’--fyV(s )-P’ds-Sl( y )P’
o ) -p’/q

fy K(s’Y)qu(s)qds

Then by HOlder’s inequality

(gf )(x) > ( f_x [v(y)f(y)h(y)] Pg(x,y )Pdy )1/’P (f_x [v(y)h(y)]-P’dy )l/p’
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and on integrating it follows that the second integral is

f v(y)-"’ v(s)-P’ds dy<_(-p’) I)(s)-P’ds --(--p h(x
0

Denote the right side of (3.1) by I. Then using the previous estimate we obtain

(oo (x )q/P)P/qIP>--(--p’)p/p’ Lou(x)qh(x)Pq/P’ f [o(y)f(y)h(y)]PK(x,y)Pdy dx
0

But since q/p <_ 1, Minkowski’s inequality (2.5) shows that

IP>--(-p)P/P’(L[(y)f(y)h(y)]P(fyK(x,y)qu(x)qh(x)Pq/P’dx)P/qdy )
=(-p’)P/P’(L[v(y)f(y)h(y)]P

q q o
S dx dy

=(--P’)P/P’( [v(Y)f(Y)h(Y)]P

g(x,y)qu(x)qJl(X)q/P’fx g(s,x)qg(s)qds dx dy.

But since J is nonincreasing and K(s,x)>_K(s,y) for y<x, we obtain on integrating

P/q
o

)h(Y)]PJ,(Y s,y dyf [v(y)f(y )P/P’ K( )qu(s)qds
0

(--P’)/P’PP/qL [f( y)v(y )h ( y )] PJ(y ) +P/P’h( y )-Pdy

>(--p’)Plp’pP/qBp [f(y)v(y)]Pdy,
0

which yields the result of part (a).
The proof of part (b) is similar to that of (a) except that now h is defined by

h(y)PP’--LL19(s)-P’ds-KI(y)P’ ( LL [K(y,s)u(s)] qds ) -P’/q.

The details are omitted.
Now we consider the case for negative indices.
THEOREM 3.2. Let K(x,y) >_ O be defined in A and suppose q <_p< O.
(a) If K(x,y) is nonincreasing in x and (u,v) satisfy infrKo(r)----B>O, with Ko(r )

either bounded above or nondecreasing, then (3.1) holds for all K-admissible f.
(b) If K(x,y) is nondecreasing in y and (u,v) satisfy infrJo(r)=--B>O, with Jo(r)

either bounded above or nonincreasing, then (3.2) holds for all K*-admissible f.
Proof. Part (a) is the dual of Theorem 3.1(b); part (b) is the dual of Theorem 3.1

(a). Since the proof is analogous to that of Theorem 2.2, the details are omitted.
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The change of variable x=logt, y--logs in Theorems 3.1 and 3.2 leads im-
mediately to the analogous results for the half line (0, o) rather that (-o, o). If this is
done and K(x,y) is set equal to one, we obtain some of the results in [2].

4. The discrete case. In this section we state the discrete analogues for some of the
integral inequalities proved in the preceding sections. We shall state only the discrete
versions of Theorems 2.1, 2.2 and 3.1 valid for sequences on Z; the corresponding
versions valid for sequences on Z+ generalize certain inequalities of Leindler, for if we
take K(m,n) equal to one andp=q we obtain [5, (1’), (2’), (3’) and (4’)].

THEOREM 4.1. Let {K(m,n)} be a nonnegative double sequence defined in D=
((m,n)ZZ:n<_m), such that K(m,n) is nonincreasing in m and nondecreasing in n.

If <_p <_ q <_ o and (un), (Vn } are nonnegative sequences such that for some fl, 0 <_ fl <_ 1,
and all integers r

(4.1) K(n,r)Bquqn
l/q

K(r,n)(1-#)P’vp

then for all sequences (an }

n---oo

n iq )
l/q

u K(n,k)a <-AC
l/p

then for all sequences (an)

(4.4) u, K(k,n)ak q)
l/q

<_AC* , IVnanl

The analogue of Theorem 3.1 is as follows.
THEOREM 4.3. Let K(m, n) be a nonnegative sequence defined on D ((m, n) Z

Z: n<_m} and suppose 0<q_<p< 1.
(a) If K(m,n) is nondecreasing in n and (ug} _>0, (vg} _>0 are such that

Jl(r) [K(m,r)Um] q Vn p’

m=r m=r

rZ,

satisfies infrJl(r) B> 0, and Jl(r) is either bounded above or nonincreasing, then

(4.5) E [Vnan] p <--C Un E
n: --o n:--o k:

holds for some constant C>0 and all nonnegative {ak) for which ,"k:- K(n, k)ak is

finite for all n.

flq q r)(1-fl)P’l)-p, C*(4.3) K(r,n) u x K(n <_ <,
n-- --or3 n

In case p 1, the second sum in (4.1) is replaced in the usual way by the supremum
for n <_r.

The dual of Theorem 4.1 is the following:
THEOREM 4.2. Let {K(m,n)} be a nonnegative double sequence defined in D--

((m,n)ZXZ:n<_m} such that K(m,n) is nonincreasing in m and nondecreasing in n.

If <_p <_ q <_ o and (u }, {v, } are nonnegative sequences such that for some fl 0 <_ fl <_ 1,
and all integers r
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(b) If K(m,n) is nonincreasing in rn and (uk} >_0, (vk) >_0 are such that

Kl(r) [g(r,n)Un] q P’ rZ,
n n

satisfies infK(r)B>0, and K(r) is either bounded above or nondecreasing, then

(4.6) [v,a,] p NC u, 2 K(k,n)ak

holds for some constant C>0 and all (ak}Ofor which k,K(k,n)ak is finite for all n.
The proofs of these theorems follow closely those of their integral analogues; thus

the proof of Theorem 4.1 is parallel to that of Theorem 2.1, except that now, for
example, the exact integration that led to (2.7) is replaced by an appeal to the easily
derived inequality

Cn Ck Ck

valid for nonnegative sequences {c }, <r< m. The inequality

C Ck Ck
N k=n N

is used at a later stage to complete the proof. Silarly, the elementary inequalities

--m n N

N --m

Cn Ck Ck
N n N

Cn Ck Ck

valid for O<r< and nonnegative sequences {c} are used in the course of proving the
remaining theorems. We ot the details.
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SUSTAINED RESONANCE FOR A NONLINEAR SYSTEM
WITH SLOWLY VARYING COEFFICIENTS*

CLARK ROBINSONf

Abstract. J. Kevorkian [SIAM J. Appl. Math.,20 (1971),pp. 364-373; 26 (1974),pp. 638-669] studied
resonance for a spinning reentry vehicle using a model system of ordinary differential equations with slowly
varying coefficients. He and L. Lewin [SIAM J. Appl. Math., 35 (1978), pp. 738-754] gave formal multiple-
time-scale expansions and numerical results to give a description of a mechanism for capture in sustained
resonance. J. Sanders [SIAM J. Math. Anal., 10 (1979),pp. 1220-1243] studied these equations more rigor-
ously using the method of averaging, but still could not prove the existence of sustained resonance. This
paper continues the study of these equations using higher order averaging and the Melnikov method and
shows rigorously that capture in sustained resonance does take place for some initial conditions. The
Melnikov method measures the opening of a saddle connection for a small perturbation in terms of an
integral. Since it has usually been applied to perturbations which depend periodically on time, the derivation
of the integral for systems with slowly varying coefficients is included.

AMS-MOS subject classification (1980). Primary 34C35, 70K30

Key words, resonance, capture in resonance, reentry vehicle

1. Introduction. The system of ordinary differential equations with slowly varying
coefficients studied in this paper were introduced by J. Kevorkian to model a spinning
reentry vehicle [7]. (See {}2 for the equations.) For a large set of initial conditions the
pitch frequency becomes equal to the roll frequency, i.e. the system becomes in reso-
nance. Most of these initial conditions lead to motion that passes through resonance,
but a small set of initial conditions lead to capture in sustained resonance (on at least a
time scale of 1/e).

J. Kevorkian studied these equations formally using multiple-time-scale expansions
[6], [7], [9]. The paper with L. Lewin gives numerical results as well as a description of
the capture in sustained resonance, although "no attempt is made to provide rigorous
proofs" [9].

J. Sanders used the method of averaging to make a more rigorous study [14]. He
studied both passage through resonance and capture in sustained resonance. He stated
explicitly that he could not prove resonance is sustained on a time scale of 1/e when
the natural time scale is e-1/:. (We learned of these equations through his work.)

In this paper, we prove rigorously that capture in sustained resonance does occur.
Both J. Kevorkian and J. Sanders give solutions as functions of time; we do not do this
but do show the mechanism for capture in sustained resonance, using the method of
higher order averaging and the Melnikov method. By using systematic higher order
averaging, we include all the terms of second order in e. The paper by L. Lewin and J.
Kevorkian included one term in their description but not all the terms. J. Sanders used
the method of averaging but dropped all but the lowest order terms when he formed his
inner expansion. We use his averaging results but include the next order terms. See the
Addendum for a comparison with the recent papers of W. Kath [16] and R. Haberman
[17l.

*Received by the editors September 23, 1981, and in revised form August 30, 1982. This research was
partially supported by the National Science Foundation under grant MCS 81-02177.

Department of Mathematics, Northwestern University, Evanston, Illinois 60201.
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The Melnikov method is usually applied to periodic time perturbations of a system
with a saddle connection ([10], [Sa], [Sb] or [1]). The Melnikov integral measures the
infinitesimal separation of the stable and unstable manifolds of the saddle point as a
function of the small parameter e. We show that this method is also applicable to
systems where the coefficients vary slowly with time. We show that the integral is
positive for the model equations for the roll/pitch resonance problem, and so there is
an opening between the stable and unstable manifolds through which orbits oan be
captured in sustained resonance.

I initially became involved in studying resonance problems through collaboration
with J. Murdock on a related equation [13], [11]. In the equations of the earlier paper
the coefficients were constant but there was a damping term. This made it possible to
use a Lyapunov function argument rather than the Melnikov integral used here.

In conclusion, we mention the early paper of W. Kyner on capture in resonance
that uses the separation of the separatrix solutions of a saddle point to measure the
probability of the capture set [8].

2. Equations and statement of results. After describing the equations which apply
to the roll, pitch, and yaw of a reentry vehicle, J. Kevorkian introduced the simpler
model equations which he studied [7]:

(2.1) i:-(pE+uE)q, 19:eu-qsin, -2/2p, f:1/2eu,

where q is the pitch angle, b is the roll angle, p is the roll rate, u is the natural pitch
frequency when roll is not present, and the small parameter e is a dimensionless
quantity related to the change of atmospheric density at high altitude and also the
distance of the center of mass from the long axis of the vehicle.

Following J. Sanders [14] we put these equations in a standard form by letting
w, , x and 0 satisfy

q-w sin, --w(p2d-U2)I/2COS, X:p/U, 0----.
(These varibles differ slightly from [14]: is his +, and we take the negative of his 0.)
Expanding the resulting differential equations in a finite Fourier series yields the
equations

O:21/2ux-u( -t- X2) 1/2

-e(1 +x2)-(1/4sin2+sUWx[sin(+/)-sin0+sin(3-/)-sin(3+/)] },
= 1/2 { uw cos 0 uw cos( + q,) ),

= ew( +x2) -1 ( 1/4+ 1/4 cos 2 + uwx[cos(3j q,) cos(3j+ q,, ) + cos 0 cos( j+ q, ) },
= 21/2XU,

f-- 1/2eu.
Among the five angles, 2, +, -, 3+ b, 3-, only the angle 0 - varies
slowly and this occurs for x- 1. All the Fourier terms with fast varying angles average
to zero. By the method of higher order averaging [12], there exists a change of variables
near x = 1,

(q,z,y,rl,u)= (O,x, w,q,,,u) + O(e),
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so the equations eliminate the terms which average to zero and they become

-21/2uz-u(1 +z2)l/2+e(1 +z-)-uyzsin,+O(e2),
cos + o( ),

---ey(1 +z2)-(-+1/2uyzcosq,) +O(e),
--21/2zu+O(e2),
f-- 1/2eu.

Since ,/does not appear in the equations, except for the O(e2) terms, and since we show
below that the terms of order e determine the behavior, we drop this variable from
further consideration.

In the resonant band about z-- (or x-- 1, orp-u), !etting z + gt’, r=t and (’)
be d/dr, the equations become

q’= (2’/9-/2)u /*(2’/2/8)u2 +/*(6)uy sin + 0(/.2),

’ 1/2 uy cos 1/2- u/2+ 0(/*2 )
or as a second order equation in letting v ’ and h--uy cos ff- 1,

(2.2)
v’- (21/2/4)uh-()hv+/*()v+ O(/*2),
y’--- /*( 1/2 )y- /*( )uy 2 cos+ 0(/,2),

The inner equations of [14, 8.19] are the same as these but do not include the terms of
order/*, except for the u’ equation.

Equations (2.2) are the ones we study. The averaged equations are obtained by
dropping the terms of order /-. Numerical integration of these averaged equations
leads to capture in sustained resonance for the initial conditions

0=-2.5, y0= 1.5, u0= 1, e=0.0001, 1.16_<Vo-_<1.24.

See Fig. 1. Compare with [9, Fig. 7].

vo= 1.15 v0= 1.16

vo--- 1.24 v0-- 1.25

FIG. 1.
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To understand Fig. 1, notice that for p-0, y and u are constants, and there are
fixed points at v-0 and cosq,-1/uy. One of the fixed points is a hyperbolic saddle
with a saddle connection and the other is an elliptic fixed point. See Fig. 2.

FIG. 2. Flow in q, v )-spacefor t O.

We prove that for small # and <uy, the unstable manifold comes inside the
stable manifold, leaving an opening in between to capture an orbit, so v is bounded by
a constant C for O<t< C2/e. The reason the time interval is only O(1/e) is that the
bound e0(u,y) is not proved to be uniform in u and y, and it takes time on the order of
e-l to leave a compact region in the set { < uy}.

FIG. 3. Flow in d, v )-spacefor/x>0.

If an orbit has Iv(t)l<C for O<_t<_C2/e, then vu, so

[u(t) -p(t)l-[u(t)(1 x(t))[-
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for O<_t<_ C2/e. Thus for such an orbit the roll rate p(t) grows at an exponential rate
like u(t) on a time interval O<_t<_ C2/e. See [9, Fig. 5]. This motivates the definition of
sustained resonance given in [9, p. 748]" an orbit is in sustained resonance if lu(t)-p(t)l

O(e/2) for a time interval 0 <_ <_ Cl/e. We can now state our main theorem.
THEOREM 2.3. For <u0Y0 there exists eo(Uo,Yo)>O such that for O<e<eo(Uo,Yo),

there are some orbits for (2.2) (or (2.1)) which start outside the resonant band and are
captured in sustained resonance for a time interval of at least O(1/e). For these capture
orbits, lu(t)-p(t)l<-Ce/2 for O<_t<_ C2/e so the roll rate builds up exponentially on this
time interval. (Many other orbits enter the resonant band and leave after a short time.)

As mentioned above, for/x-0 (or e-0) there is a hyperbolic fixed point for every
fixed set of parameters u and y with <uy. Because for/>0 the parameters u and y
vary slowly, there is not an actual fixed point, but there is an invariant set in
(,v,u,y)-space with codimension one stable and unstable manifolds. (See 3 for
details.)

The distance between the stable and unstable manifolds for/x>0 is measured by.
the Melnikov integral, AI(0, u,y), defined in [}3. This integral measures the effect of the
next order terms in # on a saddle connection. The fact that A(0, u,y)>0 for <uy,
implies that for small enough/x the unstable manifold comes inside the stable manifold,
leaving an opening between to capture an orbit in resonance. (See Fig. 3.) The Melni-
kov method is usually applied to time periodic perturbations, so we show in 3 that it is
applicable to systems with slowly varying coefficients. At the end of this section we
apply it to a simple but general forced pendulum problem with slowly varying coeffi-
cients. In 4, the Melnikov integral for (2.2) is derived and proved to be positive for
<uy.

Finally in {}5, the separation of the stable and unstable manifolds predicted by the
Melnikov integral is compared with results from numerical integration of the differen-
tial equations (2.2) themselves.

3. Melnikov method for slowly varying coefficients. The usual Melnikov method
applies to ordinary differential equations with periodic dependence on time ( [10], [Sa],
[15], or [1]). In this section we show how the method applies when the coefficients vary
slowly with time. More specifically, consider the equations

(3.1) 0’ =p0( 0, , u) + ,p ,( 0, , u) + o(, ),
v’- qo(0, v, u) + eq(O, v, u) + O(e2 ),
u’-r(O,,u)+O(’),

where 0 and v are scalars and u is allowed to be a vector quantity. Letting x-(0, v),
these equations can be written as

x’ :f0(x, u) +f(x, u) + o(: ),
u’--er(x,u)+O(e2).

Saddle connection assumption 3.2. The equations for e-0 and for u0 in a bounded
set U are assumed to have a hyperbolic saddle point z(u0, 0) with a saddle connection
with solution x0(t, u0).
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Xo(O,o)

t, no)

Z(Uo,O)

FIG. 4.

PROPOSITION 3.3. Assume equations (3.1) satisfy the saddle connection assumption.
Then for 0 <_ e << there is a normally hyperbolic invariant set,

M ((x, u): x z(u, e) with u U),

where z is a C function of u, and e and z(u, 0) are the saddle fixed points. (Note the set U
is not invariant under the flow of (3.1), so M is an invariant set in the weaker sense that a
solution can leave only by its u variable crossing the boundary of U.) Motion on M is slow,
i.e., on the order of e. Moreover, the invariant set M possesses stable and unstable
manifolds, WS(e) and WU(e) ofpoints which approach M exponentially fast as goes to
o or -, respectively. These manifolds are C functions of u and e, and so they are C
close to the saddle connection on compact subsets.

Proof. The existence of M, WS(e) and WU(e) follows from the persistence of
normally hyperbolic invariant sets and their stable and unstable manifolds ([4, Thm.
4.1] or [2, Thm. 3]). The usual theorem requires a compact set (or uniform estimates on
derivatives on all of a Euclidean space), so it is necessary to patch Uc U* where U* is a
compact manifold (e.g. a sphere) and extend (3.1) to a neighborhood of a hyperbolic set

((x, u): u v*, x: z(u, o) ).

The fact that motion is slow on M follows because it is a graph over the u variables.

xo,o, uo,

xu(o,o

FIG. 5. x-space with uo fixed.

The Melnikov method measures the separation of W(e) and WU(e) for 0<e<< 1.
Fix uo. Let L be the line through Xo(0, Uo)-- Xo(0), in x-space, which is perpendicular to
fo(Xo(0),Uo). Let x(t,e) (resp. xU(t,e)) be the solution in W(e) (resp. WU(e)) crossing
L at t:0 and also with u=uo at t-O. Let Xo(t)-Xo(t, Uo), andfo(Xo(t)):fo(Xo(t),Uo).
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Letting the wedge product represent the scalar cross product in the plane, define

A(t, Uo, e) [xU(t, e) xS(t, e)] Afo(xo(t))
and

A(t’u) --e A(t’u’ e)l=- -ex (t, e)-exS(t’e) Af(x(t))"

The function A l(O Uo) measures the infinitesimal separation of the stable and unstable
manifolds as a function of e. (J. Sanders has pointed out that A is not uniquely defined
but depends on L. The use of A eliminates this difficulty.) Notice here and below that
e affects the solution of x and x directly through the dependence of f(x, u, e) on e, and
indirectly through the dependence of u at time on e. The following result is the heart
of the Melnikov method.

PROPOSITION 3.4. Assume equations (3.1) satisfy the saddle connection assumption,
and that fo is divergence free as a function of x, i.e. trDfo(X,U)=0, where D is the
derivative with respect to x. Then

A,(0,Uo)- f(xo(t),Uo)+--ffu (Xo(t),Uo)--e Afo(Xo(t),uo)dt

where 0u/0e satisfies

(Ou)’--r(xo(t),Uo)

Usingp and q, the integral can be written

u
and =--0 att-O.

A(O,uo) qoP--Poq + 0po 0qo ) 0u
q --u P --u -e d

Remark. If fo is not divergence free, then the integral changes as in [5].
Proof. Take all partial derivatives with respect to e at e-0. Let D be the derivative

(Jacobian matrix) with respect to x. Let

(t))A(t) --exu(t’ e) A/0(x 0

ASl (t) ---e xs(t’ e) Afo(X0(t))

so A l(t, uo) A(t) A](t). Taking the derivative of A(t) with respect to gives

(Nl)’-- ( Ox )’Afo+ 0x
--eADfo(Xo(t))fo"

By theorems on dependence of solutions on parameters [3, Thm. V.3.1]

(x) 0x 0fo 0u
-e Df -e +f + O---ff 0-

all evaluated at x= Xo(t ), u--uo. Therefore

(A)’- (f + ( 0f on
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The second term equals

{ Ox/fo)-0(tr Df0)

because fo is assumed divergence free. The first term is like the integrand of the
statement of the result. Letting F=fl +(Ofo/OU)(Ou/Oe) gives

(Nl)’-- F/fo,
SO

Below it is shown that

SO

Similarly for A, letting T- o

and

lim A(T)- O,
T oo

A](O) foF/fodt.

f;F/ foctt=f]’=FAfodt’

Al(O, uo)-- F/fodt.

Finally before checking the limits, by the theorem on dependence of solutions on
parameters [3, Thm. V.3.1], u/e satisfies

-e -u er (x( ) u( )) -e + -e ( er (x( ) u( )))

Because we are interested in this for e=0, the first term vanishes, u(t)=uo is a
constant, and x(t) is along the homoclinic orbit.

LEMMA 3.5.

lim ASl(T)=0= lim N(T).
To T--,

Proof. In the usual time-dependence case, this result is easy because

Ox
ASl(T)-- Afo(xo(T)),

fo(x0(T)) goes to zero exponentially fast, and OxS/Oe, which measures the dependence
of the fixed point on e, is bounded as T goes to infinity. In our case OxS/Oe is not
bounded but can grow like T. The reason it can grow is because of the u dependency.
Remember that

2v/, ( (x, u). x ,,(u, ).
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Let u(T, e) be the value of u at time T on the solution corresponding to xS(T, e). We
show that i)xS/Oe grows like (O/Oe)z(u(T, e), e). Since u(T,e)eT, i.e. the solution
moves a distance of eT along M,, (O/Oe)z(u(T, e), e) T and is not bounded even though
M, is uniformly C i.

a b

FIG. 6. a) Usual case, x-space, b) Slowly varying coefficients, (x, u)-space.

More precisely, as T-o, xS(T,e) approaches z(u(T, e), e) exponentially fast.
Therefore

(Ox)’tOzu,)))’-becomes small as T- . Then

(zu,,t’-( z,t-[tuz )( tu
Since the partials are evaluated at e-0, (Oz/Oe)(u(T, 0),0)-i)z/Oe(u0,0) has (Oz/Oe)’

0. Similarly (Oz/Ou)(u0,0)-0. Therefore

where )z/i)u and (Ou/Oe)’:r(Xo(t),Uo) are bounded. Since (1)xS/Oe) is exponentially
close for large T, it too is bounded and (Ox/Oe)(T, e=0) is bounded by CT for some
C. Since f0(x0(T)) goes to zero exponentially fast, A(T)-0 as T. Similarly
A(T)0 as T o.

PROr’OSITION 3.6. If Al(0,u0)>0 for u0 U, then there is capture in sustained
resonance. In fact for those solutions captured, the only way they can escape resonance is

for the solution to have its u value leave the region where A >0 (or where the equations
are valid) which takes time on the order of 1/e. This holds even with the terms O(e2 ).

Proof. The solution can not cross the manifold W(e) which is invariant and of
codimension one in (x,u)-space. Capture is possible, because for Al>0 the stable
manifold lies outside the unstable manifold leaving a gap in between where trajectories
can enter into sustained resonance. See Fig. 3.
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The following simple example illustrates the calculation of A 1. This example can be
treated by other methods as was done in [9,3.12] for the case when f(w)-w, g(w)-w
and r(q, , w) w/2.

Example 3.7. Consider the system of equations

@-- v, )--f(w)cos--g(w), *-- er(q, v, w).
Letting fw-(Of/Ow) and gw-(Og/Ow), assume there is a domain W, such that for
w W the following five conditions are satisfied:

(i) <g(w)/f(w)< 1.
(ii) e-df/dt(w)=fw" r>-0 (i.e. f is nondecreasing along the saddle connection).
(iii) -e-*(d/dt)g(w)/f(w)=f(w)-(-fgw+gfw).r>-O (i.e. f increases at least as

fast as g).
(iv) One of the inequalities in (ii) and (iii) is strict at some point along the saddle

connection.
(v) f(w)>0 (if f(w)< 0 for all w in W then reverse all the inequalities in (ii) and

(iii)).
Then, this system has a saddle connection, and At(0, w)>0 for all w in IV.

Proof. Condition (i) insures the existence of a hyperbolic saddle connection.
Assume f(w)>0. Let s be a new time scale which solves ds/dt=f(w)1/a. Letting (’) be
d/ds and V- vf(w)-

so the equations become

q0’- V,

V’- cos q9- g(w)/f(w) e(1/2 ) Vf(w)- fwr,
w’- er(cp, Vf(w)’/ w)f(w)- ’/?

Take the parametrization of the saddle connection so that V(0) 0. Then sV(s)_> 0
along the saddle connection. The integral is then

foo f_ Oqo Ow
At(O,w)- Poql ds- Po Ow Oends

’ f- Ow
o - V2f-fw" rds+ (- V)f-2(-fgw+gfw) --ds.

The first integral is _>0 by (ii). In the second integral f,fw, g and gw are constant along
the integral, so

(-fgw+r w)" -ff -(-fgw+gfw)" rf-’/:>-o

by (iii), and so (-fgw+ gfw) (Ow/)e) has the same sign as s. Since -V also has the
same sign as s, the second integral is _>0. By (iv) one of these two integrals is strictly
positive.

4. Proof of Theorem 2.3. Using Propositions 3.3, 3.4, and 3.6, the only thing that
is necessary to check is that At(0, u,y)> 0 for uy> 1. The verification follows the outline
of Example 3.7 and is only slightly more complicated. The power of the Melnikov
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method is that it shows rigorously that the Ivv’ term in (2.2) does not affect the
separation of the stable and unstable manifolds, and that the terms 0(12) can be
ignored.

As in Example 3.7, the requirement that uy> insures that there is a hyperbolic
saddle point with a saddle connection for/x--0. Introduce a new time scale s by solving
ds/d’= uy1/2. Letting H 8-1/2cosq 8-1/2/( uy ), (2.2) becomes

ds
=V,

dV
"S H-- Ix8’/2( 3- ) yl/2vn la,(- )u- ’y- /2V+ O( Ix2 ),
dy 6y1/2 U--I (81/2/16)y3/2H+0()ds
du
N=y-/.

Then

fAl(O, u y ) oPq ds opu --# d
qo Ou

_fpoOqO Oy
--y-#ds.

The first integral equals

11 _ly_l/2v2/2v2Vt ds -- -- u ds

81/2 yl/2v3 _+_ u ds

11 -ly 1/2V2o-u ds.

The last two integrals equal

fo [ On 1/2 _ly_2 Oy_(- V) 8-1/2u 2y-1_ + 8 u -# ds

Since

d

it follows that

OU ._20y]8-1/2U-:Zy-l__+- 8-1/2U y " ly 1/V’=8--1/2u--2y-3/2(------ ) -U--

8_l/2u_2y_
)U

_l/2u_ly_ 2 )y

___8_I/2__u_2y_3/2S ly- 1/2
]-u V,
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and

13 -ly-l/2v2AI(0, u,y) _-u ds

+ f-__o 8_l/2__u_2y_3/2S( V)ds.

The first integral is clearly positive, and the second is positive because the saddle
connection is parametrized so that sV_> 0.

5. Comparison of the Melnikov integral and numerical integration. The gap A
between the stable and unstable manifolds as they cross the 9-axis (v-0) should
approximately be equal to el/2Al/qo, where q0 is the component of the vector field in
the v direction. (It is multiplied by -e1/2, because this is the small parameter in (2.2).)
To compare the predicted gap with numerical integration, various initial conditions
were tried for 9. The point where the solution changes from staying captured to
escaping is an estimate for the stable manifold. A similar calculation backward in time
gives an estimate for the unstable manifold.

The value of the parameters used are e--0.001, u--1.2 and y---1.4 (these corre-
spond approximately to the values used in [9]). Numerically calculating the integral
gives A 3.7. The saddle connection crosses v--0 at approximately q-- 1.97, where the
vector field is 0.70. The Melnikov integral therefore predicts that the separation is 0.17.
Using numerical integration starting at v- 0, backward in time it switches from capture
to escape between 1.87 and 1.88. Forward in time it switches between 2.05 and 2.06.
Therefore the separation found is about 0.18. The predicted separation is therefore a
good approximation of the empirical separation.

Addendum. After this paper was written, we became aware of the recent work of
W. Kath on these same equations [16]. He allows a more general form of u (his o) than
U2- ueet and gives a good explanation of how increasing du/dt causes release from
capture in resonance. This addendum indicates what conditions on du/dt imply that A
is positive so that resonance persists.

If er(u, o) with r(u, o)>0 and o eta slow time (o =/" in 16]) is allowed, then
v’ 8-1/2 u2y cos 8- t/22r+ O(/x). A necessary condition for an equilibrium to exist
becomes u2y>2r. Compare with [16,2.15]. If r(u,o)= u/2 as considered in this paper,
then this agrees with the condition that uy> 1.

With these changes, (4.1) becomes

d
ds

=V,

dV
ds

H-- 81/2(-2)yl/2vn- (-6 )Y-1/2u-2Vr+ 0( /,2 )
dy l/2u_ 16)y3/2H+ 0(2-s -#(-)y 2r-p,(81/2/ ),
du 1/2 IF-d--s -/xy u-

do --1/2
--d--s #y u-
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where H= 8-1/2cos 8-1/22y-lu-2r. Then

AI(0, u,y)-- ql A
Oqo Oy Oqo Do]Oy Ol k--- -@ ds

y(13)_l/2u_2rf" V2ds

Or 13 lr 2 s( V)ds.+8-1/2u-3y-3/2 --2r--2-o+ -- u-

Therefore A is positive if

Or Or (13)lr2-2r-u-2-3-do+ - u- >0,

or, since du/do- r( u, o),

Ordu 13/8 0r 13/8 ( _3 ) U--21/8/.20>-a-ffu U- +-o--dou-
O>
d 13/8].do[r(u,o)u-

Thus a sufficient condition to allow capture in resonance (and sustain resonance) is
that e- ldu/dt- du/do r(u, o) grows more slowly than u13/8 (and 1/2 u2y>r(u, o) to
preserve the fixed point). This answers the question at the end of [16, 3].

Another paper we received after this paper was written is by R. Haberman [17]. It
uses energy methods to show that capture in resonance takes place. These methods are
another way of expressing the calculations of Proposition 3.4.
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OSCILLATORY BIFURCATIONS IN SINGULAR
PERTURBATION THEORY, I. SLOW OSCILLATIONS*

NElL FENICHEL

Abstract. We construct closed orbits for a singular perturbation problem near a nondegenerate equi-
librium point of its reduced system, in case the linearization of the reduced system has a complex conjugate
pair of pure imaginary eigenvalues. The mechanism for constructing the closed orbits is that of the familiar
Hopf bifurcation problem, applied to a flow in a center manifold. The main content of this paper is an
explicit computation, using a center manifold, of the parameters of the Hopf bifurcation in the singular case.
A companion paper [SIAM J. Math.Anal., 14 (1983), pp. 868--874 studies a singular bifurcation problem in
which dosed orbits are constructed by a mechanism which is not related to a Hopf bifurcation.

Introduction. We study the structure of a singular perturbation problem near an
equilibrium point of its reduced system. This structure is determined primarily by two
sets of eigenvalues, the eigenvalues of the linearization of the reduced system and the
eigenvalues of the fast flow.

In this paper we study the case in which the linearization of the reduced system
has a pair of simple pure imaginary eigenvalues and the igenvalues of the fast flow all
have nonzero real parts. The orbit structure is close to the orbit structure of the regular
Hopf bifurcation problem, so our main interest is in explicit computation of parame-
ters.

In a companion paper [10] (this issue, pp. 868-874) we study the case in which the
fast flow has a pair of simple pure imaginary eigenvalues. This case exhibits a richer
structure than the previous case, because there is significant interaction between the
fast flow and the reduced flow. We find oscillations, but the mechanism leading to
oscillations is different from the mechanism of the regular Hopf bifurcation problem.

Oscillatory bifurcations appear in applications of singular perturbation theory.
Examples are found in the formal computations of Poore [8] and Matkowsky and
Sivashinsky [6], [7] on chemical reactors, in numerical computations of Feroe [3] on
nerve conduction equations, and in Hastings’ work on the Fitzhugh-Nagumo equations
[4].

1. Statement of the problem. We study a Cr+ family of differential equations

(1.1) z’=f(z,e),
where zR"+", e is a small real parameter, 2_<r< o, and’ denotes . We assume that
(1.1) is singular for e--0 in the sense that F(z, 0) vanishes identically on an m-dimen-
sional manifold . In particular, if (1.1) takes the special form

(1.2) x’-efR(x,y,e), y’=g(x,y,e),

where x R and y R", then for e-0 the right-hand side vanishes on an m-dimen-
sional manifold near any point where g vanishes and gy is nonsingular.

The linearization of (1.1) along a solution curve z(t) is

(1.3) 8z’-F(z(t),e)Sz.

*Received by the editors January 26, 1982.
*Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1W5,

Canada.This research was supported in part by the U. S.Army Research Office, and by the Natural Sciences
and Engineering Research Council of Canada.
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For e=0 any pointz is a constant solution of (1.1). The linearization (1.3) around
such a constant solution is a constant coefficient equation

(1.4) z’=F(z,O)Sz
with matrix F(z,0). Because F vanishes identically on , zero is an eigenvalue of
F(z, 0) of multiplicity at least m. We define R as the set of points z such that
zero is an eigenvalue of F(z, 0) of multiplicity precisely m. For z R we call the n
nonzero eigenvalues the eigenvalues of the fast flow. In this paper we study (1.1) only
near points of .

The reduced system is a differential equation on derived by expanding F to first
order in e, projecting onto the tangent space of $, and rescaling time. In case all the
eigenvalues of the fast flow have negative real parts we justify projecting onto the
tangent space of because components along the complementary invariant subspace
decay fast in the rescaled time.

The reduced system of (1.2) is obtained simply by setting e--0 and solving for y in
terms of x:

(1.5) Yc--fR(x,y,O), O--g(x,y,O),
where denotes , with

(1.6) t--er.

In 2 we recall from [2] the computation of the reduced system.
We are interested in the orbit structure of (1.1) near an equilibrium point of the

reduced system. At an equilibrium point of the reduced system, (1.1) has two well-de-
fined sets of eigenvalues, the m eigenvalues of the linearization of the reduced system
and the n eigenvalues of the fast flow. We say that (1.1) exhibits a slow oscillatory
bifurcation if the linearization of the reduced system has a complex conjugate pair of
pure imaginary eigenvalues and the eigenvalues of the fast flow all have nonzero real
parts. We say that (1.1) exhibits a fast oscillatory bifurcation if it has a complex
conjugate pair of pure imaginary eigenvalues of the fast flow.

In this paper we study only the slow oscillatory bifurcation. We compute a
coefficient a in terms of the Taylor series of F, such that if a is nonzero and if some
nonresonance conditions are satisfied, then (1.1) has a family of periodic solutions. This
is a singular version of the Hopf bifurcation theorem.

We prefer to study (1.1), rather than (1.2), for two reasons. First, as we have
argued in [2], (1.1) is more natural than (1.2). Second, for the study of fast oscillatory
bifurcations, (1.2) is so restrictive that it does not exhibit the phenomena generically
exhibited by (1.1). In 4 we restrict our attention to (1.2) in order to simplify a Taylor
series computation.

2. The reduced system. To study (1.1) near a point in we choose coordinates
Z--(x,y)lmXl in which is the graph of a Cr+l function y=u(x). Then (1.1)
takes the form
(2.1) x’ =f(x,y, e), y’= g(x,y, e),
subject to

(2.2) f(x,u(x),O)--O, g(x,u(x),O)--O.
A computation in [2] shows that the reduced system on is

(2.3a) :=f+fyh- UxfO _fyh-lge,
(2.3b) )-u(f+fyh-l oUxf.__fyh- lg,),
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where

0(2.4) h gy-u,fy,
o(2.5) ux- --g- ’gx,

and denotes t- A further computation shows that the eigenvalues of the fast flow are
precisely the eigenvalues of h.

We may take x as a coordinate on . Then (2.3a) governs the flow of the reduced
system and (2.3b) expresses the invariance of .

We now assume that the origin in RmR n is an equilibrium point of the reduced
system. The linearization of (2.1) at the origin for e-0 has an m-dimensional null space
and an n-dimensional complementary invariant subspace. We assume that these are
tangent to the x-axis and the y-axis, respectively, so that

(2.6)
(2.7)
and

(2.8)

L(o,o,o)=o,

fy(O,O,O)-O

Then the linearization of the reduced system (2.3a) at the origin is

(2.9) -kx,

with

(2.10) k-f(O,O,O)-fy(O,O,O)h-l(O)g(O,O,O),
and

(2.11) h(O)-gy(O,O,O).
We assume:

(H1) For some real nonzero 0, i0 and -i0 are simple eigenvalues of the lineariza-
tion of the reduced equation at the origin. No other eigenvalue of the linearization of
the reduced equation at the origin is an integer multiple of ion. In particular, zero is not
an eigenvalue of k, so k is invertible and the origin is an isolated equilibrium point of
the reduced equation.

3. Center manifolds. We now assume:
(H2) The eigenvalues of the fast flow at the origin all have nonzero real parts. That

is, the eigenvalues of gy(O,O,O) all have nonzero real parts. This is a hyperbolicity
assumption for (1.1) normal to .

The hypothesis (H2) suggests that we should use a center manifold to reduce the
singular problem to a regular problem. We extend (2.1) to

(3.1) x’=f(x,y,e), y’=g(x,y,e), e’=0,

where the equation e’= 0 reflects the role of e as a parameter.
The linearization of (3.1) at the origin is

(3.2) 0 gy
0 0
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Zero is an eigenvalue of algebraic multiplicity m+ 1 for the matrix of (3.1); the
remaining n eigenvalues have nonzero real parts by (H2).

The center manifold theorem asserts that (3.2) has a C invariant manifold , the
graph of a function

(3.3) y=u(x,e),
with

(3.4) u(x,O)=u(x).
Center manifolds in the context of singular perturbation theory are discussed in [5] and
[2]; a center manifold theorem which includes the existence of is proved in [2].

On E, the evolution of (2.1) satisfies

(3.5) x’=f(x,u(x,e),e), u(x,e)’=g(x,u(x,e),e), e’=0.

We take (x, e) as coordinates in . Because e is constant, the evolution of (3.1) on is
governed by

(3.6) x’=f(x,u(x,e),e).
The second equation of (3.5) gives the invariance condition

(3.7) Ux( X, e)f( x, u( x, ), e) g( x, u( x, e), e).
The function u has a unique asymptotic expansion at e 0. See Wan [9]. We use (3.7) to
compute the asymptotic expansion of u.

Note that

(3.8) f(x,u(x,O),O)=O,
so

(3.9) f(x, u(x, e), e) O(e).
Hence the rescaled equation

(3.10) 2= e- ’f(x, u(x, e), e)
is C even at e=0. It follows from the general theory in [2] that (3.10) is a C
perturbation of the reduced equation (2.3a). To see this directly, note that by (3.8)

(3.11) e-’f(x,u(x,e),e)=e-’[f(x,u(x,e),e)-f(x,u(x,O),O)]
fy( X,.U( X, 0), O)u( x, O) +f( x, u( x, 0), O)

as e--, 0. It follows by differentiating (3.7) at e--0 that

(3.12) u= -h-g+h-uf
and

(3.13) u- -glgc,
so (3.10) tends to (2.3a) as e--, 0.

Because (3.10) is a regular perturbation of (2.3a), it follows from (HI) that the
equilibrium point at the origin perturbs smoothly to an equilibrium point (e) of (3.10).
We have

(3.14) f( (e), u((e), e), e) --=0.

The linearization of (3.10) at x(e) is

(3.15) 85c= e- ’L( e)Sx,
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where

(3.16) L(e)=L((e),u((e),e),e)+fy((e),u((e),e),e)Ux((e),e).
By (2.2) and (3.4), L(0)=0. Because (3.10) is a C perturbation of (2.3a), e-L(e) k as
e-0. Let X(e) be the eigenvalue of e-L(e) which continues the eigenvalue i of k. The
coefficient a mentioned in 1 is REX’(0). Our aim is to compute ct in terms of
derivatives off and g at the origin. Let

(.v) = (-’())=o
The main step in the computation of a is the computation of l. From the Taylor series
for L we see that

(3.18) t=kz"(0).
Assume now that we have chosen a basis for R m in which k has the block diagonal

form

(3.19)

where

(3.20)

Write A =(Aij ) and l--(lij ). Let

(3.21)
Then

(3.22)
where

(3.23)
and

(3.24)

We know that

(3.25)
(3.26)
(3.27)
and

(3.28)
From (3.25) we have

(3.29)
so by (3.21)

(3.30)

p(X, e)- det XI- e-L(e)].

p(,) =p(,)p(x, ) +o(),

pl( h, e) det(hI-A) + O(e)

p2(X,) det ln-I n-IXI-- toJ-- e ln,_

p(X(),)=0,
X(0)-- i0,

p(i,O)vaO

p:(io, 0) 0.

Px(i, 0) X’(0) +p(io, 0)--0,

h’(0)- _p2 (i, O)/p(i, O)
=1/2(ln-,n-I +ln,n)-1/2i(ln-i,n-ln,n_l).
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Hence

(3.31)
We now state a singular version of the Hopf bifurcation theorem.
THEOREM. Let (2.1) satisfy (H1) and (H2). Suppose a =/= O. Then there is a smooth

2-dimensional manifold IL in Rm+’ which is invariant under (3.1). .)]L contains the
origin; all other points in )L lie either on periodic orbits of (3.1) with e=/=O or on periodic
orbits of the reduced system with e O.

Proof. This theorem follows directly from the Hopf bifurcation theorem of Cran-
dall and Rabinowitz [1] applied to (3.10).

4. Computation of !. To make the results of the previous section useful we must
compute I in terms of the derivatives off and g at the origin. From (3.16) and (3.18) we
express in terms of derivatives of f, u, and at the origin. From (3.14) we compute
derivatives of in terms of derivatives f and u, and from (3.7) we compute derivatives
of u in terms of derivatives off and g.

To exhibit this computation in a reasonable space we restrict ourselves now to
equations in the special form (1.2). Then (3.7), (3.14), and (3.16) take the forms

(4.1) g(x,u(x,e),e)=eUx(X,e)fR(x,u(x,e),e),

(4.2) fR((e), u((e), e), e) 0,

(4.3) e-iL(e)=fx((e),u((e),e),e)+fy(/(e),u((e),e),e)Ux(/(e),e).
From (3.16) we have the simplified expression

(4.4) l=f +f(Uxli + u) +fx
+ [yx+y’(Ux+ ul +y] Ux +;"(Uxt+u,

where all derivatives are evaluated at the origin. We know from (2.8) and from (2.5)
and (3.4) that gx and u, vanish at the origin. Hence (4.4) simplifies to

+fgu+fx +f} Uxx Uxl=fxx ( + ).(4.5)
From (3.14) we have

(4.6)
so

(4.7)
Note that

(4.8)

fs((e), u((e), e), e) 0,

L +fy"(Ux+u )+L"-o.

=2(o, o,o)
is invertible by (H 1), so we have

(4.9) -Differentiatin (4.1) witl :spt to at 0 yilas

(4.10) gyu+g-O,
so

(4.11) u- g--fi lge
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and

(4.12) ---( fxn)-’(--fyng-lg+fg).
Differentiating (4.1) with respect to x yields

(4.13) gx+gyUx--eUxxfR+eUx(fx+f?Ux).
At e 0 we have

(4.14) u,- -g- gx-O.
Differentiating (4.1) with respect to x and e at e-0 yields

(4.15) gxx+gyUxx-O
and

(4.16) gxyU+gx+gyUx-O.
Note that fg vanishes at the origin, because the origin is an equilibrium point of the
reduced equation. From (4.11), (4.15) and (4.16) we have

(4.17) Uxx- g-f lgxx
and

(4.18) ux-- --g-l(gxyU+gx) --g-l(--gxyg-lg+gxe )
Finally, we have

(4.19) l= --fR( fR)--l(--fyRg-Ig+fn)--fg-lg+fR__
fyR[ g; lgxx( fxR )-- ( fyRg-f lg .+_feR ) g;l( gxyg; lge-t- gxe )

This completes the computation of for equations in the special form (1.2). We are
content to leave the computation in the general case to the reader.

Acknowledgments. I wish to thank Jack Hale, Dave Schaeffer and Aubrey Poore
for discussions leading to this paper.
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OSCILLATORY BIFURCATIONS IN SINGULAR
PERTURBATION THEORY, II. FAST OSCILLATIONS*

NEIL FENICHEL*

Abstract. We construct closed orbits for a singular perturbation problem near a nondegenerate equi-
librium point of its reduced system, in case the linearization of the fast part of the flow has a complex
conjugate pair of pure imaginary eigenvalues. The mechanism for constructing the dosed orbits is essentially
different from the mechanism of a Hopf bifurcation.

Introduction. We study the orbit structure of a singular perturbation problem near
a nondegenerate equilibrium point of its reduced system. At the equilibrium point there
are two well defined sets of eigenvalues; these correspond to the linearization of the
reduced system and to the linearization of the fast flow. A reasonably complete analysis
of the orbit structure is straightforward if all eigenvalues in both sets have nonzero real
parts; see [2, Thm. 12.2]. The flow in this case is closely related to the flow of a regular
system near a hyperbolic equilibrium point. If some of the eigenvalues have real parts
equal to zero, however, a singular bifurcation is expected. This bifurcation may be
classified as a slow bifurcation, in case the eigenvalues with zero real parts correspond
to the linearization of the reduced system, or as a fast bifurcation, in case the eigenval-
ues with zero real parts correspond to the linearization of the fast flow.

In an earlier paper [1] (this issue, pp. 861-867) we studied the slow bifurcation
which occurs when the linearization of the reduced system has a complex conjugate
pair of eigenvalues on the imaginary axis. In that case the orbit structure is reduced to
the structure of an ordinary Hopf bifurcation, so the main interest is in computation of
the terms which control the structure of the Hopf bifurcation. In the present paper we
study the more difficult case in which the linearization of the fast flow has a complex
conjugate pair of pure imaginary eigenvalues. We compute a matrix and a number in
terms of the Taylor series at the equilibrium point, such that periodic orbits bifurcate
from the equilibrium point if the matrix is nonsingular and the number is positive. The
bifurcation is not a Hopf bifurcation, however, because the mechanism for constructing
the periodic orbits is essentially different from the mechanism of a Hopf bifurcation.

The entire analysis presented below depends upon the geometric singular perturba-
tion theory developed in [2]. The conditions we require are natural in the geometric
theory, but never are satisfied in the standard theory. In contrast, slow bifurcation
phenomena always occur in center manifolds and hence are identical in the geometric
theory and in the standard theory. For slow bifurcations in which the fast flow is stable
[2, Thm. 11.1] even guarantees that the geometric theory and the standard theory agree
up to a smooth change of coordinates.

Fast bifurcation problems are especially rich because they combine the complexi-
ties of bifurcation theory and of singular pertubation theory. The exchange of stability
problem studied by Lebovitz and Schaar [4] is another example. In these problems the
normal forms constructed in [2] show that the standard theory omits certain terms
which are insignificant in case the fast flow is stable, but which are essential in the
study of fast bifurcations. We hope this study will focus attention on the differences
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between geometric singular perturbation theory and the standard theory, and so clarify
the role of geometry in this field.

1. A singular bifurcation problem. We recall the standard form of a singular
perturbation problem, and the geometric form developed in [2]. In the standard form,
the variables are separated into two vectors, x in Rm, and y in Rn, satisfying a system of
differential equations of the form

(1) x’ =f(x,y, e), ey’- g(x,y, e),
where e is a small real parameter, and stands for . In order to understand the
geometry of (1) it is convenient to introduce the rescaled time T, defined by t=eT.
Then (1) takes the form

(2) x’= ef(x,y, e), y’= g(x,y, e),
where now’ denotes . Let

E= {(x,y): g(x,y,O)=O}.
For e-0 the first equation of (1) reduces to g(x,y,0)-0, so it is natural to study (1) in
a neighborhood of E.

E consists entirely of equilibrium points for the rescaled system (2). If the Jacobian
is nonsingular on E then E is a manifold of dimension m the graph of a smoothy

function y-u(x). The singularity of the system (1) is reflected in the fact that the
equilibrium points of the rescaled system (2) are not isolated, but instead form a
smooth manifold.

The situation just described is the starting point of the geometric approach to
singular perturbation theory. Following [2], we define a singular perturbation problem
to be a family of differential equations depending on a small parameter e, with the
property that for e-0 the system has a manifold E of dimension m>0 consisting
entirely of equilibrium points. Thus we study a system

(3a) w’-h(w,e)
with

(3b) h ( w, 0) 0 for all w in E.

The system (2) above has the form (3), with w=(x,y), h=(ef, g), and E the zero set of
g.

From (3b) it follows that the derivative of h along any direction tangent to E is
zero. Thus 0 is an eigenvalue of the Jacobian Oh with multiplicity at least equal to m
the dimension of E. For many applications the natural stability condition is to require
that the remaining eigenvalues lie in the left plane. (This corresponds to the usual
requirement that the eigenvalues of lie in the left half plane.) Under this stability
hypothesis there is a smooth change of coordinates transforming (3) into the form (2);
see [2, Thm. 11.1 ]. The eigenvalues of then lie in the left half plane.

The subject of the present paper is the structure of (3) near a point at which the
Jacobian Oh has zero as an eigenvalue of multiplicity exactly m, but also has one
complex conjugate pair of nonzero eigenvalues on the imaginary axis. This means that
all neutral behavior in (3) comes from translation along E, but that there is a two-di-
mensional plane of fast rotation transversal to E. If one nondegeneracy condition is
satisfied, and if a certain coefficient is positive, we show that (3) has a family of
periodic orbits. These periodic orbits have radius of order le and are formed by a
balance between the evolution of the slow variables and the evolution of the the radial
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part of fast variables. In a Hopf bifurcation the periodic orbits have radius of order
le] 1/2 and are formed by a balance between weak linear terms and weak nonlinear
terms. Thus the mechanism we are studying for the construction of periodic orbits is
fundamentally different from the mechanism of a Hopf bifurcation.

The conditions we impose in order to construct periodic orbits never are satisfied
by systems of the form (2). This means at least that the derivation of (2) should be
verified any time (2) is applied to a singular perturbation problem which exhibits
bifurcation in the fast variables. It further suggests that (2) may be inappropriate for
the study of such problems.

2. Normal forms. Consider a singular perturbation problem of the form (3), in a
neighborhood of a point p in E. Assume that zero is an eigenvalue of multiplicity
exactly m for the Jacobian Oh(p), and assume that all other eigenvalues of ,h(p) have
nonzero real parts, except for one pair +-ik of simple pure imaginary eigenvalues. By
[2,Thm. 11.1], in a neighborhood of p in Rm+n there are coordinates x in R and
Y--(Yl,Y2,Y3) in R such that (3) takes the form

(4) x’ =f(x,y ,Y2 ,Y3, e), y’= g(x,yi ,y2 ,Y3, e)
with functionsf and g-- (gl, g2, g3) satisfying

and

(6)

and

(7)

f(x,0, 0, 0, 0)-- 0,

gl(X, 0,2Y3, ) O,
Df(x,y,,YE,O,e)--O,
Df(x,O,O,O,O,O)--O
D4f(x,O,Y2,Y3,e)=O,

g(x O, O, O, O) O

g3(x,Yl,Y2,0,e)-O,
D2g(x,y,,Y2,0,e)=O,

D4g(x,O,y2,y,e)=O,

f(x,O,O)--O, g(x,O,O)--O,
(9) D2f(x,O,O)-O, Dzg(x,O,O)-A(x).

subject to

where the eigenvalues of A(0) lie in the right half plane, the eigenvalues of A2(0) lie on
the imaginary axis and the eigenvalues of A3(0) lie in the left half plane. Note that y is
in R2, and the eigenvalues of A2(0) are precisely --+ ik.

The first two equations of (6) show that the points (x, 0,y2, 0, 0) form an invariant
set for the flow of (4). This set is a center manifold C of dimension m+ 2, and by
[2,Thm. 9.1] the center manifold contains all invariant sets near p. Stability of the
invariant sets is related to stability within C, as detailed in [2, Thm. 9.1]. Furthermore,
the center manifold has a unique asymptotic expansion, so formal series computations
are easily justified. Hence to study the periodic orbits of (4) we are free to restrict
attention to C. We now make this restriction by assuming that n- 2, and we denote Y2,
g2 and A2 simply as y, g and A. Then (4) becomes

(8) x’=f(x,y,e), y’=g(x,y,e)

o o
ag

(x,O o o,o)- o oOy
0 0 A3(X )
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Because the eigenvalues +--ik are simple, the eigenvalues h(x) and h(x) of A(x) vary
smoothly with x. The corresponding eigenvectors, suitably normalized, also vary
smoothly with x, so by a smooth x-dependent linear change of the y coordinates we
may assume that the matrix A(x) takes the form

a(x) -k(x) ]k(x) a(x)
We replace the real 2-vector y by one complex variable z whose real and imaginary
parts are the first and second components, respectively, of y. Then we expand functions
of y as series in z and its complex conjugate 5. This puts (8) in the form

(10) x’=f(x,z,5,e), z’=g(x,z,5,e)
subject to

(11) f(x,0,0,0)--0,
Df(x,O,O,O)--O,

g(x O, O, O) O,
D3f(x,O,O,O)--O,
D3g(x,O,O,O)--O.

3. Averaging. We now simplify (10) using an algebraic averaging procedure as in
Segr [5] and Sacker [6]. This procedure also has been used in computations of Hassard
and Wan [3]. At each step our computations are formal; they can be made rigorous by
restricting to a small neighborhood of the origin and appealing to the implicit function
theorem.

For e- 0, the Taylor series of f(x, z, 5, 0) has no constant term, no terms in x alone
and no linear term in z or 5. To lowest order fhas the form

f(x,z,, O) axz+a2xS+ blz2 + b2zS+ b352 +
To simplifyfwe try a formal substitution:

x --x + rxz + r2xS+sz2 + $2z5-- $3 52 --This yields

-x’ + rx’z + rxz’+ r2x’5+ rxS’x
+ 2szz’ +s2z’S+ s2zS’ + 2S3 52’ +
axz+ a2xS+ blz 2 + b2zS+ b352
+ ikrxz ikrxS+ 2iksz2- 2iks352 + (higher order terms)

=(a +ikr,)xz+(b,-ikr,)xS+(b, +2iks,)z2+b2z5
+ (b 2iks3)5 + (higher order terms).

We select r, r2, s, and s to make the coefficients of xz, xS, z, and 5 vanish. Note
that the coefficient of z5 is invariant. This is natural, as zS= Izl- is varying slowly, while
z and 5 oscillate rapidly and hence on average their effects are small.

A significant difference between geometric singular perturbation theory and the
usual singular perturbation theory appears in this simple computation. The invariant b
always is zero for a system of the form (2), and genetically is nonzero for a system of
the form (3). Setting b equal to zero seems unnatural when studying a fast bifurcation,
as it means ignoring the effect on the slow variable x of the radial drift of the fast
variable z.
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We now rename x as x and try a similar coordinate transformation in order to
simplify z’ for e-0. Note that all terms in z’ which are linear in z appear already in
)(x)z, and no terms linear in appear. The first terms we try to simplify are the terms
in z 2, z, and 2. A computation like the one above shows that all of these can be
removed by a transformation:

z =z+sz2+s2z+s3Y. 2.
We omit the computation. After solving for Sl, $2, and s to remove all the quadratic
terms in z and , we relabel z as z and expand ,(x) as iko + Lx + O2(x). Then for e 0
we have the system (10) in the form

(12) x’-blzl2 + 02(x,z, )z +
z’ = ikz + Lxz + 02(x,z, )z + 02(x,z, )z.

4. Construction o| periodic orbits. From (12) and [2,Lemma 5.4], the reduced
system of (10) satisfies the equation

(13) x’--D4f(x,O,O,O)
in the plane z-0. This means that the reduced system is just the first order expansion
of f in e, in the special coordinates in which (11) holds. By hypothesis, the origin in this
coordinate system is a nondegenerate equilibrium point of the reduced system, so the
linear term in e in the Taylor series for f must vanish, and the coefficient of the
quadratic term in ex must be invertible. This means that the expansion for (x’,z’) to
quadratic terms in (x, z,, e) has the form

(14) x’--blzl2+ eC,x + eC2z + 2Ca +.",
z’ ikz + Lxz + ec+ eBx+ eB2z +eB3+ e2B4 + .

The matrix C is just the linearization of the reduced system at the origin, so it is
invertible and also invariant up to similarity. As above, we try to remove as many terms
as possible by means of formal substitutions whose Taylor series begin with the
identity. Replacing x by x-eCC3 removes the term e2C3, without otherwise chang-
ing the form of (14); we make this replacement. Because C is invariant up to similarity
we then try only to simplify x by a transformation

X =xq-erlzd-er2,q- ....
This gives

xl blzl + Ec x .qt. C2z ._ ,c3 2t_ eikOr2 z eikOr3 +
By choosing r and r2 we remove the terms in ez and e.

To simplify z’, we try a transformation of the form

Then

Z Z’ .qt_ ES 1X’ q- eS2 Z’ -+- es ,’ -k

( ik0 + Zx )( z El’-- ESlX-- 8S2Z-- Es3e-- E2S4)
+ ec+ eBix + eB2z +eB3+ e2B4 + eiks2z- eiks3+

=ikzl +e(c-ikr)+e(B-iks)x
-b eB2z-k-e( B3- 2ikOs3)+ e2( B4-ik0S4)+....
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We choose r, s l, s3 and s4 to make the terms in e, ex, e5 and e2 all vanish, and we replace
the term eB2z by eB2zl, with only a higher order error. Then we rename z as z, and C
as C. This puts (10) in the form

(15) x’- blzl2 / eCx /..., z’- ikz/ Lz / ecz /....

Finally, we scale both x and z by the factor e, letting x=eX, z=eZ. Then (15) takes the
form

(16) X’--e(CX+bIZI2)+O2(e), Z’-(ik+e(c+LX))Z+O2(e).
Note that if x and z are scaled by -e instead of e, the signs of the quadratic terms blZI2
and LXZ are reversed.

Now we introduce polar coordinates Z=R exp(is) to separate the rapid angular
variation of Z from the slow radial drift. Let c c + ic2 and L L + iL2. Then (16) is
transformed to

(17) X’= e(CX+bR2 ) + O2(e),
R’= e(c + LIX)R+ O2( e),
s’=k+ e( ca +LX)R+ Oz( e).

We analyze (16) by computing the Poincar map along the positive real z axis from
s 0 to s 2r. Let T(e)= T( X, R, e) denote the time for (17) to evolve from (X, R, 0) to
a point with s 2 or. From the equation for s’ in (17) we see that T(e) can be expanded
as

T( e) 2rc/k+ O( e).
Hence the Poincar6 map takes (X, R) to (X, R), where

(18) X X+ (2r/k)e(CX+ bR2 ) + O2(e),
R R+ (2r/k)e( c -- L X)R+ O2(e).

The Poincar6 map has a nontrivial fixed point if the equations

(19) CX+bR2=O(e), L,X= -c, +O(e)
have a nonzero solution with R positive. For this we require the nondegeneracy
condition that the matrix

(20) M- L, 0

be invertible. This condition cannot be satisfied if b or L is zero. In particular, it never
is satisfied for a singular perturbation problem in the form (4).

Recall that C is invertible, and let a= LIC-lb. then the inverse of the matrix M is
given explicitly by

(21) M-l--[ C-’-a-lC-lbLC-I a-lC-lb]a-lLc-1 a-I
and we find that

R2--a-lcl+O(e),
with a similar expression for X. If a-c is negative, there are no periodic orbits with x
and z of order e. If a-1c is positive, then for each small e, positive or negative, there is
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one periodic orbit with x and z of order e. In this case the set of periodic orbits forms a
double cone in (x,z, e) space.

5. Stability. The previous computations lead to simple stability criteria. If the
Poincar6 map is expressed in terms of X and R2, the first order terms in e are

(22) X X+ -( 2r )e(c, +L X)R2+O2(e)R-R2+2

The matrix of the linearization of the Poincar6 map around the fixed point (X0, R) is
given, to first order in e, by the identity plus (2r/k)e times

(23) M- 2La-c 0

Within the center manifold, the periodic orbits are stable if all eigenvalues of this
matrix lie inside the unit circle, and unstable if some eigenvalues lie outside the unit
circle. Within the larger space Rm+n, the stability of the periodic orbits is determined
by the stability of periodic orbits within the center manifold and the stability of the
center manifold in Rm+n. For each eigenvalue of the fast flow which lies in the right
half plane, the periodic orbits pick up one unstable dimension.

6. Summary.
We summarize the results of the preceding computations in the following
THEOREM. Let a singular perturbation problem of the form (3) be given, with an

equilibrium manifold of dimension m. Let p be a nondegenerate equilibrium point of the
reduced system of (3). Suppose 0 is an eigenvalue of mulitiplicity exactly rn of the
linearization of (3) at p, and that the linearization also has one complex conjugate pair of
pure imaginary eigenvalues. Suppose the remaining eigenvalues of the linearization lie off
the imaginary axis. Then there is a matrix M, and there are numbers a and c, such that if
M is invertible and if a-c is positive then there is a family ofperiodic orbits of (3) whose
radii are of order lel; ifM is invertible and if a-c is negative there are no periodic orbits

of (3) whose radii are of order lel. The stability of the periodic orbits is determined by the
eigenvalues of the linearization of (3) at p which lie off the imaginary axis, and by the
eigenvalues of a matrix M. The matrices M and M and the numbers a and c are
computable in terms of the Taylor series of (3) at p.
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SYSTEMS OF SINGULAR PERTURBATION PROBLEMS
WITH A FIRST ORDER TURNING POINT*

PETER A. MARKOWICH AND C. A. RINGHOFER:

Abstract. This paper deals with systems of singularly perturbed ordinary differential equations with a
first order turning point. Two-point boundary conditions are attached. We treat interior tuming points and
boundary turning points and give in each case an estimate for the norm of the inverse of the differential
operator. In both cases these norms tend to infinity, as the perturbation parameter e tends to zero. In the case
of a boundary turning point, the norm of the inverse blows up algebraically, as e-/2, and in the interior
turning point case, the blow-up is exponential, as e-/2exp(/2e) with

For linear and quasilinear problems we prove existence (and uniqueness) results and investigate the
asymptotic behavior of the solutions as 0. In the boundary turning point case, we show that solutions are
uniformly bounded in compact subsets of the open interval and converge there uniformly (as e>0), to the
solution of the reduced equation (e 0). At both boundary points, layers of height O(e- l/2) occur generally.
In the interior turning point case the solutions generally blow up exponentially (at least left or right from the
turning point).

AMS-MOS subject classification (1980). Primary 34B15, 34D15, 34E05, 34C11, 34E20

Key words, nonlinear boundary value problems, singular perturbations, asymptotic expansions, bounded-
ness of solutions, turning point theory

1. Introduction. In this paper we investigate boundary value problems of systems
of singularly perturbed differential equations with a first order turning point.

The problems we study have the form

(1.1) ey’:tA(t)y+eh(y,t,e)+f(t,e), 0_<t_<l,

(1.2) Bo(e)y(O, e) + Bl(e)y(1, e) fl(e)
where y,f, fl are n-vectors, h: Rn[0, 1][0,e0]R n, A,Bo, B are nn matrices and
0<e_<e0 << holds. The real parts of the eigenvalues of A(t) are bounded away from
zero uniformly for [0, 1] such that t-0 is a first order (boundary) turning point of
(1.1).

We also study interior turning point problems for linear systems

(1.3) ey’-tAy+f(t,e), <_t<_ 1,

(1.4) B_ l(e)Y(- 1, e) + Bl(e)y(1, e) fl(e).
Coupled singular perturbation problems of the form

(1.5)
(1.6)

(1.7)

ey’:A(t,e)y+A2(t,e)z+fl(t,e) 0--<t--< 1,

z’-A3(t,e)y+A4(t,e)z+g,(t,e), 0_<t_<l,

F(e) z(O,e) +Fl(e) z(1,e)
--’y(e)
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are well understood if the real parts of the eigenvalues of A l(t, e) are bounded away
from zero uniformly for [0, 1] and small e. The perturbed n-vector y is called the fast
component and the unperturbed m-vector z is called the slow component. If the
coefficient matrices and the forcing terms of (1.5), (1.6) are sufficiently smooth and if
(1.7) fulfills a certain regularity condition, then the unique solution y,z of (1.6), (1.7)
fulfills

(1.8a) y(t,e)=fi(t)+o_- +o+ +O(e),

where IIo_()11, IIo+()11-<c0e-’’ holds and 37, are (smooth) solutions of the reduced
equations

(1.9) O-Al(t,O);(t)/AE(t,O)(t)+f(t,O),
(1.10) ’-Aa(t,O)(t)+A4(t,O)+gl(t,O)

with m appropriate boundary conditions. The stability estimate

(1.11) y(" ,e)ll t0,]+ IIz(" ,e)ll t0,]-<const(ll f(-,e)ll t0,]+ g(" ,e)ll t0,]+ 113,(e)ll)
holds where II[,,,b] denotes the max-norm on [a,b]. Proof of these statements can be
found in O’Malley (1979) and Ringhofer (1981 a, b).

The fast component y has (generally) a boundary layer of width O(elln el) at t: 0
and t-1, is smooth in [cellneI, 1-cellnel], c>O, and converges to 37(t) in (0, 1). The
slow component is smooth in [0, 1] and converges uniformly to in [0, ].

Singular perturbation problems of the form (1.5), (1.6) defined on the infinite
interval [0, o] have been investigated by Markowich and Ringhofer (1983)(this issue,
pp. 897-914). The results obtained for finite interval problems carry over if only
solutions with a finite limit at t= o are admitted (except that there is no layer at

). Analogously, quasilinear problems (see Ringhofer (198 la, b)) can be dealt with.
Also the numerical treatment of these non turning point problems is well under-

stood (see Kreiss and Nichols (1975),Ringhofer (1980),(1981) and Ascher and Weiss
(1981) for further references).

O’Malley (1978), (1979) investigated problems where Al(t, 0) has a constant num-
ber of semisimple zero eigenvalues (called singular singularly perturbed problems).

Much work has been done on the scalar second order equation with a first order
turning point:

(1.12)

(1.13)

ex" -t- a( )x’ -t- b( )x=f( ), -l<_t<_l,

x(-1,e)--a, x(1,e)=fl,

with a(0) 0, a’(0) :/= 0 and a(t) :/= 0 for 1,0) U (0, (see Abrahamsson (1975),
Ackerberg and O’Malley (1970), Kreiss and Parter (1971) and O’Malley (1970)). A
discussion of nonlinear second order equations and a collection of references can be
found in Howes (1980).

The problem (1.12), (1.13) (after transformation to a system setting y-x’, z=x)
can be regarded as (the simplest) example of a coupled system with a first order turning
point. The behaviour of solutions mainly depends on the sign of a’(0) and on b(O)/I
a’(0)l. Problem (1.12), (1.3) is accessible to a special function approach.
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Wasow (1978) constructs asymptotic expansions for fundamental matrices of n-di-
mensional systems of the form

(1.14) eky’=fl(t,e)y, Itl<_to, 0<e----.e0, k

where J is analytic in both variables.
These expansions are valid outside boundary layer regions and no restrictions on

the eigenvalues of (t, e) are necessary.
Our approach to (1.1), (1.2) and (1.3), (1.4) is the following. We construct uni-

formly bounded fundamental matrices for

ey’:tA(t)y+f(t,e)

and treat the forcing term f(t, e) by variation of constants. For the quasilinear problem
we employ a contraction argument. It seems likely that this approach together with
Wasow’s construction of fundamental matrices can be used to treat problems with
more complicated eigenvalue configurations. (Our set-up assumes that every eigenvalue
of A(t, 0) changes sign at t= 0!)

In contrast to singular perturbation problems without turning points, the differen-
tial operator (1.15) (with boundary conditions) has no uniformly bounded inverse on
C([0, 1]) and C([-1, 1]) respectively. Optimal bounds for the norm of the inverse are
Co/V on C([0, 1]) and (Cl/V)exp(/2e); co, Cl, 0)>0 on C([-1, 1]). Interior turning
point problems are exponentially unstable.

The results for the boundary turning point problem indicate that we have to
distinguish two cases. First assume that f(t, e)= tg(t, e), g sufficiently smooth. Then the
solution of the reduced problem (1.1) (defined by setting e = 0 in (1.1)) is )7(t)
-A-l(t)g(t, 0) and is smooth on [0, ]. Assuming regularity of the boundary condition
(1.2) we show that this puts us back into the non turning point case. The solution y(t, e)
of (1.1), ( 1.2) fulfills

(1.16) y(t,e)=;(t)+o_ --e +o+ 2e +o(1), e0.

uniformly on [0, 1].
However, the smoothness of )7 does not guarantee uniform boundedness of solu-

tions of the interior turning point problem (1.3), (1.4). Exponential blow-up (as e 0) of
the solution of (1.3), (1.4) (generally) occurs. Dropping the smoothness of 37(t), we
cannot even expect uniformly bounded solutions of (1.1), (1.2). Assuming that f
C1([0, 1]) uniformly as e 0 and that a certain growth condition on h holds, we show
that

(1.17) y(t,e)=y(t)+e o_ -e +a+ 2e +-O( t, e) + o( )

where )7(t)=--A-l(t)f(t,O)/t, IlOll[0,1]_<const and O<t-t(e) such that t(e)/vrgo
and e0. Globally on [0, 1] we get y(t,e)ll<const. 1/2.

Therefore the solution y(t,e) converges to y-(t) on (0, 1) as e0 and the conver-
gence is uniform on t’(e), celln el] whenever t(e)/(e)/3 o as e 0. y(t, e) (gener-
ally) has a boundary layer at t= 0 and t- 1, both being of height O(1/g). The layer at
= is of width O(elln el).

The results for the boundary turning point problems (1.1), (1.2) can easily be
extended to turning points of order a>0, i.e., tA(t) in (1.1) is substituted by tA(t).
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The paper is organized as follows. Section 2 deals with scalar equations; linear
problems with constant coefficient matrices are dealt with in 3, (using the result of
2); in 4 we admit variable coefficients, and 5 is concerned with quasilinear prob-
lems.

2. Scalar constant coefficient problems.
A. Coefficients with negative real parts. At first we investigate the asymptotic

behaviour of solutions of the problem

(2.1) ey’--aty+f(t,e), -l_<t_<l or0_<t_<l, aC, Rea>0.

The general solution of (2.1) is given by

(2.2) y(t,e)--q(t,e,a)+ (H(a)f )(t),

where/j C, --y(0, e) and

(2.3a) q( t, e, a ) exp --e
(2.3b) fo (a )_1 texp _e(S2_t2) f(s e)ds(H-(a)f )(t)--

e

hold. We estimate the norm ofH(a) in
LEMMA 2.1. The operator H(a): C([t0, 1]) C([to, 1])for o or to-O fulfills

(2.4) H-(a)ll tto,l c(a,e) -e’ e>0,

where O<c_<_c(a,e)<_?for e (0, Co) and 0<a _<Rea_<a2. _c,? only depend on eo, al, a2,

o
Proof. Choosing f(t,e)-exp(-ilmatZ/2e)([[ f Ilt/o,ll-- 1) and evaluating at

gives

since

We obtain

a a/2!(H:()f)(f)--e-efo6-exp( Reas2e2),,
&-exp

2e
s ds >_ v/-

n- (a)ll [to,l]>e-(Rea/2) l--

Moreover, for generalf C([ 0, ])

(Rea 2--t2 )I(H-(a)f )(t)l<-l fltlexp ’2" (s ) dsll f ll[o,t]e "0

holds.The substitutions x- v/Rea/2e s and u-- v/Rea/2e [tl give

’o 2 (s2--t2) ds- eRea
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A calculation shows that

(2.5) e e dx- -u + O -- asu

holds, and Lemma 2.1 follows.
We investigate the existence of uniformly bounded solutions (as e--, 0) of (2.1):
LEMM 2.2. Iff(t,e)=tg(t,e)+vrgh(t,e) with g C([ to, O) U (O, 1])L([to, 1]), h

C([ o, 11), o or o 0 for 0< e <_ eo then

(2.6) IlH(a)fllto,l<-const(llglltto,/llhlltto,l)
holds, where const is independent of e (0, eo] and Rea a, a2 ], a > 0, Ima . If
f(t,e)=--f(t)G for tG[to, 1], fC([to, 1]) and if there is an a>0 such that the sign of
f(t) is constant on (0,a] (and on I-a,0) /f to--1) then (H-(a)f)(t) is uniformly
bounded on o, as e 0 if and only if
(2.7) f(t) tg(t), g C([ to, 0) (0, 1]) L([ to, 1]).

Proof. The first statement follows from

I(H-(a)f)(t)l<_c(lexp( Rea 2)foltl (Reas2) )2e exp 2e sdsllglltto’t-t-llhlltto’ll

Here (2.4) was used. Obviously

fltlexp( Rea 2) e ( ( Rea t2 ) )s sds- exp 1
"o 2e Ra 2e

holds and (2.6) follows.
Now we have to show the necessity of (2.7).
We choose such that 0<8< r/lXma] and e so small that 28< a. We get

( Rea2 )I(H-(a)f)(SV)[ >-
e
exp

2

_> exp-
2

f(S exp( a 2)f(s)ds

f())/j
(1 /.n&- (Rea) (Ima 2) )-/ exp s 2 cos sds

e a(//2) 2e 2e
s

for some 8vrg/2, 8rig ]. The second factor is bounded from above and below as e - 0
and the first is bounded only if (2.7) holds on [0, 1]. The same consideration holds on
[- 1,0] (if o 1).

If f(t,e)=--tg(t) with g as in Lemma 2.2, then the solution 37 of the reduced
equation (2.1) is

(2.8) fi(t)- -dg(t) L([to, ll)

and ifg C([to, 1]) (to-- or to=0) we obtain (using a perturbation argument)

(2.9) (H-(a)f )(t)=.f(t)-(t,e,a)fi(O)+O(llgllto,,l)
uniformly on [to, 1] and the turning point >0 produces a boundary layer of width O(N
unless y(0, e) )7(0).
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Now we turn to the case where the solution of the reduced equation )7 is not in L
and show

LEMMA 2.3. Forf C([ 0, 1]), o ---0 or o 1, the estimate

(210) I(H-(a)f )(t)l<const min( l ), ] f tto,l, to<_t<_ 1,

holds uniformly for Re a a, a 2 ], a >0, Ima .
Proof. Let tl-< &-. Then

[ = consti(n(a)f )(t)i<_const 1 Itldsll f lltto,11 _llflltto,ll"

From the proof of Lcmma 2.1 wc get

foUe x2 dx f It0,1]I(H (a)f)(t)[ _< const---e e-u2

with u= v/Rea/2e Itl. Using (2.5) we obtain for Itl_>v
I(H- (a)f)(t)l _< const] f [to,l],

and (2.10) follows.
Lemma 2.3 implies that (in general) there is an interior layer at t--0 of thickness

O() and height O(1/).
Forf(t,e)=--f(t)R

(2.11) I(n(a)f)(t)>-constIt min f(t)l,e tE[--a,a]

holds such that (H-(a)f)(t) is bounded from below and above by linear functions of
slope O(1/e) (inside the interior layer).

The following lemma describes (H-(a)f)(t) outside the interior layer:
LEMMA 2.4. Let 04: t(e) o, (to or to O) be such that t(e)/ -o o or

t(e)/ -o o. Then iff(t,e)=f(t), f cl([t0, 1]), the expansion

(2.12) (H-(a)f )(t(e)):y(t(e))+ t(-).3x(t(e),e)
holds where f( t) :f( )/at, 4: O, is the solution of the reduced equation (2.1) and

(2.13) x tto,--<const(ll f tt0,tl-+-II f’ll tt0,)
uniformly for e (0, eo], Rea [ai, a2], a >0 and ima R.

Proof. The substitutions s-- /2e/a x and T-at/2 give

( 2TfeXf(tx/T)dx )(H-(a)f )(t)--- eT:
The assumption t(e)/-o+_ o implies that T-oo (in the complex plane) and the
application of Hospital’s rule gives

(H-(a)f )(t)- f(t) + (T,t)
at

where fulfills (2.13). Resubstitution gives (2.12).
An easy calculation shows that (2.12) also holds for t(e)=c, cv0.
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(2.14)
is

(2.15)
where

B. Coefficients with positive real parts. The general solution of the problem

ey’=bty+f(t,e), -l_<t_<l or0_<t_<l, bC, Reb>0,

y(t,e):p(t,e,b)l+ (H+(b)f )(t)

(2.16a) +(t,e,b)-exp -e (t -1)

(2.16b) (H+(b)f)(t)-le texp e (t2-s2) f(s,e)ds

holds with r/=y(1, e).
The following lemma, which gives estimates of the norm of H+(b), should be

compared with Lemma 2.1.
LEMMA 2.5. The operator H+(b): C([ 1, ]) -o C([ 1, 1 ]) fulfills

(2.17) n(b)llt_,l (Reb)(b’ e)-e exp 2e

and, when regarded as operatorfrom C([0, ]) to C([0, ]), it fulfills
1

(2.18) H+ ( b)l[ tO,ll- 6(b, e)-e
where and have the properties of the function c in Lemma 2.1.

Proof. We take the function f(t,e)=exp(ilmbtZ/2e), evaluate at t--0 and t=-
and obtain

(H.+()f)( )____b____O_--e exp s ds
e 2e

(H+(b)f )(1) e(b/2’ lfl exp( Reb 2)s ds
e
_

2e

A simple calculation gives

I( H+ ( b )f )(0)[ >-- conste,
e(Re b/2e)I(H+(b)f )( 1)l-->conste

where the constant is independent of e, Imb and Reb[bl,b2], b >0. (2.17), (2.18)
follow by proceeding similarly to the proof of Lemma 2.1.

Let Codd( 1, ]) be the space of odd C([- 1, ])-functions and Ceven([- 1, ]) be the
space of even C([- 1, 1])-functions. Then we show

LEMMA 2.6. The operator H+(b): Codd( 1, 1])- Ceven([-- 1, 1])fulfills

(2.19) II// (b)ll Co<t-,,,]> (b, e)
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where is defined in Lemma 2.5. If f(t, e)-- tg(t, e) + 2h(t, e) with g
L([O, 1]), h C([O, 1]) then

(2.20) II(n+(b)f )llto,l<_const(llgllto,ll-t-Ilhllto,ll)
where const is independent of e(O, e0], and ImbR, Reb[bl,b2] b >0. Iff(t,e)
f(t) C([- 1, ]) is real and analytic in [- 1, then (H+(b)f)(t) is uniformly bounded
on [- 1, 1]/f and only if
(2.21) f(t)=tg(t), g Ceven([-1,1]).

Proof. (2.19) holds because the integrand in (2.16b) is odd if f(s,e) is odd and
(2.20) is proven analogously to (2.6).

We only have to prove the necessity of (2.21).
We choose a>0 sufficiently small and write

(2.22)

exp
b 2 s 9. b 2 2(I-I+(b)f )(t)---{ -e (t ) f(s)ds-- exp (t -s ) f(s)ds

and set t=0. The second term on the right-hand side of (2.22) can be estimated by
const(1/e)exp(-Reba/2e)ll f II to,. For the first term we get

1
exp --- f(s)ds >- exp cos s (f(O)+sf’(,/))dse e 2e 2e

where 3’ [0, a]. Obviously

exp
Reb 2 Imb 2- 2e

s cos 2e s sf’()ds _<constllfllt0,

holds. In the remaining term we substitute x v/Re b/2e s, T= /Reb/2e and since

tlim -Xcos ds
r-+m 0 Reb

f(0)=0 has to hold in order to make H+(b)f bounded on [0, 11 as e-,0. From the
analyticity of f in 0 we conclude that f(t) tg(t), g C([- 1, ]). In order to show
that g Cv([- 1, 1]), we write:

(2.23)

(I-I+(b)f)(t)-(II+(b)f)(-t) exp t2

For <0 the first term on the right-hand side of (2.23) uniformly bounded if and only if
f(t) tg(t), g C([0, ]). Moreover

g(t)-g(-tl- te[-1, l,
i=0

holds. Partial integration shows that

   texp(e t s ss ds

is for no < 0 (fixed) uniformly bounded (as e 0). Therefore gi 0 for all follows and
g has to be even.



PERTURBATION PROBLEMS, FIRST ORDER TURNING POINT 883

If f( t, e) tg( t, e), gC([-1,1]), then the following estimate is a simple conse-
quence of (2.23):

(2.24)

IIn(b)f I1 t-1,0] -< cnst Ilgll 1,1]"- vexp(Reb)2e max
s[0,1]

(2.26) shows that the estimate (2.24) is sharp for this problem. However, the perturbed
problem

(2.27) e.’:t+(tz-e), y(1) :0,
has the uniformly bounded solution

(2.28) y(t e)-- exp t- )2e
--t.

O(e)-perturbations of the inhomogeneity can produce exponentially large perturbations
of the solution. Lemma 2.6 does not apply to (2.27) since the inhomogeneity depends
on e (and particularly because it changes sign on an interval of length O(&-)). As in
Lemma 2.4, we get

LEMMA 2.7. Forf C([- 1, ]) the estimate

(2.29)
(11)

I(H+(b)f)(t)l <-c

min -e’ il fll[t,l],

(Reb)--e exp 2e II f II tt,,

t[0, 11,

t[--1,0],

holds uniformly for e (0, e0 ], Imb g and Reb b l, b2 ], b > 0.
We now investigate the relationship between the solution of (2.14) and the solution

of the reduced equation :( ) f( t, O)/bt.
First, assume that f(t,e)=--tg(t), g CI([ 1, 1])fq Ceres([- 1, 1]). Then a perturba-

tion analysis using (2.19) shows that

(2.30) g,(H+(b)f )(t)-q(t,e,b)-g(1)+y(t)+O([I
holds uniformly on [- 1, 1]. If g is not even (2.30) holds on [0, 1]; however, exponential
growth must be expected on [- 1,0).

If 37 L([0, ]) we get
LEMMA 2.8. Let O<t:t(e) be such that t(e)/fd _>c>0 as eO. Then iff(t,e)=--f(t)

cl([0, 1]) the expansion

1(2.31) (H+(b)f )(t(e))-e/(t(e),e,b)-f(1)+fi(t(e))+ 8(t(e) e)

The problem

(2.25) ey’=ty+t2 y(1) =0,
has the (unbounded) solution

(t2--1) ftl ( t2-s2(2.26) y(t,e)-- exp 2e t-- exp 2e



884 PETER A. MARKOWICH AND C. A. RINGHOFER

holds where (t) -f(t)/bt, v O, and 8(t, e) fulfills the estimate (2.13) with o O. If
f(t) is odd (2.31) also holds for t(e)/dg <_ c.

Proof. Setting y(t,e)=p(t,e,b)f(1)/b+(t)+v(t,e), y(-1,e)--0, we obtain the
following differential equation for v:

ev’=tbv-ey’(t), v(1,e)=--0,
such that v(t,e)- -e(H+ (b)’)(t), t4=O, holds. We calculate’(t)-( f(t)- tf’(t))/t2b,
and since t(e)/ >_c we get from (2.29)

e
f,37’ <c (llfllt0,11/ll IIt,l)Iv(t(),)l<-c,-7-sll [/(e),l]-- 1/(E)3

This lemma tells us that (H+(b)f)(t) converges to )7(t) as e - 0 pointwise on (0, 1) and
uniformly outside the interior layer at t>0 (of width O()) and the boundary layer at

(of width O(elln el)).
C. Behaviour of derivatives of solutions. Now we give estimates of the derivatives

of the solutions of (2.1) and (2.14) which are important for the analysis of finite
difference methods.

LEMMA 2.9. Letf C’([ 1, ]). Then

(2.32)

_<const e-exp
2e )t +min(e-<+’)/, t-k-) E IIf<i)(’,e)llt-,l

i:0

for [- 1, 1] and

(2.33)

holds for t[0, 1]. (H+(b)f )(k)(t) generally grows exponentially on [- 1, O) as e 0.
lff( t, e)= tg( t, e), gCg([ 1, 1]), k>0, then for t[- 1, 1]

(2.34) l(H -(a)f
_<const e exp -2e

k

IIgi>(" e)llt-
i-0

andfor [0, 1 ],

(2.35) l(H+(b)f )(k)(t)l
--< cnst ( e- exp ( Reb22e( ) ) min(e---(k--1)/2 ,t--k+

i=0

holds.
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3. Constant coefficient systems.
A. Diagonalization and properties of solution operators. We consider the system of

differential equations

(3.1) ey’=tAy+f(t,e)
where A is a constant n n-matrix.

For [- 1, 1] we impose the boundary condition

(3.2a) B_ ,()y(- 1,

or for [0, 1] we impose

(3.2b) Bo(e)y(O, e) + B,(e)y(1, e) =/3(e),

respectively, where B_ l(e), B0(e), B(e) are n )<n-matrices, and fl(e) ",f C([- 1, 1])
orf C([0, i]) uniformly for e [0, %] is assumed.

In the case (3.2a) the (first order) turning point t-0 is in the interior of the
interval considered, and in the case (3.2b) the turning point is on the boundary. We
assume that A has no eigenvalue on the imaginary axis such that

J+ 0

(3.3) A-EJE-1

r+ r_

where the eigenvalues of J+(J_) have positive (negative) real parts. We substitute

(3.4) u--E-ly

and obtain from (3.1)

(3.5) eu’- tJu +E- tf( t, e).

Therefore u, E- if split up into u/, (E- if)/ C r+ and u_, (E- f)_ C r_. The two
systems obtained from (3.5) are

(3.6a)

(3.6b)
We get

+

v.u’_-tJ_u_ +(E-y(t,e))_.

(3.7b)

_
Cr-

t2-1 )(3.7a) u+(t,e)=exp
2e ‘-J+ l+ +(H+(E-y(.,e))+)(t), + CC r+,

u_(t,e)=exp -eJ_ t_ +(H-(E-f(.,e))_)(t),
where

(3.8a) (H+h+( e))(t)= 1_ texp
2e J+ h+(s e)ds h+C([-1 11)

1 texp 2e J- h (s e)ds, h C([-1 ll)(3.8b) (H-h_(.,e))(t)= e

holds.
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Our goal is to transform (3.6) into a system with a diagonal coefficient matrix.
Proceeding similarly to Ascher and Weiss (1981), we prove
LEPTA 3.1. Let z +( t, e), z ( t, e) fulfill

(3.9a)

(3.9b)
and

(3.10a)
(3.10b)

ez’+-tJ+z+ +h+(t,e),

ez’_ tJ_z_ +h_ ( t, e),

Then

t[-1,1],

(3.13a)

(3.13b)
and

(3.14a)

hold where the curves I’+ and F_ lie in the right and left half planes respectively and
contain all eigenvalues ofJ+ andJ_ respectively, w+, w_ fulfill

ew+-tlw+ +(#-J+)-h+(t e) t[ 1, 1] ,r+,

w+ (1, e,l ) (l--J+)- ’l+

e _-thw_+(h-J_) ’h_(t,e),
(3.14b) w_(O,e,))-(k-J_)-’_

Proof. The solution of (3.9) is given by

(3.15) t2-1j)z+(t,e)--exp + l+ +(H+h+( e))(t)

From Dunford and Schwartz (1957, Chap. 7) we obtain the formula

exp(vA)- e*’(’-A) ’d/, "r,

where A is a k k-matrix and FA contains all eigenvalues of A. Using this formula we
get

(3.16) z+(t,e)-

( t-- s 2+ _.1 texp
e 2e )(Ix-J+)-’h+(s,e)ds

Calling the integrand w+(t, e,/) we see that w+ fulfills (3.13a, b). The proof for z_
is analogous.

Obviously maxr+ II(/-J+)- II, maxxr_ II()-J-)- II _<const holds. Using the
estimates of 2 which are formulated uniformly for coefficients, which vary in bounded

t[-1,1],

(3.11) z+(t,e)-- w+(t,e,l)dtx,
+

(3.12) z_(t,e)- w_(t,e,))d)
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sets such that their real parts are bounded away from zero, we get, collecting the
results"

LEMlVIA 3.2. (i) The operators H+ H" C([- 1, 1])- C([- 1, 1]) fulfill

(3.17)

()(3.18) IIn*+llt-l,’l--c2(e)ee eXp -e oo>O,

andH+" C([ 0, 1)] ---, C([0, 1]) fulfills

(3.19) H+
[0,1l-- C3( E)--

where 0<c_<c(e), 2(E), C3(E)-< holds for e (0,eo].
(ii) If

(3.20) f(t,e)-tg(t,e)+ fh(t,e)
with g C([- 1,0) tO (0, 1]) fq L([ 1, 1]) and h C([- 1, 1]) then

(3.21) IIn-(E-f)_llt_l,ll-<const(llgllt_,ll+ h t_l,ll ),
(3.22) II n+ (E- f) / II t0,11--< const(ll g t0,l / h to,)
hoM.

(iii) Forf C([- 1, ]) the estimates

(3.23) II(H-(E-’f)_ ) (t) II < const min ( II---, ]1) II f II t-,ll,

(3.24) 11( H,+ ( E- if ) +)(t)l[--< const-
? II f [Itt,l 1,

( t2 )--eexp Ilfll

hold.
Proof. The only statement that remains to be shown is that the functions c(e),

c2(e), c3(e) are bounded away from zero. We set

h_(t,e)=o(t,e)e
where e is a normed eigenvector of J_ to some eigenvalue 3’ and 0 is a scalar function.
We obtain

1 texp --S’2A (X--/)-lo(s e)dsdA( H-h- ( " e))( ) i 2e

le texp 2e ’’/ o( s, e) ds.

(3.17) follows by choosing o(t, e) as in the proof of Lemma 2.1, and (3.18), (3.19) are
proven analogously. The statements made on odd f (in {}2) and Lemma 2.9 carry over
too.
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The asymptotics for e--, 0 follow as in Lemmas 2.4, 2.8.
LEMMA 3.3, Let O< = t( e) be such that t( e)/vq + o as e O. Then iff( t, e) f( )

C([0,1 ]) the expansion

t2--1
(3.25) (H,E-lf)(t) exp 2e

0

holds where

H,- H-

0 E-lf(1)+ff(t)+
0

(t)=J-tE- f(t)

is the solution of the reduced equation (3.5) and p fulfills

(3.26) t0,]-<const(ll f t0,l + f’ll [0,l])’

If f(t, e) tg(t), g C ([0, ]), we obtain

(3.27)

(HeE-lf)(t)-(t)+
exp’ _/2_2e j+ ) 0

exp ( _ej_ )t

uniformly on [0, ](fi L([0, 1])).
If f(t) is odd (3.25) also holds on [-1,0) and (3.27) holds uniformly on [-1, 1].

B. Interior mmtng point 0roblems We can solve (3.1) with the boundary condi-
tion (3.2a) by inserting (3.7) into (3.2a). We get

(3.28) (B_(e) +B,(e))E 0 exp

_
fl(13) B_ l(e)g( Meg- if )(_ 1) Bl(e)g( neE- y )(1).

The linear system (3.28) is uniquely solvable (for +(e),_(e)) if and only if (B_l(e)+
B(e))- exists for e(0,e0].

However, if r_ v0, uniformly bounded solutions (or even solutions which only
exhibit layer behaviour) of (3.1), (3.2a) do not exist for all fl(e)R since (generally)
(H,+(E-f)+)(t) blows up exponentially on [-1,0) as e 0 and since the basic solu-
tions of (3.1) belonging to eigenvalues of J_ force _(e) to increase exponentially as
e0 (unless the right-hand side of (3.28) is exponentially small). If r_-0 (all eigen-
values of A have positive real parts) and II(n_ (e) + B(e))- ll _< const as e- 0, then
solutions which are uniformly bounded in [-1,-Sl]U[/, 1], 8l>0, exist for all fl(e)
uniformly bounded in e and all f Codd([- 1, 1]) uniformly in e. An interior layer at
t=0 of width O(1/) occurs. More generally, if (H,f(., e))(t) is uniformly bounded
on [- 1, -81], then y is uniformly bounded on [- 1, -St] t_J [8, 1].

We collect the results in
THEOREM 3.1. (i) The boundary value problem (3.1), (3.2a) has a unique solution for

all eRn,fC([ 1, 1]), if and only if (B_l(e)+Bl(e)) is nonsingular.
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(ii) IfB_ l( e)E+ 0 for e (0, eo then the solution splits up into

y(t,e)-o+ 2e +o_
2e

where h( t, e) fulfills the estimate (3.24).
(iii) If f fulfills (3.39) and if fCl([O, 1]) uniformly in e and O<t<_t(e) such that

t(e)/dg o holds as e O, we get

h( t, e) fi( ) + -p( t, el + O( e)

where fi(t)- -A-f(t, O)/t solves the reduced equation (3.1) and p fulfills (3.26).
(iv) If B1(e)E+ =--0 for eG(0,e0] we get results analogous to those in (ii), (iii) by

interchanging [- 1,0] and [0, 1].

C. Boundary turning point problems. Now we impose the boundary condition
(3.2b). From (3.7) we get

(3.29) (B(e)E[ exp(-J+/2)O O]+BI()E[el0 exp(J_/2)0 ])(+ )
fl(e) Bo(e)E(HE- lf )(O)_B(e)E(HE-if )(1).

We assume that B0, B C([0, Co]) and partition

(3.30) e-[e+,e_l.
r+

If e is sufficiently small and if

(3.31) C- [B,(O)E,Bo(O)E_
is nonsingular, then the system (3.29) is uniquely solvable, since its coefficient matrix
equals C+ O(exp(-8/e)), 8>0, and +,/j_ depend uniformly continuous (as e--, 0) on
the right-hand side.

First, assume that

(3.32) f(t,e)-tg(t,e)+eh(t,e), gC((O, 1])fqL([0, 11), hC([0, 11),
uniformly as e--, 0 and

(3.33) IIg(t,e)-g(t,O)ll-O(e), t[0, 1].

Then (H,E-lf)(t) is uniformly bounded in [0, 1] as e 0 and (3.31) guarantees that

(3.34) II+(e)ll, II_(e)ll<-const(llgllto,l/llhllto,l/llfl(e)ll).
Therefore (3.7) and (3.21), (3.22) imply

(3.35) y(.,e)lltO,ll<-const(ll(e)ll+ll+llg(’,e)llto,l+vilh(.,e)llto,,l).
We assume that g C1([0, ]) uniformly as e 0, set

(3.36) (t)- --A-lg(t,O)
and obtain by proceeding as in (2.9)

(/2) (i_t
2 )(3.37) y(t,e)-.9(t)+o_ e +o+ 2e +O(/--(]]g’ll[,ll+llh("e)ll,ll)
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where o_, o+ CO are boundary layer terms fulfilling

(3.38) IIo)()ll, IIo)()ll_<ce-x/, c, + >0, i0.

Assumption (3.32) puts us back into the nonturning point case. The solution y(t,e)
converges to the solution of the reduced problem f(t) in (0, 1) (uniformly outside the
boundary layers at t=0 and t= of width O(g) and O(ellne[) respectively). The
expansion (3.37) is analogous to the case where the right-hand side of the differential
equation has only strictly stable and strictly unstable eigenvalues (Ringhofer (1981)).

Now we drop assumption (3.32) and assume only f C([0, 1]) uniformly as e0
and

(3.39) f(t,e)-f(t,O)ll=O(e), t[0, 1].
Generally no better estimate than

(3.40) II(HE-f)(t)ll<cnstmin --e’ f t’’ t[0, 11,

(see (3.23), (3.24)) can be given.
From (3.29) we get:

(3.41) II/(e)ll, II_(e)ll<const 11/3(e)ll/---e fllt0,

and (3.7) gives the estimate

(3.42)

Ily(t,e)ll<-const Ilfl(e)ll/ exp 2+ 2e
+exp

7 II

for some ,+ >0. Therefore y(t,e) has a boundary layer of width O(F) and height
O(1/F at t=0 and a boundary layer of width O(ellnel) and height O(1/F) at t= 1.
On [81, 1-81], 81 >0, y(t,e) is uniformly bounded as e-0.

The turning point t= 0 "pollutes" the solution at most at t-0 and t- 1.
If Bo(e)E+ =--0 then (3.29) implies that II+(e)ll O(1) as e0 and the factor

of the exponentially decaying terms in (3.42) drops out and therefore the boundary
layer at t- has height O(1). Blow-up occurs at t-0.

We get:
THEOREM 3.2. (i) Assume that fC Cl([0, 1]) uniformly in e and that f fulfills (3.39).

Then, if (3.37)holds, the boundary value problem (3.1), (3.2b)has a unique solution y(t,e)
which fulfills

y(t,e)=(t)+-e o_ -e +o+ 2e +O(f)+-p(t,e), t=/=O,

for 0 < t( e) and t(e)/dg + as e O. p fulfills the estimate

(3.43) II O II t0,<const(ll f(-, 0)ll t0, / f’(., 0)11 t0,).
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(ii) The estimate (3.42) holds for all t[0, 1]. Iff(t,e) fulfills (3.32), then the solution
y is uniformly bounded on [0, 1] as e 0 and (3.37) holds.

(iii) From Lemma 2.9 we get forf Ck([0, ])

Ilyk)(t,e)ll<_const, e-k-(l/2) exp -A+-e +exp A+ 2e (llflll+llf("e)llt,ll)

+min(e-(+ 1/2), t--k--l) X f(i)(., e)[I [0,1]
i:0

Lemma 3.7 shows that problems where the turning point is on the boundary are
more stable than interior turning point problems (since no exponential blow-up can
occur if the data are uniformly bounded as e 0.

4. Variable coefficient problems. In this section we investigate the boundary turn-
ing point problem

(4.1) ey’=(tA(t)+eB(t,e))y+f(t,e), 0--<t<l,

(4.2) Bo(e)y(O, e) + nl(e)y(1, e) fl(e)
where A, B, B0, B are n n-matrices, f: [0,1 [0, e0 R n,/3 R n. We assume that

(4.3a) B0, B fl C([0, e0 ]),
(4.3b) B,f C([0, 1]) uniformly in e

and that there is a continuous reduction of A to block form,

(4.4)
such that

(4.5)

A(t)=--E(t)J(t)E-(t), E,E-’C’([0,1I),

j(t)_[J+(t) 0 ]0 J_(t)
r+ r_

holds where the eigenvalues ,+(t) and ,_(t) of J+(t) and J_(t) respectively fulfill

(4.6) ReA+(t)_>8+, ReA_(t)_<-8+, t[0,1], i+>0.
The transformation matrix E(t) exists locally if the eigenvalues of A(t) split into

two groups (4.6) and if A cl([0, 1]); however, the assumption of global splitting is
much more restrictive (see O’Malley (1978)).

We substitute

(4.7) y( t, e)= E(t)u(t, e)
and get from (4.1)
(4.8)
eu’- (tJ(t) +e(E-l(t)B(t,e)E(t)-E-l(t)E’(t)))u+ E-(t)f(t,e),

At first we investigate the perturbed system

(4.9)
which splits up into

(4.10a)
(4.10b)

ev’=tJ(t)v+h(t,e), O<t__<l,

ev’+ tJ+ ( )v+eh+ ( t, e),
ev’__=tJ_(t)v_ +h_(t,e)

O_<t_< 1.
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where

have been set.
We prove:

v- v_ and h-
h_

LEMMA 4.1. The fundamental matrix d+ (t, e) with dp+ (1, e) =-- I of the homogeneous
problem (4.10a) fulfills

O<_t_<s<l,(4.11) IIq+(t,e)q-l(s e)ll_<c0exp X+ 2e

and the fundamental matrix q_(t,e) with q_(O,e)=--Ir_ of the homogeneous problem
(4.lOb)fulfills

(4.12) IIq_(t,e)q-(s,e)ll<-coexp-X+ 2------’ O<_s<_t<_l,

where Co, ,+ are positive constants and e>0 is sufficiently small.
Proof. Consider the homogeneous problem

ez’ tJ_ ( )z, 0_<t_<l.

We set z= tz/2 and get

(4.13) ew’()=J_( 2)w(), 0<_<_1/2,

where w(-.)= z(t()). The eigenvalues of J_(2) are given by ,_(2v--) (see (4.6)) and
have strictly negative real parts on 0_<-_< 1/2. Therefore the singular perturbation prob-
lem (4.13) has strictly stable eigenvalues, and its fundamental matrix +_(r,e) (with
6_ (0, e) It_) fulfills

q_ (-, e) _<coexp( h+
"r ) 0<-<1/2

IIq,,_(’r,,e)q,,-’(o,e)ll<coexp(-X+ -- ) 0<o<’<1/2

0’ Cl >0 (see Turritin (1952)). Resubstituting -=t2/2, s=02/2 gives (4.12). Formula
(4.11) follows analogously.

The solution of (4.9) can be written as:

(414) v(te)--q(t e)( + )
_

+(H,h)(t), 0_</_< 1,

where

(415) q(t,e)_[q+(t,e) 0 ]0 dp_(t,e)

(4.16) (Hh)(t)-(H+h+)(t)-H-h_
d+(t,e)d?-l(s,e)h+(s’e)ds

forq-(t,e)d?-l(s,e)h-(s,e) ds

have been set.
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(4.17)

and

(4.18)

Proceeding as in [}2 and using the estimates given in Lemma 4.1 yield

II H, II t0,l-<c--e

We set

(4.19)
and solve (4.8):

II(Hf)(t)ll<const rain 7’ -e Ilfllto, 1, t[0,1].

ff(t,e):B(t,e)E(t)-E’(t)

(4.20) u( t, e) ck( t, e) ( l+ )
Because of (4.17) the operator I-eHeE- is invertible on C([0, !]) and its inverse is
uniformly bounded as e 0, We get

(4.21) u(t,e)-.(t e)( ’+ )
_

+(Gf)(t), 0tl,

where we denoted

(4.22a)

We partition

(4.26) e(t)-[e+(t),e_(t)]
r+ r_

and derive from (4.25), (4.23) that the linear system (4.25) is uniquely solvable if

(4.27) [ B0(0)E_ (0), O (0)E+ (1)]
is nonsingular and +(e), 6_(e) fulfill (3.41). If Bo(e)E+(O)=--O or if f fulfills (3.32),
(3.33) then /(e)ll,, _(e)ll <const(ll/311 / f to,]) holds.

(4.22b)

Using the series expansion of (4.22a, b) and the estimate in Lemma 4.1 we get

(4.23) a(t e) q(t e)+O texp h+-e +(1 t)exp X+ t2-
2e

uniformly on [0, 1] and

(4.24) II(Gf )(t)ll <-cnst min - "-e Ilfll[0,].

Inserting into the boundary condition (4.2) gives the linear system of equations

() o()e(o) (af )(o) ,()e()(af )(1).
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Assume now that (4.27) holds and that f fufills (3.32), (3.33). Then the estimate
(3.35) holds and if gC([0,1]) uniformly as 0 then y(t,e) fulfills (3.37) where
)7(t) -A-(t)g(t, 0) is the solution of the reduced equation (4.1).

For generalfwe get
THEOREM 4.1. Assume that (4.27) holds, that fC([0, 1]) uniformly in e and that f

fulfills (3.39). Then there is a unique solution y(t,e) of (4.1), (4.2) (for e sufficiently small)
which fulfills the estimate (3.42). Iff Ct([0, 1]) uniformly in e, then y has the expansion
given in Theorem 3.2 (i) where )7(t)---A-(t)f(t,O)/t has been set. If Bo(e)E+(O)=--O
then the factor 1/ drops out. The estimate in Theorem 3.2 (iii) holds.

So if the eigenvalues of A(t) split into one group with strictly positive real parts
and another group with strictly negative real parts (unstable and stable eigenvalues),
then the results obtained for constant coefficient problems carry over. The solution
y(t, e) has (generally) a boundary layer at t= of width O(elln el) and height O(1/&-)
and decays exponentially (as e 0) to the solution of the reduced problem (disregarding
O(&-) terms) within the layer at t= 1.

Another boundary layer (of width O(&-) and height O(1/)) occurs (generally) at
t-0 (at the boundary turning point). However, this layer is of a different nature. The
solution does not approach a smooth function exponentially, inside this layer. It
converges to a possibly (around 0) unbounded function as e 0.

5. Nonlinear problems with a boundary turning point. Using straightforward con-
traction arguments we can analyse quasilinear (see O’Malley (1978), Ringhofer (1981))
problems where the reduced solution has a first order pole at t-0:

(5.1) ey’-tA(t)y+eh(y,t,e)+f(t,e), O<_t<_ 1,

(5.2) Bo(e)y(O, e) + Bl(e)y(1, e) fl(e).
We assume that (4.3) holds, that A(t) fulfills (4.4), (4.5), (4.6) and fc C([0, 1])

uniformly as e--, 0.
Moreover we assume that the "semi"-reduced problem

(5.3) ez’-tA(t)z+(t,e), 0_<t_<l,

(5.4) Bo(e)z(O,
is stable, i.e., there is a unique solution z for all h C([0, ]), h(e) R n, and the estimate

(5.5) II z(t)ll-<const IlX(e)ll +

+min ---e’ II h II t’l

holds. Sufficient for this is that (4.27) holds.
The assumptions on h are

(5.6) hC(R")fqC(g"[O, 1]) uniformly for [0, 1]
and a growth restriction on Oh/Oy:

(5.7) -y(Z,t,e) o(1) for Ilzll as

as e0

uniformly for [0, ].
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We merely state
THEOREM 5. (i) Under the given assumptions the problem (5.1), (5.2) has a solution y

for e sufficiently small.
(ii) Iff cl([0,11) uniformly in e and ifffulfills (3.39), then the expansion

y(t,e)=fi(t)+--e o_ -e +o+ 2e

+o(1)+ -9(t,e),
holds for 0 < t- t(e) and t(e)/ o. 0 fulfills the estimate (3.43) and fi(t)-
-A- (t)f( t, O)/t solves the reducedproblem (5.1).

(iii) If Bo(e)E+ (0) =--0 then the factor l_/vrg in (5.8) drops out.

(iv) Moreover, y is unique in Kp, (h C([0, 1 ])lh(t, e) H(t, e)/, II H II t0,]_< 0).
Now assume that f( t, e)- tg( t, e), gC([0,1]), uniformly as e0. Then (t)-

-A-l(t)g(t, 0) L([0, 1]). In this case we can relax (5.7) by requiring

(5.9) h C2(R ") tq C(R" [0, 1]) uniformly for [0, 1] as e 0

uniformly for [0, 1]. A statement analogous to Theorem 3.2 (ii) holds then.
Estimates on the derivatives of y for both cases of inhomogeneities can easily be

derived by using the second part of Lemma 2.9.
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Abstract. This paper deals with singularly perturbed systems of ordinary differential equations posed as
boundary value problems on an infinite interval. The system is assumed to consist of singularly perturbed
equations and unperturbed equations and to have a singularity of the second kind at o. Under the
assumption that there is no turning point, we derive uniform asymptotic expansions (as the perturbation
parameter tends to zero) for the fast (perturbed) and slow (unperturbed) components uniformly on the whole
infinite line. The second goal of the paper is to derive convergence estimates for the solutions of ’finite’
singular perturbation problems obtained by cutting the infinite interval at a finite (far out) point and by
substituting appropriate additional (asymptotic) boundary conditions at the far end. Using suitably chosen
asymptotic boundary conditions the order of convergence is shown to depend only on the decay property of
the ’finite’ solution.
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1. Introduction. In this paper we deal with the singular perturbation problem

(1.1) ey’:th(y,z,t,e),
a>--l, t [1, o)-_(1.2) z’:tg(y,z,t,e),

(Y) C([1 oo])

where 0<e<< 1, y, h are (real) n-vectors, , g are (real) m-vectors. F(e) is a (real)
k (n + m)-matrix, B(e) a (real) k-vector (the relationship between n +m and k will be
explained later) and C([ 1, ]) denotes the space of functions in C([ 1, )) which have a
finite limit as m. For the solution () of this problem we call y its fast component
and its slow component. The system (1.1), (1.2) has a singularity of the second kind at
= m for >- 1.Problems of this kind frequently occur in fluid mechanics, especially

in boundary layer theory (see for example Schlichting (1959) for the Orr-Sommerfeld
problem and Lagerstrom (1961) for a model of flow past an obstacle) whenever flows
of high Reynolds number (R,-, 1/e) over infinite media are investigated. Other applica-
tions occur in thermodynamics (see Lagerstrom and Casten (1972)).

Our assumptions on the problems (1.1), (1.2) are the following. We assume that
h,gC(iI"+’[1, ][0,e0]) where e0 is sufficiently small, and that the system is
quasilinear in the sense of Ringhofer (1981), which means that

(1.5) h(y,z, t, e) =A(z, t)y +f(z,y, t, e)

(1.3)
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and

(1.6)

for t[1, o], e[O, e0] and y, z in compact subsets of R n+m. Here A(z,t) is an
n n-matrix which is in block diagonal form

r+ r_

such that the real parts of the eigenvalues of A +(z, t) are strictly positive and the real
parts of the eigenvalues of A_(z,t) are strictly negative for t[1, ] and z in a
compact subset of in which the slow solution component remains for 1. So we
exclude turning-point problems where A has one or more eigenvalues whose real parts
change sign.

The first goal of our analysis is to study the asymptotic behavior of the solutions of
(1.1), (1.2), (1.) as e 0+ globally on 1, and to find conditions on F(e) which
guarantee the locally unique solvability of the singular bounda value problem (1.1),
(.2), (1.), (1.4).

For this we use techniques already developed for "finite" singular perturbation
problems such as for example matched asymptotic expansions (see O’Malley (1978),
(1979), nghofer (1980), (1981)) and the theory of singular boundary value problems
(see de Hoog and Weiss (1980a, b), Markowich (1982a, b), (198) and Lentini and
Keller (1980)).

We show that there are solutions y, z of (1.1), (1.2), (1.), (1.4) wch have the form

where fi, are solutions of the reduced infinite problem, obtained by setting e-0 in
(1.1), (1.2) and (1.3), wNch satisfy appropriate bounda conditions. Here o() decays
exponentiNly to zero as (boundary layer term) and , fi decay to a finite lit,
fi as m satisfying the equations

This result generalizes the results by O’Malley (1979) and nghofer (1980), (1981)
obtained for finite inteal singular perturbation problems.

Singularly perturbed initial vNue problems on the infinite line have been investi-
gated by Hoppenstaedt (1966) under more stringent stability conditions than those
considered here.

The second goal is to study appromating "finite" singular perturbation prob-
lems, wNch are set up by cutting the infinite inteal [1, 1 at a finite point T>> and
by substituting (for the continuity condition (1.3) at t-m) additional, so called
asymptotic bounda conditions obtaining a "finite" singular perturbation problem

(1
lNtT,
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Yr(1,e))(1.14) F(e) ZT(1,e) --fl(e),

(1 15) S(T,e)(yr(T’e) )
where S(T,e) is an (n+m-k)(n+m)-matrix, v(T,e)/-. The condition (1.15)
shall reflect the asymptotic behavior of the "finite" solution (y, z) as .

Finite approximating two-point boundary value problems (for unperturbed infinite
problems) have been studied extensively by de Hoog and Weiss (1980a), Markowich
(1982b) and Lentini and Keller (1980).

We show that under rather ld assumptions on the "infinite" problem (a certain
"wellposedness" is required), there is a choice of S(T,e)S and 7(T,e) only
depending on the reduced infinite problem such that the "finite" (perturbed) problem
has a unique solution Yr, zr for T sufficiently large and e sufficiently small (but T and e

independent) wch fulfills the convergence estimate

(1 16) Y-Yr K exp +e K,c>O,z-zr [,r] +1

(ll-II[,b] denotes the sup-norm on [a,b]) where the constants K, c may be chosen
independently of T and e.

The "finite" singular perturbation problem (1.12), (1.13), (1.14), (1.15) can then be
solved by polynoal collocation methods (see eiss and Nichols (1975), nghofer
1981), Ascher and Weiss (1981)). An exponential mesh size strategy for "long inteal"
problems has been developed for the box-scheme by Markowich and nghofer (1981).
Ts can be used on [, T], > 1, wle witn the bounda layer (on [1, + O(e[ln el)])
a very fine grid (see Ascher and Weiss (1981)) has to be used. Since the solution of
(1.13), (1.14), (1.15), (1.16) is smooth (has derivatives which are uniformly bounded in
e) on [1 + O(e[ln el), w l, standard techniques can be used there.

The paper is organized as follows. In 2 we prove estimates on the solution
operators of perturbed and unperturbed linear constant coefficient problems on [1, ];
in 3 linear problems are dealt with, and 4 is concerned with nonlinear singular
perturbation problems of the form (1.1)-(1.4).

2. Linear constant coefficient problems on infinite inteals. In this section we
prove estimates on the solution operator of linear constant coefficient problems. These
estimates will be needed for the variable coefficient case in 3.

First we investigate unperturbed problems of the form

(2.1a) z’-tz+tg(t), 6t<, >-1, 61,

(2.1b) zC([6, ])
where z, g are m-vectors and the m X m-matrix J is in Jordan canonical form

+
J+ has only eigenvalues with positive real parts and - has only eigenvalues with
negative real parts.
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We define the fundamental matrix

(2.3) (t,8)-exp

and the solution operator

(2.4) (Hsg)(t) f l( fstt(t )6 1(tk(t,8)f+d- s,8)sg(s)ds+ , _dp- s 8)sg(s)ds

where/+,/_ are diagonal projections

?+

f+
The general solution of (2.1) is given by

1(2.6) z(t)--dp(t,8) lz +(Hg)(t), Cz-,
if g C([8, ]). The operator Ha has been extensively analyzed by de Hoog and Weiss
(1980a, b) and Markowich (1982a, b), (1983). Therefore we only state its properties:

LEMMA 2.1. Assume that J fulfills (2.2). Then H maps C([8, ]) into C([ 8, ]), its
norm is bounded independently of 8 and
(2.7) (H8g)()--j-’g() holds.

We abo denote the operator norm ofH8" C([8, ]) C([8, ]) by II H8 I1 [8,1.
We now investigate singularly perturbed problems of the form

(2.8a) y’-t"sy+t"f(t), t8, >-1,

(2.8b) y C([ 8, ])
where y, f are n-vectors and J is in Jordan canonical form

(.) - 0 - r_

such that the eigenvalues of J+ have positive real parts and the eigenvalues of J- have
negative real parts. We define the fundamental matrix

and the solution operator

f2,(, )e+,-l(, )i()(.i) (a,,Zl()-
)_-(s

oo)-
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where the diagonal projections D+, D_ are defined analogously to (2.5). As in the
unperturbed case, the general solution of (2.8) is given by

Il(2.12) y(t,e)--(t,i,e) lr ,l+(G,,,f )(t), ,lee’-.

We prove
LEMMA 2.2. Let J fulfill (2.9). Then G,,, C([8, ]) C([8, ]) is bounded indepen-

dently of S>_ 1, e [0,e0]. lff,f’(t)/tC([1, ]) then

(2.13)

holds, where

(2.14)

(G,,f )(t) -J- lf(t ) +(t, , e)D_J- f(8 ) + e( A,,f )(t)

with K independent of e, i.
Proof. Obviously (G,,f)(t) can be written as

(2.15) (G,.f )(t)=
1 f’,/(t,,,):( ,,)f/()d

l_.e ftb- ( e) b- ( s 8 e)saf ( s ) ds ((/ ).,,f/)(t)

where

and

e(a+l)

ta+ )(2.16b) _(t,,e)- exp
e(ct+ 1)

J-

has been set. Applying the well-known representation of a holomorphic matrix function

(2.17) (P ) ---- (k)(kI--P ) lkk,

where :fl cC C holomorphically and P is a square matrix whose eigenvalues are
enclosed by Fe C f, gives

(2.17a)

(2.17b)

G*’*f+)(t)--i
+ - e(aq’l) X s(I-j+)-’f+(s)ds)dX,

(G’f-)(t)=i fr_ ta+l_ a+l
e(a+ 1) )sa(I-J-)-lf_(s)ds) dp,
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where F+ c (zC[Rez>0} encloses all eigenvalues of J+ and F_ c (zC[Rez<0}
encloses all eigenvalues of J-. We get

( ft (t+-s+(2.18) II(G ng)(t)ll-<const max exp
xer+ e e(a+ 1) ReX)sds

lft (t+ +1

+ max exp
--s

r_ e (a+ 1) Ret)sds)ll f Iltn,l.

Since ReX_>c+ >0, Re/x<_-c_<0 we immediately obtain

(2.19) IIa, t,l_<g
where K is independent of i and e.

Applying integration by parts to the inner integrals in (2.7) gives

(2.20a)

fr -J+-d
2ri +(XI ) Xf+ (t)

+’ +e exp
e(a+ 1)

(2.20b) (G-,af_)(t)-

’) s’(’I-J+)f-(s dsd2t,

112ri _-(#I-J-) ld#f_(t)

2ri _exp e(a+ 1) /.t (i.tI-J)-dlf_(a)

e texp # (ixi_j_)_lf’_(s) dsdl+-- _- e(a+ 1) --J-g--

Using (2.17) for the first term on the right-hand side of (2.20a) and for the first two
terms on the right-hand side of (2.20b) and applying (2.19) to the last term on the
right-hand sides of (2.20a, b) gives (2.13).

The term -J-f(t) is the solution of the reduced problem (2.8), obtained by
setting e- 0, and

(t,c,e) /r_ (riq-(J-) f_())

is the boundary layer term which decays as exp(-c(t"+-a"+)/e(a+ 1)), c>0 as
e--, 0 +. The boundary layer is located in [i, i + O(elln el)]. Lemma 2.2 generalizes the
analogous result for finite interval singular perturbation problems.

In the sequel we will need the space

(2.21) n{f max
s[a,]

which is equipped with the norm

(2.22) f [a,l-II f [a,] / max
f’(s )

s[a,] S
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Then H" C([8, oo]) C([8, o1), A,. C([i, o1) C([ 8, 1) and

(2.23) II H II c(t,l)c(t,l)K,
(2.24) e, c([,])c([,]) K2
where Kl, K2 are independent of 8, e.

3. Variable coefficient problems. We consider the problem

(3.1) ey’=t"A(t,e)y+tW(t,e)z+t"f(t,e),
lt<,

(3.2) z’:taC(t,e)y+taD(t,e)z+tg(t,e),

(3.3) F(e)(y(l’e) )z(1,,) -(*)’

 3.4)

where the dimensions are as in and assume that

(.5) ,, c,,Lge c([, 1 x [0,ol), e,c([0,ol),
(3.5b) A,B,f C([1, ]) uniformly in e [0, eo

holds for some eo>0 and that F, B, A, B, C, D, f, g are uniformly LipscNtz continuous
at e=0.

Moreover we assume that the eigenvalues X(t) of A(t, 0) split up into two groups
such that

(3.6) ReXl(t)_>c+ ,... ,Re)r+(t)>-c+ c+ >0, t_> 1,

(3.7) ReXr++l(t)-<-c_,’" ,ReX(t)_<-c_, c_>0, t_>l (n-r+-r_)

holds (eigenvalues are counted according to algebraic multiplicities) and that there is a
transformation to block form

(3.8) A(t,O)E(t)J(t)E-l(t), J(t)[_Jt_) 0 s])r+ t__>l
-J-_t }r_

such that the eigenvalues of J+ ( )( J_ ( )) are 1(t),..-, )+(t) (r + (t),""", X,(t)) and

(3.9) E,E- C([1, o]).
J is not necessarily in Jordan canonical form; however, we choose E such that J() is
in Jordan form. Under the assumptions (3.6), (3.7) and additional smoothness assump-
tions on A, a transformation matrix E(t) exists for every t[1, ], but the assumption
(3.9) is much more restrictive (see O’Malley (1979)). At first we investigate

(3.10) ey’:tA(t,e)y+th(t,e), yC([1, o]).
LEMMA 3.1. Let A fulfill (3.5)-(3.9) and assume that hC([1,][O, eo]) and

h C([ 1, o]) uniformly for e [0, e0 ]. Then the general solution of (3.10) satisfies

[ 0 ](+[O,Ir ]E-I(3.11a) y(t,e)-A(t,e) lr (1)A (1,0)h(1,e))
-.-( t, O)h( t, ) + o(11 h(., ,)11,)
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uniformly for 1, oe with C r. The n n-matrix A(t, e) fulfills the estimate

(3.11b) A(t,e) _<Kexp 1)e(t+-l) t_>l,

where K,K2>0 are independent of t, e and

(1,) i_ /_ +o().

Proof. We substitute

3.12)
and obtain

y-E(t)x

(3.13) ex’=t"J(t)x+t"(E-(t)(A(t,e)-A(t,O))E(t)-et-E-(t)E’(t))x
+tE-(t)h(t,e),

(3.14) x C([1, o]).
Using a perturbation approach we first solve

(3.15) eu’=t’J(t)u+t"d(t,e), u C([1, o]),
where d fulfills the assumption on h stated in the lemma. According to (3.8) the system
(3.15) splits up into

(3.16a) eu’+-t"J+(t)u+ +td+(t,e), u+ C([1, ]),
(3.16b) euL-t"J_(t)u_ +t"d_(t,e), u_ C([1, ]).
At first we analyze (3.16a), wNch we rewrite as

(3.17a) eu=t"J+()u+ +t(J+(t)-J+())u+ +tad+(t,e),
(3.17b) u+ C([1, ]).
We regard (3.17) as an inhomogeneous constant coefficient problem with the funda-
mental matrix

(3.!8) +(t,8,e)=exp e(a+l) (t+-+) 81,

and with solution operator

(3.19) (G,d+ (. e))( )= ,,

(as given in 1). Then, (3.17) can be rewritten as

(3.20) u+ o,5(+(. )-s+())u+ + o,5d+(. ,),
Because of Lemma 2.2 and since J+(t) J+(), the operator I- G,,(J+(.) J+())
is invertible on C([8, ]) for sufficiently large. We obtain

(3.21) u+(t)=((I-Ge,(J+(. )-J+()))-G,d+(.,e))(t),
(oa+ ,e))(t)

To get a solution on [1, ] we solve the ternal value problem

(3.22) efi=tV+(t)+ +td+(t,e), lt,

(3.23) a+()-u+()
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and set (O+d+(.,e))(t) fi+(t) for t<_8. 0+ is an operator on C([1, ]) and since the
eigenvalues of J+ (t) have strictly positive real parts,

(3.24) II0 t,l-<const

holds. Repeated application of (2.13), (2.14) gives

(Od/.,))t)- Y ((,q(/.-/))),d/.,))t)
i:0

((J+())-’(J+(t)-J+()))i(J+())-d+(t, e)
i:0

-(J+ (t))-d+ (t,)+ O(lld+ (., ) ;,=)
for t_>6. By continuation (3.25) holds for >- (see Ringhofer (1981)).

We rewrite (3.16b) analogously

(3.26a) eu’_-tJ_(oc)u_ +t(J_(t)-J_())u_ +t’d_(t,e),
(3.26b) u_ C([1, o ])
and define the fundamental matrix

(3.27) _(t,i,e)-exp
e(t+ 1) (t - ), _>1,

and solution operator

f (,,,,,)-’(s,,,,)d_(,), ,>_(3.28) (G,nd_(.,e)(t))=-
such that the general solution of (3.26) is

(3.29) u_-(I-G,n(J_(. )-J_ (o)))-’k_ (’, , e)(
+(I-G,a(J_(. )-J_(c)))-’G,nd_(. ,)

for ’C- and t_>. We call the first term on the right-hand side of (3.29) q_(t,,e)
and the second p_(t, e). Obviously

(3.30) _(,,e)-Ir_ _(o,, e)-0, ffp_(t, e) 0

hold. q_ has a boundary layer at i. The homogeneous problem (3.16)(b) has a funda-
mental matrix

_
(t, e) such that

(3.31a) _(1,e)-I_,

(3.31b) II-(t’e)ll<-cexp
e(t+ 1) (t+-1)

holds for [1, ] where c, c2>0 (see Ringhofer (1981) and under more general
assumptions O’Malley (1978)). We set

(3.32) _(t,e)=q-_(t,8,e)_(,,e), t>_ 1.
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Since _(8,e)-_(6,e) we obtain _------_ and the boundary layer has been shifted
from i to 1. On [1 + O(elln el), ] the matrix

_
is smooth. Another particular solution

is

(3.33) p_(t, ,)--! e)-’(s,e)sd_(s e)ds t[1 ,8].

Since

_
( t, e)- l( s, e)ll c exp(( c2/e(a + 1))( + s+ l)) holds on [1,8] we derive

(3.34) 7_ (., e)ll t,l <constll d+ (-, e)ll [1,8]"

Setting

(3.35) (tp_(t,8)-(O-d_(.,e))(t)’- /_(t,8,e)p_(8,e)+fip_(t,e),
we obtain p_ ap_ and

(3.36) 0- tl,ool-<const

because on [1,] we use (3.34) and on [, o] we use (3.35) and (3.29). As a general
solution of (3.16b) we take

(3.37) u_(t,e)-_(t,e)+(O-d_(.,e))(t), t>_ 1,

and we get similarly to (3.25):

(3.38) u_(t,e)-_(t,e)(+J-(1)d_(1,e))-J-(t)d_(t,e)

uniformly on 1, o].
Setting

we write the solution of (3.13), (3.14) as

(.9) x- q_(-,e) +O(E-(-’t("e)-t("O))E-P)x+Oe-lh("e)

where F2(t) t-"E- (t)E’(t) has been set. (3.5), (3.9) guarantee that (t, e)
E- l(t)(A(t, e) A(t, 0))E- e/(t) --, 0 as e --, 0 uniformly on 1, 1. From Lemma 2.2 we
get that (I-0(., e))- exists on C([ 1, m1) for e sufficiently small such that

(3.40) x(t e)-((l-OA(, e))-l[ 0 ])
+((I-OA(.,e))-loE-’h(.,e))(t), t>_ 1,

holds for C -.
(3.1 la) follows from Lemma 2.2 and from (I-OJ(. ,e))--I+ O(e) on C([1, ]).

/r_

is the boundary layer term (at 1) fulfilling the estimate (3.31b) and " C r_.



PERTURBATION PROBLEMS, SINGULARITY OF SECOND KIND 907

Now we return to the coupled problem (3.1), (3.2), (3.3), (3.4). From Lemma 3.1
we get for fixed z C2([ 1, oe])

[o(3.41) y(t,e)-A(t,e) I_ P-A-l(t’O)(B(t’O)z(t’e)+f(t’O))

+(L’z )( ) +(L?: )( )
where L’)’- cl([1, c])- C([1, oe]), L’)Jl c.,(,,l)_.c(,,ool)_<const, i-l, 2, and
[0, I,_]E- l(1)A l(1,0)(B(1,0)z(1, e) +f(1,0)). Inserting (3.41) into (3.2) gives

(3.42) z’-- t"( D( t, 0)- C( t, O)A- ’( t, O)B( t, O))z + te( L?)z )( )

[1+tae(L4)f )(t)+ta(C(t’e)A(t’e) Z_ O

+g(t, e) C(t, 0)A-’(t, 0)f(t, 0)),
zC([1, l).

Also the operators L?)" C2([ 1, ]) C([ 1, ]),j- 3, 4, are uniformly (in e) bounded.
Setting (t, e) D( t, e) C( t, e)A ( t, e)B( t, e) we have to solve a problem of the

form:

(3.43) z’- t(t, 0)z + t(t, e), z C2 ([ 1, ]),
where C([1, ]X[0,e0]). We apply Lemma 2.1 and the theory developed by de
Hoog and Weiss (1980a, b). Therefore we assume that the Jordan form j of (,0),
obtained by (,O)-EjE, has the block form given in (2.2). We obtain for
C- o](3.44) z-E2(I-E2HE;I((.,O)-(,O))E2) 10(’, ) If_

+e(i-e,e;’((.,o)-(,o))e:)-le; g( ,e), t,
where H, O(t, ) are defined in (2.24), (2.23) respectively and is sufficiently large. The
right-hand side of (3.44) can be continued to [1, ], and we obtain

[1(3.45) z(t,e)-(t) #_ +(r(.,))(t), tl,

where F" C([1, ]) C2([1, ]) and IIFIIc(tl,lC(t,lconst (see (2.23)). Applying
tNs to (3.42) gives

(3.46) z(,,)-(,) i_ +(rL?z)(,)+(rL?/)(,) +(rg(.,))(,)

+ F C(.,e)A(.,e) L_ (t)o-(FC("O)A-l("O)f("O))(t)

FL3)" C2([1, ml) C2([1, m]) and FL?)II ,aconst. Therefore (I-eFL3))- exist as
operators on C2([ 1, m]) for e sufficiently small and

(a.47) z(,)-(,) i_ +(r(g(.,o)-c(.,o)a-’(.,o)/(.,o)))(,)

+ rc(.,)A(.,) Z_ (,)o+o().
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Using the exponential decay of A(t, e)[ r_] and the definition of n, it is easy to show
that

l(3.48) FC(-,e)A(-,e) /r_

So we obtain
THEOREM 3.1. Assume that (3.5)-(3.9) hold and that the^Jordan form of ff)(z, O)

fulfills (2.2). Also assume that the (r_ +_) (r_ + f_)-matrix F defined by

(3.49)

0 E(1)D-E-’(1)A-I(I’O)B(I’O)(1) I_E(1) irP= F(O) .
0 ,(1) Iv

where D_ is defined in 2, is nonsingular (F(e) is an (r_ +?_)(n+m)-matrix). Then
the boundary value problem (3.1), (3.2), (3.3), (3.4) has for sufficiently small e andfor allf
which fulfill (3.5) and for all r_ +?_-vectors B a unique solution y, z which depends
uniformly (in e) continuously on f C2([1, ]) andg C([1, ]) when regarded as dwell-
ing in C([ 1, ]).

Moreover y,z C([B, ]) for > depends uniformly continuously on f C([1, ])
and g C([ 1, ]) and .

Proof. Inserting (3.47), (3.41) into the boundary condition (3.3) gives the system of
linear equations

(3.50) (P+O(e))( ) -(e)+(f)+(g)
where 6, are uniformly bounded linear functionals from C2([1, ]) into R and
C([ 1, z]) into R respectively.

The nonsingularity of F implies the solvability of (3.50) for e sufficiently small.
A slight modification shows that the existence results of Theorem 3.1 also hold if

only f, g C([ 1, ]) is assumed, and then y, z C([ 1, ]) depend uniformly continu-
ously on f, g C([ 1, ]).

Theorem 3.1 enables us to define boundary conditions for the reduced problem.
Therefore we partition F(0):

(3.51) F(0) -[ Fy(0), F(O) ]} r_ +e_.

tt m

Since/ is nonsingular, the matrix

has (full) rank r_. Therefore, there is a nonsingular (r_ + ?_) (r_ + ?_)-matrix Y such
that

(3.52) YFy(0)E(1) ir )_
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holds where U is nonsingular. We partition Y by

(3.53) Y2 )e-
r_+_

The matrix

(3.54) y___[Uo UI]u2
is block-upper triangular, and the variable , which determines the slow component z, is
the solution of (U2 + O(e))/j+ O(e)’= Y2(fl(e)+(f)+(g)). We therefore define the
reduced problem as

(3.55) O=A(t,O)(t)+B(t,O)e(t)+f(t,O),
l_<t<,

(3.56) U= t’C( t, O)y+ t’D( t, 0).+ tg( t, 0),

(3.57) YEf(O)(fi(1) )e(1) YEfl(0)’

(3.58)

and get under the assumptions of Theorem 3.1

(3.59) y(t,e)=.9(t)+o- +O(e)

(3.60) z(t,
uniformly on [1, ] where o(t/e) is the layer term which satisfies the estimate (3.11)(b).
(3.59), (3.60) follow from (3.47), (3.41). The reduced problem (3.55)-(3.58) is uniquely
solvable because U2 is nonsingular (if the assumptions of Theorem 3.1 hold).

Using (3.47), (3.41) and Lemmas 2.1, 2.2 we get for the limits of y(t,e), z(t,e):

(3.61) y(o, e) -A-l(o,O)(B(o,O)Y.(o)+f(,O))+O(e),

(3.62) z(, e)- (D(, 0) C(o, 0)A-l(m, 0)B(, 0))- ( g(m, 0)
C(o, 0)A-1(o, 0)f(o, 0)) -- O(For the numerical solution of (3.1)-(3.4) we cut the infinite interval [1, o] at a finite

point T>> and replace the continuity requirement (3.4) by r+ ++ boundary condi-
tions at T. These asymptotic boundary conditions shall reflect the asymptotic behav-
ior of y, z as t--, o. So we get the finite singular perturbation problem

(3.63) eyr=t’a(t,e)yr+ tB(t,e)zr+f(t,e),
l<t<_T,

(3.64) zr= tC( t, e)yr+ tD( t, e)zr+ g( t, e),

(3.65)

(3.66)

f(e)(yr(l’e) )zr(1,e)

S(T,e)(yr(T’e) )
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where S(T,e) is an (r+ +P+)(n+m)-matrix, ,(T,e)R r++z+ and Yr, xr are the
approximations to y and x. Asymptotic boundary conditions (for unperturbed prob-
lems) were constructed by de Hoog and Weiss (1980a), Markowich (1982b) and Lentini
and Keller (1980).

Proceeding analogously, we set

(3.67) S=--S(T,e)
[Ir+’O]E-l() [e,+, o] o)

o

(3.68) y(T)=_y(T,e)_ ( -[I+,O]E-I()A-’(’O)f(T’O) )
Let f(t,e) denote the fundamental matrix of (the homogeneous system) (3.1), (3.2).
Then, by proceeding as in de Hoog and Weiss (1980a), it is easy to show that Sft(t,e)
does not contain exponentially increasing terms (as t-o o, e -o 0). Therefore the boundary
condition

y(T,e))S
z(T,e)

--0

sets the exponentially increasing solution components of the homogeneous problem
(3.1), (3.2) to zero. 3fiT) is the (boundary) correction term for the inhomogeneous
problem.

We now assume that the assumptions of Theorem 3.1 hold. As in the references
cited above we get the following estimate for the unique solution Yr, xT of (3.63)-(3.66):

(3.69) Z--ZT [l,T]

(for T sufficiently large and e sufficiently small, but T and e independent) where K is
independent of T and e. Using (3.59), (3.60) we get the convergence estimate

(3.70) I1( y-yr ) const(ll (T) ff(o) II + O(e))Z--ZT [I,T]

where the constant is independent of T and e.
Since the solutions of the reduced problem (3.63), (3.64) do not generally fulfill

(3.66), Yr has a boundary large at t-- T whose height can be estimated by the right-hand
side of (3.70). Estimates of the first term on the right-hand side of (3.70) depending on
the decay off, g as t-o o are given in Markowich (1982b), (1983).

Under the assumptions of Theorem 3.1, the asymptotic boundary condition (3.66)
can be constructed with respect to the perturbed infinite problem.

4. Quasilinear problems. We investigate

(4.1)
(4.2)

ey’=tA(z,t)y+ tf(z,y,t,e),
z’--tg(z,y,t,e),

a>--l, l_<t< o,

(4.3) f(e)
y(1,e) )z(1,e) fl( e),

(4.4) (Y)z
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where A(z, t) is an n n-matrix, f an n-vector, g an m-vector and the problem (4.1),
(4.2) is quasilinear:

Of --o(e)(4.5)

for [I, o], e [0, eo] and y, z in compact sets. We get immediately

(4.6) f(z,y, t, O) --f(z, O, t, 0).

We now assume that F(e) is a k(n+m)-matrix (k will be specified later), f,
C([O, eo]) and Lipschitz continuous at e =0 and

(4.7a) f,gC2(lm+nx[1, oolX[0, e0]),

f(z,y,. ,e) C2([1, oo]) uniformly in compact subsets of Rn+"[0,e0],
(4.7b) A C2(Rm[1, oo]), A(z, ) C2([1, o]) uniformly in compact subsets of gm.

We define (the boundary conditions for) the reduced problems first since we will
construct a solution to (4.1)-(4.4) which corresponds to a reduced solution. Therefore
we proceed similarly to the linear case (see also Ringhofer (1981)). We split F(0) as in

(4.8) F(0) =[Fy(0.),) ],

and we assume that there is an integer r_ _<n such that

(4.9) Fy(0)-[.), ..-..--.Fy-(O) ], r+ +r_-n,
r+ r_

and the k r_-matrix Fy_(0) (k_>r_ is assumed) has maximal rank r_. Therefore, there
is a k k-matrix Y such that

}k-r_, Y= Y2 )k-r_
r_

k

holds where V is nonsingular.
The main assumption is that the reduced problem

(4.11) ,’--tg(,,fi, t,O),
(4.12) O-A(,t)y+f(,O,t,O),

(4.13)

l__<t<c,

l__<t<c,

(4.14) ( 37) C([1, c])

has an isolated solution (see Keller (1975)), y, z, and that

(4.15)
A+(z,t)’ 0 ])r+A(z,t)

0 iA_(z,t) }r_

r+ r_
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holds in C-((z,t)[ Ilz-(t)l[, t[1, o]), tp>0 sufficiently large, where the ei-
genvalues )+ (z, t) of A +(z, t) and X_(z, t) of A (z, t) fulfill

(4.16) Re+(z,t)>_c+>O, (z,t)C,
(4.17) ReX_(z, t) _< -c_ <0, (z,t)C.

fulfills

y+(4.20) -EjE-’ j=
_
_0_ }e+

0 j_ }_

?+

where the eigenvalues of J+ (J-) have positive (negative) real parts.
Therefore we assume that Y2 f(0) is an ?_ (n + m)-matrix, Y./3(0) - and

k-r_+?_, such that (4.11), (4.12), (4.13), (4.14) is well posed with respect to the
number of "finite" boundary conditions (see Markowich (1983) and de Hoog and
Weiss (1980a, b)). Obviously zo -(o), Yo =)7(o) are solutions of

(4.21a) O g(z y 0)
(4.21b) O-A(z,)y+f(z,O, o,0),
and we assume that z, y are isolated. Therefore/ as of (4.19) can be calculated a
priori at these roots.

Let q(t, e) denote the fundamental matrix of

(4.22) ev’-t’A((t),t)v, +(1,e)--I.
We only state the existence result since the proof goes along the lines of the proof given
in Ringhofer (1981) for finite interval problems using the linear theory developed in 3
of this paper.

THEOREM 4.1. Let f(e) be an (r_+?_)(n+m)-matrix. Assume that f, fl are
Lipschitz continuous at e =0, that (4.7), (4.9) hoM and that the reduced problem (4.11)-
(4.14) has an isolated solution .9, such that (4.16), (4.17) hoM and f(zo,yo,t,O)=--O,
g(z,yo,t,O)O for t>_8>_ where zoo, Yo fulfill (4.21). Then the problem (4.1), (4.2),
(4.3), (4.4) has a locally unique solution y, z for e sufficiently small such that

y(t,e)-+(t,e) 1_ f+.(t)+O(e),

z(t,e)-e(t)+O(e)
holds uniformly in [1, o for some e-From 3 we conclude that

(4.23) (t,e) /_ _<const.exp e(+l) (t"+l-1) c>0,

This guarantees that (4.12) can be solved with respect to y for z C and

(4.18) )7--)7(, t)- -A-(,t)f(, O,t, O)
holds. We assume that the matrix

Og g
(4.19) /) --z ((o),)7(o), o,0)+- ((o),37(o), z ,0) ---((o), o)
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holds, t-asymptotics for (t), )7(t) can be obtained from Markowich (1983):

(4.24) .(t)-(o)+Eq(t, 1) iv +O (t, 1) iv

for C v- where

(4.25) q(t 1) =exp( J )Ct+ (ta+l--1)

holds. From (4.19) we get

(4.26) )7(t)=)7()+-3--((), o)Eq,(t, i) iv +O q,(t, 1) I._

The approximating "finite" problems are

(4.27) eY(r= t"A ( zr, )yr+ t"f( zr,yr, t, e),
l<_t<_T,

(4.28) Z(r= tg( Yr, zr, t, e),

f(e)(yr(l’e) )zr(1,e)

S(T,e)(yr(T’e) )
(4.29)

(4.30)

where S(T,e) is an (r+ +?+) (n + m)-matrix and y(T,e)R r++’+. We choose

(4.31)

and

(4.32)

s= s( r, i oo)

[17+, O] /-1

Then we obtain

7----y(T,e)-S(fi(c) )
y(T,e)

(4.33) S
z(T,e)

0

Using the linear stability result (3.69), we get by proceeding as de Hoog and Weiss
(1980a) did:

(4.34) Yr-Y _<const (T, 1) iv +O(e)ZT--Z [l,rl

for the locally unique solution Yr, zr of (4.27), (4.28), (4.29), (4.30) such that (4.33)
constitutes the convergence estimate.

As in the linear case, this asymptotic boundary condition only depends on the
reduced "infinite" problem.
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EQUIPARTITION OF ENERGY IN SCATTERING THEORY*

GEORGE DASSIOSt AND MANOUSOS GRILLAKIS*

Abstract. It is shown that the difference between the kinetic and the potential energy of a solution of the
wave equation in the exterior of a star-shaped body, which vanishes on the surface of the body and has
Cauchy data with compact support, decays to zero as time tends to infinity. Therefore asymptotic equiparti-
tion of energy occurs even in the presence of a scatterer. An upper bound for the rate of decay has been
found. An extension of Morawetz’s local energy decay result for the case of an expanding sphere is also
obtained.

1. Introduction. Equipartition of energy has been studied for many physically
interesting [2]-[6] as well as abstract [1], [8], [9], [10] cases in the form of initial value
problems for hyperbolic equations in R 3. The basic technique to prove equipartion (or
partition) of energy, in most cases, is to Fourier (or Radon) transform the problem and
use Paley-Weiner type theorems and Parseval’s identity.

Nevertheless, if a scatterer is present the fundamental domain of the solution does
not contain all of R3. A region (the scatterer) is left out of 3 and boundary
conditions on 0 must be prescribed. As a consequence, the transform technique is not
applicable anymore, and a new method should be used to investigate equipartion of
energy for this problem.

In this paper we prove an asymptotic equipartition of energy result for the case of
the classical wave equation when the scatterer is star-shaped, the wave vanishes on the
surface of the scatterer and the initial data have compact support. The asymptotic
character of the result is a consequence of the Huygens’ principle which in the presence
of a body ceases to hold. The main idea of the paper is to look at the decay properties
of the solution and its derivatives, locally, as the wave propagates along the characteris-
tics. In order to obtain the necessary pointwise estimates we extend the analysis given
by Friedlander in his fundamental papers [7, Parts I, II]. This local study of the
solution along the characteristics does not take into consideration the influence from
past reflections on the boundary. Therefore the scattering process is isolated from the
past for every outgoing wave. There was also need to generalize Morawetz’s local
energy decay result to a sphere which extends at a speed strictly less than the phase
velocity of the wave. It was found that even in this case, where the domain of
integration of the energy expands, the rate of decay is at least as fast as t-1.

2. Pointwise estimates. Consider a closed, simply connected and star-shaped sub-
set of t 3, bounded by the smooth surface . Let u(x,t) be a C2-solution of the
wave equation

(1) []u(x,t):utt(x,t)-Au(x,t):O x3-:c, t_>0

which satisfies the boundary condition

u(x,t)=0,(2)
and the initial conditions

(4)

x0, t_>O,

u(x, 0) --f(x),
u,(x,0) =Z(x),
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Assume that the initial data f and g are smooth functions with compact supports and
that

(suppf) (supp g) CB(O,a)

where B(0,a) is the open ball centered at 0 with radius a. Since the support of a
function is a closed set, (5) implies that both f and g vanish on the surface of the sphere
S(O,a)=B(O,a).

Following Friedlander [7], we translate the time axis by -a so that the solution u
vanishes on the characteristic surface (cone)

(6) t- Ixl--r.
The initial-boundary value problem (1)-(4) then reads as follows: Find a C2 solution of

(7) (x,t)
which satisfies the conditions

(8) u(x,t)-0, xO@U(xn3.t-r-lxl), t>_a,

(9) u(x,a):f(x), x@CnB(O,a),
(10) ut(x,a)--g(x), xOCfqB(O,a),

where f is the shaded region of Fig. 1. Since the solution is zero in the exterior of
B(0, a) at t= a, the following Kirchhoff’s integral representation holds for (x, t) in the
shaded region of Fig. 2 determined by the inequalities >_r >_a,

(11) u(x, t) ---- -ur(a,t-R)

+x .-a ]}R2 --u(a,t--R)q-ut(a,t-R )

where w stands for the surface of the unit sphere in 3, is the exterior unit normal on
w and

R-lx-a [.

LEMMA 1. If U is a C2-solution of (7)-(10) then

(13) ut(x,t) O(
whenever t-r= ’, is positive and bounded.

Proof. The smoothness of the integrand in Kirchhoff’s formula (11) allows a
differentiation under the integral sign. Hence the time derivative of (11) gives

(14)
a (ut(x,t)---’ f ----Urt(a,t--R )- --ut(a,t--R)+utt(a,t-R) do().
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0 a 3

FIG.

0 a

Ft3. 2. R--lx-a.

Using the basic order relations for r "
(15)

(16)

(17)

where

(18)

--1+0
R-r-acosy+O )
R -cosT+ 0

X "--rcos,
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and the fact that t-R is bounded because of (16), which implies that the integrand in
(14) is a continuous function over a compact set, we obtain from (14) the following
estimate:

(19)
a

Ut(X,t)--"-’ fo{--Urt(a,lt--R)( 1-I-O( ff ))-I’-(1+0(1))r
7 7 -ut(a’t-R)+utt(a,t-R)]) do()

---r"o[-urt(a’t-R)+cOsYutt-a’t-R--d--+O 7 7"

This proves Lemma 1.
LEMMA 2. If the assumptions ofLemma hoM then

(20) IVu(x,t)l O( )r

Proof. Let I be the integrand of the representation (11). Then by straightforward
calculations we obtain

0I /i-a,i [(21) Ox------i’- R "- ur+ur,
[ ’i 3 x’--a xi--a’i][ ]+ -’R R3 " R u+ut

x.-a xi--a
--"" R Utt

where the function u and its derivatives are evaluated at the point (a,t-R) and
i- 1,2, 3. Using the relation

R r r

in (21) and the continuity of the second derivatives of u we obtain

(23)

where

(24)

X
lim rli - Urt ( a, ,r + a cos y ) cos yutt ( a, ,r + a cos y )
r---oO

From (11) we obtain

’+acosy- lim (t-R).
r-- oO

,.-+<
lim rlid
r-

a2 [f,o(limrli)d4,r
i=l
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where the passage of the limit inside the integral is justified by using the Lebesgue
dominated convergence theorem. Relation (23) implies that the last side of equation
(25) is bounded. Therefore

(26) vul2- 0 - r c,

from which (20) is obtained, and the proof of Lemma 2 is completed.
LEMMA 3. Under the assumptions ofLemma 1 it is true that

(27) lut(x,t)+ Vu(x,t)l=O -where Yl- r- x.
Proof. We use (14) and (21) to evaluate the th component of the vector field

x a2 fo(28) U --+ u idor

where

[ xi- al x
(29) "--- R r Urt(a,t-R )

xi-ai Xi ]R r utt(a’t-R)

+ R 7 R +li ut(a’t-R)

xi-aiur(a,t-R)R

+_1 [i_ 3

______
.x’--a xi-ali]u(a,t_R)R

If we use the relations (15)-(18) and (22) to estimate the coefficients of Urt utt u and
u we observe that, with the exception of the coefficient of u which is O(1/r3), all
other coefficients are O(1/r2). Therefore

(30) i-- O - r c

for every i- 1,2, 3. If we combine now the continuity of the second derivatives of u, the
boundedness of t- r and the estimate (30) we obtain from (28) and (29) that

(31) ut --+ Ux,-- - r

for each i-1,2,3. Equation (27) is then immediate and the proof of Lemma 3 is
completed.

3. Energy estimates. We next turn to global estimates for the solution u. Mora-
wetz [11] has proved that if u is a solution of (1)-(5) and is star-shaped, then the
energy that is contained in any sphere of constant radius decays at least as fast as t-l,
as the time tends to infinity.



990 GEORGE DASSIOS AND MANOUSOS GRILLAKIS

In this paper we extend Morawetz’s result and prove that the same rate of decay
holds even when the sphere, where the energy is evaluated, is expanding with a speed
not exceeding the phase velocity of the wave. More precisely, we will prove the
following theorem.

THEOREM 1. If U is a solution of (5), (7)-(10), and is star-shaped, then

(32) (lu,l+lvul)d3x-O t-,,
t+a(l --h)

where Vt+a(-x is the region exterior to the scatterer o and interior to the bah
B(O, Xt+ a(1 -)) and [ 0, 1).

Proof. Consider the following identity:

(33) aS ,u_+.V ru,u uu

+V"--(ut--lV +tut+rUr)VU

We next integrate (33) over the region

(34) -[B(O,k)]X[a,t]C3X[O, +)
where the radius k of the ball B(O,k) is chosen so that u(x,t’)=0 for every rk and
aG t’G t. fl is the shaded region of Fig. 3. By Gauss’ theorem and the particular choice
of k, the above integration gives

(35) t X 2 Ul2) (U )U-,ut,-lv +t’ut,+ru .fixdsdt

+ + +
t’=t

(u,+lVul2)+rUrUt,+uu,, d3x-O,
t’=a

where fi is the interior unit normal on .
Since u-0 on , the gradient of u has the direction of the normal on the surface

of the scatterer. Hence for x we have

Ix
where the last inequality is justified by the star-shaped property of the body wNch
ensures that

(7) x.0,

Therefore the first integral in (35) is nonnegative. Since the initial data are smooth and
have compact support, the last integral in (35) is bounded. Relation (35) then gives for
the time the following inequality:

(38) (u+IVu +ruut+uu daxM

where M is a bound of the last integral in (35). Introduce the notation Vff for the space
between the balls B(O,a) and B(0,fl) with a<fl, and V for the space between the
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/.,7 ,,
\ \ .’,>’./

x/ 2/" /
,, \ \ / -/ ,,

0 a(l--X) a k’

Fro. 3

surface 0 of the scatterer and the ball B(0,/3) which includes the scatterer. Inequality
(38) can be written as follows:

(39) K +K2+g +g4+g <M
where

(40) K fv rUrutd3x’
t+a(1

(41) K2=fv 2),+,,_x,-( ut2 + Vul d3x

(42) K3--fv rUrutd3x’
t+a(l --h)

(43) g
4 (ut/lvul

t+a(l --)

(44) Ks-f,.uutd3x.
For K we have the following bound (Morawetz [11, Lemma 3c]):

(45) IK,I<_M=.
For K we obtain

(46) IK}<-Xt+a(1-X)
+,,<, -x) (u2t q-lvul2) d3x

2 t+a(l--h)
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Also for K we have that

(47) [K3[-<
,+o,,-x,

Combine the inequalities (39)-(47) to obtain

(48) K2<-MI-KI-K3-K4-K
M + IK, I+ IK31-K4+ IKsI

<_ )tK2WM -k- Mz -I- M3

or

(49) M, +mz+m/lVul2) d3x<_ .-,t+a(l-x’(Ut 2(l--X)

which implies (32) and proves the theorem.
Remark. Theorem reduces, for 2--0, to Morawetz’s [11] result for the local

energy decay in a sphere of constant radius. The estimate (49) indicates that as
increases, the constant (M +M2+M3)/2(1 X) becomes larger. In other words, the
faster the sphere expands the larger the constant in (49) is. This is physically reasonable
for all speeds of expansion 2,< 1.

Our next theorem implies that the energy that crosses the section tl <_t<_t_ of the
characteristic cone r=t+a(1-) decays at the rate 1/(t+A) where -A is the point
where the cone meets the time axis.

TrIEOIM 2. Under the hypotheses of Theorem it is true that

(50) fv,It [U2t"l-lTUl2]t t2d3x’--fv [Ut2"’[’7Ul 2] t,d3x--O( )+A oI+ t= +A t-

where t2>tl>a, O_<)k< andA-(?t- 1)tl +a(1-)k)<O.
Proof. Integrating the identity

(51)
a =/lvul=]-+-V 2UtVu]--O( utt-- mu)ut--- U

over the space-time region bounded by the planes t-tl>_a t-t2>tl, the conical
surface r= +A and the cylinder @ [tt, t2], and applying Gauss’ theorem we obtain

fv, [u2t -jr- lTul2]t t2d3x fv [u2t "AI- 7/’/[2] d3x
+A +A

fti2fr [uZ+IVul2

[ +A
at- 2Utf" XTU] dsdt

=t+A
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By Lemma 3 we have that

]Ut-t- Vu]2ds dt

)
(’--0

tl +A t2+A

=0 t+A

where we have used the fact that <t2 and the property

(54) fo f) x-o(flfl  ).
Relations (52) and (53) imply (50). The proof of Theorem 2 is completed.

LEMMA 4. If U is a solution of (5), (7)-(10), and 0< +A < +A2, then

t+A1

Proof. From Lemmas and 2 we have that

(56) lUt- VuI= O( )-
and by Lemma 3 and (56) we obtain

2 /,/12 (1)(57) u --IV -(utAI Vu)" (ut- Vu)IutAf vullu,- XZuI--O
Therefore

(58) Sv,(Ut-iVui)d3x-O([t+’42Slxl--[-dsdr)-O(lnt+,A )t++ff,2 .,t+Al i=rr t+h

4. Equipartion of energy. In this section we state and prove our main result, which
implies equipartition of energy when a scatterer is present.

THEOREM 3. If U is a solution of (5), (7)-(10), then

(59)

as o, i.e., asymptotic equipartition of energy is attained at the rate t- 1/2.
Proof. If we set

(60) A----tl+Xtl+a(1--A),



99.4 GEORGE DASSIOS AND MANOUSOS GRILLAKIS

then A <0 for large enough I. Using Theorems and 2 and Lemma 4, we obtain

(61) fc[u2t -lVulZ]t=t2d3x
[ a x+L, [u ,-Ivul l,_, d3x

+A
ut t2

t2+A

+ Ut t=tl +A

+ U
t2t2

t
t2+A

(ln t

=O t;+A+ln t+A
Relation (61) indicates the time dependence of the difference between Nnetic and
potential energy.

If we choose t-t/ and expand the function

In +
ta_ (l_X)(_a)

in power series as t m, we obtain (59), wNch proves the theorem.
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SINGULAR PROBLEMS IN THE THEORY
OF STRESS-ASSISTED DIFFUSION*

VASILIOS ALEXIADEST AND ELIAS C. AIFANTIS$

Abstract. A recently developed stress-assisted diffusion theory is further substantiated by establishing the
well-posedness of relevant (degenerate parabolic) initial-boundary value problems for a plane with a slit.

1. Introduction. The theory of stress-assisted diffusion proposed by Aifantis (a
recent review is provided in [1]) is based on the flux expressions

(1.1) j (-DI +Nol +KS)vp+(L+Mp)vo,
with j denoting the flux of diffusing species, p the concentration, o the trace of the
stress tensor S, and D, K, L, M,N positive constants. If N---K-L-- 0, (1. l) becomes
identical to Cottrell’s postulate of stress-assisted diffusion, if L--M=0 it specializes to
the flux expression proposed by Flynn, while in the absence of stress (1.1) reduces to
the classical Fick’s first law of diffusion. Equation (1. l) is a consequence of a differen-
tial equation expressing conservation of momentum for the diffusing species. Conserva-
tion of mass is expressed by

(1.2) -Pt + divj =f,

with f representing sources (or sinks) due to chemical reactions, and in the absence of
body forces and inertia effects the stress field S is restricted to satisfy the equations of
equilibrium

divS-0.

It is often assumed that the effect of shear stress on diffusion is negligible and that
S is the solution of an elastic problem. It then follows that K--0 in (1.1) and that o is
harmonic,

Ao=0.

Under these conditions, substitution of (1.1) into (1.2) yields the differential equation

(1.3) -- (D+No)Ao-- 1(1 Vo VO+f ’I--M-N>_O.

Equation (1.3) corrects the stress-assisted diffusion equation of Cottrell since it
allows the diffusivity to vary linearly with o. Values of the parameter N have experi-
mentally been determined for certain diffusion systems [1] and the molecular calcula-
tions of Aifantis [2] are consistent with this determination. Equation (1.3) with N-0,
i.e. Cottrell’s equation, is often employed by materials scientists to model diffusion
controlled processes associated with metallurgical phenomena such as embrittlement,
stress corrosion cracking and precipitation in dislocations. Recently, it was shown by
Unger and Aifantis [10] and Unger, Gerberich, and Aifantis [11] that predictive models
for embrittlement and stress corrosion cracking which are in accord with experiment

*Received by the editors January 15, 1982, and in revised form July 15, 1982.
tDepartment of Mathematics, The University of Tennessee, Knoxville, Tennessee 37996.
*Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological Univer-

sity, Houghton, Michigan 49931, and Corrosion Center and Mathematics Institute, University of Minnesota,
Minneapolis, Minnesota 55455.
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can be obtained by allowing N0 in (1.3). Indeed, as pointed out by Aifantis [4] the
equilibrium solution of (1.3) (withf=0) i.e. the solution for which the flux vanishes:

(N)M/N
(1.4) p-- const. + o

in conjunction with the singular representation of predicted by linear fracture mecha-
nics:

const. 19
(1.5)

/; os ,

(with r and 0 being polar coordinates measured from the crack tip) leads to failure
criteria that have experimentally been verified for embrittlement and stress corrosion
situations. It is noted that the equilibrium solution of Cottrell’s theory can be obtained
from (1.4) by letting N--, 0 and using Euler’s identity. This solution has an exponential
form:

(1.6) O- const, exp -o
but does not lead to failure criteria analogous to those predicted by (1.4).

As is recently reviewed by Aifantis [3] and also detailed by Hill [7] and Unger and
Aifantis [10], the equilibrium solution (1.4) with o as in (1.5) motivates the search for
more general plane steady-state solutions of (1.3) by means of the transformation

p=p(x,y)=a(,rl),
where -D/No and rl is the harmonic conjugate of . Then b(, r/) satisfies (when
f0)

M

which, with a =-- 1--, is the equation of generalized axially symmetric potential theory
(GASPT):

This equation has been studied extensively by Weinstein [12] and his students. Thus,
eneral separable solutions can easily be found (see [10]). Unfortunately, the above
chane of variables, which leads to the construction of explicit steady-state solutions of
(1.3), does not work in general for the transient problem.

The object of this paper is to establish the well-posedness of a eneral initial-
boundary value problem for (1.3) in a plane domain with a crack, at the tip of which
may becomed infinite. The resultin singularity in the coefficients of (1.3) creates a
singular parabolic equation, which is what makes the problem mathematically interest-

in. The precise problem is stated in 2 and it is transformed into a more convenient
form there. In 3, the problem is reformulated in suitably defined Sobolev type spaces
and the definition of weak solution is iven. The existence, uniqueness and continuous

As shown in [4], the solution (1.4) can lead into a power-law relationship between crack velocities and
stress-intensity factors. This relationship, being asserted earlier on empirical grounds, describes reasonably
well the trends of experiment as reported in [10], [11]. In this connection, it is noted that the structure of
Cottrell’s solution (1.6) is not amenable to this type of analysis and results analogous to those derived with
the use of (1.4) are not possible in this case.
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dependence on the data of the weak solution are established in 4 by means of the
Lions projection theorem [8], which is the main tool for singular problems (see for
example [6], [5]). Our weak formulation is of the "variational" type and thus well suited
for modern numerical methods. We close in {}5 with some remarks about important
particular cases. In our treatment we consider N to be positive, but even the case N-0
(Cottrell’s equation) can be included in our results as we point out in the last section.

2. Statement of the problem. In most applications involving (1.3) we are interested
in solutions valid in the neighborhood of cracks and dislocations where the stress o is
singular and varies as a negative power of the radial coordinate. Thus we consider a
bounded domain with a cut, along which the concentration is prescribed. On the
outside boundary, the flux j-n may be given or, more generally, a convective type (i.e.,
third kind) boundary condition may be imposed.

To be precise, consider the (Xl,X2)-plane cut along the negative x l-axis and let
be its intersection with a bounded domain containing the origin. Points in will be
denoted by x-(xl,x2). The boundary of consists of the closure of the cut x (an
interval of the (-x)-axis) and the outside boundary 2-0\, i.e., O-UY,. We
assume

(2.1) E is a l-smooth curve bounded away from the origin.

The problem may be stated as follows: Find #(x, t) satisfying

(2.2) pt-(D+No)Ap-IIVo, vp+f(x,t) in Q’-J(O,T),

p(x,t)--p(x), xU_x, 0<t<T,

J+a(x)[p-m(x)]-g(x,t ), xE, 0<t<T,

where

J (D+No)-n + (L+Mp)-n
denotes the flux through Z, n being the outward unit normal to Z, D, N, M, L, itS-M-N
are positive physical constants, and T>0, f(x,t), Po(X), p(x), a(x), p(x), g(x,t)
constitute the data of the problem, assumptions about which will be made as we
proceed. The stress o(x) is a given nonnegative function harmonic in f such that

(2.3) as with 3,< 1,

as, for instance, in (1.5).
Let us rewrite the problem in a form more convenient for the analysis. We set

(2.4) m(x)’--(D+N,,(x))-’,

(2.5) I(x)’- /q(q+, 1) Ivm(x)l _M-N>_0m(x) q’-
2N 2

and note that

O<_m(x)<_--,
and that there exists a constant C such that

(2.6) m(x)<_Cll(x



99.8 VASILIOS ALEXIADES AND ELIAS C. AIFANTIS

Now we introduce the new unknown
(2.7) v(x,t):= m(x)qp(x,t),
for which the problem takes the form

) ,t)(2.8) m(x)v,=av-t(x v+m(x)q+ f(x in Q,

v(x,O)=-Vo(X):-- m(x)qpo(X), x,
O(X,t)=VI(X):-- D-qO(x), xg, 0<t<T
3v
+p(x)v-v(x,), x, O<t<T.

where

-m(x)[a(x)+ M+N Oo ](2 9) p(x)’- 3-- xC=,,

(2.10) V2(X,t)’-- m(x)q+l[g(x t)-L
0
On+a(x)o(x) xN, 0<t<T.

In the next section, a we formulation in appropriate weighted Sobolev spaces
will be obtained. For that we need the solution to vanish along the crack and in order
to achieve it we must be able to extend the data v(x) inside . We assume

(2.11) 0, ’(ff ) and, without loss of generality, 0,(0) 0,

(otherwise, consider O-O(0) instead of O, which only shifts the data o0(x), O(x), O(x)
and g(x, t) in (2.2)). We extend O,(X) to all of the negative x-as as a E-function and
then extend it to the whole plane radiNly, i.e., we define

,(x),(r,O):=o,(r), 0r<, -<0.

Then b, E(), so also v(x)-D-qO(x) is extended to a function

(a.a) e(x)-o-q,(x), e,e(), e(0)-0.

3. Weak formulation. Let 4(x, t) be a smooth function defined in Q such that

Multiplying the equation in (2.8) by q and integrating over yields

ffe ( vv VdO+ l2v,--mv,t} dxdt

fotf] I) S fS-ndYdt+ m(x)Vo(X)(x,O)dx+ mq+’f, dxdt.

Now, setting

(3.1) u(x,t):= v(x,t)-el(X),
with v(x) as in (2.12), we find that u(x,t) must satisfy

(3.2)

fro( vu. v,+2u--mut} dxdt -I- foTfZudpdYdt
:SoTf,u2+ddt-I-muo(X)dP(x,O)dx+SfQmq+lfd?dXdt

ffQ( VI VO-- 2Ilq) } dxdt,
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where we have set

(3.3) u0(x):= Vo(X)-e(x ), xf,

(3.4) u2(x,t):= v).(x,t)p(x)l(X), xY, 0<t<T.

Our definition of weak solution will be based on (3.2), which leads us to consider
the following function spaces.

Let E be the set of all EI() functions " which vanish on x and such that
fu/(x)22 dx<. Let

be the closure of in the norm

and

2Lbe the closure of in the norm Ilwll :- ( (x)21w(x)l=+lvwl dx

Then % and q" are Hilbert spaces and w % w , w , so that is densely and
continuously imbedded into .

Regarding the vanishing of elements of ff on x we have the following.
THEOREM 3.1. IfW ( x) then w--O on x.

Proof. For convenience in ts proof we shall denote points of by (x,y). Fix a
pint (x,O)x and consider a rectangle R’-BX(0,h)C with base an interval
B’-[x-8,x+8]Cx, >0, and heist h>0. Let (w,} be a sequence in wch
converges in ff to w. For any (x,y)R, we have

Wn(X,y)=e a
Wn(X,n)dn,

whence

I(x,y Iw,(x,y) dxdy<_ /X(x,y)2y y /

But on/, is a bounded quantity, say2C2 SO

ff dx dy<GT 57y W. d < vw. dy

Taking n m, we have

(3.5) 21wl=dx dy vwl=dx dy.

Now, by the mean value theorem, the left-hand side of (3.5) equals

f(x,y*)2lw(x,y*)ldx for some0<y*<h.
aB

Letting h --+ 0, we find

hence w(x, 0) 0, x B.

0)=1w(x, 0) I=dx- 0,

Q.E.D.
We shall need the following
LEMMA 3.2. The function of (2.12) belongs to the space
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Proof. From (2.12), IxzelL2(a). Since the only singularity of /(x) is at the
origin, we shall have l <o if  =l ll is integrable in a neighborhood of the origin.
Now, near x-0, by (2.5), (2.4) and (2.3),

2 r-2 2
/(x const. - as r Ixl o,

and (x) v l(r), so that for small R>0 we have (using (2.12))

fx 21112dxC3Rr 2v-2]vl(r)12rdrdO
I<R

C4grl-2v vl(r)-v’(0)2rdr

d 2R 1--2qsup (r) r dr

because < 1. Q.E.D.
For any Hilbert space , La(0, T;) will denote the usual Hilbert space with

norm

Ilvll<0,;) IIv(" ,t)lldt <.
Now we consider the bilinear form

)2 (X)Ufl)t } dxdt+ (xlu,dZdt,(3.6) B[u ql (Vu’Vq+/(x uq m

and the linear functional

(3.7)

A[]’-rfzu(x,t)dEdt+fam(x)uo(x)(x,O)dx
+ SSom(x)+lf(x,t)+dx, dt-SSQl ’7’II(X )" +q-].I,(X)21.I(X)+} dxdt.

For u L2(0, T;) and t L2(0, T; oN) with tt L2(0, T; ), all the integrals in (3.6)
and (3.7) will be finite provided the original data satisfy the following assumptions:

(3.8) mq+ /2f L2(Q ),
(3.9) mq+ 1/2100 t Z2(a),

(3.10) ct L(Y) and
M+N Oo

a(x) < a.e. on Y
2 On

(3.11) O L2(X), gL(2X(O,T)).
Remark 1. Assumptions (3.8) and (3.9) are weaker than fL2(Q) and 00 L2(f),

respectively, when 0<3,< 1, but equivalent to these when 3,_<0.
Remark 2. Assumption (3.10) guarantees p L(Y.) and p(x)>_O a.e. on Y. which is

needed for existence and uniqueness of the solution (see also {}5).
Remark 3. The finiteness of ffQm(x)uqtdx dt follows from (2.6).
Remark 4. qL2(0, T;S) and qtL2(O,T;) imply [9,p. 19] that tq,(.,t) is

continuous on [0, T] so that q,(., 0) and q,(-, T) make sense in . Moreover, q(-,t)2tf
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implies (since /./,(X)2 is bounded and nonvanishing near E) that the trace of h on E
exists in L2(y,). Similarly, the trace of u on E exists in L2(E).

Now we are in a position to define our concept of weak solution.
DEFINITION. By a weak solution of (the transformed) problem (2.8) we mean a

function v of the form

(3.12) (x,t)-u(x,t)+l(X )
for some function u L2(0, T; 6’) satisfying

(3.13) B[u,]-A[,]
for every L2(0, T; 6) with tL2(0, T; C) and (., T)-0 in .

The original unknown p(x, t) is given in terms of (x, t) by

M(3.14) P(x’t)-(D-+-No(x))qv(x’t)’ q-2N
Remark 5. Clearly, a classical solution is a weak solution, and conversely, a

sufficiently regular weak solution is also classical.
Remark 6. Our weak solution is of "variational" type in a sense opposite to

"operational" and by analogy to time-independent problems. In fact, in the steady-state
case the weak solution is an extremum of the functional

2(Iv.I + dz + -.:u dye.

In any case, (3.13) is suitable for Galerkin-type numerical methods.

4. Existence and uniqueness.
THEOREM 4.1 (well-posedness). Under the assumptions (2.1), (2.3), (2.11) and (3.8)-

(3.11) on the data, problem (2.8) has unique weak solution v(x,t) which also satisfies the
estimate

(f0 ( Itvtl + dt

with the constants C5, C6 depending only on C of (2.6), II p II oo<) and T.
Proof. Existence of a solution will be obtained by means of the Lions generaliza-

tion of the projection theorem (Lions [8, p. 37]) with the following choice of spaces:

with

with

p(x)lu Y.dt

(q f: qt UL2(0, T; %), q(., T)-0 in %)

m(x)q (x 0)2dxI1 11 ’-I1 11 / 
Then is a Hilbert space, tI) is an (incomplete) inner product space, c"f and

q, < q, , q . The bilinear functional B[ u, q] defined on 6y by (3.16) and the
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linear functional A[q,] defined on by (3.11) satisfy the following:
CLAIM 1. B[., is coercive on
In fact, one immediately sees that B[4, q]
CLAIM 2. BI-, q] is bounded on 3for each
Indeed, using Holder’s inequality and (2.10) we find for each

IB[ u, q,]l-< (constant depending on )llull,
CLAIM 3. A[. is bounded on
Indeed,

Thus, by the Lions theorem referred to above, there exists u satisfying B[ u,] = A[],, and such that II u II -< II A II, the operator norm of A, i.e.

which implies (4.1). This estimate however is not an a priori bound, so uniqueness has
not been proved yet.

To establish the uniqueness of the solution, let V and v2 be any two solutions.
Then v’- v -v2 is a weak solution of the homogeneous problem (2.8), i.e. u----v
satisfies

(4.2) B[u,q] =0, q.

For any 0<z< T, let Q’:= f(0, z) and consider the function

/(x,t)’--
u(x,s)dx for O_<t_<z,

0 for z_<t_< T,

which also belongs to . Then qt--uCLz(O,T;) and (-,t)-0, so q. In

(4.2) we take q-q and u=-qt to find (after some integrations by parts and because

q,(x,z)=0, xf implies V+(x,z)=0)

1 f )2 O)2dx + m+t2 dx dt+-2

Thus, m(x)+t2:0 a.e. in Q, i.e. u(x,t)--O a.e. in f(0,z), any 0<z<T. Q.E.D.

5. Concluding remarks.
The problem with prescribed flux. The boundary condition on in (2.2) reduces to

that of prescribed flux wherever a(x)-0. In view of our condition (3.10), this is

allowed whenever Oo(x)/Onl<-O but not otherwise. Thus, for the typical stress given
by (1.5), the flux could be prescribed at any point of where the tangent line does not

pass through the origin. Notice moreover that in the case M-N-0 (as in Fick’s law),
condition (3.10) reduces to the classical one, namely, a(x)<_O.

Nonsingular stress. We have allowed the stress tr(x) to be singular at the crack tip
of order Ixl- with 7< (see (2.3)). Thus, the case of nonsingular stress is included. The

problem will be uniformly parabolic in f if 3’-<- 1, but still singular in the lower order
term if 1 < 3’-< O.
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Steady state problems. By taking p(x, t) (as well as v(x, t) and u(x, t)) independent
of and omitting the initial condition in (2.2) (and (2.8)), we obtain the steady-state
problem. Thus, its well-posedness has also been established.

Cottrell’s equation. Even though we have assumed N>0 in our treatment, the
reformulated problem (2.8) (and consequently all the results) has the same form even
$or N--0, except that now v(x, t) in (2.7) must be defined as

Mv(x,t)’- e-p(x,t) with’- 2D’

Indeed, as N 0, m(x) becomes simply 1/D and (see (2.5))

I(X)--q(q+l) IVmI--M-N( M-N ) [VI
m 2 2

+N
D+No

becomes l XTl. With these redefinitions of q,m, and/, everything in 3 and 4 is still
valid and we obtain the existence, uniqueness and continuous dependence on the data
of the weak solution v(x,t) of (2.8). Then, the solution of the problem for Cottrell’s
equation is given by

MP(X, ) ev(x, ), t---
instead of (3.14).
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A TWO-DIMENSIONAL DIRICHLET PROBLEM
WITH AN EXPONENTIAL NONLINEARITY*

J. L. MOSELEY"
Abstract. We consider the two-dimensional nonlinear Dirichlet problem

-Au=h(eU+e-U), y2,
u tk y O2

where Y--(Y,Y2), A is the Laplacian operator, f is a simply connected region bounded by a smooth closed
Jordan curve, the boundary data is continuous, is analytic in f and continuous on 2, and , is positive. Our
concern is with obtaining a large norm (second) solution for , tending to 0+. This is accomplished by
obtaining a third-order asymptotic solution which is used as a first approximation for a modified Newton’s
method. Additionally, we obtain three solutions as h 0+ if ff is a negative constant.

AMS-MOS subject classification (1980). Primary 35J25, 35J60, 35J65.

Key words, elliptic equation, nonlinear boundary value problem

(P)
Introduction. We first consider the two-dimensional nonlinear Dirichlet problem

-Au-eU+ve-u, y,
u(y ) ck( y ), y Oa,

where Y=(Yl,Y2), A is the Laplacian operator, f] is a simply connected region bounded
by a Jordan curve, the boundary data (y) is continuous on Of], and v and , are real.

There are two noteworthy cases depending on the signs of the parameters A and v:
Case A. , <0, v>O.
Case B. ,>O.By letting u(y)= -v(y), ,= -vl, and v= -’l we obtain the equiv-

alent problem:

(P’) --Av--,ev+vle-v, y2,
v-- --, y 02,

which is also of type (P). The case ,_<0, v<0 for (P) is equivalent to the case

v _> 0 for (P’) and is therefore covered by Case B.
It is well known that there exists a unique solution for Case A ([4, p. 323,372]). In

[11] a Newton type method is given for Case A which converges quadratically for any
choice of the initial data.

Case B is a special case of

(P1) -Au-X(eU+e-U), yf,
u-, yO,

where is a real analytic function of y on fl and continuous on and the assumption
h 0 is part of the hypothesis.

The purpose of this paper is to extend the results of [9] on the large norm (second)
solution of (P1) for --=0 to the more general case. The addition of the term e yields
the possibility of better steady state models for physical phenomena having exponential
nonlinearities, especially nonlinear diffusion processes (e.g., chemical reactors [1]; also
see [9] for other possible applications).

*Received by the editors June 9, 1981, and in final form September 21, 1982.
*Department of Mathematics, West Virginia University, Morgantown, West Virginia 26506.
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in 1 we review previous results and summarize the extensions contained in this
paper. Sections 2 through 6 give the requisite development for the proof of these
extensions. Section 7 gives a third solution in the special case where k is a negative
constant.

1. Summary of results. It is well known that a solution of (P1) is always obtaina-
ble for , sufficiently small [4, p. 373]. Also, the assumption that k is analytic means that
all solutions of --Au--,(e"+ke-u) are analytic in . If in addition the boundary
and the boun_dary data are analytic, all solutions to the boundary value problem are
analytic in fl [8]; however, we will consider weaker sufficient conditions to obtain
classical solutions, u C2() O C().

To obtain an equivalent problem with zero boundary data, we let u0 be the
solution of the associated harmonic problem (?-0) and rewrite (P1) as

(P2) --Au--(e,o+,,+e-Uo+,,)), yf,
ul=0, yfi,

where ul(Y) u(y) u0(y_).
If k(y)_>0 for yfl then all solutions of (P2) are superharmonic and hence

positive. If 0<_k(y)<e2u0 we can apply the technique of Keller and Cohen [7] for
points h in the "spectrum" (the set of all >0 such that (P2) has a solution) to obtain
the "minimal" solution. Keller and Cohen’s results also show that the spectrum is a
finite interval with least upper bound h* satisfying *_</x where / is the least
eigenvalue of the linear problem

(L1) --Av--Ie’v, yf,
v--0, ya.

Bandle’s results [2] show in the case 0_<+(y)<e2 where fio-minyu(uo(y)) that for
some e>0

4r,* >_Ko-+ e

where Ko-maxm>_o(m(em+a+e-m-)-), gto-maXy(uo(y)), -maxyfi(k(y)),
and A is the area of f. Crandall and Rabinowitz’s results [5] show that, for 0_<k(y)<
e20, k* is in the spectrum and there are two solutions for every , (0, ,*).

For the case k0, u0------0 (0 for (P1)) and Of is a circle, the two solutions of
(P2) are given in [2] (and [9]). For =0, u00 (0) and the smooth boundary of
a simply connected region, Weston [13] developed an asymptotic approximation of the
"large norm" (second solution) by using the general integral of --Au--,e’; however,
additional implicit constraints on the domain were required. For sufficiently small,
Weston also showed that if this asymptotic solution is used as a first approximation in
an appropriate modified Newton’s iteration scheme, then an exact large norm solution
is generated provided that the asymptotic solution is taken to order greater than or
equal to three.

As no difficulty will arise, we will consider a region f c_ R 2 to also be a subset of C
throughout this paper, using y-(y,y2)f]CR 2 and w=yl+iy2c_C. When the
region is the unit disc U, we will use x-(xl,x2) UC_ z and z-xt + ix2 C.. For any
region C_ (3 with smooth boundary, we let H(f) be the h_olomorphic functions on
A() be the functions in H(f) which are continuous on f, A(f) be the functions in
A(f) that satisfy a Lipschitz condition (as a function of arclength) of order ct on Of,
0<et_< 1, and AN(2) be the functions in A(f) which are nonzero in f. Additionally,
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Hp, 0<p_< are the usual Hardy spaces on U and we let Hv be the functions in H
which are nonzero in U. If the region is not specified, it is assumed to be U.

In [9], one of the three constraints of Weston is removed and the other two, which
are given in terms of the conformal map of the unit disc U onto f, are examined and
extended to the case of arbitrary boundary data. As in [9], to handle arbitrary boundary
data, we let h(w)=uo(y)+ivo(y) where u0 is the solution of the associated harmonic
problem (h=0) and v0 is its conjugate harmonic function. Next we let fe be the
conformal map of U onto f and f,(z)=exp{(1/2)h(fe(z))). The function f, char-
acterizes the boundary data whereasf characterizes f (except for translations).

We refer to [9] and [10] for the relationships between the smoothness of Of and the
continuity and smoothness of q,, and the behavior off and f, on the boundary of U. In
this paper we assume that f,fq, Alv(U) so that the first constraint of Weston (ex-
tended to arbitrary boundary data) is satisfied. Hence (P2) is equivalent to its confor-
mal transplantation

(P3) --A 1-Xlf,f6I=( e’ -4-[f,l-4e-’ ), [zl< 1,

u -0,
where

u,-u(
We refer to f where f’ =f,f6 as an associated map for (P1); recall from [9] that it is

not unique but depends on the choice of conformal map f; and note that the form of
(P3) is independent of this choice. Then, as in [9], we choose a normalized associated
map fv such that fv(0)-0, f(0)>0, and f’(O)-O, as well as fA(U). The second
condition of Weston (extended tof) becomes

If’ (o)l#21f (o)l.
Hence, it will suffice to consider

(P4) PDE au-Xlf’(z)la( e +o(x)e ), Ixl<l,
BE u-0,

wheref satisfies
(m) f’ a, f(0)= 0, f’(0)>0, f"(0)-0, If"(0)l 2If’(0)

and o satisfies
(B) o is real analytic in and continuous on .

As there is no general integral of the PDE given in (P4), we develop a third order
asymptotic solution wch appromates a large norm solution of the PDE as well as
approximating the BC. To do ts we make use of the large norm asymptotic solution
for the case o(x)0. Next we develop a modified Newton’s iteration scheme wch will
converge for sufficiently small to an exact large norm solution of an equivalent
integral equation formulation of (P4) when the asymptotic solution is used as a first
appromation. From this we may obtain an exact large norm (second) solution of (P4)
and hence (P 1).

We also show (by the technique given in the introduction) that if is a negative
constant then there are three solutions to (P2) (hence three solutions to (P1)) for
sufficiently small, the extra "negative" large norm solution being obtainable from the
"positive" large norm solution of an equivalent problem.
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Thus the main results of this paper are summarized in the following:
THEOmM 1. Iff satisfies (A) and o satisfies (B), then an asymptotic solution of (P4)

of order three can be obtained which will generate, for sufficiently small, an exact large
norm (second) solution via a modified Newton’s iteration scheme for an equivalent
integral equation. The asymptotic solution is given by

UA Ue( Z k ) "qt- H( z k )
where

(1.2) e-ue(z;k)/2--
Izl’+- z [G(e-X)] ae

G(z :X)--I+XGI(Z)+3?-Ga(z),
H( z ) tHl(Z ) + t2H2( z )

the functions G andH being given in 2.
THEOM 2. Let the normalized associated map fu of (P1) satisfy (A). Furthermore,

let gu be the inverse offu, u be the asymptotic solution of (P4)for o-+IL1-4, and uv be
the exac solution generated by the Newton’s method in Theorem 1. Then a large norm
asymptotic solution of (P1) is given by uA(gU(w))+lnlf,(gU(w)) and an exact solution is

given by uF( gf(W)) + ln[f(gu(w))[.
2. An asymptotic solution for (P4). We choose our asymptotic solution to be of the

form:

(2.1) u Ue( Z k ) --n( z k )
where

H( z h ) ,H,( z ) + X2H2( z ) + ...---kn-lHn_l(Z)
and Ue(Z" ) is the large norm solution for --Au--lf’(z)lZe given by (1.2) which, in
the notation of [9], may be written as

K
where

n-- 4(n-- 1)

N= Z XN(z) + Z X’N"(z),
n--0 i--n

n-- 2(n-- 1)

i:0 i:n

and N, N/n, Ki, and K/ are as given in [10,App. C and D] for the large norm solution.
We recall that ue is a large norm solution of-Au=hlf’(z)le independent of the
choice of Gi’s where

G(z :,)= +,G(z)+
providedG(0)-0 for i-1,2,...,n-1; and that K0 1, K-ZReG, No-IMol, Nt-
2 Re(M0M), and

Mo( z ) f’(O) + Coz + zlo( z ),
M, ( z ) 2G (O)f’(O) + C,z + zI, ( z ),
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where

=/.z f,(2) -f’(0) d3I0( )2 o 2

ii(z) =f0 2G(2)f’(2)-2Gl(O)f’(O)
de.

It is easy to see that u with n- (H-0, G- 1) is a first order asymptotic solution
(this will be made precise later) of the PDE

(2.2) Au ’lf’( z )12( e + o(x )e )
as well as the BC

(2.3) u-0 on Izl-1.
Higher order solutions will be obtained by choosing pairs H, G successively; the H’s
to solve (2.2) asymptotically, and the G’s to solve (2.3) asymptotically.

More precisely, by substituting (2.1) into (2.2) we obtain:

Ue an-Xlf’l2 (exp( ue+H) + o(x ) exp( u H))
wch may be rewritten as:

-AH=Xlf’12(e(e- 1)+oe-Uee-H).
Ts can be shown to be equivalent to E(z" X)-0 where

(2.4) E(z’X)-(AH) Il=+gN g2+xlf’l2 g4(en--1)+o Izl2+gN e-n

If IIEII-maxlE(z’X)l-O() and maxi=lu(x’X)l-O(") we wil say that
u(x" X) is an asymptotic solution of (P4) of order n. We will see that a solution of order
3 is sufficient. Hence we need only compute H, G and H2, G2.

Expanding the terms of (2.4) we obtain:

,,(IzlZ+gN)xz
-[z+[4lzl=lMol= +[MoI4X2 +ylzlzx2Re(M0 ) + O(X ),

Izl +gN -Izl8 + [z[6iMol2 + o(x2),

): i:+o(x)K I+4XReG+4X2(ReGI +4X2ReG+2X2IG
K4- + 8 ReG + O(X2),
en + XH +X2H2 +)X2H+ O(X3 ),
e-n- l-XH + O(X2).

We can obtain E II- O(3) by requiring

( aa )[z[4 + ’1=118 0,

( An2 )[zl4 + (an,)(ll=lMol= + 41z[4 ReG ) + If’l=n,
+ olf’12 (lz 16 IM012 H, Izl 8 ) 0

which may be rewritten as

(.) -an,-,(), i- 1,,
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where, after simplifying

I-+ o ll=lM01 -Izl4(a + 4Re G)

By applying the theorem of the Appendix we may choose H of order IZI6 and H2 of
order Izl4 at the origin. For definiteness we select

Ui- Hip-F UiH i-1,2,

where

nip(ZO)--"ff]xl_<lg(Xo’X)’i(x)dx
is the particular solution of (2.5) which has zero boundary values,

[Z-Zol g(o,X)- i-0
is the Green’s function for the harmonic (X--0) Dirichlet problem associated with (P4),
and Hu is chosen by the procedure of the Appendix.

To obtain G, i- 1, 2, we apply (2.3) to (2.1) which yields"

I12+-N -KeH forll-1.

Equating terms of the same order in the expansions for these terms and simplifying we
obtain:

2 ReG- 1/2 (@i_ l(Z) + @vi_ l(Z)), i-1,2,

where

o( Z ) IMo( z )I,
@I(Z) 2 Re(Mo(Z)Ml(Z)),
6o(Z ) 4H,(z),
,(z)--81G,(z)l=-4H2(z)+H(z)-1/2H,(z)lMo(z)l2,

which may be compared to the results in [10,App. C]. It is easy to see that we can apply
the results of 10, App. D] to obtain"

() i-z-f’(O)coz + eolo(z ) +-i()=g

1{ _f,(O)c z+?,lo(z) + flz (z) 2-z 22
d

where

o(z ) -f’(o) + Z/o( z )l2- 4H,( z ),
$ ,( z ) 2 Re[Mo( z )(- 2f’(0)G,(0) + I,( z ))] 81G,( z )1:

-4H2(z ) + nZ(z ) -1/2H,( z )lMo(z )12
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As in [10,App. D], to obtain G(0)- 0, i- 1,2, we require

f’(0)Z,_ +(f"’(O)/2)_
Ci--l-- if,(0)12_ 1/41f,,,(0)12

where

fl i_1() dZi-I =2,ri
i=1 -, i--1,2.

Summarizing our results, we have
THEOREM 3. A large norm asymptotic solution of (P4) can be obtained in the form

(2.1) to order n 3 by choosing successively HI, G l, H2 and G2 as indicated above. That
is:

maxlE( z; X )l O( X3 ),
zl-<l

where E( z; ) is given by (2.4) and

maxlu( z. ,)l- O( X3 )
Izl

3. A modified Newton’s method for an equivalent problem. In this section we will
show that the large norm asymptotic solution for (P4) given in the previous section has
the ability to generate an exact solution via a modified Newton’s iteration scheme.

We convert (P4) to the equivalent integral equation (uC(U) with Ilull
maxll_<lu(x)[):

U:KU,
where

K=K+K 2,

(K ’u)(x)--flxl<_g(x’x)XeU(lf’(z)l2dx’
(K 2u)(xo)--fl g(xo,X)Xo(x)e-U(lf’(z)12dx.

I_<1

As in [13] and [10] we use a modified Newton’s method of the form

(3.1) Un+l--(Un)
where

and K’u0 is the Frchet derivative of evaluated at u0. However, now

(3.2) K’uo K’ uo + K’2uo

where

( uoh )(xo ) flxl<_ lg(x’x)XeU(X>h(x )lf’( z )l2 dx’

(K2uoh)(xo)-flxl<_lg(x’x)Xo(x)e-UXh(x)lf’(z)12dx"
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Now

and since

we have that

Now since

we have

where i’ satisfies

(3.3)
Now since

we also have

S’ h = (, (a a’ oh ),

K’uh-K’uoh-K’Uo[(eu-u- 1)hi +K’2uo[(e-{U-Uo)- 1)hi

+ I1(0- K’o)-K’2o II lie--)- 111,

eu-u- <-e t-’-

lie-(-o)- lillet-
if u- uo II t,

if u- uo II t,

i1, F(et- 1) if u- no

II(uo)-uoll (1 +F)lluo-aoll.
Hence,

(t)=F(et-t-1)+(O)

majorizes [12, p. 260] provided that ,(0) satisfies

(1 / I’)ll Uo- Uo q,(0).
It is easy to show that (t)= has a unique positive solution t* _< In[ 1 + (1/i’)] if

II Uo- no II In

Hence applying the result of Kantorovitch [12, p. 260] we have (compare with [10, Thm.
4]) the following:

TrtEOREM 4. if Iluo--Kuoll<_ln[1 +(l/F)]-1/(1 +F) where F satisfies (3.3), then
the modified Newton’s method (3.1) will converge to a solution u* of (P4) such that

u* < InIluo

We will always use the asymptotic solution (2.1) as uo in (3.1). To apply Theorem 4
we require estimates of Uo- Uo II and I’.
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4. Estimate for Uo- Uo II. Applying the representation formula

u-- g( x )Au dx U-n dS
I_<l I=l

to uo--- ue/H we obtain

Uo-- g(xo,x)(-Xlf’12eUe+AH)dx Uo-ndS.I_<1 I=l

Hence

fl* g(x’x)(’lf’12[e"’(1-en)-e-"e-n] -AH) dxUo-NUo
i_<1

which may be rewritten using the definition of ue and E(z" )) as"

Uo-Uo- Uo- d+ g(Xo,X) e(z.X)dx).I= I_< K=(IzlZ/-N
From this we can obtain"

x= (+)
Using the techniques of [10, App. E] it can be shown that

(ll+)-l [1 ({Z[2 +1f’(0)12)2
1

Now since we are taking uo to be a third order solution and since K--, as ;k-0, we
have

(4.1) ( 1)Uo- Uo O )k5/2ln
5. Estimate for F. We estimate IIK’t,oll, IIK’a,oll and II(a-K’o)-lll. Using the

definition of Ue, we have that

eUo-- eu+H-- eUe+ heueHl + eUe6R
e-Uo-- e-ue-H-- ]zl4 +6R,

where

Hence we obtain

K2Uo Kn4+K
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where N e, K
respectively by:

K,, and K are linear integral operators with kernels given

g(Xo,X).eU’lf’(z)l2,
g( Xo,X ),2eU,H( z )V’( z )12
g(Xo,X ).eUea’R,(x ) lf’( z ) :z,
g( Xo,X )x zI’o f’( z )1=
g(Xo,X)a(x)olf’(z)l.

We note that K is the K’uo of [10], and hence we easily obtain:

(5.1) IlK elI-O ln

( 1t
Thus

(5.2) I1’1o11-O(ln), 11’2o II- O(X).

Furthermore

K’-K +K +K +K +Ku e 73 14 Ri R2"

Hence we may apply the results of [10, App. E] where we need only redefine

_
as

+NR
where K, K n,, K n2’ and K s are as given in [10]. Note in particular that we still have

Hence we wish an asymptotic solution to
4

a9--N.
=2

where

for orj in (2, 3 ),
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and 0 and A./are as in [10,App. E]. However, using (5.1) we now have

Now since

we have

(//3j, ti ) Ai( knlfj (i) 21- O(3/2 ).

We recall that HI(Z) is of order Izl6 at the origin. Hence it can be shown by the methods
of 10, App. E] that

Similarly

(u ,4,,)- (xl14o,,, 0, o( x: ).

Hence we see that asymptotically (LCj, ;) is as in [10,App. E]. Using (5.1) it is easy to
see that asymptotically (LM,) is as in [10, App. El. Hence we obtain

II c <constanth- II w II,

and hence

Thus

(1)I1(-’o) ’11-o

6. Convergence of the modified Newton’s method. We recall that for F> we have

1 1 1 2 2 1ln(l+) l+F=2(-) --(-) +....

Now recalling (4.1) and noting that
-2

we apply Theorem 4 to obtain
TomN 5. If the large norm asymptotic solution (2.1) with n = 3 is used as a first

approximation in the modified Newton’s method (3.1), then u,, will coneerge to a unique
large norm solution u* such that

Ilu0-u*ll-- O(h).
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7. A third solution of (PI) if k is a negative constant. Suppose that is a negative
constant and that , is sufficiently small so that we may obtain a large norm "positive"
solution to both (P1) and

(P5) -Au-X(-q) eu+ - e-u

by the technique of the previous sections. We call such solutions "positive" since at the
point fn(15) the solution increases positively without bound as X-o 0. If is the solution
of (P5) obtained, then -a is a large norm "negative" solution of (P1).

Appendix. The order of the zero at the origin for Poisson’s equation. In this
appendix we consider the Poisson equation

(A.1) Au--g(x), xf,

where x- (x,, x), f is a bounded simply connected region containing the origin, and g
is real analytic in f. We prove the following theorem on the order of the zero at the
origin.

THEOREM A.1. If g(z):O(Jxl2k) with k>0, then there exists an analytic solution of
(A. 1) such that u O(Ix[2+2 ).

Proof. Since (A.1) is elliptic, there exists an analytic solution [8] in . Denote this
solution by

uv(x ) 2 a,x" + O(Ixl +=)
1l_<2k+

where we employ the standard notation and

Daue
o! x-IO, O

Leuin x rcos, xz- r sin

(A.) ,()-

we may rewrite Up as

2k+l

Up-H(r,O)-t- E rqg,+O(r2k+2)
1=2

where the C/’s, D[ ’s, and Bt’s are defined in terms of the a,,’s. Hence
2k+ )AUp- A 2 rtOt + O(r21 ),
1:2

so that substituting into (A. 1) we have
2k+l

g(x)- E r’-2
1=2

120 + d:.! 1 + r 2ko( )
dO 2 ]
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Since g- O(r2k), we must have

(A.4) d20t +/20-0
dO2

But there are no solutions of (A.4) of the form (A.3) except C/-D{-O for 0_<i_< 1- 1.
Hence by subtracting the harmonic function (A.2) from up we obtain

U--Ul,--H--O(r2k+2)
which is a solution of (A.1) of order Ix[-k+2.
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CONSTANT-RATE HARVESTING
OF AGE-STRUCTURED POPULATIONS*

FRED BRAUERt

Abstract. We consider the nonlinear age-dependent population growth model introduced by Gurtin and
MacCamy [Arch. Rat. Mech. Anal., 54 (1974),pp. 281-300] with birth and death moduli depending on age
and total population size, to which is added a harvest of members at a rate which is constant in time but may
depend on the ageof members being harvested. We formulate the problem as a pair of equations for the total
population size and the birth rate, and discuss the behaviour of solutions when the birth and death moduli
depend on either the age or the total population size, but not both.

1. The study of age-dependent population models goes back to the work of Sharpe
and Lotka [27] in which the birth rate is expressed as the solution of a linear integral
equation--the renewal equation. Introduction of the age density function leads to a
partial differential equation usually known as the von Foerster equation [33], although
it can be traced back to the work of MacKendrick [19].

A nonlinear variant of the MacKendrick equation was proposed by Gurtin and
MacCamy [11] with the birth and death moduli depending on the age and also on the
total population size. This model was then transformed into a pair of functional
equations for the birth rate and the total population size. Various other generalizations
have been studied as well. For example, birth and death moduli which depend on the
age density function have been considered by Griffel [10] and Sinestrari [28], birth
moduli which depend on the birth rate have been considered by Rorres [21], [22], [23]
and Swick [29], [30], [31], [32], and models which incorporate response delays in the
birth and death rates have been examined by Cushing [5], [6]. While any of these types
of models may be appropriate to a specific population, we shall deal only with the
Gurtin-MacCamy model. Many of the techniques can be modified and applied to
other types of models.

We shall incorporate a harvest of members with a preassigned age structure and
constant total time rate into the basic model. Constant effort harvesting with an effort
which may depend on the age and the total population size has been studied by
Shnchez [25], [26]. Rorres and Fair [24], Getz [8], [9] and Gurtin and Murphy [14], [15],
including questions of optimization. Our goal is to study constant-yield harvesting,
considering equilibrium age distributions, persistent age distributions and the asymp-
totic behavior of solutions. We shall establish some results with the aid of various
assumptions on the form of the birth and death moduli. If the birth modulus depends
only on population size and the death modulus depends only on age, our model reduces
to the nonlinear renewal equation and in 4 we describe the known results in this case.
For sufficiently small harvest rates there can be an equilibrium age distribution and a
condition for stability of an equilibrium can be given. In 5 we consider the case in
which both birth and death moduli are functions of age only and show that there can-
not be an equilibrium under harvesting; the only possibilities are extinction in finite
time and persistent age distributions which may tend to zero or may be unbounded.
The case of birth moduli depending on age only and death moduli depending on
population size only is considered in 6. The possibilities of extinction in finite time

*Received by the editors February 3, 1982, and in revised form July 15, 1982.
*Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706.
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and unbounded populations also arise in this case. While we cannot rule out bounded
population size, we can show that there cannot be an equilibrium under harvesting.

2. Let p(a, t) be the density with respect to age of members of a population of age
a at time t, so that the number of members with ages between a and a 4-Aa at time is
approximately p(a, t)Aa. Then the total population at time is

(1) P(t)- p(a,t)da.

Let/(a,P) be the death modulus--the death rate at age a when the total popula-
tion size is P. In addition, we assume a harvest of members at a rate which is constant
in time but may depend on age. We let this rate be ,(a), so that the total harvest rate is

())

which we assume finite. A harvest rate proportional to o(a, t) [constant effort harvest-
ing with an effort E(a,P(t)) which may depend on the age a and the total population
size P(t)] may be included in the model by replacing #(a, P) by (a, P) + E(a, P), but
we shall not consider proportional harvesting further here. Then 0 satisfies

(3) Pt(a,t) 4- pa(a,t) 4-1z(a,P(t))p(a,t) + ,(a)--O,
valid if the partial derivatives Pt(a, t) and pa(a, t) exist. The unharvested case v(a)=0 is
the so-called von Foerster equation [33], although in view of the priority which has been
pointed out by Hoppensteadt [16] it is more appropriately described as the MacKen-
drick equation.

Let/3(a,P) be the birth-modulus--the average number of offspring per unit time
produced by an individual of age a. Then the number of births per unit time at time is
the birth rate B(t), satisfying

(4) B(t)-o(O,t)= fl(a,P(t))o(a,t)da, t>0.

To complete the model, we must specify an initial age distribution

(5) p(a,O)=,(a), 0--<a<o,

and we require f(a)da< o in order to assure a finite initial total population size.
We do not, however, insist that (4) and (5) be compatible at t-0, a--0.

The population growth model now consists of the partial differential equation (3)
together with the auxiliary conditions (4), (5). We shall replace the system (3), (4), (5)
by a pair of functional equations in the unknown functions P(t)-fp(a,t)da (total
population size) and B(t)= p(O,t) (birth rate). We follow the standard technique for
achieving this (see, for example [16] or [11],[12]). We obtain

(6)

1p(a,t)--exp- /x*(a)da B(t-a)-v(r/)exp- I*(a)da drl (t>a)

and

(7)

p(a,t)--exp _,tz*(a)da (a-t)- _t,(/)exp lz*(a)da dl (t<_a).

Here,/z*(a) denotes #(a, P(t- a 4- a)).
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(8)

Substitution of (6) and (7) into (4) now gives

B(t)-b(t)+ ’B(a,P(t))exp /*()d B(t-a)da-h,(t),

where

(9)

and

b(t)= fl(a,P(t))q,(a-t)exp- I*(a)da da

-t-ftt,(rl)[fnn+tfl(a,P(t))exp(-fal*(ot)dot) da]dl
fol)(ll)[f_+tfl(a,e(t))exp(- fnal*(t)dot da] dl"I.

A similar calculation using (1) in place of (4) gives

(11) P(t)=p(t)+ ’exp *()d B(t-a)da-h(t)

with

(12) p(t)= q(a--t)exp- *(et)da da,

(13) h2(t)--fo,(rl)[fnn+texp(-fna*(a)dt) da]
From (9), (10), (12), (13) it is easy to see that

b(t)>_.O for 0_<a<, b():limt_.oob(t):O that

e(0l=

p(t)=0 for 0_<a<, p()=lim_,p(t)=O, that h(0)=ha(0)=0, h(t)=--O and
ha(t)-=O for 0___t< if v(a)------0 (no harvest) and h(t)_>O, h(t)>_O for 0_<t< . It
should be observed that b(t), p(t), h(t) and h(t) are functions of the total population
size in general, but if is a function of a only then p(t) and h(t) are independent of P
and if/ and B are both functions of a only then b(t) and h (t) are independent of P.

The population growth model is now described by the pair of functional equations
(8) and (11). A solution of this system yields the age density function o(a,t) by
substitution in (6) and (7). Thus the system (8), (11) is equivalent to the original
problem (3), (4), (5), and this is our first main result, analogous to the corresponding
result in 11 ].

THEOREM 1. The pair offunctional equations (8), (11)for the birth rate B( t) and the
totalpopulation size P(t) is equivalent to the problem (3), (4), (5).
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If the death modulus is independent of age, and is a function of the total popula-
tion size only, /=/x(P), then the equation (11) may be replaced by an ordinary
differential equation, much as in the unharvested case, namely

(14)

where H= fv(a)da is the total harvest rate. The system (8), (11) may be replaced by
the system (8), (14) in this case, a fact first observed by Gurtin and MacCamy [12]. It is
also possible to use (14) to eliminate B from (8) and describe the model by a single
equation for P, a technique which has been exploited by Cushing [5], [6].

The equation (14) may also be derived directly from (11) by differentiation if
=(P).

A different major simplification can be made if the birth modulus is independent
of age and is a function of the total population size P only,/3=/3(P). In this case, (4)
becomes

(5) B(t): fl( P( ))p( a, ) da

Then (11) may be written

P(t)=p(t)+ /exp I*(a)da P(t-a)fl(P(t-a))da-h2(t )

or

(16)

where g(P) P/3(P). The system (8), (11) is then equivalent to the single equation (16)
for P, together with the formula (15) for B in terms of P.

In general, the system (8), (11), or even the system (8), (14) in the case/ =/(P),
cannot be analyzed completely. However, it is possible to obtain useful information
about the behavior of solutions in some special cases. As the concept of an equilibrium
age distribution is of use in some of these special cases, we shall discuss it briefly and
then proceed to examine some of the cases in which useful information can be ob-
tained.

3. An equilibrium age distribution for the problem (3), (4), (5) is defined to be a
solution p(a) which is independent of t. It is clear from (1) and (4) that the population
size and birth rate corresponding to an equilibrium age distribution are constant.
Conversely, it is clear from (6) that the age distribution corresponding to a constant
solution of the system (8), (11) is an equilibrium age distribution.

In view of the equivalence between equilibrium age distributions and constant
birth rates and population sizes, it is natural to inquire what values (B0, P0) are possible
constant solutions of (10), (13). The corresponding age distribution satisfies the ordinary
differential equation

p’(a) -I(a,Po)p(a)- v( a),



HARVESTING OF AGE-STRUCTURED POPULATIONS 951

By solving this equation and using (1) and (4) we obtain the pair of conditions

(17)

=fofl(a,Po)Ifoat,,(rl)exp(--fnal(a,Po)dot) d)da,
eo-Boexp(- ff#(a,eo)da) da-[ff()exp(-;#(a,eo)da) d,] da.

The conditions (17) and (18) may also be obtained by assuming a constant solution
(Bo, Po) of (8), (11) and letting - . For this reason we write

as hl(C)=limt_oohl(t), h2(oo)--limt_ooh2(t ) if P is constant; note that hl(C) and
h2() depend on P0. With this notation, the conditions (17), (18) become

(19) Bo ,8(a,Po)exp I(a,Po)aa da-1 -hl(OO),

(20) Po-BofoeXp(- foap,(ot,Po)da) da-h2(c ).

If there is no harvest, h I(tX)) h 2(0) O. In this case (19) becomes

B(a,Po)exp (,Po)d da-1,

stating that the average number of offspring per member when the population size is P0
must be 1, and this is an equation which may be solved for Po (see [11],[12]). Then (20)
expresses B0 in terms of Po. If there is a harvest, h l(C)>0, and this implies

In tNs case, (19) and (20) cannot be uncoupled so readily, although it is possible to
elinate Bo and obtain the equation

h,()exp(-g(a,Po)da) da

[Po+h()] [Zfl(a,Po)exp( (a,Po)da)da-1]
for Po.
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The relation (19) may also be derived from the equation

a,Po)o(a)aa+ v(a)aa= (a,Po)o(a)da-Bo,

which expresses the fact that at equilibrium the birth rate must be equal to the death
rate plus the harvest rate.

As we have seen, if # is a function of population size only,/ =/(P), then (11) may
be replaced by the ordinary differential equation (14). In this case, a constant solution
( B0, P0) must satisfy

+

a condition which may be used in place of (20) (and indeed one to which (20) may be
reduced).

4. If the birth modulus is a function of population size only, B B(P), and the
death modulus is a function of age only, (a), then the system (10), (13) can be
reduced to a single olterra equation, the nonlinear renewal equation

where

P(t)=p(t)+ %(a)g(P(t-a))da-ha(t ),

(22)

(23)

r0(a)=exp #(a)da g(P)-PB(P),

p(t)-ftq(a-t)exp( La_ff(a)da) da

ft *(a-t)ro(a)
da

ro(a_ )

fo lf- (faha(t )

Population models of this type were introduced by Cooke and Yorke [4] and have also
been studied by the author [1], [2], [3] although without making the observation that the
age distribution may be derived from a solution of the nonlinear renewal equation via
(17) and (8).

For (21) it is known that if

for(a ) da] [ lim sup fl( P ) <1,

then every nonnegative solution is bounded on 0 _< < m 1]. Further if g’(P)fro(a) da
is not identically equal to on any P-interval, then every nonnegative solution tends to
a limit P as m, where

Po- -h2() +g(P) ro(a)da,



HARVESTING OF AGE-STRUCTURED POPULATIONS 953

with

17], 18]. If h() is sufficiently large that the cue y g(P) and the line y (P+
h(m))/fo(a)da in the P-y plane do not intersect, then there are no possible values
of P, and the solution P(t) of (21) must reach zero in finite time and then become
negative. We interet a negative population size as indicating extinction of the popula-
tion, and once a poPUlation size has become negative we do not pursue it further.
Stability of an equilibrium P in the sense of relative insensitivity to perturbations
requires [31

g’(e) o(a)da<l.

Since here g(P)= Pfl(P), the equilibrium condition may be written

P-h2()+Pfl(P) ro(a)da

and the stability condition may be written

or

p2fl,(p) %(a)da+h2(o)<O.

In particular, fl’(P)<0 is necessary for stability, and if there is no harvest so that
h2() 0, fl’(P)<0 is necessary and sufficient for stability.

5. The classical situation originally studied by MacKendrick [19] assumed that
both the birth and death moduli were functions of age only, fl=/3(a),/--/(a). In this
case, the system (8), (11) becomes

(24) B(t)- b(t) +fotfl(a)%( a)B( t-- a) da-hl(t),

P(t)=p(t)+foo(a)B(t-a)da-h2(t),
where

(25) r0(a) exp ( fo"/(c) dot )
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p(t) and h2(t) are given by (25) and (26) respectively, and

b(t)_fto da

h (t) tfl(a)%(a)da d l.

We may regard (24) as a single linear Volterra integral equation for B(t) together with
an explicit formula for P(t) in terms of B(t). In terms of B(t), the age distribution
p(a, t) is given by the special case of (6)

(26) p(a,t)--%(a) B(t-a)- %(rl) drl

for t>_a. The case of no harvesting, hi(t)=0, h2(t)=0 has been studied by Gurtin and
MacCamy [12], who have established the existence of persistent age distributions of the
form p(a, t)--A(a)T(t) and have shown that every age distribution approaches a
persistent age distribution as t- o. We will show that in the harvested case there may
also be age distributions p(a, t) which are identically zero for large t.

In the harvest case, where v(/) 0, the presence of the term in (25) which depends
only on a suggests that the analogue of a persistent age distribution is a solution of the
form

(27) o(a, t)--A(a)T(t)-g(a),

where we may assume fA(a)da= with no loss of generality. If we substitute the
form (27) into (3), we obtain

A’(a)T(t) +A(a)T’(t) +i(a)A(a)T(t)=g’(a) +iz(a)g(a)- v(a),

where primes denote differentiation with respect to either a or t. Since the right-hand
side is independent of t,

d- [A’( a)T( t) +A(a)T’( t) + iz(a)A( a)T( t)]
=A(a)T"(t)+ (A’(a)+l(a)A(a))T’(t)=O.

Treating this as a first order differential equation for T’(t), we find

(A(a) +/(a)

But since T’(t) is independent of a, A’(a)/A(a)+lz(a) must be a constant -k. If
k:/:0, this implies T’(t)--T’(O)e kt or T(t)--T(O)e kt as well as A(a)=A(O)exp(-ka-
fl(a)da). It follows that A’(a)T(t)+A(a)T’(t)+la(a)A(a)T(t)=O, and (27) becomes
g’(a)+ tz(a)g(a) v(a) 0, which yields

g(a)--%(a) g(O)+ %(rl) dr/
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using (25). Combining the solutions for A(a), T(t) and g(a), we obtain from (27)

o(,-%( ce’--g(0l %(nlen
Substitution of this into 0(0, t) fB(a)o( a, t) da gives, for 0N < m

e’-(0 (%( ce’--(0- %(n ea

cektfl(a)o(a)e-kda-g(O)fl(a)o(a)da

ceg’ffl(a)o(a)e-da-g(O)ffl(a)o(a) da-hl(),
using hl()=limth(t)=fffl(a)o(a)[f(g(n)/o())d]da. From ts relation,
we have

(a) (a)%(a)e-da 1,

(29) g(0) 1- (a)%(a)da--hl(m)0.

If k> 0, (28) implies fB(a)%(a) da> 1, and then (29) implies g(0)< 0. Silarly, if
k< 0, then g(0)> 0.

The case k=0 must be treated slitly differently. In tNs case, T’(t)= T’(O) and
r(t)= r’(o)t, wNle A(a)=A(O)%(a). Then

’(a )r() +( )r’() + .( a)(a)r()= (0)r’(0)%(a),
and we have

This leads to

Now (27) gives

g’(a) + g(a)g(a)- v(a)=A(O)r’(O)%(a).

g(a)-%(a)[g(O) +fo
a v(r/) ]%() drl+ aA(O)T’(O)

p(a,t)-%(a) c(t-a)--g(O)-
%()

and substitution into p(O, ) ffl(a)p(a, ) da gives

ofl(a)%(a) { c(t--a)--g(O) fa p( TI )ct--g(O):of Jo dn

=a ()%(lea-c (a)%()e

--g(O) fl(a)%(a)da-h().
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This implies

(3o)

(31)

fo(a)ro( a ) da-1,

g(O)-c afl(a)%(a)da+g(O) fl(a)ro(a)da+hl(O).

Substitution of (30) into (31) gives cfafl(a)ro(a)da+hl(o)=O. As c_>0, this is
possible only if c--0, corresponding to an equilibrium age distribution, and h 1(o)- 0,
corresponding to zero harvest. Thus if the birth and death moduli are functions of age
only and if there is harvesting, the only persistent age distributions correspond to
populations which grow exponentially or which tend to zero exponentially in time.

To examine the asymptotic behaviour as of an age distribution o(a, t), we
study the asymptotic behaviour of B(t) as a solution of the first equation in (24) and
then use (26). In order to do this, we write

B(t)=Bl(t)-B2(t),
where Bl(t)_>0, B2(t)_>0 and

(32) Bl(t)-b(t)+fotfl(a)ro(a)B(t-a)da,
(33) B2(t)-hl(t)+fo’fl(alro(a)B2(t-a)da.
Now (32) and (33) are linear renewal equations with b(t)>_O, hi(t)_>0. We assume that
the kernel fl(a)r0(a)_> 0 satisfies

(34) fl(a)%(a)da<, afl(a)ro(a)da< o

and that there is harvesting, limt_h(t)>O. To analyze (32), we assume that
fb(a)da<o if ffl(a)ro(a)da<_l and that b is bounded on 0_<a< if
ffl(a)ro(a) da> 1; this hypothesis is biologically plausible since b would normally
have compact support. Then it is known (Feller [7]) that if ffl(a)ro(a)da< 1, then
fB(t)dt< c, and thence that limt_B(t):O, while if ffl(a)%(a)da>_ 1 and p_>0
is defined by

(35) fl(a)%(a)e-pada 1,

then Bl(t).-.Clept as t- c.
To analyze (33), we differentiate to obtain

(36)

where

and

B(t) h’l(t ) +f0tfl(a)r0(a)B6(t- a) da,

hi(t):,L *to( r/

( r/ ) fl(r/+ t)’n’0(r/+ t)dl>O

fo foh’(t)dt-h,(c)- fl(a)ro(a )
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We apply the results of [7] to the differentiated equation (36) to conclude that if
f(a)%(a)da< 1 then O<fB_(t)dt< o, whence limt_BE(t)>O, if ffl(a)%(a)da
-1, then limt_B(t)<o, whence BE(t).c2 as t- ot:, while if ffl(a)%(a)da> 1,
then BE(t).c2ept as t- , where p is again defined by (35). Combining the results for
(32) and (33), we see that if ffl(a)%(a)da<_ 1, then Bl(t)-BE(t) is negative for all
sufficiently large t, which means that B(t) reaches zero in finite time. On the other
hand, if ffl(a)%(a)da>l, then B(t)(ct-c2)ept as t-. If c>c2, then (26)
shows that p(a,t) approaches a persistent age distribution. If c <c2, which more
detailed study of [7] shows is equivalent to

.foe-l"a(b(a)-h(a)) da<O,
then B(t) reaches zero in finite time just as in the case f(a)%(a)da -< and p(a, ) 0
if (t-a) is sufficiently large.

We may summarize as follows:
TrmOREM 2. Suppose the birth and death moduli are functions of age only, that (34) is

satisfied, that fb(a)da< o if ffl(a)%(a)da<_ and that b is bounded on 0_<a< o/f
ffl(a)%(a)da> 1, and that there is harvesting. Then every age distribution either
vanishes identically for (t-a) sufficiently large or approaches a persistent age distribution
as t

Theorem 2 says that the harvested situation differs from the unharvested situation
in two respects. The population may die out in finite time, which cannot happen
without harvesting, and there cannot be an equilibrium age distribution, which can
happen without harvesting. In the harvested use the population either dies out in finite
time or grows exponentially.

6. The situation in which the birth modulus is a function of age only, fl-fl(a),
with ffl(a)da< and the death modulus is a function of population size only,
/=/(P), has been examined by Gurtin and MacCamy [12]. In studying this situation,
it is convenient to make a change of variables in integrals such as fl(P(t-a+ a))da,
to write them as ff-al(P(u))du. With this change, the system (8), (14) takes the form

(37)

(38)

B(t)-b(t)+ (a)exp- _(P(u))du B(t-a)da-hl(t ),

P’( t)--B( t) -P(t)l( P( t)) -H,

where

If we make the change of variables

B*(t)-B(t)exp(fottt(P(u))du ) )P*(t)-P(t)exp I(P(u))du
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(37), (38) become

(39)

(40)

with

(41)

B*(t)- b*(t) +fotfl(a)B*(t- a) da-ht(t ),

P*’(t)-B*(t)-H+exp I(P(u))du

b*( ) fl( a )q(a- ) da,

h(t)-foP(rl)[fnn+tfl(a)exp( fot-a+np(P(u))du ) da]
Much as in the preceeding section, we write

B*(t)-B(t)-B(t)
with B(t)>_O, B(t)>_O and

B( ) b*( ) +fotfl( a )B{(t- a) da,

B(t) h(t) +fotfl(a)B(t- a) da.

We then conclude that if ffl(a)da<l, limtoB(t)-O, if ffl(a)da-1,
limt_.oB(t)<o and if ffl(a)da> and p>0 is defined by ffl(a)e-pada-l then
B(t)’Clept as t

In order to obtain analogous results for B’(t), we must estimate h(t). Differentia-
tion of (41) under the integral sign gives

h’( ) v( *l )fl( *1 + t)

+ fot’(,1)[fnn+tfl(a)exp(fot-a+ntx(P(u))du)tx(P(t-a-f-,1))da]
_> (nl(+e,_>0.

Thus h’(t) is an increasing function. We now use the comparison principle of Nohel
[20], which states that B(t) is not less than the solution of the integral equation.

()= (n)B(n+)n+ ’B()(-),

where

fl(a)da v(rl)drl
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It follows, again, much as in the preceding section, that if ffl(a)da<l, B(t) is
bounded away from zero as o, if ffl(a)da- 1, B(t) grows at least as rapidly as a
constant multiple of as o and if ffl(a) da> 1, B(t) >_ c2ept as "") (X with p> 0
defined by ffl(a)e-’ada 1. Combining the estimates for B{(t) and B(t) and
recalling that

B(t)-B*(t)exp(-Sotll(P(u))du)
IBm(t)- B(t)]exp(- Sot(p(u))du ),

we obtain the following analogue of Theorem 2.
THEOREM 3. Suppose that the death modulus is a function ofpopulation size only, that

the birth modulus is a function of age only, with ffl(a)da< oo, and that there is
harvesting. Then either the birth rate andpopulation size are zero for all sufficiently large
Ol"

B,(t)_B(t)exp(fot ).. ptIx( P( u)) du ce

as o, with p>0 defined by fofl(a )e-pada 1.
Theorem 3 provides information about the asymptotic behavior of B(t) if

ffl(a) da-< and if ffl(a) da> 1, but the harvest rate is large enough that B*(t)
becomes zero for all sufficiently large t. However, it leaves open the question of
behavior of B(t) and P(t) if ffl(a)da>l and B*(t)cept for some c>0, with
ffl(a)e-pada=l. In order to treat this, we consider the three possibilities: (i)
fl(P(u))du grows more slowly than pt as t o, (ii) fl(P(u))du grows more rapidly
than pt as too, (iii) limtoo(1/t)ft(P(u))du=e. In the case (i), (43) implies that
P*’(t).-.ce lt as t- oo, whence P*(t)..cept and thus

P(t),,cept(-Sott.l,(P(u))du )
which is unbounded. Thus, by (38), B(t) is also unbounded. In the case (ii), (40) implies
that P*’(t) becomes ultimately negative and in fact that P*(t) must be zero for all
sufficiently large t. (It is not difficult to show that this implies boundedness of h(t).)
Then P(t) and B(t) must be zero for all sufficiently large t. This, however, contradicts
the hypothesis that ft(P(u))du grows more rapidly than pt unless/x(P) is a constant
/o, in which case we must have p<0. In the case (iii), we conclude in a s.milar manner
that P(t) and B(t).must grow more slowly than e el for any e>0, but we cannot obtain
more precise estimates. We can, however, conclude that p(a,t) cannot tend to an
equilibrium age distribution. If limt o B(t) B0 and limt__., oo P(t) P0, then
limt_o(1/t)ff)t(P(u))du=l(Po) and thus (P0)=p. The equilibrium conditions (17),
(18) imply ffl(a)e-pada> if there is a harvest, and this contradicts the definition of
p. Our overall conclusion is less precise than may be hoped.

THEOREM 4. Suppose that the death modulus is a function ofpopulation size only and
that the birth modulus is a function of age only, with ffl(a)da< o, and that there is
harvesting. Then either the birth rate andpopulation size are zero for all sufficiently large
or they are unbounded or they do not tend to limits as o.
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7. There are many directions in which improvements in our results would be
desirable. For example, it would be of interest to determine whether in the case
fl=fl(a), /=/(P) it is possible to have bounded solutions and to describe their
asymptotic behavior if it is. We have not touched on the behavior of solutions if/3 and
/ may depend on both age and population size, and the examples treated by Gurtin
and MacCamy [12], [13] suggest that there are many different possibilities. We have
also omitted any discussion of optimization of harvest and of nonconstant harvest
rates. These topics will be the subject of further investigation.
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ON THE RATE OF CONVERGENCE
OF STOPPED RANDOM WALKS*

JED CHAPIN"f AND JOHN L. B. GAMLEN"
Abstract. Let Fx,t(z) be the distribution function at time of Brownian motion starting at x [0, 1] with

absorbing boundary points 0 and 1. For

and x 0,t 0, 2n9.,.. 2n9_ n n

let Fx(.’)(z) be the distribution function at time of the process obtained by stopping the standard random
walk process at the boundaries 0 and 1. (Standard random walk is symmetric and has variance 1/n at
t= 1/2n2.) We prove that

3.6:3.6V[fx(,nt’(z)--Fx,t(z)[<--- V/"
where n-> 10, t--> and N is even.

The Berry and Esseen estimate can be used to give the rate of convergence of distribution functions of
unconfined random walks to the distribution functions of Brownian motion. Our work extends this result.

Introduction. The unstopped version of our result gives the well-known rate of
convergence in the central limit problem for the usual random walks on R. Our first
step was to take this known result (which is a particular case of the Berry-Essen
estimate [1, p. 206]) and formulate it in terms of stochastic processes, rather than
individual distributions. We then proved the stopped version of this result.

Let Fx,t(. ) be the distribution function at time of Brownian motion starting at
x [0, 1], with absorbing endpoints 0, 1. Write

2m
,..

2m
, x 0

m m

for the distribution function at time of the process obtained by stopping "simple
random walk" at the boundaries 0, 1. Here "simple random walk" means the random
walk jumping at the above times left or right between points of the set 0,
Later these processes will be more precisely described. We prove that; if m is even, x
and z are even multiples of and is an even multiple of 1/2m2; then

<_ 3.6 mvq"
One reason for tackling this problem is that in the Berry-Esseen result for the

central limit theorem, random walk is the worst possible case, in the sense that the
predicted rate of convergence holds exactly for random walk. One might reasonably
hope that our problem gives the worst possible rate of convergence, among those
problems which arise by stopping more general sums of independent identically distrib-
uted random variables. This amounts to the hope that the Berry-Esseen estimate
extends to stopped sums of random variables.

It would be of some importance if our result could be extended to cover conver-
gence of more general discrete processes to diffusions with nonconstant covariance
velocity. Such problems arise in both genetics and in finite difference methods for

Received by the editors October 13, 1981, and in revised form May 7, 1982.
Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2GI.
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solving partial differential equations. For the Wright-Fisher discrete and continuous
processes of genetics, S. Ethier and F. Norman [6] discuss rate of convergence of the
expectations of C4 functions. Applied to convergence of distribution functions, their
theorem yields a slow rate of convergence. If our result is extended to their situation, it
would be quite useful to geneticists, who use the Wright-Fisher diffusion to calculate
approximate results for the Wright-Fisher discrete processes.

A greal deal has been written on convergence of finite-difference methods to
solutions of differential equations, but not much of it is relevant for this particular
problem, even though our problem is in disguise a finite-difference problem. However,
the fact that convergence occurs in our problem was proved by P. Lax [5]. No rate of
convergence could be extracted from the proof, unfortunately.

In l we transform our problem to a very similar one involving difference opera-
tors. The discrete and continuous distribution functions are then expressed as the
solutions to boundary value problems, and then as discrete and continuous eigenfunc-
tion expansions.

In 2 the terms of the eigenfunction expansions are compared, and an estimate is
obtained relating the continuous process to the modified discrete processes considered.

In 3 the main result is proved.

1. Eigenfunction expansion of discrete and continuous distribution functions. Con-
sider Fx,t(z), the distribution function at time of Brownian motion starting at x [0, 1]
and absorbed at the boundary points 0, 1. For z fixed but arbitrary in [0, 1) write
,(x, t) Fx,t(z) ( x). From the backward equation for Fx,t(z ) we find that (x, t)
is the unique solution to the boundary value problem

) O2(X’t)
0<x<l t>0(,1

(0, t)--(1, t) =0,
[ x if x<_z,,/,(x,O)-
x- otherwise.

The solution may be obtained as the eigenfunction expansion:

(**) dp(x,t)-- 2 j(t)Yj(x),
j=l

where Yj(x)- v- sinjrx and j(t)-fd ,(x,t)Yj(x)dx. Integration by parts in (.) yields
that j(t) satisfies the initial value problem:

d
with (0) given,

where the Xj’s are the eigenvalues associated with the Y’s. The Yj’s are the normalized
(in L2[0, 1]) eigenfunctions for the operator d2/dx: on

(fL2[O, 1]If" L2[O, 1],f(O) :f(1)--O}.

The series (**) is well known to converge uniformly on [0, 1] for fixed > 0.
We will now write out some well-known computations (cf. [5, p. 65]) to aid us in

their imitation in the discrete case.



964 JED CHAPIN AND JOHN L. B. GAMLEN

To obtain the initial value problem, we integrate both sides of the equation (,)
against Y, i.e.,

x)

Integrating by parts twice gives

[ o,t) .())---j(t)- yj(x) )x -(x,t) )x ont- foldp( x, ) Yj"(x ) dx.

Observing that the boundary terms are zero and using Y]’(x)-X.Y(x), we get the
stated initial value problem. The solution to the initial value problem is .(t)- ,.(O)eXt.
To find j(O), we calculate

fO (g fzl(x X }q,(x,O)(x)d q,(x,O)r (x)d+ ,O)r’( )dx

=X-. ,(x o)r;(x)-r. 0,(x,O)
OX 0

+ [,(x,O)r;(x)- r
r(x)dX+fz *-(-x-.’ )r.(x) dx}

Thus (0) Y]( z)IXj- cosjrz/jr.
We now imitate the above constructions in our discrete situation. Recall from the

introduction the distribution functions"

)(z), z,x O, m, m’ 2m2’ m2’

These are the distribution functions associated with the transition functions:

et(m)(x,y)

ifx=y (x-O or x- 1),

ifly-xl x#O, x#l
m

0 otherwise, fort-
2"2m

By modifying these processes we contrive to deal with second order difference opera-
tors as generators. Precisely, define transition functions.

Q}")(x,y)-

ifx=y (x-O or x-- 1),

if x-y, x#O, xl,

if[y--x[--, x#O, x#l,

otherwise, for t----
4n2
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Its distribution functions G,’)( ) satisfy:

) ( ),t x,t

where

( _1 2_ 1), t(0, 2x,z O, n’ n’ 4n2’ 4n2’

Define the (standard) difference operators Ax, A and as follows:

Axg(X,t)- g ( x +- g(x) (similarly for At),

3:xg(X t)-g x+l -2g(x t)+g x--t -A2g x--t
n n n

Write q,(")(x, t)- G(")tz)-(1 -x). Then q() is the unique solution to the discretex,t

B.V.P.

At(n)(x,t)+ - X t)+
n

5<)(0, t) 4)(1, t) 0,

2 n-l)x ’ n n

4n2 4n 2

q)")(x,0)- ( x if x<z,
x- ifx>z.

Let Yl")... Y-")l be the normalized eigenfunctions of 82, and let ()... ()_, be
the associated eigenvalues. We claim that the solution to the above B.V.P. is"

n--1

q")(x,t)=- ] ")(t)Yj")(x).
j=l

This may be verified directly, as in the continuous case. However, it may be derived
using the discrete analogue of the eigenfunction transform technique, using summation
by parts twice.

n--I n--I

pkEqk=pnAqn---PAqo--qnAPn-l+qApo+ qk2pk.
k:l k:l

Next we find the Y")’s explicitly; then we find ?j(t), completing the explicit
solution for q")(x,t).

and

Yj(")(. ) and (h(j’)}__- must satisfy

1/n2 =h(j:)Yj(")(Xk)

.-t 1=1.
k--l
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Recall the identities

These yield

Iteration gives

sin(a + b) sin(a b) 2 sin b cos a,

cos(a + b) cos(a b) 2 sin b sin a.

u (1)sin ux- 2 sin -n cos u Xk +-n
Acosux--2sinnsinu x+n

uA- sin u xk- 4 sinE nsin uxk,

uA2 cos uxk- 4 sinE ncos uxk"

Thus if we let Y.("(x)-sinjrx it would satisfy almost all of the required conditions. In
that case

X.n)_ _4n2sin2 jrr= _2n2 1--cos
2n n

To normalize, consider

Then

sinE(jrxg)--
n k=l

1- (1 cos 2jrxk ) -1 n--I

=- 2--- E cos(2j’xk)
k-I

n-- nlX cos(2  x,) 1_1__ 1

k=l
n X() k=l (l/n)2 n

=1 Acos(2jrx) k=n-I_
(2Acos(0) ) ( 2j

--( 1/n =(2n cos --n
Recall X()- -2n(1-cos2j/n), so;cos(2jx)/n- 1In. Now we have

"- l_l+l/n

k=l

Now we can write

2Y(")(x)- + 1/n
sinjrx.

It is easily verified that the solution to the discrete initial value problem (****) is

(bn)(t)--n)(o)(l+’n)" l-)2
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To find ’)(0)--__ 4")(x, O)Yj()(Xk) l/n, use summation by parts, obtaining

( + /n )Ayj(’)( z )

This complicated way of displaying the right-hand side will be useful when we compare
with j(0) in the next section.

2. Comparison of eigenfunction expansions of discrete and continuous distribution
functions. Now we are ready to compare

with

k(x,t)-- E /(0)ex/fsinjrx
j=l

(’)(x,t)- ’(0) l+--
j--I 4n2

2
+ 1/n

sinjrx.

In order to make the comparison we change the form of the expressions. Observe
h/t-- (jcr)2t -(jr/2n)2 4n2t. Also,

+---- 1- 4n2 sin2 --cos2
4n2 n 4n2 2n"

Thus

(x,t)-- E j(O)[e-(Jr/2n)2]4n-tsinjrx,
j=l

n--I

q)(")(x, t) E )")(0)
j:l

jTr] 4"2t / 2
COS2"n V + 1/n

sinjrrx.

This last expression is related to others in the literature (cf. [3, p. 353]). To clarify the
overall scheme for estimating I@()(x,t)-@(x,t)l, we denote the various quantities as
shown

aj- j(O), bn’-- e-(Jr/2n’2] 4n2t, cj- -sinjrrx,

a)n)__@n)(o) b)n)__[COS2 Jr ]4n2t c)n)__ i 2
n + 1/n

sinjrx.

We will deal with the initial parts and the tails of the sums separately, writing

(n) (n) (n)
aj bj c) E ajbjcj

j--I j=l

<_j<_n/2
aJn’bn’cJn, ajbjcj]

E (n) (n)a/b/c) +
n/2<_j<_n--1
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Let Ilall=maxlajl, and let Ilcll, Ila(")ll, Ila(n)-all and IIc(")-cll be defined in a
corresponding manner. Next we observe

an)bn)cn)-ajbjlj ,. c
<j’<n/2

<_j<_n/2

+llall Ib’-bvlllcll+llall Ibvlllc’-cll
<_j<_n/2 <__j<_n/2

<__j<_n/2 <_j<_.n/2

<_.j<_n/2 j<_n/2

This deals with the first term of (,).
For the second term of (,), write:

(***) a b c) (llall+lla-all).(llcll+llc
n/2<jn--

For the third term of (,), write

(****) ajbcllallllcll Ibjl.
n/2<j< n/2<j<

We will prove that for n 10, t 1/4n, we have

abc E ab2c.
j= j= n

To do this we need only (**), (***), (****) together with the following estimates, whose

1. .0078 1.
n/2<j<n-- --2. Ib.l-<.0157
n/2<j<o -3. Ilall .4502;

4, Ib1,2821
jn/2

5,

6. Ila")- a112.037 n

7. ]b)")- bjl< .8031
jn/2

proofs occupy the rest of the paper.
Estimates to be proved"
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For the first estimate note that b}")--[cos2(jr/2n)] 4n2t is decreasing in j, and that

Ib)")l <_ cos8"2t(r/4), for n/2 <j"< n 1. Thus

Ib(")l<n12y
_ -- _< .0078

n/2jn-- n
For the second estimate,

n/2<j< n/2<j<

e--(jr)2t< e-([y l]r)2t dy
/2

f -u’-/2 e--4r2n2t/25<--r- rn/5
e du<rV 2n/5

u-(y-1) (the last inequality follows from [6, p. 4])

5 -/5 <e (.0157)
22 n n

For the third estimate,

hence a .4502.
For the fourth estimate note that

<_j<_n/2

( u rVy).
For the fifth estimate

so c II -.

.4502,

e-(Jr):t f e-(yr)t dy
j=l ’0

fo u2/2

rv727
e du-

2/
"2821 7

The sixth estimate is more technical. To find a(n)-a we need to compare

V + (1/n )Ayj(n)( z )
j(0)--jrr cosjrrz with J")(0)- ,{a.n)(1/n)

1/n + 1/n
n sin jrz +n sinjrrz- i/n n sin n cosjrrz + sinjrz cos n

We have

)kn)- 2n 2 cos --4n 2 sin2 nn
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So

2 ( n sin( jrr/n )
+ 1/n 4n 2 sinZ(jrr/Zn ) )cosjrrz +-n sinjrrz

At this point we need a lemma.
LEMMA.

n sin( jr/n )
4n2 sin2( jr/2n ) for <--j<--n.

Proof. We have

n sin( jr/n )
4n2 sin2( jr/2n ) j

cos( jr/2n )
2n sin( jrr/2n )

( jr/2n) cos(jr/2n )
jr jr sin(jr/2n)

sin(jr/2n ) ( jr/2n ) cos(jr/2n)
sin( jr/2n )

n2
sin(jr/2n ) ( jr/2n ) cos(jr/2n )

( jrr/2n ) sin( jr/2n )

Now use the result that O<_(sinx-xcosx)/xsinx<_2/rr for 0<x_<rr/2. So we get

jq/-
n sin(jr/n) ]<4n2 s n2 ( jr/2n ) -We now can proceed with our error estimate for Ila)-all. Let

2 nsin(jrr/n)
el- + 1In vr’ e2=J*r 4n sinZ(jrr/2n)’ e3 ---n sinjqrz.

We have

So

1/n

j,Tr

E
"3
l- -E2 cosjq’/’2 "3

I- V/ E = cosjq/’Z -4- E E2 cosjqT"Z + E1E
jw
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Thus

Finally,

(o)

1/n
-< -+ -+ +

n n -qrn -rn2

1.441 -.

l+l/n
1/n

AYj(")(z)
X(;>

_<2.037 -.

This completes the proof of the sixth estimate.

2-n2

Vo)()+ +/-, (o)- i:-- o

For the seventh estimate we now find a bound for , <j_<,/21bj(.n)- bj[, which equals

COS
jr 4n2t

The factorization p’ q’- ( p- q) _-o pk- l-lql gives the formula

Also,

and

[p ql< lp qlk max ( tpl k-l,

104 2cos20 1-0 2 +- ---06 COS2 (0<<0)

04 06-02-- 1--02+ e- (o<(<0).

So, for O<jr/2n<r/4,

The above yields

jr (j,/2,,):[ 2 (Jet)
4

cos2 -n- e- _<- -n

2 jr 4

Ib>’)-b]_< -ff(-n ) 4n2t
<_j<_n/2 <_j<_n/2

Now we need a lemma.
LEMMA.

E -n 1- -n +- -n 2n k2
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Proof. We have

(J’/r)4( (J’tr)
2 j’n’4)k-I ’n"

1-- nn +- -n 2n
<_j<_n/2

--< E 1-3 2n"
<_j<n/2

This last sum is a Riemann sum for f/404(1---o2)k--I dO. Note that 04(1---02)k-1
rises and falls once and is bounded by 9/k2 on [0, ] ]. Thus the Riemann sum is a lower
sum except possibly for one term bounded by (9/kZ)rr/2n. Thus

n ) 1--5
<_j<_n/2

jr/’)2)
k-l

"/r <__9rr f0r/4042---- k 2 2n 1--502 dO.

Also

202 k-I

_(2/3)(r/4)2-- (1 --U du 202

9 f-- fol 9<----
8 (1--u)uk-l du-- - k(k+ 1)

9 -32--8 k2"

This proves the lemma.
Continuing, we have

Ibm"’-b l <2 2t2n
<_j<_ ./2 - 4n r (jrr

2 jrr 4)
4n2t

7 16n4t 2" 2--- +- 16n4t 2

9

This proves the seventh estimate.
For the eighth andfinal estimate we have

(_2)1+
1
n

1/2
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3. Calculation of the error bound for the final result. Recall from the introduction
the distribution functions

F(m)(z)x,t \

x,z{O, k

2m2, 2m2’ ’2m2’

We have G(x,"]/2)(z)-Fx(,)(z), if rn is even, N--2m2t is even, x is an even multiple of .
Thus

2 1 -IFx,t(z)- Fx(,)(z)l -< 1.8
mv

3.6
mv

3.6 .
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THE REFORMULATION OF AN INFINITE SUM
VIA SEMIINTEGRATION*

KEITH B. OLDHAM"
Abstract. Using the operations of the fractional calculus, the chemically important sum

--,(-- l)Jj !/2 xp(jx) is proved equivalent to ,fl-a[rr(fl--x)/2]l/a[fl + 2x] where fl-- [(2j- 1)2r q- x2] 1/2

and where, in each summation, j runs from to o. Seven other sums of exponential functions are similarly
reformulated, as well as eight summations of sine or cosine functions, of which Yj-1/2sin(jrrx) is repre-
sentative. The utility of these reformulations is demonstrated.

The fractional calculus has been shown to be a useful tool in the evaluation of
definite integrals, the summation of series, the solution of differential equations and in
other areas of mathematics [1], [2]. In this short article, the fractional operations of
semiintegration and semidifferentiation will be used to convert an important infinite
sum into a more useful expression and to perform similar conversions on related
summations.

Weyl semioperations. The expressions

d-’/2f(x) l/2 faX --I(1) ["d(x-a)]-’/2=rr Ix-y] /2f(y)dy

and

d’/:f(x) d(2) [x-yl-1/2f(y)dy

establish the notation for, and one definition of, the generalized semiintegration and
semidifferentiation operations on any function f of an independent variable x [1 ]. The
parameter a plays the role of a lower limit. Here we are primarily concerned with
semioperations in which a---; such operations are known as Weyl semiintegration
and Weyl semidifferentiation [3]. Bateman [4, p. 201] used a slightly different definition
of a Weyl fractional integral.

Rather comprehensive tables of semiintegrals and semiderivatives exist [1], but
these refer to the a-0 instance of definitions (1) and (2) and there is no generally
applicable method of translating the lower limit in the fractional calculus. Accordingly,
Table is presented to include all the instances required in this note. Entries #
through # 5 are elementary, but the semiintegral entry # 6 was established by specializ-
ing the general result

(3)
d-1/2 X

[d(x--a)l-1/2 ba+x

[ 1/2

-]2rxl’/aS 1 (S+- 1) arctanh R(2S+2) 1/2

S+R2 (S w- 1) 1/2Arctan R(2S-T-2)I/2S_R 2 )
Received by the editors June 5, 1979, and in revised form November 5, 1981.
Chemistry Department, Trent University, Peterborough, Ontario, Canada K9J 7B8.
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to a- oo. The semiderivative then follows by differentiation of the semiintegral entry.
The formulas tabulated as # 7 may be derived similarly. The derivation of (3), in which
R and S are abbreviations for (a/x)l /2 and ( + (b/x)2.}1/2 respectively and in
which the upper or lower signs apply according as x is positive or negative, was
facilitated by a change of the integration variable in definition (1) to 11 -(y/x)l/2 and
partial fractioning of the resulting rational integrand.

Series reformulation. The function X(x) occurs in electrochemistry, where it de-
scribes the dependence of electric current on cell voltage under certain electrolysis
conditions [5], [6], [7]. The X(x) versus x graph is an asymmetrically peaked curve: this
and similar curves are used by electrochemists to study electrode reactions and to
perform chemical analyses. Table 2 lists values of r/2X(x). Reinmuth [8] showed that
the function is described by the summation

(4) r’/Zx(x) E (--1)JJ’/:exp(jx), x<0
j=l

for negative x and this provides a convenient means for the calculation of numerical
values of X(x) in that range of argument.

However, the chemically interesting portion of the X curve lies in the region of its
peak, which as Table 2 shows corresponds to positive x values, and therefore less
attractive computational techniques have had to be employed to determine X(x) for
x>0. These techniques include the numerical solution of the corresponding integral
equation [9] and the numerical quadrature of a related definite integral [10], [11].
Especially when experimental data are to be processed by a computer, there are marked
advantages in an analytical expression over solutions in tabular form [12]. Accordingly,
one purpose of this study is to analytically continue formula (4) to the range x_>0.

Using entry # of Table 1, function (4) may be Weyl semiintegrated [1], yielding
the closed form expression

(5) r,/ d-’/2X(x) 1 x

[d(x+ o)] -/z J=E (-1)exp(jx) -+-tanh , x<O

By differentiation with respect to x of the infinite product expression [13, p. 85] for the
hyperbolic cosine of x/2, one can establish that

x x(6) tanh -4 E _, b-(2k- 1)rr
,= b, +x

and substitute this expression into (5). At this point semidifferentiation is applied to
both sides of the relationship. Because semidifferentiation of a semiintegral regenerates
the original function [1], [14], [15], the left side becomes r/X(x). The tabulated
semiderivatives allow Weyl semidifferentiation of the right side of the equation and
lead to
(v)

x<0
k=l

as the final expression for X(x).
Because (4) and (7) are equivalent for negative x, and summation (7) converges for

all values of x, the latter constitutes an analytic continuation of r/aX.(x ). For some x
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values, the convergence of summation (7) is rather slow. To hasten the process, ad-
vantage may be taken of the expressibility of the summand as

3 15fl- fl-- x l/Z fl + 2x = b-3/2+xb5/2----8 xzb7/2 / 0(x3b-9/2 )
to rewrite (7) in the form

91/2x.(O)x 2(8)

,:,

where

and

9 )1/2
o [8l/- 1]’(-)

-0.3801048139’/:x(O) - b-3/2-=

k=l 4r

3
I JVr 1/2 b_5/2=3 (32) 1/z f()=0.1186808719112xt(O)--’ " k=l 16rr 2

l/-X,,(O) -15(,)’/ b_[7/2 -15[(128)l/ 1]’()
-0.0439205602 8 " k=l 12893

Formula (8) proves to be a highly efficient method for computing 91/2X(x) and was, in
fact, employed in the construction of Table 2 with the aid of a pocket calculator. The
data in the tabulation are consistent with, but more precise than, previously published
values of the function [9].

Equations (4) and (7) are equivalent series representations of the 9i/2X(x ) func-
tion. That the series

{ 92 4994 34196 }(9) 91/2X(X)--(gx)I/2------- l/-xZ/..384Xd,//O(x-81024x6 )

provides a third alternative, valid for large positive x, will be established later in this
article.

Similar relationships. A number of series reformulations are possible via hyper-
bolic functions other than the tangent. By methods similar to that described for the
X(X) function, one can establish that

= --.--91/2 (9)112 [/x]l/2[--2X](10) j’12 exp(--Jx)
2x312 7 aj=l k=l

(11)
= (9)l/2 [/x]ll2[-2xE (--1)?l/2exp(--Jx) 7 nj--I k--1

oo 91/2 ( 9 )1/2
oo

)k [Y/x]/2[y--2x](12) (2j- 1)ll2exp(x-Zjx)-4x3/-.------- , (-1
j=l k=l ./3
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and

(13) (_ 1)s(2j_ 1)12exp(x_2jx)- _ff x (_
tj=l k=l

where a=[4k2e2+x]/, B=[(2k-1)22+x21/2, =[k22+x2]/ and 8=[(k
_)22+x2]/2. Ranges of convergence vary among the eight summations in these
equations, but all are valid for x >0.

Area beneath the X(x) ee. Electrochecally, the area beneath the l/2x(x)
curve corresponds to the quantity of electricity that has passed through the electrolysis
cell. To analytically continue

x

(14) /2 f_ X(y)dy- (-1)jexp’jx’j/2 x<0

is therefore of interest. TNs summation is only marginally more tractible than that in
(4). It is possible to reformulate the series in (14) by seintegration of (5) and (6).
However, a simpler procedure will be followed.

Combination of (4) and (7) to

2 (-1)sT/eP(7)- 7 <0,
j=l k=l

followed by integration with an upper liit of zero, leads to

2 (_ 1)s exn(Sx) =(),/ [-x]’/

s= 7,/- (-1)s
Sl/ 2

s= = (- 1)l/ /
The equation

[(b+x2 ) l/2-x] 1/2
x

(16) riif X(y)dy--B+(2r)l/ 2 bill-oe k--!

in which b is again used as an abbreviation for (2k- 1) and

(17) B= (-1)
J=

[2’12-11 7 --0"60489864

then results from the union of (14) and (15). Equation (16) provides an expression for
the area under the /2X(x) curve that converges for all values of x.

There is interest in determining the form of the integral of /zX(x) for large x. In
this circumstance use may be made of an Euler-Maclaurin transformation [13, p. 806]
of the summation in (16), as follows

l/ X(y)dy- -+()l/ F(k)dg+7
where F(k) represents the summand in (16) and primes denote differentiation with
respect to k. Thereby one may show that

/2r x / 2

+O(x-_
24x 384x4 1024x6

It is the differentiation of tNs result that produces (9).
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Similar integrated relationships. Equation (16) is essentially the integral of (11)
using an integration limit of zero. Though differing limits are advantageous, all of (10)
through (13) can be treated similarly. The results are

(4k2+ 1)/2+ 1] /2
,trl/2 [4k 2 + ]1/2

(19) ] (-1)jexp(-jx) (2)1/2 [fl"-X] 1/2

j /2
=B-i- ’n" 2 flj=l k=l [2k- 1/2,//.1/2

(20) exp(x--2jx)_ C l(r)’/2
j=l (2j-- 1) ’/2 -’21/"-’+" "

-" "" 2 (--1)k [_XII/2_ [ 2 ,/2 ],/2
k=l Y rl/2[k2+ 1] 1/2

(21) (_l),exp(x_2jx) ( q./. ) 1/2

j=l (2j- 1) 1/2 k=12 (-- l) k [--x]l/2
where A + ,j-i/2exp(-j,a’)- -0.9554172, B is given by (17) and C- -2-1/2+
X(j_ 1/2)-1/2 exp(rr- 2jrr) -0.64592709.

Using Euler’s formula, the exponential summations in (10) through (13) may be
replaced by trigonometric summations; however they generally diverge. The same is not
true of transformations of (18) through (21). A catalog of the resulting trigonometric
sums is

sin(jcrx) [2k-] ’/2

jl/2 21/2Xl/2-- 2]=l k=l K

oo cos(jrx) oo [2k+ ]1/2
j-l jl/2 2l/2xl/2 k=l

(4k2+ 1)1/2+ 1] 1/2

[2k2+1/2] 1/2

oo sin(jrrx) oo [2k- l-X] ’/2

2 (--1)j
j,/2 2 X

j=l k=l

E (-- 1)jcs(jrrx) =B+ 2 [2k- +X] 1/2

j=l ill2 k=l [k-1/2] 1/2’

2 sin[(J-1/2)rx]=1 2 (-1)* [2k--1’/2
j=l (j__1/2)I/2 2,/2x,/2 k=l
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[(k2+ 1)1/2+ 1]’/2 }k2 "b 1] 1/2

E (--1)jsin[(j-1/2)crx] E (--1) [2k- 1-,1 ’/2

E (-1)+cs[(j-1/2)rx] = E (--1)k [2k- +Xl ’/-

J’= (j_1/2),/2 k=,

where r-[4k2-X2] 1/2 and X-[(2k- 1)2--X2] 1/2. Again, the range of validity of these
equations is various, but all hold for 0<x< 1.

Power series useful for small x can be constructed from these eight equations; the
first, for example, yields

E sin(jrrx) 1 () 5’() x3 63’(-) xS + O(xv)
j= jl/2 21/2X1/2

X--’ 128 819"--

Moreover these equations can generate novel numerical series; thus the first can be
reduced to

=1

after x is set to unity.

TABLE
The Weyl semiintegrals and Weyl semiderivatives ofseven functions

entry

#1

#2

#3

#4

#5

#6

#7

exp(bx), b>0

sin( bx

cos( bx

any constant

b-x

x

b2+x

b

b2+x

b- /2 exp(bx)

b-1/2 sin(bx-r/4)

b- /2 cos( bx 7t/4)

’’-
21/2[b2+x2]l/2

21/2[b2+x2]l/2

dl/q(X
[d(x+oo)] ’/2

bI/2 exp(bx)

b/2 sin( bx+r/4)

bi/2 cos(bx+r/4)

0

r/2

2(b-x)3/2

23/2 b q.. X ]3/2

23/2[b2+x2]3/2



980 KEITH B. OLDHAM

TABLE 2
I/’alues andfeatures of thefunction X (x)

9.0000
8.0000
7.0000
6.0000
5.0000
4.0000
3.0000
2.0000
1.0934
1.0000

-0.7315
0.0000

+ 1.0000
1.1090
2.0000
2.5950
3,0OO0
4.0000
5.OOO0
6.0000
6.8400
7.0000
8.0000
9.OOOO
10.0000

r/2x(x
exp(x) limiting expression
0.00012
0.00034
0.00091
0.00247
0,00667
0.01785
0.04648
0.11314
0.22315 hfpeak
0.23681
0.27719 inflection point
0.38010
0.44572
0.44629 peak
0.41815
0.38362 inflection point
0.35951
0.30747
0.26886
0.24093
0.22315 hfpeak
0.22020
0.20427
0.19146
0.18093

(X)-1/2 limiting expression
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MEAN GROWTH, Hp SPACES AND SUBHARMONIC FUNCTIONS
IN THE UPPER HALF-PLANE*

JAMES D. McCALLt

Abstract. A function f analytic in the upper half-plane is said to be of class H, (0<p< o) if the Lp
integrals of fy(X) =f(x+ iy) along lines parallel to the real axis are uniformly bounded. In this paper we give
alternate proofs of two results of B. F. Logan [SIAM J. Math. Anal., 10 (1979),pp. 733-740; 741-751] on Hp
spaces plus a subharmonic version of his second result. Our method of proof extends his Hp results from
--<p<oo to 0<p< oo. We show that iffHt, (0<p< oo), then

lim IlYll=0
y--*

and

with A,=(4r)-/’. The constant A, is best possible and necessary and sufficient conditions are given for
equality.

The method of proof in each case consists in proving it forp- 2 by means of the one-sided Paley-Wiener
theorem and then extending it to 0<p< oo by using the Blaschke factorization for H, functions.

The subharmonic analogue for the second result shows that for a continuous nonnegative subharmonic
function g(z) defined in the upper half-plane, the condition

f g(x+iy)dx<_M<vo

fory>0 implies

The constant r- is best possible.

g(x+iy)<--M(ry) -’.

Key words. H, spaces, subharmonic functions, Paley-Wiener theorem, Blaschke factorization

1. Introduction. A function f analytic in the upper half-plane is said to be of class
Hp (0<p< oo) if the integrals

foo [f(x + iy)l’dx

are uniformly bounded with respect to y>0. Let

and

fy(X)=f(x+iy)

The latter is a pth mean of f. Then fy(X) tends to a boundary function f(x) a.e. as y
tends to zero and, in fact, fy converges to f in L, (-, o0). The quantity flip is used
as the norm offeven if 0<p< 1, pp. 187-192].

We are ready to state our first two results.
THEOREM 1. ForfH, (0<p< o),

(1) lim II yll -- 0.
yoo

*Received by the editors May 28, 1982.
Department of Mathematics, Texas A & University, Kingsville, Texas 78363.
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THEOREM 2. ForfH, (0<p<)

(2) [f(x + iY ) <Apy- /Pl[)[p

with Ap-(4"n’)-I/p. The constant Ap is best possible and equality holds for x-O and
y b>0 if and only if

(3) f(z)=
C

( z + ib )2/P

These were first proved for <p< o by B. F. Logan [5], [6]. In fact he proved the
first theorem for a more general class of functions consisting of convolution transforms.
However, with respect to Hp classes his proof will not extend to 0<p< because it
depends on the Poisson representation which is valid only for _<p< oo. Similarly the
proof for his second result will not extend because it starts with the Cauchy representa-
tion.

Our extensions are accomplished by means of the one-sided Paley-Wiener theo-
rem for the case p 2 and then applying the Blaschke factorization for Hp functions to
extend them to 0<p< oo. Using the Blaschke factorization in this manner is a standard
Hp technique [2, pp. 39-41].

The third result is suggested by two things, first, by Theorem 2 and the fact that
g(z) If(z)lP is subharmonic, and secondly, by the following lemma due to V. I. Krylov
[1, p. 188], [4, pp. 38-40].

LEMMA. Let g be a continuous nonnegative function subharmonic in the upper half-
plane satisfying

oo

(4) g(x+iy)dx<_M<

for y> O. Then

(4)g(x+iy)<-M

We will later use this lemma to help prove Theorem 3.
Now using the Poisson kernel as an indicator of the best possible constant, we

arrive at the following.
THEOREM 3. Let g be a subharmonic function satisfying the conditions of the lemma.

Then

(6) g(x+iy)<M(*ry)-I

and the constant rr- is best possible.

2. Proof of Theorem 1. Since the Blaschke factorization is used in this and the
next section, we give what is needed here. This factorization means for each f in Hp
(0<p< oo), not identically zero, there exist functions b and g such thatf-bg and

(i) g np, II flip- II g lip, g does not vanish;
(ii) Ib(z)l -< and Ib(x)l a.e.

The function b(z) is the Blaschke product for the zeros of f. Its form may be found in
[1,p. 191].
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We now proceed with the proof. According to the one-sided Paley-Wiener theo-
rem for eachf in H2 there is a F in L2(0, o) such that

f( z ) foF( )eiZt dt.

By Plancherel’s theorem

(7) 2r f_ If(x+iy)12dx= if(t)l
2 --2,ye dt.

Clearly the integrand on the right tends to zero a.e. as y approaches infinity and is
dominated by IFIz, so by dominated convergence, the right-hand side of (7) converges
to zero as y approaches infinity. This gives the result for p 2.

Next let fbe a function in He (0<p< oe) that does not vanish. Then fe/2 belongs
to H2 andll fyp/2 2- II fy II pp/2. The casep- 2 applied to the first mean gives the result.

Finally, let f belong to He with f-bg, the Blaschke factorization. We have f(z)l -<
Ig(z)[ where g does not vanish and belongs to Hp. This means that II fy lip-< II gy lip with
II gy lip tending to zero as y approaches infinity.

3. ProoI o1’ Theorem 2. We again assumep-2 and use the Paley-Wiener theorem
to write

I(x+iy)=

with F in L(O, ). Applying ,the Schwarz inequality and Plancherel’s theorem in
succession, we have

If(x / iy )I_< 11/112(4 )-1/2
with equality for x- 0 andy-b>0 if and only if

F(t)=Be-bt a.e. on (0,
This means

f(z)-B e-bteiZtdt iB

(z+ib)

The equality condition implies (4rr)-1/ is best possible. Next suppose f belongs to He
and does not vanish. ThenfP/ is in H2 and

Since II fy/a =-II fy /=, the result follows. Equality occurs for x-0 and y-b>0 if
and only if

f’/(z)=Cz+ib"
This is certainly equivalent to the condition in the theorem. Because of this condition
(4r)-/e has to be the best possible.

Finally suppose fHe. Then f=bg where fl[e-- II g e’ g does not vanish and
Ib(z )l -< 1. Thus

If(x+iy)l lg(x/iy)[ llgllp(4 ry)-’/p- Ilfll,(4 ry)-l/P,
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with equality if and only if b and

( z + ib )/p

The constant is best possible.

4. Proof of Theorem 3. Using an argument of Logan’s [6,pp. 742-43], we first
reduce the theorem to showing

(8) g(i)<--Mqr-l

First, assume that (4) implies

(9) g( iy ) <- M( rry ) -1

for y>0. Next let h(x+iy)-g(x+a+iy) (-<a<). A linear change of variable
shows (4) holds for h. Hence (9) holds for h or

g(a+iy)<_M(vry)-
for y>0.

Now assume (4) implies (8) and let h(x + iy)-g,(bx + iby). The change of variable
Y, bx in f

_
g(bx + iby) dx shows

f? h(x+iy)dx<_Mb-<.

Thus (4) holds for h with the constant equal to Mb-. This means

h(i)<_M(b)-l
or g(ib)<_g(crb)

Thus it remains only to show (8). Map the upper half-plane onto the unit disk by

z--i i(1 +w)
z+i’ 1--w

and note that y-b is mapped into the circle Cb with center b(1 / b)- and radius
R-(1 +b)-. Let

h(w)-g

which is subharmonic in Iw[< [3,p. 12]. Also let Fb be a circle with center b(1 +b)-l

and radius p<R. By the local submean value property

b
<-p

Since subharmonic means are nondecreasing [1, p. 9] and h is bounded on and inside by
Cb by Krylov’s lemma, an application of the bounded convergence theorem gives

( )b
< h(w) [dwh

+b --2rR
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when we let pR. Using R=(1 +b)-1, [1-wl_<2, and the change of variable from w
to z, we have

h
l+b

<- g(x+ib)dx<_M
l+b

Letting bO, we get h(O)<-Mcr- or g(i)<_Mcr-.
We must still show or- is the best possible. Let

1 Cy
Pc(x+iy)=- x2+y2

a multiple of the Poisson kernel. This is harmonic and hence subharmonic. Further,
f_Pc(x+iy)dx=C fory>0. Taking x =0 andy=b>0, we find

Remark. The argument for g(i)<Mr- is an adaptation of the proof of Krylov’s
second lemma [1,p. 189], [4,pp. 40-41]. Here it is proved that (4) implies g has a
harmonic majorant.
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UNE TRANSFORMATION DE LAPLACE JACOBI*

MICHEL MIZONYt

Abstract. We define an integral transformation on R + , starting from Jacobi functions of the second
type. This transformation is a generalization of the usuel Laplace transform . The reciprocal transformation is
defined using functions which are closely related to Jacobi functions of the first and second types . Finally, for
the particular case of the SO0 (l, n) groups, we give an interpretation of the Jacobi function of the second type
as a mean of a " hyperbolic Poisson kernel ."

Présentation. A chaque couple (a, f3) de nombres complexes est associée une
mesure w«,a(t) dt sur R + et à cette mesure un Laplacien : 0«,=(1/W(t )) dt ( (.O «,a (t) ) •
Les deux fonctions de Jacobi de 1-ère et de 2-ème espèce t --~ t) et t --~ I (X, t )
sont fonctions propres (linéairement indépendantes) de l'opérateur «,a pour la valeur
propre A2 + (a + /3 + 1)2 , et ceci pour chaque A E C .

La transformation de Jacobi (ou de Fourier-Jacobi), définie pour
fE Ll(R + , w(t) dt) par

2 2( $+ 1)«+,~

( f )(~)=	 f~f(t)p« (X , t)w« (t) dt,«'R

	

r(a + 1)

	

o

	

,a

	

,a

a été étudiée par différents auteurs et se réduit à la transformation de Fourier-sphérique
sur les groupes de Lie servi-simples non compacts de rang réel 1, pour certaines valeurs
demi-entières des paramètres a et fi. Nous retiendrons pour notre exposé les méthodes
analytiques de démonstrations établies par T . Koornwinder [9] .

Par ailleurs, le physicien G. A. Viano [14] souligne l'importance, dans le cas fi _ - 2
a = 0, d'une transformation intégrale associée à la fonction propre ~ o , _ 1 j2(X, t) _

Q - i / 2 + i X(ch t) (c'est la fonction de Legendre de 2-ème espèce) .
Cette transformation intervient dans l'étude de problèmes d'amplitude de disper-

sion en théorie des interactions fortes . G. A. Viano rattache cette transformation à la
géométrie de l'espace Riemannien symétrique S U(1,1)/SO(2), et lui donne un statut de
transformation de Laplace .

Nous allons dans cet article étudier systématiquement pour a, fi E C la transforma-
tion «,a définie par exemple pour f continue à support compact dans R + par

f )(X) =f .f(t)(~«,p(X,t)/C«,p(-X))dr

pour X E C, c« , a (- X) étant la fonction de Harish-Chandra . Lorsque a = a = - 2 nous
retrouvons la transformation de Laplace usuelle .

PLAN DE L'ARTICLE
1 . Rappels et notations .
2 . La transformation de Fourier-Jacobi .
3 . Des transformations intégrales fractionnaires .
4 . La transformation de Laplace-Jacobi .
5 . La formule d'inversion .
6 . Transformations de Bessel, opérateurs de Chébli .
7 . Transformations radiales sur certains groupes de Lie serai-simples .
8 . Éléments pour une interprétation géométrique : Noyau de Poisson

hyperbolique ; formule d'addition .
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Département de Mathématiques, Université Claude Bernard, Lyon 1, 69622 Villeurbanne Cedex,

France.
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1. Rappels et notations . Soit R le corps des nombres réels, C le corps des com-
plexes, Iii l'ensemble des entiers, R + _ ( t ER/t >_ 0), R + _ (tER/ t >0) et N * _ (nE
ICI /n >0) . Tous les espaces de fonctions sont à valeurs dans C .

Pour tout a, /3 E C, soit la mesure wa ~(t) dt = (sh t)2 «+ 1 (ch t) 2a+ 'dt sur R + .
Considérons l'opérateur 0 a,a formé à partir de wa,a par :

(1)

	

o

(z)

(3)

et

($)

1	d

	

d

	

d 2

	

d
wa ,R(t)

	

- 2 +[(2a+1)cotht+(2~3+1)tht]

	

.
w«,,a ( t ) dt

	

dt

	

dt

	

dt

Posons p = a + /3+1 ; soit pour tout A E C la solution t --~

	

t) de l'opérateur

(,+X2+p2)f=o,~«~

a,/3

solution telle que g7a,a(/l, 0)= 1 et r q~a , a ( A, t )I t_ o = 0 .
Pour a -1, -2, •• • laa fonction qua ,a(X , •) s'exprime à l'aide de la fonction

hypergéométrique :

A

	

F
p+iX p-iX

+ 1 •' -sh 2 tPa,a( ,t) = 2 l

	

2

	

2
	 •

a

De plus, si X - i, - 2i, • • •, il existe une deuxième solution de (2) linéairement
indépendante de (3), définie par la condition asymptotique suivante :

A, t) =e
_1 t

(l +e(t)) avec E(t) -* 0 lorsque t-~ + oo .

Cette solution s'écrit à l'aide de la fonction hypergéométrique :

A t= et-e_t i F fl-a+ 1-iX a+$+ 1-iX 1-i~ -1
(4)

	

a,a(

	

) (

	

)

	

2 1

	

2

	

'

	

2

	

,

	

;

	

2sh t

Les fonctions gp 3(A, •) et I a,R(X, • ) sont appelées fonctions de Jacobi de 1-ère et de
2-ème espèce et nous avons pour tout a, /3 E C, tout AE C, i A E Z, et tout t E R +

(5)

	

2~	 pa g(X, t) -Ca,p(X)I a>fl(%'t) +Ca,R(-X)Ia,fl(-X't)'
r(a+ 1)

ou

(6) c« ,a(a)=2P

est la fonction c de Harish-Chandra .
En particulier, nous avons :

(7 ) Ca,
a,_1,2(X)

- Ca,a(2 ) 1
F(a+ 2+ih)

r l 2̀ , r l 12
1X

1
t

	

1 1

	

1
	 + /321+iA 1 r (a-Q21+i~ 1

22«+' F(ia )

«,-1/2(A,2t)=4)a,a(2A,t),

	

p«,-1,2(X , 2 t) = q ,a(2 X ,t)

c_ 1/2, _ 1/2(X)= 1,

	

W_1/2,_1/2(t)= 1

cF_1/2,_1/2( X ,t ) -el~t,

	

q~_1/2,_1/2( A,t ) =cosXt .



2. La transformation de Fourier Jacobi. Lorsque Re(a) > -1, pour chaque XE
Ifs + , et chaque f E LI(R + , w« ,~(t) dt), la transformation de Fourier-Jacobi est définie
par :

22P/
(9)

	

«,R(f)(X)=f(X )_

	

.Î(t)9~«,R(~~t)w«,~(t)dt .
r(«+1) o

Lorsque f est de classe e°° et à support compact sur R + , alors « a(f)(X) se prolonge
en une fonction analytique en a, /3 et X . Lorsque Re(a) > - n -1 l'expression de ce
prolongement analytique est donnée par [9, la formule (3 .3)] .

Cas particuliers. a) a = /3 = - 2 ; _ 1/2, -1/2(f)(X) _

	

f°f(t)cos A t dt est la
transformation de Fourier en cosinus .

b) = 2 , a = (n - 2)/2 avec n E N * ; (n- 2)/2, - 1/2 est la transformation de Four-
ier sphérique associée au groupe SO0(n,1) .

c) /3 = 0, a = n -1 avec n E N * ; Vin- I,o est la transformation de Fourier sphérique
associée au groupe S U(n, 1) .

d) Pour les autres groupes de Lie-serai-simples non compacts, de centre fini et de
rang réel 1, nous avons la transformation de Fourier sphérique sur Sp (n ,1), avec
n = 2, 3, 4 , , en prenant a = 2 n -1 et /3= 1 ; enfin pour a = 7 et /3 = 3 nous avons la
transformation associée au groupe exceptionnel F4(- 20) .

Les résultats classiques sur ces transformations de Fourier sphériques se prolon-
gent aux transformations de Fourier-Jacobi et peuvent s'énoncer ainsi (cf . [9]) :

Formule d 'inversion . Lorsque Re(a) > - 2, et ~ Re(f3 ) l< Re(a + 1), g E
LI(R + ,(c(X )c«,,a(-A))-1 da),

(10)

	

âR(g)(t)=r(«
Voo
+i) f g(X)q(a,t)(c~,p(X)ca,a(-X)) 'aX .

Formule de Bessel-Parseval . Lorsque a et /3 E R, III < a + 1 alors la transformation
de Fourier-Jacobi se prolonge en un isomorphisme isométrique de L2(R + , 2 2Pw« , a (t) dt )
sur L2(R + , Ic,p(X)I 2 dX)

	

« - et pour toutf,gEL2(R+,22Pw«,a(t)dt), on a:

(11)

	

f~f\tlélt)22PWa,~(t)at=fo

Remarque. Plus que les résultats, ce sont les méthodes de démonstrations qui nous
intéressent. En voici les éléments essentiels .

Pour µ E C, Re(µ) > 0, pour a > 0 et s >_ 0, posons

	 1 f°°f(t)ashvtdt
(ch at - ch as )' -µ

lorsque! est de classe e°° à support compact dans R + .
Le prolongement analytique en µ de (12) est donné par

J.~~ d(chat)" (f)(t) (chata chos) l-µ-n
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22Pwa,~3( t)9pa,p(X , t)

MICHEL MIZONY

lorsque Re( .t) > -n. G 1Sµ est en fait la transformation intégrale de Weyl (cf . [5, Chap .
13]) et nous avons :

(14)

	

' ?iSô = id,

	

µ v

	

v ,

dt
1

	

dchat
pour tout µ, v E C .

De plus, ' ISµ est une bijection de l'ensemble des fonctions de classe ~°° sur R, à
support compact et paires, sur lui-même .

A l'aide de ces transformations intégrales, T . Koornwinder [9] établit les résultats
suivants :

(15)

	

a, 3' J ) - 23a+3/2 -1/2,-1/2 ° _ `Ua- fi ° -~fi+1/2 ( f )

formule valable pour tout a,/3 EC lorsque f est e°°, à support compact sur R + . Cette
formule est établie à partir des trois formules suivantes valables pour Re(a) > Re(/3) > -
2 et pourf de classe ~°° à support compact :

l1 16

	

(1) 23a+3/2,c~~-S 0 ~5+1/2(f )(5 )~-
o0

s
f(t)Aa , s(s,t)dt,

_r(«+1) ftcosxsAi3(st)dsa,, ,

- 23(a+1/2)2sh2t

	

t (chu-chs)a a '
(111) A «,a(s't) -

	

„~

	

,

	

Shudu
I'(a ~3)I'(~(3+2) s (ch2t-ch2u)

1/2

2 a +2a+3/2
1 2sh2t(cht)' 3 a(ch2t-ch2s)a 1/2

T(a+2)
1 ch t-ch sX 2 F1 a+a,a--~; a+ 2

; 2cht

A partir de la formule (13) est démontré le théorème de Palet'-Wiener ; cf . [9, théorèmes
(3.4) et (4 .2)] .

Soit e°(R) l'ensemble des fonctions paires à support compact sur R et de classe
°° . Soit C l'ensemble des fonctions analytiques sur C, paires et rapidement décrois-

santes, de type exponentiel .
THÉORÈME . (i) Pour tout a, /3 E C, a est une bijection de e°(R) sur 3C .
(ii) L'application réciproque est donée par

oc g(X)qa,a(a, t)
«,~(g)(t)=	 da

r(«+1) o ca,,a(X)ca,,a(-X)

lorsque IRe(/)I < Re(a + 1), et Re(a) > - i .

3. Un outil pratique : Les "transformations intégrales fractionnaires" . En
considérant les résultats exposés par Viano [14], à propos d'une transformation de
Laplace liée au groupe SL (2, R) (i.e. a = 0 et /3 = - ) et en utilisant les méthodes
brièvement rappelées ci-dessus, nous pouvons définir une transformation intégrale
attachée à la fonction de Jacobi de 2-ème espèce .

Soit A E C et f une fonction de classe t3°° et à support compact dans R + ; les
calculs montrent rapidement qu'au lieu de définir cette transformation par la formule



22'W/I'(a+ 1) f°f(t)I a , 1 (A, t)wa , i3(t)dt, (i.e. en recopiant la définition de la transfor-
mation de Fourier-Jacobi), il vaut mieux poser :

(17)

	

~«,a(f)(X)=Î(X)=f~f(t) ~âs(~
t)

dt .

Pour faciliter l'exposition des résultats, il nous faut d'abord introduire une trans-
formation intégrale de type transformation intégrale fractionnaire de Riemann-Liou-
ville; cf. [5, Chap . 13]; en plus de la transformation du type transformation intégrale
fractionnaire de Weyl, cf . formules (12), (13) et (14).

Soit 6>0 et ~ S l'ensemble des fonctions continues, à support inclus dans [6, + oo [ ;
nous noterons és l'ensemble des fonctions qui sont de plus de classe c3°° sur R + .

Soit a>0, t > 0 et f E es ; posons pour MEC, Re(µ) > 0 :

~µ(f)(t)=r~µ)fotf()S
(chat-chas)'

L'application µ - '&l,µ(f)(t) est holomorphe sur Re( µ) > 0 et si de plus f E ~s elle
admet un prolongement analytique à tout le plan complexe défini par :
(19)

Pua( f)(t) -	
1	

çt
dnf

(s)
	 dch as	

dèsque Re( + n ) > 0 .
F(µ+n) o d(chas)

	

(chat - ch as )'

Lorsque f est une fonction continue sur R + , la formule (18) garde un sens; mais
lorsque f est de classe e°° sur R + , l'expression (19) donne un prolongement analytique
de (18) sur le demi-plan Re(µ + n) > 0 si pour tout k entier variant de 1 à n,
lim t~ o(dk/d(chat)k )f(t)=0 .

De plus, on a les formules suivantes :

(20)

	

R/'J =1d ,

	

µ

	

, J~,y pour tout µ , v E C,

mµ1 dchatf I ~S ~ dchQS~µ~f

	

1 ( f )(s) pourtoutµEC, s>_0

et tout fE Ces .

Lorsque f est de classe c3°° sur R +,

	

,( f )(s)=(d/dchas)f(s)+f(0)T, où T est
une distribution de support {0} . Ceci provient du fait que

~°-i( .f )(t) =µlim e ~µ( .Î )(t)=.Î(O)	 	
µ

i ±(0) d has

	

(chat-

+		

r~µ+
2)

+t

2	 1	 /'t	 dÎ 2 (s)(chat-chas) dchQS .
F(+ 1) 'o d(chas)

Précisons enfin que pour tout µ E C et tout v >0, '3,° est une bijection de Ces sur Ces .
Écrivons en utilisant les transformations MIS' µet

	

les relations fondamentales
liant les fonctions de Jacobi entre elles :

a) La formule [9, (2.14)] valable pour t E R + , /3E C, X E C, Re( a) > -1 et Re( µ ) > 0
s'écrit

(21)

	

~a+µ,s+µlt ~ ~a+µ,s+µ ~~~t ~ -2-µ~2

	

) q,j3(X,

	

a . ~
r(«+µ+i)Snzt

	

-

	

µ( r(«+i)Sn2

	

) (t
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et s'étend, par exemple, à a E C, fi E C, A E C, µ E C, t E R + avec Re(µ) > -- Re(a) et
-(a+ 1)E.

b) La formule [9, (2.15)] valable pour t E R+, a E C, fi E C, X E C, µE C avec
Re(µ) > 0 et Im(X) > - Re(a + fi + 1) + 2 Re(µ) s'écrit :

(22)	 = 2 GZISµ	 (t)
Ca,a(-~)

et est prolongeable à tout µ E C, dès que Im(X) > - Re(a + fi + l) + 2 Re(µ) . Cette
formule (22) permet d'obtenir, en tenant compte de (5), "une formule duale" de (21) :
(23)

3µF(«+1)
C
«,a(X)C«,,~( -

X) ( ++ (x,µ,,aµ))(t)~r(a + µ + 1) Ca+µ,,l3+µ(X) Ca+µ,/3+µ( - X )

lorsque IIm(X)I < Re(a + a + 1) .
Cas particulier. Lorsque fi _ - 2, les formules ci-dessus deviennent, en utilisant (7)

et (5),
2«+l/2r(a+1)

	

1

	

(cosx .
(24)

	

Pa, - 1/2(7 )

	

shtJ~,«+l/2

	

sh .
)(t)«,-1/2(t)

et, lorsque Im(X) > -Re(a + 2 ),

(as) «,-1/2(X,t)-2-3(«+l/2)C«,-1 /2( - x ) 61S1(a+ l/2)( et? •) ( t ) .

Remarquons que les formules (21) et (24) permettent de réécrire (16)(ü) à l'aide des
transformations intégrales fractionnaires :
(26)

22pWa'R(t)~«,~(X,t) =23(a+l/2) r(«+1)sh2tl~,~+,/2 2 hs (

	

(C~h~
))(s)](t) .r

De même à l'aide de la formule (23) et de la formule suivante obtenue de manière
similaire lorsque fi _ - 2

2-3(a+1/2)r(a+ 1)

		

1
C«,-1/2(

X
)C«,-1/2(-X)~-(«+1/2)(COS% • )(t)r

on obtient une "formule duale" de la formule (26), valable lorsque IIm(X)I <
Re(a+f3+1) :

	«,~3(X,t)

	

2-3(«+l/2)r(a + 1)
~Ç-(/3+1/2) °

(Pour t = 0 cette formule nous donne une nouvelle évaluation de la mesure de
Plancherel .) Enfin, à l'aide des formules (22) et (25) on retrouve dans une autre forme
la formule [9, (2.17)] :

(27)
`~a,t3(X't) _

	

1/2) 2
2

	

~-a-l/2 ° ~~a-a(e )(t)
Ca,f3( -X )

'?iSs-a(cosX . )(t)

lorsqueIm(A)>-Re(a+a+l), Im(X)>Re(Q-a).



C'est cette dernière formule qui est le - point de départ de la transformation de
Laplace-Jacobi, objet de cet article .

4. La transformation de Laplace-Jacobi .
PROPOSITION 4 .1 . Soit f une fonction de classe e °° à support compact dans R + , soit

a, /3, X E C ; alors, pour Im(X) > Max(- Re(a + /3 + 1), Re(/3 - a)), on a

(28) ~

	

f )(X)
=2-3(«+1/2)e-

1/2, _ 1/2 sh~1a_ 0 chGJ~,? _ 1/2 shf

	

A) .«,a(

	

«

	

a

	

ch
)] (

La considération des pôles de ca,a ( -X)' permet de dire que (a, /3, A) ---
~a , a (~, t)/c a , a(-a) est holomorphe pour tout t > 0 dans la région Im(X) >
Max(- Re(a + /3 + 1) ; Re(/3 - a -1)) ainsi en utilisant la formule (27) après permuta-
tions d'intégrales, on a le résultat.

De plus, la formule (28) a un sens pour Im(X) > -- Re(a + /3 + 1) et la formule (17)
pour 2 (a + /3 + 1- i X) -101 et 2(a - /3 + 1- i A) -101 . Les formules (17) et (28) con-
stituent des prolongements analytiques l'une de l'autre .

Remarque 4.2. i) ~_ 1/2, -1/2 est la transformation de Laplace usuelle pour la
variable - i X . Ainsi, de même que la transformation de Fourier-Jacobi a,,a s'interprète
comme une généralisation de la transformation de Fourier en cosinus, la transforma-
tion a,a s'interprète comme généralisation de la transformation de Laplace .

ii) En utilisant les formules (5), (9) et (17) on a, pour f de classe e°° à support
compact dans R + , pour a, /3 E C, Re(a +/3+ 1) > 0 et pour A E C, Im(X)4 c
Re(a+/3+ 1),

(29)
2

ca,(X)c,(-X)

	

I2 ir

+(f(' )( .w«,R ))(-X)} .

et IRe(/3)I < Re( a + 1), on obtient une première formuleDe plus, pour Re(a) > - 2
d'inversion :
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	 2 2	f(t)	p~~ f +~ ~ ( .f(')w~,~('))(~)v~«,a(~~t)d)~ .
IX+1

LEMMA 4.3 . (cf. [9, Lemmes (2.1) et (2.2)]).

I

(i) Pour tout a, /3E C, a -N *, pour tout 6>0, il existe une constante K 1 > 0 telle
que pour tout t > S et tout A E C, Im(X) > 0, on a

(I,p(X
,
t)I~K1

e (Im(~)+Re(P))t
a

(ii) Pour tout a, /3E C, pour tout r>0, il existe une constante K 2 > 0 telle que, pour
tout XEC,Im(X)>_0,Im(A)?-Re(p)+r et Im(X)>-Re(a-/3+1)+r, on a :

1
~Kz(1 + I~IIRe(a)+l/2

c,,(-X)

Pour a E Ifs, soit es,a = {fE e8I3 K> 0, f( t )t ~ Ke at pour tout t>0}, et soit ~s,yu =
{IEeRIVkEN, ( dr ) nf E a } .

LEMME 4.4 . Soit f E eS,a et soit µ E C, alors Je,µ( f) E a+Re(µ) Pour a >0 ; c'est-à-
dire ~,µ est une bijection de es, a sur es,a+Q Re(µ) lorsque a >0.
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En utilisant le fait que pour µ, v E C, Re(µ) > 0, Re(v) > 0 et t > 0 :
a ((ch as)'-' )(t) = (F(v)/F( µ + v))[(ch at) µ+ v ~' -1 ], cf . [5, 13 .1 .(7)], on obtient, pour

a> -a, Re(µ)>0 et fEes,a : R (f) Ees,a+vReµ

	

(µ)
En remarquant ensuite que pour r E R et fE e s ,a on a e rtf E Gs, a + r, et du fait que

pour fEe° on a

d ~Jiµ( f ) (t ) =shat €R,µl
shas dsf~s~ l ~

t~ '

alors pour fEe°a, on a J'R7(f) E eS, a + a Re(µ) lorsque a > 0 et Re(µ) > 0. Enfin pour
µ E C on utilise le fait que si JE e a alors a 1(f ) _ (d/d ch at) fE fis, a -Q .

Remarque . Pour a~0, on obtient pour f E es,a , ~µ( f) E es,Max(o,a+a Re(µ)) •
PROPOSITION 4.5 . Soit a, /3 E C, X E C et a E R .
(i) Soit JEes , a ; alors X - , (f)(X) est holomorphe dans le demi-plan Im(X) > b =

Max(a -~- Re (p ), 0, - Re(p ), - Re(a -,- a + 1)) et pour tout r > 0 il existe K > 0 tel que

If)(X)I<K(1 + IXI)'~(«+I/2)e_6Im(x) pour tout X, Im(X) >_b+r .

(ii) Soit a > 0 et fEeS,a ; alors t -~ sh t[1},3 o ch JR,? J _ 1/2(f/sh ch)](t) appartient à

~s,a-Re(p)s en conséquence, pour tout k EN*, il existe K> 0, tel que

,~	e-SIm(~) dèsque Im(A)> a - Re«,,~(f)( )~

	

(p) •
(1+1X1)

(i) est une conséquence du lemme 4.3, appliqué à la formule (17) ; (ii) est une
conséquence du lemme 4 .4, de la proposition 4 .1. (formule (28)) et des propriétés
élémentaires de la transformation de Laplace _ 1/2, - I/2 .

Remarques 4.6 . (i) Soit D2 l'opérateur défini sur es, a par

d f(t) _	 d	f(t)
D2(f)(t)- dt 2sh

2t^sh2t

	

'dch(2t)sh2t

on a

D2(f)(t)
	 d

d h 2t f(t)- sh 2t1
coth2t t

f( )c

et pour tout k E 101, on obtient e«,~(Di (f )) = 23k9a+k,$+k(f ) •
(ii) Considérons le cas particulier fi _ - i ; un certain nombre de formules se

simplifient, notamment

e,) 2-3(«+'/2)~^t/2,_I/2sh,l ~(I/2)-a f

	

(X).«,_ I/2( f)( _
Sh

Ainsi, on peut reformuler sans difficulté la proposition 4.5(11), en considérant l'espace
de fonctions Par ailleurs, si l'on pose, pour f E G's, a, D 1(f) _ t(f (t)/sh(t)), on
obtient, pour tout k E 101, ç- 1/2 D1 = 23k~«+k, - I/2

(iii) Enfin, en considérant les formules (7) et (17), le cas particulier a = fi se ramène
au cas fi _ -2 par la formule

t 2 h = 1 _

	

t

	

lorsquefEesa .«,«( f( ))(

	

) 2 «, I/2 f 2

	

( )~

	

,

5. La. formule d'inversion. Pour établir la transformation inverse de la transforma-
tion de Laplace-Jacobi, procédons formellement en inversant la formule (28) .

Soit a, fi E C et soit X --~ g(X) une fonction holomorphe sur un demi-plan Im(X) > b,
et telle que fjt~~ g(a)e-leudX existe et ne dépende pas de a > b pour tout u E R + .



Nous avons alors :

«,,la(g)(t) =23(«+1/2) shtcht fi+1/2 ch

C'est-à-dire si, par exemple, Re(/3) > - 2 et Re(a) > Re( /3),

	 1	 t	 2 sh2sds	
~«,â(g)(t)=23(«+1/2)shtcht

	

1

	

1-fi-1/2r
(/3+)

o chs(ch2t-ch2s)

X	1

	

S

	

sh udu	
1

	

X 1 J ia+oo ~ e-i~ud~
«+,eI'(a_. ~3) o shu(chs-chu) -

	

g( )ia-- o0

et en intervertissant (toujours formellement) les intégrales :
ia+ 00e(- g)('

	

t)= 23(«+ 1/2) sh t ch t 1

	

g(X)X	
1	 t	2 sh 2s s

~a
_

	

) o chs(ch2ti-ch2s)

	

,/2
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(30)

et

(31)

X

	

1

	

fS

	

e-`sh udu

r
(
a-~3

)
~ JO shu(Chs-Chu

)1-a+,e

Posons alors, par définition, pour Re(a) > Re(/3) > --2
1

	

ea,R(X,t)= 23( « +1/ 2) shtcht GJ~,â+1/2

	

(t)ch

	

sh

J
ia+00

g(X)P« fi (X, t) dX .
ia- 00

-fi ( h~=~~2,-1/2(g))J(t) •

Étudions alors les conditions d'existence de ces formules (30) et (31) .
PROPOSITION 5.1 . Soit a, /3, X E C et t E R + . Lorsque Re(a) > Re(/3) > -2,

t)= fe t 'Aa,fi(s,Ô - t) ds, où Aa , a est défini par la formule (16) (iii) .
De plus, il existe une constante K? 0 telle que pour tout X,

Im(X) >0,

	

t) I<K(1 + t)e(xm(~)+R~(P))t .

Cette proposition est une conséquence de la définition de Aa,fi ; la majoration
repose sur son expression à l'aide de la fonction hypergéométrique.

Remarques 5 .2 . (i) Pour k E ICI, pour Re(a k) > Re(f3- k) > - 2 on a

k«_k,f3_k('t, t) =2--3kD2 tP«,/3( X , t) .

(ii) Lorsque a = /3 avec Re(f3) > - 2 , ou lorsque Re(a) > /3 = - i , a,,a a un sens, par
exemple

,~, _l/2(X,t)_23(«+l/2)sht~,«+1/2
shs )(t) .Y'a '

(iii) En utilisant la formule (16) (ii), on obtient la relation suivante lorsque Re(a) >
Re(/3)> -2 :

(32 )
2~

r(«+ i)
22' wa , a(t) «,a(X , t )

995



996

	

MICHEL MIZONY

(iv) En appliquant JL à la formule (30), on obtient pour tout u E C, Re(µ) > 0,

Pa+µ,p+µ( X, t) - 3'2 'P«,1(	X, s	 )33

	

sh 2t

	

2 fi`µ

	

sh 2s

	

t '
de même, en appliquant '3t'., à (ii) ci-dessus, on obtient pour Re( µ)> 0,

~`a+µ,--1/2(~~t) - 3 µ 1

	

«,-1/2(' ,s)
(34)

	

sht
	 -2 ~µ

	

shs

	

(t) .

Notations 5.3. Soit 8 > 0 et a E R, soit 3C s,a l'espace des fonctions holomorphes,
A ---* g(A ), sur le demi-plan Im(X) > a et telles que pour tout n E I J, il existe une con-
stanteKn> 0 pour laquelle ~g(X) ) < (K/(l + ~XI)n

)e-m().

THÉORÈME 5.4 . Soit a, R E C, a E R et 6>0 .
(i) Soit a >0,

	

est une bijection de nb>a es,b sur ri b>a 8,b-Re(p) •
(ii) De plus, si Re(a) > Re(/3) > - 2 , pour a > - Re(p ), la bijection réciproque est

donnée par g -~ g où g(t) _- fl,±~ g(X) a,a(X , t) d A est indépendant de b > a, et pour

g E &,a, g E es,a+Re(p)+E pour tout e>0 .
(i) est une conséquence de la proposition 4.5(ü) et des propriétés de la transforma-

tion de Laplace e _ 1/2, -1 /2' en utilisant la formule (28) .
(ii) Par la formule de Cauchy et la majoration de la proposition 5 .1, on obtient

l'indépendance de g(t) vis à vis de b > a . D'autre part, comme Ig(t) I
~ K(l + t) e b(t - s )e Re(p) t, lorsque b -* + oo , on obtient g(t) = 0 si 0 < t < 8 et, si b tend
vers a, on obtient I(t)I<

	

gK1e(Re( p)+a+~)t pour tout 8>0.
Comme gE JCs a , on a également

v t =23(«+1/2)shtcht

	

+1/2J~,2

	

o 1 :~,' _ Q l ~_
1/2
1

,_1/2 (\

	

tg()

	

~

	

h « t3 sh

	

g())() ;
c

en particulier g est continue donc g E e 8,a et par la proposition 4.5(i)

	

(g) = g.
Cas particulier : $ _ - 2 . En tenant compte des remarques 4.6(u) et 5.2(ü), la

théorème ci-dessus peut se reformuler sous la forme suivante dans ce cas limite .
COROLLAIRE 5.5 . Soit a E C, Re(a) > $ = - i , soit a > 0 et 6>0 . Pour fE

«,-1/2(f) E 6,a-Re(p)+E pour tout E>0 et pour b>a- Re(p)
ib + oo

f(t)= - j

	

e«,-1/2(f)(X)1p«,-12(X, t) dA .
lb-oc

Remarques 5.6 . (i) Un corollaire analogue peut être obtenu lorsque a = f3 en
utilisant les formules de passages (7) et la remarque 4.6(iii).

(ii) Soit -- Re(p) < a <0, pour Re(a) > Re($) > - 2 , pour gE5G80 et g paire, on a

1

	

zoo

	

22p+1

	

o0

g(t)=_Jr ! g(X)Pa,a(X,t)dX
=	r

	

g(X )w«,a(t)9(X , t) da .
I'(a+ 1)

	

o

1

(iii) Soit a, /3E C, Re(a) > Re(/3) > -2, soit 0 < a < Re(p) et soit fE C°0 , les deux
formules d'inversion sont valables et on a donc :

+ o0

	

22p

	

f
+ o0

f(t)_-- f

	

«,a(f)(X),(X, « at)dX=

	

«,,~(fw«,a)(a)~«,a(~~t)da .
-oc

	

r(a+ l)VTT - «c

Si de plus, a,/3 E R et f à valeurs réelles, on a « , a ( f )( - X)

	

f ) ( X) et donc
	 22	

r(IX+l)V~r f~
oc2Re[( ' Wa, /j)(X)

Jq
aÎi(Â,t)dX

;
f(t)=	

on retrouve la formule [1, (3.13), théorème 3.5], de R. Carroll .
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6. Transformations de Bessel; opérateurs de Chebli . Une situation analogue à la
transformation de Laplace-Jacobi est fournie par une transformation de Bessel .

Soit la mesure A (t) dt = t 2 v+' dt sur R + ; où v E C .
Soit v = (1 /A v(t )) ,(A v (t) %) ; dans ce cas p =1im t~ ~( Av( t )/A v( t )) = 0 .
Considérons q (X, t) et I (X , t) les solutions de l'opérateur de Bessel : & v = -

X2

pour X EC ; ces solutions vérifient :

p (X, 0 ) = l,

	

9w(X,O)O,=
~v(~,t)ty+1~2=e`~`t(1+~(t)) avece(t)--*O quand t-* oc .

On a p (A, t)=r(v+ 1)(X t/2)-'Jv(Xt) et ~v(J~, t)=((--i~)'~2/~r)(Kv(-i~t)/tv) où Jv
est la fonction de Bessel de 1-ère espèce et K v une autre fonction de Bessel (parfois
appelée fonction de Bessel de 3-ème espèce) .

Soit la transformation que nous appellerons transformation de Laplace-Bessel :
E„(f)(a) = f°f(t)F(X, t )t 2v+' dt . Alors en utilisant les propriétés de la transformation
de Meijer, cf. Ditkine et Proudnikov [3, Chap . III], on obtient la transformation
réciproque :

~»(g)(t) =
ic+

f 00g(X,p(X,)

	

t)X "2dX ,
v

rc- o0

où v ( ~, t) _ (- 1)'/ 2 (- Z X t)-vJv( X t) est proportionnelle à qw(X, t) .
Il nous semble que le contexte général pour unifier ces transformations de Laplace

généralisées soit celui des opérateurs de Chébli :
Soit A(t) dt une mesure sur R + définie par une fonction A vérifiant les hypothèses

suivantes (cf . H. Chébli [2]) :
1 0 ) a E R, A'(t)/A(t) = a/t + B(t) où B est une fonction de classe °° sur R et

impaire .
2°) A(0) = 0, A croissante et A tend vers l'infini avec t ; A'/A décroisante.
Posons p = 2 lim r ~( A'(t)/A(t )) ; soit DA l'opérateur (l /A(t )) t (A(t)

d) ; pour
AE C ; il existe une solution pA(X, t) de LA f = -(X2 + p2 )f telle que pA(a, 0) =1 et
p (X, 0) = 0. De plus dans les cas importants que nous avons vu, il existe une deuxième
solution linéairement indépendante de ~A telle que

~A(A,t)~A(t)=e(1+E(t))

	

(avece(t)-O

	

~quandt--zoo) .

Dans ce cadre, la A-transformation de Fourier f-~ A ( f) est bien définie par

( f)(X) -fo°°f(t)qA(X>t)A(t) dt .

Une analyse harmonique a été établie (théorème de Plancherel, formule d'inversion,
théorème de Palet'-Wiener, etc.) par H. Chébli [2] et plus récemment développée par K .
Trimèche [13].

On peut alors définir une A-transformation de Laplace en posant eA(f)(a)_
f°f(t)IA(X, t)A(t) dt, ou encore, en tenant compte du coefficient de normalisation
cA(a) défini à partir du Wronskien W de tA(A, .) et cpA(A, .) par la formule

-2Z~cA(~)-A(t)WC~A(-~~t)~~A(~~t)~~

on peut définir la A-transformation de Laplace en posant par exemple :

°~

	

~A(~~t)
(35)

	

eA(f)(X )=

	

f( )	 dt.
o

	

cA(~)
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Pour avancer dans l'étude d'une A-transformation de Laplace, on pourra partir des
transformations intégrales de Riemann-Liouville et de Weyl généralisées associées à la
fonction A(t) par K. Trimèche [13] . Ces transformations sont liées à l'opérateur de
transmutation tel que : (L1A + p2)'X f = X (d 2/dt 2 )f (voir également J . L. Lions [10]) .

7. Transformations radiales sur certains groupes de Lie semi-simples . Le corps K
désigne soit le corps R, soit le corps C, soit le corps H des quaternions . Soit d= dim~(K)
et soit p et q deux entiers strictement positifs . Soit K p+ q muni de la pseudo-métrique
(p, q) associée à la pseudo-norme définie pour x(x) 1= i ~ _

, . . .
p+ q par I I x I I p,q p 1 I x j 1 2

- ~?=+p 11x112 .
Considérons les groupes de Lie connexes semi-simples et leurs sous-

groupes suivants qui agissent canoniquement sur K p + q en laissant la pseudo-métrique
(p, q) invariante :

[7]

Soit G =KAN la décomposition d'Iwasawa de G relative au sous-groupe compact
maximal K. Il existe un sous-groupe à un paramètre Ao de A tel que nous avons une
décomposition du type Iwasawa et une décomposition du type Cartan relatives au
sous-groupe H. Plus précisément, soit WH,K le groupe de Weyl défini par WH, K =
MHnK(Ao)/MHnK(Ao) où MHfK(Ao) est le normalisateur de Ao dans Hfl K et
MHnK(Ao) est le centralisateur de A o dans H f1 K .

PROPOSITION 7.1 . (Oshima et Sékiguchi [11]). i) Décomposition du type Iwasawa : il
existe un sous-groupe nilpotent No de G tel que G =HA oNo et tel que si g EHAoNo, la
décomposition est unique .

ii) Décomposition du type Cartan : G = KAoH ou plus précisément K/MH nK (A o) X
(A0 - { e))/WH,K s 'identifie à un ouvert partout dense de l 'espace pseudo-riemannien
symétrique G/H.

iii) Une mesure de Haar dg sur G s 'écrit : dg = dkAp, q, d (t) dt dh sur la décomposition
G = KAoH où dk et dh sont des mesures de Haar sur K et H respectivement et où
Ap , q,d(t)=(sh t)'

	

'(ch t) dp-1 .

iv) La restriction de l 'opérateur de Casimir à l 'ensemble des fonctions analytiques
sur G, invariantes à droite par H et à gauche par K est donnée par :

d2

	

d[2d(p+q+2) -8] -+[(dq-l)cotht+(dp-l)tht] SZ= 2 .
dt

	

dt

Cette proposition (très classique pour p =1) résume des cas particuliers de résultats
établis par Oshima et Sékiguchi [1 1 ] lorsque q= 1 et par Sékiguchi [12] lorsque p > 1 et
q > 1 . Ces auteurs, en utilisant également une décomposition du type décomposition de
Bruhat à partir du sous-groupe Mo centralisateur de Ao dans H, étudient une frontière
F = G/MoA oNo de l'espace pseudo-riemannien symétrique G/H et définissent une
transformation de Poisson pour laquelle ils obtiennent des résultats analogues à ceux
(classiques) correspondant aux espaces riemanniens symétriques . Voir également Faraut

Ainsi, l'espace des doubles classes K \G/H s'identifie à R + (parfois à R lorsque
q = d=1), muni de la mesure Ap, q , d(t) dt et du Laplacien (1 /Ap , q, d (t )) dt (Ap, q, d (t) t ).
Nous avons donc une transformation de Fourîer (dq_2)/2, (dp_2)/2 et une transforma-
tion de Laplace e(dq_2)/2, (dp_2)/2 pour les fonctions sur G invariantes à droite par H et

d=1 d=2 d=4
G= SO0(p, q) G= SU(p, q) G= Sp(p, q)
K- SO(p) X SO(q) K= S((U(p)X U(q))) K=Sp(p) X Sp(q)
H=SO0(p--1,q) H~S(U(p-l,q)XU(1)) H=Sp(p-1,q)XSp(1)



à gauche par K. De plus, lorsque dp < dq+ 2 la formule (10) précise la transformation
inverse de la transformation de Fourier, et lorsque p ~ q le théorème 5 .4 précise la
transformation inverse de la transformation de Laplace .

8. Eléments pour une interprétation géométrique sur les groupes G = SO0 (l, n) .
Dans ce paragraphe, nous examinons le cas particulier /3_ -i , Re(a) > - 2 . En effet
pour a = (n- 2)/2, où n est un entier supérieur ou égal à 2, l'interprétation géométrique
passe par le groupe SO 0(l, n) .

RAPPELS . Soit G = SOo (1, n), soit G = KAN sa décomposition d'Iwasawa, KA + K,
celle de Cartan. Soit M le centralisateur de A dans K, K = SO(n); A R, M SO(n -1) ;
soit H - S00(1, n --1) le sous-groupe de G admettant M comme sous-groupe compact
maximal.

Les fonctions sphériques 1, , _ 1 , 2(X, t) sont les moyennes d'une puissance du
noyau de Poisson, moyenne sur le bord K/M de l'espace homogène G/K. Le noyau de
Poisson P(g, y) défini sur GX K/M étant la dérivée de Radon-Nikodym de l'action
canonique de G sur K/M: G/MAN . Plus précisément, soit g E G et y= g1 Er=K/M
= G/MAN, alors g • y = gg 1 E r; soit d y la mesure image sur K/M de la mesure de
Haar dk sur K, alors P(g, y) _ (dg • y)/d y c'est-à-dire pour toute fonction continue! à
support compact sur F, fj(g . y)P(g, y) d y = ff(-y)d-y,r d'où la formule de 2-cocycle
vérifiée par le noyau de Poisson P(g 1 g 2 , y) = P(g 1 , g 2 ' y)P(g 2 , y) pour g 1 , g2 E G et
y E F. Cela s'exprime par la formule :

F(a + l)	(sinO )2"dO	(36)

	

~a,-1/2 ( ~ , t) -

	

,

	

1/2+a-i~ '~I'(a+2) o (cht+shtcos8)

formule valable pour Re(a)> - 2 . Cette formule s'obtient directement en faisant le
changement de variable es -_= ch t + sh t cos B dans la formule :

2«+1

	

F(a+ l) t2 w«,_I/2( t )Ç)«,-1/2( ,t) =

	

J cosXsA«,_1/2(s , t)ds
VIT

	

o

où
23(«+ 1/2) sh tA «, _ 1/2 s, t

r(a+2)(cht-chs)

cf. formule (16)(ü), (iii) . Dans ces formules, t paramètre le sous-groupe A de SOo(1, n) .
Peut-on trouver une formule similaire à (36) pour les fonction «, -1 /2(A, t)?
PROPOSITION 8 .1 . Pour Re(a) > - i et pour Im(X) > Re(a) - i ,

2-2«r( 1 _. iX )

	

[+ 00	
(sht	)

2«dtp
(37)

	

~«, -- 1/2( ~, t)-

	

2+«i~--r(a+ 2)F(_.2 a-aX ) o

	

(cht+shtch*p) /

Cette formule (37) se trouve dans l'article de L. Durand [4, formule (16)]. Cette
formule nous suggère de la réaliser comme moyenne "d'un noyau de Poisson hyper-
bolique" sur un "bord" de l'hyperboloïde SO0(l, n)/SO(n) réalisé dans R n + 1 ; c'est ce
que nous allons faire :

Quelques notations. Soit G = SOo(1, n), soit K= SO(n) le sous-groupe compact
maximal de G et M = SO(n - 1) le centralisateur de A dans K, où A est le sous-groupe
de G provenant de la décomposition d'Iwasawa de G =KAN. Soit H= S00(l, n-1) le
sous-groupe non compact de G admettant M comme sous-groupe compact maximal .
Soit P = MAN le parabolique minimal de G .

TRANSFORMATION DE LAPLACE--JACOBI
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Nous noterons encore X = G/K l'espace riemannien symétrique et F = G/P = K/M
sa frontière ; nous noterons encore r1 = H/M une frontière de l'espace affine symétri-
que G/H; pour plus de précisions on pourra se reporter à [11] dont les propositions
1 .10 et 2 .7 permettent de dire que H X A X N -* HAN est un diffiomorphisme de H X A
X N sur un ouvert de G et que F 1 peut s'identifier à un ouvert de r. Plus précisément :

Soit

Soit

Soit

Soit

cht sht
- sht cht

	

/tER ,

	

A + ={at EA/tER + } .
In-1

cos O - sin B

	

8 E 0 2 1r

	

A + = k EA B E 0 irsinB

	

cos O

	

/

	

K {9/ [} .

In-2

1 ch p 0 sh
0

	

1

	

0

	

EI~

	

A+= h EA

	

EO$sh

	

0 ch
In-2

1
M= j -

	

1

	

/m ESO(n -1) ,

	

W= {In+l, k,~}
Nm

Nous utiliserons les décompositions de Cartan de K et H: K- MAK M et H=
MAHM munis des mesures dk = dm (sin O) 2- 2 d 8 dm et dh = dm (sh )n-2 d dm, où dm
est la mesure de Haar normalisée sur M. Le groupe G agit canoniquement sur l'espace
de Minkowski Rn+ ' . Soit C le cône de R n + 1 et E l'ensemble des génératrices de ce cône
C. Par l'application

F s'identifie à E et par

k -kk

g -*g

1
1
0

0

o

1

o,
l'espace symétrique G/K K/M X A + s'identifie à la nappe supérieure de l'hyperboloïde
à deux nappes de R" .+'
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D'autre part G agit canoniquement sur I , ; soit P(g, y) la dérivée de Radon-Niko-
dym de cette action sur I' M/M' X AK muni de la mesure dm dû, où M' est le
centralisateur de AK dans M et drii la mesure canonique sur M/M'. On a (cf. [6] par
exemple)

f
(

	

(n-1)/2-iXP at , y)

	

dy
F

où d y = dm(sin 8 )n 2 d 8 est la mesure canonique sur K/M. De plus par l'identification
entre F et nous retrouvons exactement la formule (36) .

Interprétation gémétrique de la formule (37) . Soit

1
1
0

a t . (rn,h),~

1
1
0

ro

=H~1

-- Hk,r

t

10

alors la frontière F =H/M- M/M' XAH s'identifie à 1 , partie ouverte de ~ ; soit

1
1
0

c'est la deuxième frontière de l'espace affine symétrique G/H que l'on peut identifier à
l'hyperboloïde à une nappe de R n+ 1 . Les espaces 1 et ~ 2 sont deux ouverts disjoints de

et leur réunion est partout dense dans , cf. [il] .
G agit sur ~ ; considérons G 1 l'ensemble des éléments de G laissant ~ 1 stable; on

obtient
LEMME 8.2 . (i) Pour a t ~ et a t2 EA + et pour h, J E H, on a a t~ h a t2 = h l a t h,~ 2 , où h

et h,~ 2 EH et où a t unique dans A+ est défini par cht = ch t 1 ch t 2 + sh t 1 sh t 2 ch,, .
(ii) G 1 est un sous-serai-groupe de G, égal à HA + H. Plus précisément, pour tout

élément g E G 1 , il existe h,~, et h,1, 2 EH, et un unique élément a t EA + tels que g= h,,, a t h,~ 2 .
(i) Provient d'un calcul matriciel évident et (ii) est une conséquence de (i) et du fait

que G 1 est le sous-serai-groupe de G engendré par H et A + .
Soit ~ 1 paramétré par r 1= M/M' X AH et muni de la mesure associée dy 1 =

dm(sh )n-2 d/' . Posons Q(g, y1 ) la dérivée de Radon-Nikodym de l'action de G1 sur
muni de la mesure dm d : on a Q(h, Y 1)= 1 ; calculons Q(at , y 1 ) = Q(at , (m, h,,)) :

(chIP'

	

sht+chtch~y ~
cht+shtchljl
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posons

(38)

	

~(n-2)/2, -1/2( X , t) -

at • ( rn,h),y

1
1
o

o,
on obtient par un calcul élémentaire :

drri(t)dp(t) _ d¢(t)	1	
dmdp

	

d~

	

cht+shtch/'

Ainsi on peut réécrire la formule (37) de la manière suivante :
PROPOSITION 8.3 . Lorsque Im(J1)>9- on a :

22 'F(1

-(rn(t),h(l))y

. x

1 n 2 1 1 r \ 3 2 n_
iX)

1
o

f Q(at , Y1)(n`
1)/2_t Xd

ylr,

C'est-à-dire les fonctions de Jacobi de deuxième espèce sont moyennes du noyau
de Poisson hyperbolique Q(at , y l ) sur la première frontière S00(1, n -1)/SO(n -1) de
l'espace riemannien symétrique S00(1, n)/SO(n ) .

Remarque . Soit a E C, Re(a) > -2, définissons une action de t E R + sur E R +
définie par t . _ (t) tel que ch (t) -= (sh t + ch tch p)/(ch t + sh t ch') on a Q(t, t) _
d t(t)/dP _ (cht + sh t ch p)- ' . Ainsi 4)a, _ 1 /2(X, t) apparaît comme moyenne sur R +
muni de la mesure (sh )2a d du noyau de Poisson hyperbolique Q(t,1 ) .

Formule d 'addition des fonctions de Jacobi de 2-ème espèce . Considérons 4) comme
une fonction définie sur G 1 , bi-invariante par H, en posant :

~(n-2)/2, -1/2( ~ ~ h 1 a th2 ) - ~(n-2)/ 2 , -1 /2 ( ~' t )'

En utilisant le lemme 8.2 et la proposition 8 .3, on obtient par des arguments classiques
la formule d'addition suivante (cf ., mutatis mutandis, la démonstration dans P. Eymard
[6, théorème 4]) .

PROPOSITION 8.4 . i) Pour tout g1, g2 E G 1 et pour tout y E r1

Q(g2g1,y)= Q(g2,g1 . y)Q(g1,Y) ;

ii) pour tout g 1 , g2 E G 1 et pour Im(X) > 9 :3

(39)

	

(n-2)/2, - 1/2( X g1 ) (n_2)/2, - 1/2( X, g2)

22-"r(1-1X\1

r
(
n-1 1r(3-n

	

)2 )

	

2
On retrouve un cas particulier important d'un résultat récent de L. Durand, cf. [4],

que l'on peut écrire comme suit : Pour Re(a) > - i et Im(X) > Re(a) - i

2 - 2ar(1 x
- r(a+2)r(2-«-iA)

Xf~4, -1/2(X,Argch(chtl ch t 2 +sht1 sht 2 chp))(sh4)2ad1p .
0
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Note. M. J . Faraut me signale, entre autres résultats, qu'il vient de munir l'espace
des fonctions à support dans G 1 , et bi-invariantes par H, d'une structure d'algèbre de
convolution commutative telle que les fonctions «, -1 2(X, g) définissent des caractères
de cette algèbre .

REFERENCES

[1] R. CARROLL, Some inversion theorems of Fourier type, preprint (1980) .
[2] H . CHÉBLI, Sur un théorème de Palet'- Wiener associé à la décomposition spectrale d 'un opérateur de

Sturm-Liouville sur ]0, + oo [, J. Functional Anal. 17 (1974), pp. 447-461 .
[3] V . DITKINE AND A. PROUDNIKOV, Transformations intégrales et calcul opérationnel, Editions MIR,

Moscow, 1978 .
[4] L. DURAND, Nicholson-type integrals for products of Gegenbauer functions and related topics, dans Theory

and Application of Special Functions, R . Askey, Academic Press, New York, 1975 .
[5] A. ERDÉLYI ET AL ., Tables of Integral Transforma, McGraw-Hill, New York, 1954, vol . 2 .
[6] P. EYMARD, Le noyau de Poisson et la théorie des groupes, Symposia Math., XXII, INDAM, Rome, 1977,

Academic Press, New York, 1977, pp . 107-132.
[7] J . FARAUT, Distributions sphériques sur les espaces hyperboliques, J . Math. Pures Appl ., 58 (1979), pp.

369-444.
[8] S . HELGASON, Functions on symmetric spaces, Proc. of Symposia in Pure Math., 26, 1972, American

Mathematical Society, Providence, RI, 1973, pp . 102-146 .
[9] T. KOORNWINDER, A new proof of a Palet'-Wiener type theorem for the Jacobi transform, Ark. Mat., 13

(1975), pp . 145-159.
[10] J. L . LIONS, Opérateurs de Delsarte et problèmes mixtes, Bull. Soc. Math . France, 84 (1956), pp . 9-95 .
[Il] T. OSHIMA AND J . SEKIGUCHI, Eigenspaces of invariant differential operators on an affine symmetric space,

Inventions Math., 57 (1980), pp . 1-81 .
[12] J. SEKIGUCHI, Eigenspaces of the Laplace-Beltrami operator on a hyperboloid, Nagoya Math. J ., 79 (1980),

pp. 151-185 .
[13] K . TRIMECHE, Transformation intégrale de Weyl et théorème de Palet'- Wiener associés à un opérateur

différentiel singulier sur (0, oc), J. Math. Pures Appl ., 60 (1981), pp . 51-98 .
[14] G . A. VIANO, On the harmonic analysis of the elastic scattering amplitude of two spinless particles at fixed

momentum transfer, Ann. Inst . H . Poincaré Sect. A, 32 (1980), pp . 109-123 .



SlAM J. MATH. ANAL.
Vol, 14, No. 5, September 1983

(C) 1983 Society for Industrial and Applied Mathematics

0036-1410/83/1405-0014 $01.25/0

AN INEQUALITY OF THE MARKOV-BERNSTEIN TYPE
FOR POLYNOMIALS*

L. MIRSKY?

To Professor Alexander Ostrowski on his 90th birthday

Abstract. Let -o <---a<b<-o and denote by w: (a,b)R a positive and integrable function, with all
moments

fba tnw( t) dt

finite. For any polynomialf with complex coefficients, we write

][fl]: ( gif(t)]2w(t) dt }1/2.
Then there exists a constant ,,, (depending on a,b, w but not on f) such that, for every polynomial f with

complex coefficients and of degree -< n,

II/’ll-<vll/ll.

An admissible value for ,, can be expressed very simply in terms of the system of orthonormal polynomials
associated with the interval (a,b) and the function w.

1. Let fbe a polynomial of degree n with complex coefficients, and write

E. Schmidt [3] stated, without proof, the inequality

IIf’ll (n+ 1)2 I[fl[, (1)

and R. Bellman [1] established this result in a remarkably simple and elegant way by
using elementary identities for derivatives of Legendre polynomials. It is not difficult,
by pursuing Bellman’s method a little further, to improve the constant (n+ 1)2/x/ to
n2/2v/+O(n). However, there is little point in this elaboration since, by a more
sophisticated method involving properties of ultraspherical polynomials, Hille, Szeg6,
and Tamarkin [2] had previously strengthened (1) in a much more decisive fashion.

In the present communication we follow in the footsteps of Bellman by establish-
ing a more general result of the same type as (1).

2. Let <_a<b<_; let .w: (a,b)R be positive and integrable; and suppose
that all moments of w, namely

fabtnw( ) dt ( n >--O),

Received by the editors October 20, 1982.
Department of Pure Mathematics, University of Sheffield, Sheffield, $3 7RH England.
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A MARKOV-BERNSTEIN TYPE OF INEQUALITY "1005

are finite. We recall the existence of a sequence (Pn: n_>0) of (real) polynomials such
that degpn--n (n _>0) and

pm(t)Pn(t)w(t) dr-- rnn (m ,n -->0). (2)

(These polynomials are unique to within factors +-- 1.) It follows, in particular, that

fabtkPn(t)W(t)dt--O (0_<k<n). (3)

For any polynomialf (with complex coefficients) we shall write

PROPOSITION. There exists a number n 7n( a, b; w) such that, for every polynomialf
with complex coefficients and of degree not exceedng n, we have

IIf’li_<llfll. (4)

A routine verification shows that it suffices to establish (4) for polynomials with
real coefficients. We may clearly write

f(t)- CkPk(t ), f’(t)-- djpj(t),
O<k<n O<j<n--I

where the c’s and d’s are uniquely determined. Hence, by (2),

Next, put

so that plainly, by (3),

Now we have

Okn

Hence, for 0j n 1,

Okn

and so

Thus, by (5),

Ilfll2- E c, IIf’l[=- E dff.
O<k<n O<_j<_n--I

ekj--fabp’k( )pj( )w( ) dt

ekj--O (k<_j). (5)

ckp(t)-- E drPr(t) (=f’(t)).
O<_r<_n--

cp’( )pj( )w( ) E drPr(t)pj(t)w(t)
O<_r<_n--I

O<_k<_n
Ckekj--dj

j+l<_k<_n
Ckekj.
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It follows that

"< Ck
j+l<_k<_n_ _

Ck
O<k<_n j+l<_k<_n

2=llfll = E e..
j+l<_k<_n

j+ <_k<_n
ekj

ekj

The proof of (4) can now be completed at once by observing that

IIf’ll=- E dfi-<llfll = ] e. (6)
O<_j<--n-- O<_j<_n-- j+ <--k<--.n

and that the double sum on the right-hand side of (6) is independent of f. However, by
a slight elaboration we can obtain a very simple formula for an admissible value of 3’ in
(4).

We have

ej ’(t)wit) pj(t)/w(t dt

<_f(p’(t))w(t)dt f[p(t)w(t)dt-
Hence, by (6),

Ilf’[[2-< [[f[[ E E ]p[2
Ojn-- j+ kn

lkn Ojk-I lkn

Ts completes the proof of the proposition, with the value of V given by

v- E kllPll (7)
k=l

3. Let us denote by F, the least adssible value of in (4). To put it another
way, let

r,-sm IIf’ll/llfll,

where the supremum is taken with respect to all (nonnull) polynoals f with complex
coefficients and of degree n. By the discussion in 2, we know that

L kllpll = (8)
k=l

The main interest of ts result is, however, qualitative, for the bound specified by (8)
can be very crude. Consequently, if an accurate estimate of V is needed it is better to
pursue an ad hoc approach rather than rely on (8). We shall illustrate ts remark by
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considering the case a--o, b-, w(t)-e- which gives rise to the orthogonal
system of Hermite polynomials. We shall now write

Ilfll - f_ If(t)}ue- dt.

We recall that the Hermite polynomials (Hn" n_>0) are defined as coefficients in the
expansion

and that they satisfy the relations

ot

t)

o

Hm(t)H.(t)e- dt l/22nnlSmn. (m,n>--0), (9)

H,(t)-2nHn_l(t ) (n>_ 1). (10)

Let f be a polynomial of degree at most n. (As in the earlier discussion, it suffices
to consider polynomials with real coefficients.) Write

Then, by (9),

Again, by (10), (9), and (11),

S’(t)- 2
l<_k<_n

{/’(t1}2-4

f(t)- , xn(t).
O<_k<_n

Thus

II/11’- E x’/:2’< !. (11)
O<_k<_:n

XkH(t)-2 2 kXkH-l(t),
l<_k<_n

kjXkXjHk-l(t)Hj-i(t),
l<_k,j<_n

IIf’ll-4 2
l<_k<_n

=2

k2Xrri/22,-l(k-1)!

kX2rri/22kk <-2n X2rrl/22’k
l<_k<_n

I’,, < (2n) 1/2

Moreover, for the special choice f(t)-H(t), it is easy to verify from (9) and (10) that
IIf’ll-(2n)1/2 IIf II. Therefore

F,,- (2n) ’/2 (12)

Let us compare this with the result obtained by the application of the general
formula (8). In view of (9), the polynomialsp are given by

Xn-- (,n’llZ2nn !) -112.
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Hence

n--1
pn_l(t)--(2rl)l/2pn_l(t),

e-’2dt-2n p_,(t)e- dt-2n,I[(t) (p()} ,

2k 2

k=l

F-O(n3/2).
The contrast between this estimate and (12) is evident.
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THE e-ALGORITHM AND PADI-APPROXIMANTS IN OPERATOR
THEORY*

ANNIE A. M. CUYT

Abstract. The e-algorithm of Wynn is closely related to the Pad6-table of a univariate function in the
following sense: if we apply the e-algorithm to the partial sums of the power series f(x)=,=oCiX then

em) is the (/,m) Pad6-approximant to f(x) where is the degree of the numerator and m is the degree of
the denominator [C. Brezinski, Algorithmes d’accblbration de la convergence, Editions Technip, Paris, 1978,
pp. 66-68]. In this paper we see that the Pad-approximants for nonlinear operators F: X Y, where X is a
Banach space and Y a commutative Banach algebra, introduced in [Springer Lect. Notes in Math. 765, 1979,
pp. 61-87], satisfy the same property as the univariate Pad-approximants.

1. Pad6-approximants in operator theory. We briefly repeat the definition of
Pad6-approximants in operator theory and a determinental formula for their calcula-
tion. More details can be found in [3] and [4].

Let X be a Banach space and Y a commutative Banach algebra (0 denotes the unit
for the addition and I the unit for the multiplication). Let F: X- Y be analytic in the
open ball B(O,r) with centre 0 Xand radius r>0 [5, pp. 113]:

F(k)(0)xk for It’ll<r,E
k=O

where F(k)(o) is the kth Fr6chet-derivative of F in 0 and thus a symmetric k-linear
bounded operator, and (1/O!)F()(O)x-F(O).

DEFINITION 1.1. F(x)--O(x) (kEN) if nonnegative constants r< and K exist
such that IIf(x)ll<_gllxll k for IIxllr.

Write D(F)-(xXIF(x) is regular in Y, i.e. there exists y Y: F(x).y-I-
y- F(x)}. We shall denote byy- the inverse element of y in Y for the multiplication in
that Banach algebra.

DEFINITION 1.2. An abstract polynomial is a nonlinear operator P" X-, Y with

P(x)=Ax +A_x-+ +Ao, whereA is a symmetric/-linear bounded operator
(i-0,...,n) [5,pp. 194].

DEFXYXXXON 1.3. The couple of abstract polynoals

(P(x), Q(x))- E nm+iXnm+i, E Bnm+jXnm+j
i=o j=o

such that the abstract power series (F. Q-P)(x)-O(Xnm+n+m+l) is called a solution of
the Padb-approximation problem of order (n, m). The choice of P(x) and Q(x), or in
other words the translation of degrees in P and Q by n.m, can be justified as follows
[3]. Write CkXg-(l/k!)F<)(O)xe.

The condition in Definition 1.3 is equivalent with (la) and (lb):

(la)

Co Bnmxnm AnmXnm
ClX BnmX"m + fo Bnm+ 1xnm+ --Anm+ xnm+

m+n--A XCnXn BnmXnm +... q- CO B,,,.+,,x"

VxX,

Vx X,

nm+n Vx_.X,

*Received by the editors December 10, 1981, and in revised form June 12, 1982.
fAspirant N.F.W.O. (Belgium),University of Antwerp, Department of Mathematics, Universiteitsplein l,

B-26 l0 Wilrijk, Belgium.
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1010 ANNIE A. M. CUYT

nm+jwith BnmjX 0 ifj>m;

Cn+lXn+l .Bnmxnm..l_ .._Cn+l_mxn+l-m .Onm+mxnm+m-O Vx._.X,

(lb)

Cn+mxn+m Bnmxnm-+- + Cnxn Onm+mxnm+m-o Vx X,

with Ckxk0 if k<O. A solution of (lb) can be computed by means of the following
determinants in Y; these formulas are direct generalizations of the classical formulas
for the solution of a homogeneous system of m equations in m/ unknowns Bnm+jXn’+j
(j-O," .,m):

The nm-linear bounded operator

Cnxn
xn+

Cn_l+mxn-l+m

the (nm +j)-linear bounded operator

l_mxn+ l-m
n+2_mXn+2-m

C,,x"

n--l+m
+mx

n+lCn+ x

Cn+mxn+m

j th column in B,,,,,x
replaced by this column

Cn+l_mXn+l-m

Cnxn
nmWjBnm+jX

For every solution of (lb) a solution of (la) can be calculated by substitution of the
nm+jBnm+jX (j-O,...,m) in tl" "eft hand side of (la). So using the classical formulas

for the solution of a homogene6.s system of equations we get immediately the transla-
tion of degrees by n-m in P(x) and Q(x). As a result of these formulas we can also
write down the following determinental formulas for P(x) and Q(x):

Q(x)-
Cn+lxn+l Cnx" Cn+l_mxn+l-m

+mCn+mxn+m Cn+m_ xn Cnxn

Fn(X) Fn-l(X ) Fn_m(X )
C,+IX"+l CnX" Cn+ xn+l-m

Cn+mxn+m Cn+m_ xn+m-1 Cnxn

where F,.(x) E=oCkXk and F/(x) 0 for < O. We shall now see how the determinant
representations of P(x) and Q(x) link this solution of the Pad6-approximation prob-
lem of order (n, m) to the e-algorithm.
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2. The e-algorithm. The e-algorithm is a nonlinear algorithm due to Wynn [2, pp.
42]; input are the elements of a sequence (Sili-0, 1,... }. The following computations
are performed:

e)l 0, i=0, 1,...,

eoi) Si i-0,1,-..,

e(27.J-- 1) 0, j--0, 1,’’’,

ej(i) _e(i+l)..[ei+l)_ei)]-I j--0, 1,.-., i----j,--j+l,....

The e.’) can be ordered in a table where (i) indicates a diagonal andj a column:

E(..O)l 0 t-1

G =o d

,) =o dt)

4P=s
%=o d)

Let us now take {Sili-O, 1,... } Y and denote by ASi- Si+I-S and A2Si ASi+
AS.Write

Si Si+j-

Si+j_ Si+2j__ 2

We can prove the following property for the eo. The proof is very technical and similar
to the proof in [2, pp. 44-46].

THEOREM 2.1. If Hj_I(A2Si+I) and Hj(Ag-Si) are regular in Y, then

aS/_

ASi+ AS

I
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and ifHj(ASi+) and Hj+(ASi) are regular in Y, then

A2Si+2j_l A2Si+j_l

with S-O for i<0.
Of course we restrict ourselves to the case that the eJi) are finite; since the

e-algorithm is a nonlinear algorithm, it can always happen that () does not exist.j+

(when ei+)-eJi) is singular in Y). It is easy to see now that for Si-Fi(x ), i.e., the
partial sums of F(x) Y=oCt,x we get

F.(x) Fn-m(X)
Cn+ xn+ Cn_m+ lX

Cn+mxn+m Cnxn

n--m+l

+1 Cn+ l_mXn+ l-m(7_.n+ Xn

n+m CnxnX

The numerator and denominator of enm-m) are the determinental formulas for P(x) and
Q(x), the solution of the Pad6-approximation problem of order (n, m). Let us illustrate
this by calculating part of the e-table for the following nonlinear operator:

F: C’([ 1, T])+ C([ 1, T1)

x(t)eX(t)dX-(l+a )dt

with a a small nonnegative number. The Taylor series expansion is

dx l[x(t)],,F(x ) -- -k-(. --(1 +a).
k=O
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For the e-table, we get

0

0

-(l+a)

dt (l+a)

d
( +(t))-( +)dt

-1
l+a

(t)
d

-(+):
l+a+--

dt

---(l+a)(1-x(t))
1-x(t)

3. Applications in operator theory. Several types of nonlinear operator equations

F(x)-O

can be solved by means of Pad-approximants in operator theory; we mention for
instance systems of nonlinear equations, initial value problems, boundary value prob-
lems, partial differential equations and nonlinear integral equations. The well-known
Newton and Chebyshev iteration [7,pp.205] result respectively from the use of the
solution of the Pad6-approximation problem of order (1,0) and (2,0) [5], [6]. An
interesting new iterative procedure of third order,

Xi+ Xi2l
( r;- ’V, ) ( ’V,. )

,_iF/,,( ):z-F/’-IF+sF -F/ V/

where

Fi-F(x),

F’- F’(X ) a linear operator (lst Fr6chet-derivative at x ),

F" F"(xi) a bilinear operator (2nd Fr6chet-derivative at x ),
the division is a multiplication by the inverse element of the denominator,

which we called the Halley iteration [5], [6], proves to be especially interesting in the
neighbourhood of singularities because it is derived from the solution of the Pad6-ap-
proximation problem of order (!, 1). If we use the e-algorithm for the calculation of the
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next iteration step in Halley’s method, we have

e(OO) X

F;-’F,- F, -F,

For numerical examples and results we refer to [5], [6].

e(2) xi+ 1.
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A NOTE ON UNIFORM ASYMPTOTIC
EXPANSION OF INCOMPLETE LAPLACE INTEGRALS*

K. SONI

Abstract. An asymptotic expansion of the integral F(z, a) fe-<t-)t- lg(t) dr, z , which is valid
uniformly in a_>0, is obtained. The technique is elementary, and the expansion is simpler compared to those
given earlier by Erdlyi [SIAM J. Math. Anal.,5 (1974),pp. 159-171] and Temme [SIAM J. Math. Anal.,7
(1976), pp. 767-770].

1. Introduction. Let

(1.1) F( z, a) e-Z(t-a)tx- ’g( ) dt,

where a_>0, 0<?< 1, and for some b>_O, e-btg(k)(t), k-O, 1,...,n, are bounded in
[0, ). In 1974, Erdrlyi [2] gave an elegant technique to obtain an asymptotic expan-
sion of F(z,a) which is valid uniformly in a_>0 as z--, . He replaced tX-lg(t) by the
fractional integral of a function f defined by

g(,),

f0(1.2) f(t)-- (F(1-X)) -1 t(t--s)-XsX-lg(s)ds, 0<X< 1.

Then, using an integration by parts technique similar to that of Bleistein [1], he
obtained the following expansion"

n--1

(1.3) F(z,a)-O z-’F(k+,)g(k)(O)/k!
k:O

where

(1.4)

and

(1.6)

n--I

+ 2 z-klXf(k)(a)+,,,
k=l

Q_ (r(x))-, fa z(t--e- a)tX- dt,

IXf(t)-(F(?t))-l fot(t-s)X-lf(s)ds

6-n-- zl--n e-Z(t-a)IXf(n)( ) dt.

The expansion (1.3) is particularly interesting when the critical point a, which is an end
point of the interval of integration, is close to zero, which is a singularity of the
integrand. However, in 1976, Temme [3] indicated that the expansion coefficients
IXf((a) are harder to compute and therefore, from a numerical point of view, this
expansion is not very attractive. He gave an alternative expansion obtained by expand-
ing g(t) into a power series at t= a. The remainder in his expansion has a particularly

*Received by the editors July 23, 1981, and in revised form September 10, 1982.
Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37916.
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simple form. The expansion coefficients satisfy a simple recurrence relation, but they
are given explicitly as confluent hypergeometric functions with argument az. Therefore,
the question whether F(z, a) has an expansion which is uniform in a as z and has
simpler expansion coefficients, still remains. Erdlyi [2] indicated that Bleistein’s proce-
dure of integration by parts can also be used to obtain such an expansion, but he
remarked that it does not appear easy to write down explicit expressions for successive
terms, to estimate the remainder term or determine the conditions of validity of the
resulting expansion. The object of this note is to show how integration by parts can be
repeated to obtain an expansion which meets all these requirements. This technique has
the advantage that the coefficients as well as the remainder appear in a simpler form,
even though, as we will show in the next section, the expansion is in fact the same as
that given by Erd61yi. Furthermore, this technique is applicable even when the in-
tegrand in (1.1) has logarithmic singularities of positive integral order or when the
interval of integration in (1.1) is (0, a).

2. Main result. We assume that a,),z are real, a_>0 and 0<,< 1. F(z,a) is
defined by (1.1) where gCn[0,) and g<k)(t), k-O, 1,...,n, are exponentially
bounded (these conditions are the same as in [2]). The functions q, and Rk, k- 1,2,- -, n,
are defined as follows"

(2.1) q(t)-tX-lg(t),
k--1

(2.2) Rk(t)-q(t)- . Cmtm+’-l,
m--O

where

(2.3) c,,-g(’)(O)/m!.

This notation is consistent with some recent investigations in asymptotics (see, for
example,[4] and [5]). Under the assumptions stated above, q,(t) and Rkk)(t), k-
0, 1,...,n, belong to the class C"(0, o). Furthermore, R’)(t), O<_m, k<_n, are ex-
ponentially bounded in [c, o), c>0, and Rk")- O(tk-re+h-l) as t- 0+.

We prove the following:
THEOREM. For all z sufficiently large,

(2.4) F( z, a) e-Z(t-a)t-1 dt Z z-kCkF( k+ x)/r(x)
k=0

n
2t_ z--kR(kk--l)(a) + E,,

k=l

where

--nfa(2.5) En--Z e-t-a)R?)(t)dt.

Proof. By (2.2), q(t)- Cotx- +R(t). Therefore, using integration by parts we
obtain

e-ZttX-l dt+z-le-azRl(a )(2.6) e-Ztdp( ) dt- co

._[_Z--I ^--ztrte l(t)dt.
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But by (2.2), for 0< k< n,

(2.7) Rk)(t)-R()+ (t)’-Ck(tk+X--1)(k)’
and by using integration by parts

lo-aR(k o-tR(k+ 1)(2.8) e-ZtR(kk)+ k+ k+l

Therefore, for 0<k< n,

(2.9) fae-tR(k*)(t)dt-(cr(k+k)/r(h)) fe-ZttX-ldt
+2-1e-azR(k) -l faCk+l(a)+z e R(++l ( ) d

The conclusion follows from (2.6) and (2.9). K]
Now we will show that the asymptotic expansion obtained above is the same as

that given by Erdlyi. The first sum on the right-hand side in (2.4) is identical to the
corresponding sum in (1.3). To compare the second sums, we note that

k a-m [(_ 1)m-lr(k)r(m_)(2.10) IXf(k)(a)-- (k-m)’ r(m)r(1-,) g(k-m)(a )
m--|

r(k+,-m)r(X_m+1) g-"(0)].
This explicit form of If(k)(a) is given by Erdlyi (see [2, 4]). By (2.2) and (2.3),

k--l

( - ) -)r(+ 1-) ,_,_ ,_,_)(2.1 1) Rk-l)(t)
=o
E r(1-x) < (*)

’ r(x+) ()(o),+_
=o F(k+m-k+ 1)ml

By changing the summation variables in (2.11), we see that Rk-1)(a)--IXf(k)(a).
Again, from (1.6) and (2.5), it is not apparent that n En. Nevertheless, the equality
holds as a consequence of the corresponding expansions (1.3) and (2.4).

Remark. By Taylor’s theorem,

(2.12) Rk(t)--tx-I g(t)-- E Cmtm -tx-’(r(k)) -’ ’(t-u)*-’g(*)(u)du.
m--O

By successive differentiation, it follows that IXf(k)(t)--R(k-)(t)--O(tx) as t0+.
Since the expression on the right in (2.10) involves negative exponents of a, it is not
suitable for the numerical computation of IXf(k)(a) when a is close to zero. On the
other hand, when g(t) is analytic at the origin, we can compute R(k-1)(t) from the
power series expansion

g(t) E Cmtm"
m--0
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Thus

(2.13) (r(m+,) ) _,Rk-(t) -ta X r(m+X--g+ 1) ctm--k

If g(t) is not analytic at the origin but has only a finite number of derivatives, say n, in
some interval [0, c], we can use (2.12) with some modification. For O<k<_n,

(2.14) R(t)- . cmtm+X-+[F(n)]-ltx-fo(t-u)’-lg(’l(u)du.
m=k

We differentiate Rk(t ) above (k-1) times and then make a change of variable in the
resulting k integrals. Thus,

(2.15) R(k’-’)(t) c r(m+,-/+ 1)m--k

k--I

fo+t"+’-’ ] K (l-u)"+’n-’g(")(tu)du,
m--0

where

(2.16) Km__(k__l) r(x)
m
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THE INVERSE PROBLEM FOR THE VOCAL TRACT AND THE
MOMENT PROBLEM*

H. J. LANDAUf

Abstract. B. Gopinath and M. M. Sondhi have shown how the shape of a vocal tract can be determined
from an acoustical measurement at the lips. The applications of this method include the synthesis of non-
uniform transmission lines and the study of the behavior of the basilar membrane. We show here that the
method can be very simply understood as representing an orthogonal decomposition which enters naturally
into the classical moment problem.

1. Introduction. In their remarkable solution to the inverse problem for the vocal
tract, B. Gopinath and M. M. Sondhi showed that the shape of the tract can be
determined from an acoustical measurement at the lips by means of a certain
convolution equation [12]. Specifically, assume that wave propagation in the tract is
planar and therefore depends only on the cross-sectional areas, expressed as a function
A (x) of the distance x from the lips. Let units be chosen so that sound velocity and
air density equal 1, and let V(x) =-- x A (u)du be the volume of the tract from the

"0
lips to x. Now suppose that a unit impulse of volume velocity is applied at the lips to
an initially quiescent tract, and the resulting pressure at the lips is observed as a
function of time. This pressure, termed the impulse response, has the form
di(t) + H (t). Intuitively, H (t) for < 2a contains information about the tract up to
x a, since 2a is the time required for the initial impulse to reach the point x a
of the tract, and for a reflection to return. Gopinath and Sondhi determined A (x),
x < a, from H (t), < 2a, in the following way. Assuming A (x) to be positive and
continuously differentiable, 0< x <a, they proved first that H (t) (real) is continuous
and that the symmetrized kernel 6(t-s)+ 1/2H ([t--s I) is positive definite for
0 < Is l, It l<a, i.e., that the quadratic form

a a a

f + f f
-a -a -a

ds g(s)g(t)H(lt-sl)

is positive for each choice of g(s). This is intuitively plausible because (1.0) is the
same as the quadratic form generated by the impulse response, which in turn can be
interpreted as the energy stored in the tract. Pursuing positive definiteness a little
further, they then modified the kernel to 6(t-s)+ 1/2 {H(It-s[)- p}, with some
positive number p, and considered it on the subinterval 0 < Is l, tl < r < a. One
can expect this to remain definite for p sufficiently small (by continuity) but not for all
p, the critical value of p depending on r. Accordingly, they let

Pr sup{p di(t-s) + 1/2 [H(It-sl)-,l is positive definite for 0 < Is I, It < r}.

Finally, they let f (r,t) be the (unique) solution of

(1.1) f(r,t) + 1/2 f H(It-sl)f(r,s)ds 1, Itl < r < a.
--r

Then they proved that the tract cross-section is given uniquely by any of the following
relationships, 0 < r < a"

*Received by the editors December 30, 1981. This paper was typeset by Ann Marie McDonou
at Bell Laboratories, Murray Hill, New Jersey, using the troll" program running under the Unix
operating system.

tBell Laboratories, Murray Hill, New Jersey 07974.
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(1.2) A (r) fE(r,r)

(1.3) V(r) f f (r,s)ds
o

1(1.4) V(r) Pr

Owing to the analogy between pressure and voltage, this method also solves the
problem of synthesizing nonuniform transmission lines [6]. Finally, M. M. Sondhi has
recently used a similar approach to probe the behavior of the basilar membrane [13].

These considerations are closely related to work of M. G. Krein who, in a brief
note full of striking and general results [8|, showed, assuming only that (1.1) with a
continuous H has a unique solution for each 0 < r < a, that f(r,t) can be
transformed to yield the solutions y (r,X) of the differential equation

(1.5) -rd A (r) d_Y,dr + X2A (r)y (r,h) -O, 0 < r < a

where A (r) -f2(r,r). The connection with the vocal tract stems from the fact that,
when A (r) is the cross.sectional area, (1.5) is Webster’s horn equation, satisfied by a
pressure wave of the form p (r,t) y (r,X)eTM in the tract.

The conclusions of [6], [12] were derived from the partial differential equations
which govern the behavior of pressure and volume velocity in the tract; those of [8],
by direct verification. The proofs in both cases are a tour de force of analysis, but
offer relatively little to guide the intuition. Specifically, although (1.3) is explained
physically as representing conservation of mass, the derivation of (1.2), (1.4) and
(1.5) leaves their interpretation and interconnections in mystery. Given the broad
usefulness of these results, it seems worthwhile to try to explain them from as many
points of view as possible. Here we will show, under positive definiteness assumptions,
how that can be done in terms of elementary Hilbert space geometry. Our discussion
will be based on one we have found useful in treating the classical moment problem
[11]. We should emphasize that the existence of a close analogy between inverse
problems for Sturm-Liouville equations and the moment problem was repeatedly
pointed out by M. G. Krein [9], [10], albeit without details. Our contribution
therefore consists of making this connection explicit, and stressing a geometric
interpretation. This makes the mathematical relationships (1.1)-- (1.5) easy to
understand, and shows that they depend only on the positivity of (1.0), not on the
partial differential equations which connect it to a specific physical problem. These
equations are necessary, however, for the illuminating identification in [61, [12] of
t(t) + H(t) with the impulse response, which opens the path to applications.

The classical moment problem consists of asking whether a prescribed sequence of
numbers So, s,.., can be represented in the form

sk f xkd(x), k > O,

with some positive measure dtt(x), generally supposed to have an infinite number of
points of increase. Clearly a necessary condition is that the quadratic form

,akxk - art(x )
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be positive for every choice of a finite number of {aj}; this turns out also to be
sufficient. The trigonometric moment problem asks for representation in the form

Sk f eikO d (O) dt 0, k > 0,
0

and has a corresponding solution. Together with their variants, these representations
have illuminated an extraordinary range of subjects: a partial list includes analytic
and harmonic functions, the spectral theory of operators, prediction theory,
approximation, numerical analysis. In a very vague sense, some notion of positivity is
the unifying feature underlying these applications.

Somewhat more specifically, there is in many situations a positive definite
quadratic form defined on an increasing family of subspaces. Thus in the moment
problem the quadratic form is

(1.6) Sj+k ajffk

and the subspaces can be thought of as the sequences {ak}, k < N, of given length N,
with the length successively increasing. Similarly, in a mechanical or electrical
system, the positive form might be energy, and the subspaces composed of functions of
time, representing possible forces applied to the system, and of duration T, with T
increasing. Now a familiar positive quadratic form is the scalar product in a Hilbert
space H. Moreover, if we can further identify elements v of H with functions

(1.7) v fv (x)

in such a way that the scalar product of v and w EH is given by

(1.8) f fv (X)fw (x) dl(x)

for some positive measure dg, we will have a particularly clear view of the behavior of
the quadratic form, since it is now exhibited as acting independently on the
components of fv (x) obtained by restricting fv (x) to disjoint subsets of its domain of
definition. It is the general objective of spectral decomposition to produce
representations of this kind. We remark that even when the elements v of H are
themselves functions, the associated fv does not in general coincide with v.

We can now observe that the moment problem poses this very question: it asks
that the quadratic form (1.6) be expressed by (1.8), with the correspondence (1.7)
given by

N
{a0,’",av} akxk

k-0

In [11], we employed the positivity of the quadratic form given by So,’",S2n to define a
scalar product for polynomials in x of degree n. In this space of polynomials, we
selected a basis, consisting of polynomials of successively increasing degree; these
satisfy a three-term recursion which can be viewed as a discrete analogue of a
second-order Sturm-Liouville differential operator. We then considered the linear
operation which assigns to each polynomial its value at a given point. Much of the
fundamental information about the moment problem flowed easily from properties of
this operation and its interplay with the basis.

The same considerations apply in the present instance. In order to avoid certain
purely technical complications of the continuous case, we will first consider the
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problem in a discrete form, so as to pose it in a finite-dimensional space, where it will
become transparent; in this respect, we follow the approach of recent papers, of K. M.
Case and M. Kac [4], [5]. The discrete analogue has also been studied in [3], and a
detailed treatment of it, focusing on efficient computation, is given in 1 ]. Finally, the
general point of view we adopt has been discussed in the rich paper [7]. In outline,

1. We discretize (1.1) in such a way that the Toeplitz matrix C which replaces
the operator on the left-hand side is positive definite, and use this matrix to
define a scalar product [.,.] on spaces IIv of even trigonometric expressions of
the form Sv (z) -v amzm, z eix.

2. We select a natural orthonormal basis for IIn, consisting of trigonometric
expressions of successively increasing degree.

3. We focus on the element EvEIIv (sometimes called a reproducing kernel),
defined by [Sn ,En SN (1) for each Sv E IIv.

4. We show that the discrete analogues of (1.2)-(1.5) are immediate
consequences of expressing Ev in terms of the basis.

5. We obtain the original continuous versions either by passing to the limit as the
discretization becomes finer, or by applying our reasoning in its continuous
form from the outset.

6. Finally, we show that the correspondence between H (t) and A (x) described
here is unique.

We proceed to take up these topics in turn, commenting more extensively on
motivation as appropriate.

2. A scalar product. Let a,b denote (K+l)-dimensional vectors with components
{am}, {bin}, respectively, and (a,b) the usual scalar product,

K
(a,b) a ambm.

m-’o

Let C be a (K+I) (K+I) positive definite matrix, i.e., one for which (a,Ca) > 0
except when a 0. In view of the ultimate application to (1.1), we will assume C to
be real. Then C is symmetric and, by virtue of its positive definiteness, the quadratic
form

(2.1) [a,b (a,Cb)

can be viewed as defining another scalar product on the vectors. Suppose C is also a
Toeplitz matrix, i.e., one whose entry Cm,n depends only on (m-n). Then it is
convenient to associate with a vector a the trigonometric polynomial

K
Sa(eix) ameimx

m-O

with some di > 0, and to think of the scalar product as defined on the corresponding
polynomials,

(2.2) [S,SI =-- [a,b

for in this way the Toeplitz property is succinctly expressed by

(2.3) Cm_n [eimx, einx]

The form of this expression in turn suggests the trigonometric moment problem, i.e.,
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the problem of finding a positive measure d/(X) for which
/,

(2.4) Cm J eimxd#(h) 0 < m < 2K.

The scalar product [Sa,Sb] on trigonometric polynomials can serve as the point of
departure for a discussion of this question, and we will return to some aspects of it
later. For the time being, however, we take a slightly different course, and use C to
define a scalar product for two-sided trigonometric expressions.

Specifically, if K 2N then, with z eix, C will define, by means of (2.3), a
scalar product in the space of functions of the form -v a,zm, Ixl Since C
is symmetric, even and odd functions of , are orthogonal with respect to [.,’], and we
concentrate on the former, denoting by IIN the (N+l)-dimensional space of functions
of the form _va,nzm, a-,n- am, Ixl Similarly, if C has even order
(K 2N + 1), on setting

Cm-n ei(m+l/2)x ei(n+l/2)X

we can define a scalar product in the space IIv of even functions of the form
N (m +1/2)X e-i(m+1/2)h)m--O am (e + We henceforth focus on IIN. As we shall see,

despite the fact that C is a Toeplitz matrix, this formulation will lead us to
considerations which more closely resemble the power moment problem, generated by
Hankel matrixes. This stems from the fact that members of IIN have the form

a 2am cos m/iX, hence are polynomials of degree N in cos tSh.
As a matter of notation, if TK(Z)= aK_K’rmzm is an element of IIK, we will

refer to rx as the leading coecient of TK, and to the vector (r-K,’",rx) as the
coefficient vector of Tx. Thus if Ta and Tb are elements of IIN with coefficient
vectors a and b respectively, we have as in (2.1) and (2.2)

(2.5)

or explicitly

(2.6)

[Ta,Tb]-- (a, Cb)

N

Ta,Tb .l ajbmcj-m

Let us observe that, although the scalar product is not necessarily defined in IIN+,
nevertheless by (2.6)

so that

(2.7)

[zS, zT] [S, TI

(Z +Z-1)S, TI IS, (z +z-) TI,
whenever either scalar product is defined, in particular if S or T E IIv-1. Finally, we
set

IITII2 IT, T].

3. A basis. The matrix C, being symmetric and Toeplitz, is generated by the
2N+l entries Co,Cl,’",c21v. If only the first 2K+l of these entries are given, the
corresponding matrix defines the scalar product on IIr, and as additional ci are added
in pairs, this scalar product is extended to larger subspaces IIK+l C...C IIN, without
being altered where previously specified. Thus it is natural, in choosing a basis for
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HN, to select the basis vectors {Pro} so as to span, successively, the chain of subspaces
Ho c H c c IIv_ c IIv. This can be done by the Gram-Schmidt process.
Specifically, let Cr denote the principal (2K+l) x (2K+l) minor of C, and suppose
that Qr (z) E Hr has coefficient vector q with leading coecient and such that

(3.1) Cg q , 0,’",0,

Then by (2.5), [Tr-,Qr] 0 for each Tr-EHx-, hence Qr is a scalar multiple of
Px. Again by (2.5), IIQrll2 (q,Cq) ,, and so

Qx(z)
(3.2) Px(z)

PK

By Cramer’s rule applied to (3.1), the coefficients of Pr are all real.

4. Evaluations. Looking briefly back to the moment problem, if d is a measure
satisfying (2.4), then from (2.6) and (2.3)

IIT.II2 f Ta (eiaX) 12 d(X)
-r]

so that this problem asks, in effect, how the norm of an element in IIv is related to its
values. Viewing the question in this form, it is natural to start with evaluation at
,- 0, i.e., at z 1. Since the map of Tr IIr into Tr(1) is a linear functional,
there exists a unique evaluation element Er(z) IIr (sometimes called a
reproducing kernel) such that

(4.1) [Tr, Er] Tr(1)
for every Tr . Hr. The next proposition is immediate.

PROPOSITION 1. The following characterizations ofEr (z) are equivalent:

(4. a/ x(/ 2 em(im(

b) the coefficient vector e of EK satisfies

(4.3) Cre (1,1,...,1)

c) Er(z) is the solution to the extremal problem

(4.4) max Ir( )l
Tn IITII

Proof Since the coefficients of Pm are real, P’m (1) -Pm (1). When E is defined
by (4.2) we have, by orthonormality of {Pj}, [Pm,Er]- Pro(l) for each m <K,
hence also for all linear combinations of these {Pro}. Since T(1) coincides with the
sum of the coefficients of T, condition (b) follows from (2.5). Finally, by Schwarz’s
inequality,

IT(1)I-liT, E)I < IITII
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so that

|T(1)I

with equality only if T is a scalar multiple of Etc. This concludes the proof.
Now by definition, we see that

K
(4.5) IIExll [Ex, Ex] EK(1) Z Pm(1)

m--0

The quantity IIExll- is called the central mass for CK because, as is not hard to see,
it corresponds to the largest mass that can be concentrated at X 0 by a measure
which represents the scalar product as in (2.4) [11]. Equivalently to (4.4), we have
the following extremal property for the central mass. Let JK be the
(2K+1) (2K+l) matrix with all entries 1, and denote by CK(P) the matrix
CK--PJK. Then for T

(Cx(o)T,T) -IITII2 -p]T(1)I 2

so that, by (4.4),
(4.6) IIEKI1-2 sup [pICk (P) is positive definite}.

Next, by (2.5) and (3.1), the leading coefficient K of EK satisfies

eK EK "TK
and so, using the definition of EK and (3.2) we find

(4.7) Pr (1).
tK

Finally, if Tx- . IlK-l, then (z+z---2)TK- . IIK and vanishes at z--1.
Thus by (2.7) and the definition of Ex,

Consequently (+-I--2)EK(), which is an element of IIK+I, is orthogonal to IlK-l,
and therefore it must coincide with a linear combination of Pg() and Pg+ (). Since
it also vanishes at 1, we have

(4.9) (+-l-2)Eg() KIPg+() PK(1) Pg() PK+I(1)}
and by using (3.2) and (4.7) to compare the leading coefficients on both sides of (4.9),
we find aK vX+l/vX, whence

{ PK+(z) PK(Z) )(4.10) (Z+Z---2)EK(Z)-" K+"’IpK(1) PK+(1)
Vx PK+ (1) PK(1)

This is the Christoffel-Darboux formula, here derived very simply. We rewrite it so as
to resemble (1.5) by introducing, for a sequence {TK}, the difference operators

ZX+T- T+- T,
A_TK TK TK-
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and by setting

VK+I PK+I (1)
k

VK PK(1)

X_E Pc (z
(z)

e2(1) et (1)

With these definitions, we see that (4.10) becomes

(4.11) wKPc(1)A+K(Z) + (2--Z--z-)EK(2) 0

and, on applying _, we find

(4.12) A_gP(1)A+x(z) + (2--z--z-)P(1)K(Z) O.

We can view this as the familiar three-term reeursion satisfied by orthogonal
polynomials.

5. The continuous version. We can recognize in (4.3), (4.7), (4.5), (4.6), and
(4.12) the analogues of (1.1)-(1.5), respectively. Specifically, writing for brevity

1+Hr)f ft) + W f h<lt-sl)fs)as, Itl < r,

let us set 2a]2N+1, subdivide the interval It] a into 2N+l equal subintervals
{Im},lml N, and approximate I+Ha by the Toeplitz matrix C having entries

d + fh(lul)du Ijl < N,

where d0 1 and dj 0 when j # 0. Then we can show that C is positive definite
for all sufficiently large N, with an inverse bounded independently of N, and that the
constants vx of (3.1) approach as N . If r < a has the form r (K+)6
for some integer K, e is the coefficient vector of E(z), and gr(t) the pieeewise
constant function, defined for [t < r, having value em on Ira, ]m K, then we can
also show that gr (t) f (r,t) uniformly as N
coincides with the leading coefficient g, (K) of e, it therefore approaches f(r,r) as
N m, and likewise Pm (1)]urn f(m,m6), uniformly for Ira[ < N. The relation

f (r,t)dt 2f f2(t,t)dt
--r 0

expressed by (1.2) and (1.3) is merely a limiting form of the identity

In our discrete approximation, the integral operator defining or becomes C(0/2),
and we see from (4.6) that this is positive definite if and only if 0/2 < IIE:II-2; the
limiting form of this is (1.4). Finally, EK(z) _Kemz geeix, so that
Eg(z)--, f_rf(r,t)eitX dr, and when f is sufficiently smooth we can therefore
expect that
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A-EK(Z) -r f (r,t)e itx dt
--r

Thus the analogue of kK (z) is

d f(r,t)eXdt

and since OK
form (1.5).

/2fZ(r,r)

as N

while (2-z-z-1) -2-2costSX---t52X2, (4.12) assumes the limiting

While the approach just described explains the origin of the results and their
interrelation, we can give actual proofs more efficiently by a slightly different path,
which follows the geometric line of reasoning in its continuous version from the outset.
Here instead of the even trigonometric expressions of IIr we consider even functions
of the form

(5.1) Gr(X) g(s)eiSXds
--r

with g (the continuous analogue of the coefficient vector) an even function in
L2(-r,r); consequently by the Paley-Wiener theorem, IIK is replaced by the space fir
of even functions of exponential type r, square-integrable on the reals. We will
establish the following correspondence which, as we have seen, leads directly to (1.1)-
(1.5):

exponential type r degree K

fir IIK
E (r,X) =-- f (r,t)eiXdt evaluation element Eg(z)

(5.2) V(r) =-- 1/211E(r,X)ll9

A (r) =-- f2(r,r) IA P(1)
dE (r ,h) /dr PK (z )Pk (1)

Equation (1.5) Christoffel-Darboux formula.

Although the continuous case inevitably presents certain technical difficulties, the
basic line of argument follows exactly that of the discrete problem and so we relegate
it to the appendix.

At this point we see that to each positive quadratic form (1.0) there correspond
the quantities and relationships (1.1)-(1.5). We will show next that the
correspondence between H and A is one-to-one. All of this is independent of the
origin of (1.0). To interpret these quantities physically, we can view (1.5) as
Webster’s horn equation, associated with a vocal tract of cross-sectional area A (x).
Then V(r) becomes the volume of the tract to r, and (1.3) shows, by the conservation
argument of [6], [12], that f(r,t) coincides with that volume velocity required at x--O
(as a function of time) to produce, at r, a unit pressure for 0 < x < r along the
tract. Now, as proved in [6], [12], it follows from the partial differential equations
which relate volume velocity to pressure that this is the same as the even version of
the volume velocity which produces a unit pressure at x --0, 0 < < r. In turn,
(1.1) show that the kernel tS(t) + H(t) should be viewed as that which transforms
volume velocity to pressure at x-0, hence as the impulse response of the tract.
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A comprehensive discussion of the connection between a variety of inverse
problems and integral equations is contained in [2].

6. Uniqueness. We wish to show that the functions H(s), 0 < s < 2a, and
A (r), 0 < r < a, which are related by (1.1), (1.2) and (1.5) determine each other
uniquely. We begin with the discrete problem which is of interest in its own right.
For that case, uniqueness was proved in [3], by a different method. We will show that
our present point of view again suggests a simple approach.

We have seen that the 2N+l entries Co,"’,c2N of the matrix C define a scalar
product on IIv and this in turn determines the central mass sequence or equivalently
{llEml[2}, m 0,’-’,N. The same matrix likewise generates a scalar product in IIv and
a corresponding sequence {llE,ll2}, m 1,...,N. To show that these 2N+l quantities
taken together in turn determine C, we return to the original point of view, in which
by means of (2.3) co,"’,cv define a scalar product on the space II of trigonometric
polynomials S (z v eiX-m-O rmzm z- Proceeding just as before, we introduce
the basis of (Szeg6) orthogonal polynomials {Tt0 (z)}, 0 < K < N,

Ux(z)
(6.1) rK(z)

#K

where the coefficient vector u of Ux has leading coefficient 1, and satisfies

(6.2) u

with C: the (K+ 1) x (K+ 1) principal minor of C.
by

We then consider Ec(z), defined

[Sx,E[I S/(1)
for each SK E IIk. By the reasoning of Proposition 1, we find

Is (1)l
(6.3) IIEkll max

snk IISKII
Now if K 2L, let us consider
trigonometric expression and we
Moreover, in the decomposition

Vx (z) = St (z)z-L. This is now a two-sided
see that Is (1)l-lvx(1)l, IIs :ll--IIv :ll.

V (z) Ve (z)+Vo (z)

into components Ve and Vo which are even and odd functions of ,, respectively, Vo
vanishes at h 0, i.e., Vx(1) Ve (1), while Ve and Vo are orthogonal in our scalar
product, so that IIVKII2- IIVell2 + IIVollg-> IIVell2. It follows that in (6.3) we can
suppose VK Ve, whereupon VK E IIL, and we find that IIEII- IIEL II. Analogously,
for K odd, K 2L+l, IIEkll- IIE.+IlI. We conclude that the known sequences
{llEmllZ}, 0 < m < N and {IIE,II2}, 1 < m < N together determine {llEnll2},
0 < m < 2N, or, equivalently, the sequence {Tg2 (1)}, 0 < K < 2N.

PROPOSITION 2. The sequence {Tinz(1)}, 0 < m < K uniquely determines the
orthogonal polynomials {Tin (z)}, 0 < m < K.

Proof By definition

(6.4) [zJ,UK(Z)] O, 0 < j < K-
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and so, from (2.3),

(6.5) [zj+,zUx(z)]-O, 0 < j < K- 1.

Now zUx(z) Hc+] has leading coefficient 1, and th same is true of U1c+](z), which
is orthogonal to all of Ilc. Thus zUc(z) Ur+](z) IIc and from (6.5)

(6.6) [zj, zUr(z) Ux+l(Z)] 0, < j < K.

On taking complex conjugates in (6.4) and applying (2.3) we discover

[zKz-j, zXUK(z)]- O, 0 j K-1

so that the polynomial Wr (z) zfUr (z) E Ilk likewise satisfies the orthogonality
relations (6.6). As these define a one-dimensional subspace of Ilk, we conclude that

(6.7) zUr(z)--UK+I(z) arWr(z)
for some ax, which is real since all the coefficients in (6.7) are. This relation is well-
known.

We see from the definition of Wr(z) that its coefficient vector is found from that
of U(z) by writing the components in reverse order. Consequently, IIWKII- IIUKII
and Wg (1) Ur (1). We can therefore find the norms on both sides of (6.7),
rewritten as zUx(z) Ur+(z) + aWr(z), and also evaluate (6.7) at z 1; in the
former computation, by (2.3) and (6.1), [zUr,zUr] [Ur,UrI g, and by definition
of Ur+, [Wr,Ur+] O. Thus we obtain

(6.9)

From (6.8),

(6.10)

while from (6.9)

PKTK(1) I,tK+ITK+I(1) aKI,tKTK(1)

(1 ak)

Tr(1) ttc+(6.11)
Tr+ (1) (1-at)

/ZK

Since [[UKI]2 >" 0, laxl < by (6.10), and combining (6.10) and (6.11) yields

TK2(1) T+ (1)
(6.12)

rK (1) + rl+l (1)

We conclude that the sequence {Tm(1)}, 0 < m < K determines the quantities {am}
0 < m < K-1 by (6.12), as well"as {/m}, 0 < rn < K by (6.11). Thus using {am},
we can generate {Urn (z)} by (6.7), 0 < rn < K, and renormalize by the known {m}
to obtain {Tin (z)}. This completes the proof.

To return to the original problem, given the increasing sequence {llE;n IIZ], we
take successive differences to find {Tm(1)}, generate the polynomials {Urn (z)} as in
Proposition 2, and these in turn successively determine the matrix entries, from the
equation for the first component of (6.2). But even more generally, starting with a
sequence of positive numbers {PK}, which we do not know a priori to correspond to
values {Tin (1)} for some set of orthogonal polynomials, we can check that the above
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construction generates a matrix C which is positive definite and for which

Pm T2m(1).
In the continuous version, we can expect the distinction between IIEmll and IIE,II

to disappear. Indeed, given A(r) positive and continuously differentiable for
0 < r < a, rwe solve (1.5) as an initial value problem for y(r, ,), determine
E(r, h)---fo A (s)y (s,h)ds, and thereby also its inverse Fourier transform f(r,t).
Then (1.1) evaluated at r yields

2r

f (r,r) + 1/2 f H(u)f (r, r-u)du
0

and on differentiating this with respect to r we obtain, analogously to the discrete
case, a Volterra equation which we can solve for H (u), 0 < u < 2a. We can also
give another description of H, which draws on spectral theory for differential
equations. Let us consider the {hr} for which y(a, kr)--O. The corresponding
{/A (r)y (r, htc)}, being eigenfunctions of a self-adjoint boundary value problem, form
acom lete ortho onal set n L2(0 a) Let n 2 a A r 2 rP g =2 f" ( )y ( ,Ate)dr and let dt(h) be
the measure which at , Ar has the mass 1/ni. y expanding a function g (r) in the
normalized eigenfunctions, we can see that the transformation
G (k) fa g(r)/A (r)y (r, X)dr maps L2(0, r) unitarily onto L2(dt).

_0
Specifically, as {G (,tc)/nk} are the coefficients of g(t) in the expansion, we have

/A (r) y (r, XK)g(r) K G (XK)
nl f G (X)/A (r)y (r, h)d/(h)

and
a

f g2(r) dr X
G2(XK)

0
f

These relations also show that any element in L2(d#), i.e., any sequence of values
square-summable with respect to the weights n2, is representable in the form
[G (XK)} for som g(r). Now if we set

E(X) f 4A (r) 4A (r) y (r ,X) dr
0

we see that E(X) effects evaluation at h 0 in the scalar product of L2(dv), for by
unitarity of the expansion,

a

f o (x)E(X)d(X) f g (r) dr G (0)
o

Since the inverse Fourier transform of E (X) is f (a,t), whil that of E (X)d(X) is
by the evaluation property, we can identify the kernel 8(t) + H (t) with th Fourier
transform of the masure d(). We omit the details.

7. Aenix. W devot this sction to establishing th correspondence (5.2).
Sinc I+H is positive definite, we can, analogously to (2.6), define for

F,G a
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(7 ) tG,FI (g,(I+Ha)f) g(t) ) + I)f(u) du dr.

In these integrals, f and g, being the Fourier transform of F,G, respectively, vanish
identically outside (-a,a); thus [G,F] depends on the values of H(Ixl) in the interval

Ix l-< 2a. These are insufficient to define the scalar product in fis for s > a.
Nevertheless by (7.1) they do determine [G, F] when G E fts and F E fi -a-s, since
in this case the values of t-ul entering into (7.1) do not exceed 2a. If G (h) $ fia-,
and Q(h) $ fi,, with Fourier transforms g(t) and q(t) respectively, the product
G (X)Q(X) corresponds under Fourier transformation to the convolution of g(t) with
q (t), so that G (),)Q (h) $ fia, and from (7.1) we see that, as in (2.7),

(7.2) [GO, FI [G, QFI

Finally, if fn"-’f in L2(-a,a) or equivalently Fn(h) F0,) in Z2(--oo,oo), then by
(7.1) also

(7.3) [G, Fn] [G, F]

Next, if f (r,t) satisfies (1.1), and we set

(7.4) E (r,h) ) f (r,t)eitXdt
--r

we see that E (r, h) 6 fir is the evaluation at h 0, since by (7.1) for every G E fir,

(7.5) [G, E G (0)

We note that if the kernel H in (1.1) is continuous, f(r,t) is continuously
differentiable in both variables. For on differentiating (1.1) with respect to we find

(I+Hr)f2(r,t) f(r, r)[H(r-t)-H(r+t)] Itl < r,

with f2(r,t) =-- Of(r,t)/igt. Since (I+Hr) has a bounded inverse, f2(r,t) is square-
integrable, whereupon Hf2(r,t) is continuous, so that writing
f2(r,t)=f(r,r)[H(r-t)-H(r+t)]-Hrf2 we see that likewise f2(r,t) is

continuous. A similar argument applies to f(r,t). Moreover, f(r, r) # O, else
f2(r, t) 0, so that f (r, t) const f (r, r) 0, a contradiction.

We can now immediately derive (1.1)-(1.4). For on applying definitions and
(7.5),

liE (r, X)II2 [E (r, h), E (r, X) E (r, O) =-- 2 : f (r,t)dt
0

Let us introduce formally

V(r) V2 liE (r, X) II2

For G 6 fir, the kernel of (1.4) generates the quadratic form

I1112 -I (o)12

and by Schwarz’s inequality, exactly as in the proof of Proposition (c), this is positive
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if and only if

2 2
max [G (0)I, ,,E (r),)II:
Gifl llGll2

Finally, if r < s, then E (r,X) [Is and so, by (7.5),
(7.6)

Thus

(7.7)

V(r)

[E (r,X),E (s ,X) E (r,0) E (min(r,s),0)

dV V(r)-V(r-)
lira

dr -.o
liE (r,X)II2 liE (r-6,X)II2

1/2 lim

1/2 lim [E (r,X),E (r,.X) , E (r-i,X)]

We evaluate this directly from the definition (7.1). To this end, as f (r-8,t) vanishes
for tl > r --6, we have

1, Itl < r-i,
(I+Hr_)f (r-,s ) Hr-f (r-6,s ) r-5 < < r.

Consequently by (1.1)

0, Itl < r --i,
(I+Hr)f (r,s) (I+Hr_a)f (r-,s) 1-Hr_a f (r-6,s) r < It < r

and from (7.7) and (7.1) we obtain

dV(r)dr 1/2 lim1-oT r--i<f[tl</t f(r,t) 1--1/2
-r+
f H([t-sl)f(r-,s)ds

This limit evidently consists of the sum of values of the (smooth) integrand at the
points t =l= r, namely

V2f(r’r){1-1/2rfH(lr-sl)f(r’s)ds}+/2f(r’-r){1-1/2rfH(r+s)f(r’s)ds}’-"--r
and from (1.1) this is

d_..V V2 f (r, r)f (r, r) + V2 f (r -r)f (r, -r) f2(r r)
r

We thus obtain the relationship expressed by (1.2) and (1.3).
Let

A (r) =-- f2(r,r)
To identify A (r) with the area of a vocal tract, we turn to (1.5). Here, to parallel
our reasoning of (4.8)-(4.11), we could start with the collection l)r_ of functions Gr-
for which h2G,_(h) [1_, and argue heuristically on the strength of (7.5) and (7.2)
that

0 [X2Gr_(X),E (r, ) [Gr-(X), X2E (r, )
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Likewise, since for r/ < e

e x) e (r-,, x).G_,(X),
G,_,(0)-G,_,(0)

0,

We would expect IGr_,,dE(r,,)/dr[-0, and similarly IGr_,,d2E(r,h)/drE .=0.

Thus we would picture bEE (r,h),dE (r,h)/dr, and dEE (r,)/drE as orthogonal to Ilr_,.
Now, of course, none of these three functions belongs to tit, for each grows too fast,
but we can form a linear combination in which the components lying outside
cancel; indeed as dE (r, h)/dr is the continuous analogue of Ptc (z)Pt (1), by analogy
with (4.10) we can expect the relevant linear combination to be
,2E(r, X) -I-f2(r, r) (d/dr)f-2(r, r) dE Since the union of lr_ for > 0 is
easily seen to be dense in tr, this last function, being orthogonal to each 1)_, must
then vanish identically. Although this approach is direct and simple, technical
obstacles arise since the scalar product is not even defined for functions like X2E (r,X)
which grow as rapidly as ,. We can, however, easily circumvent this difficulty by
introducing a convergence factor.

Let us temporarily assume that H in (1.1) is continuously differentiable; then,
arguing just as we did earlier, f22(r,t) and f(r,t) are continuous functions of t.
Let

Then Q,(,) and X2Q,(X) are in II,, and lim,-.o Q,Q,) 1, uniformly on compact sets.
We will use Q, for technical purposes only, as a convergence factor. With
G,-2, E I1,_2,, the function Gr_2,(X),2Q,(,) E fir-,, and from (7.4) and (7.2) we find

(7.8) 0- [G,_2,Q,)X2Q,(,), E(r),)]- [G-2,0,), Q,(,)X2E(r,h)I.
Now X2E (r,h) is not in fir, not being square-integrable; indeed, integrating by parts
in (7.4) we find that

(7.9) X2E (r,h) f2(r,r) 2 cos rh + f (r,r)h 2 sin rh + e(r,h)

with e f,. Continuing, when r > r , by (7.5) and (7.2),

(7.10) 0- G,_2,(X)Q,(X), E(r’h)-E(r-l’h) Gr-2,(X),Q,(X) E(r’X)-E(r-rl’)O

Now from (7.4)

dE (r, ),)
(7.1 1) -dr f(r,r) 2 cos hr +., fl(r,t)eitXdt

so that, since dE/dr grows no faster than a constant, Q,(h) d l) (r ,)O/dr .+.
Again from (7.4), r/-{E(r,,)- E(r-r/,h)} converges to dE(r,h)/dr pointwise and
uniformly on compact sets in h, so that for each > 0

--.olim Q’() { E (r’ ’) E (r-l)’) ] dE (r,,)dr
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in the metric of L2(-oo,oo), and we see from (7.3) and (7.10) that

[Gr-2’(X) Q’(x) dE (r’ X)
0

dr

By the same argument applied to -2 {E (r+),)-2E (r,X) + E (r-/,X)} we find that
also Q0,) d2E (r, X)/dr2 [1,+, is orthogonal to 1"1_2. Now introducing

y (r, ) f-2(r, r) dE (r, ) dE (r )
dr

we see from (7.11) that

dy (r ,X) f (r ,r ) 2 cos hr
dr f2(r,r)

with e2 (r,,) 1). Set

A (r) dr

2 sin Xr f (r,r) 2 cos Xr
+ + e2(r,X)

f (r,r) f2(r,r)

S (r,X) =-- X2E (r,X) + A (r)

Since f’(r,r)-f(r,r)+f2(r,r), we see from (7.9) that the linear combination
defining S(r,h) has eliminated the rapidly growing terms, so that S(r,h)
Simultaneously, since dy(rA)/dr is a linear combination of dE(rA)/dr and
d2E(rA)/dr2, Q,(h){dy(rA)/dr} is orthogonal to fir-2,. Combining this with (7.8)
and (7.2), we obtain

(7.12) 0 [G,__(h),Q,(X)S (r, h) [Gr-z,OOQ,(X), S (r, X) ].

Now as any function in L2(-r,r) can be approximated arbitrarily closely in the metric
of L2 by functions of L(-r+2,r-2) with 0, the collection {[lr-o > 0} is
dense in 1, in the L norm. Since Q(h) 1 uniformly on compact subsets, and
[Q(,) < 1, the same is true of the set of functions
{Gr-,(,)Q(X)[G E Ilr-.,, > 0}. From (7.3) we see that this set is dense in E also
in the norm I1.11, so that by (7.12)

(7.13) S(r,),) =-- 0.
If H is merely continuous, we approximate.it uniformly on [0,2a] by a sequence

Hm of continuously differentiable functions, and generate corresponding functions

Em (r,h), Am (r), and Ym (r,k). From (1.1), evidently Em (r, k) E (r, ) for each ,
and Am (r) A (r) uniformly in r < a, so that by (7.13)

dYm (r, h) X2E (r, h)
dr .4 (r)

We conclude that Ym (r, h) approaches y (r, ,) and that the latter is differentiable in
r, satisfying

dy (r, X) h2E (r, X)
dr A (r)

As the right-hand side is continuously differentiable, so is @/dr, and now another
differentiation with respect to r yields (1.5). From the equation satisfied by fz(r,t),
or more simply because f(r,t) is even, f(0,0) 0. Thus we see from (7.11), (7.9),
and (7.13) that y(r, ) is the solution of (1.5) which satisfies the initial conditions
y (0, ,) 1, y’(0, ,) 0.
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THE MORSE LEMMA IN INFINITE DIMENSIONS
VIA SINGULARITY THEORY*

MARTIN GOLUBITSKY" AND JERROLD MARSDEN$

Abstract. An infinite dimensional Morse lemma is proved using the deformation lemma from singularity
theory. It is shown that the versions of the Morse lemmas due to Palais and Tromba are special cases. An
infinite dimensional splitting lemma is proved. The relationship of the work here to other approaches in the
literature in discussed.

Introduction. This paper shows that when the singularity theory proof of the
Morse lemma is extended to infinite dimensions, it gives a result better than the best
available. The best available Morse lemma is that of Tromba [1976], [1981] which
improves upon the usual Morse-Palais lemma (cf. Palais [1963], [1969]) for the follow-
ing crucial reason: The Morse-Palais lemma assumes that the second derivative of the
function at its critical point is strongly nondegenerate in the sense of defining an
isomorphism between the space and its dual. Such a hypothesis is not satisfied in
standard elliptic variational problems; however, the hypotheses of Tromba’s Morse
lemma are normally verified in such problems. Specific examples are presented in
Buchner, Marsden and Schecter [1983]; for others see

(a) Tromba 1976], 1981 for geodesics and minimal surfaces;
(b) Choquet-Bruhat and Marsden [1976] and Arms, Marsden and Moncrief [1982]

for general relativity;
(c) Ball, Knops and Marsden [1978] and Marsden and Hughes [1983] for elasticity.
In conjunction with the Morse lemma are questions of
1. normal forms for more degenerate singularities and
2. a splitting lemma and reduction to finite dimensional catastrophe theory.

Such questions have been studied by Magnus [1976], [1978], [1979], Arkeryd [1979] and
Chillingworth [1980], but under hypotheses similar to those of the Morse-Palais lemma.
In view of the difficulties with these hypotheses, it is important to also carry this
program out under more applicable hypotheses. Such a setting is provided here. A
related setting for a normal form theory in infinite dimensions is presented in Beeson
and Tromba [1981]. Their situation is further complicated by the presence of a group
action. A closely related setting is given in Dangelmayr [1979] and Magnus [1980].

The plan of the paper is as follows:
1. Theorem A in 2 gives conditions under which two given functions are related

by a diffeomorphism in a neighborhood of a singular point.
2. Theorem B in [}3 is the Morse-Tromba lemma and is shown to be a straightfor-

ward consequence of Theorem A.
3. Section 4 discusses the splitting lemma and the associated reduction to finite

dimensional catastrophe theory.
Finally, we note that the ideas in Theorem A below are useful in the study of

vector fields. In particular, the methods can be used to deal with some C-flat
ambiguities in normal forms of vector fields at a singular point. These topics will be the
subject of other publications.

*Received by the editors June 28, 1982, and in revised form October 29, 1982.
*Department of Mathematics, University of Houston, Houston, Texas 77004.
*Department of Mathematics, University of California, Berkeley, California 94720.
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1. The singularity theory method. To put the methods in perspective, we shall
recall some of the ideas of singularity theory with a view towards the Morse lemma.
The basic methods of singularity theory under the notion of k-determining are con-
tained in Mather 1970], Siersma [1974] and Wasserman [1974], though they are not
stated there in precisely the form we use here.

One of the goals of singularity theory is to bring functions into normal form in a
neighborhood of a singular point. The procedure for doing so involves two steps:

1. The analytical step. This step gives criteria for when two functions are related by
a diffeomorphism. This is done using what is called the deformation method and
involves the integration of ordinary differential equations.

2. The algebraic step. The verification of the hypotheses needed to guarantee that a
function is related to a specific normal form by a diffeomorphism usually reduces to a
problem in linear algebra.

Let us formalize these steps somewhat, with a view toward the Morse lemma in
R n. Let g and h be smooth real valued functions defined on a neighborhood of the
origin in R with g(0)= h(0)=0. We say that g and h are right equivalent if there is a
C diffeomorphism defined on a neighborhood of 0 in n with (0)--0 such that
g(x)- h(C(x)). If D(0)=I-identity, we say that g and h are strongly right equivalent.

The Morse lemma in. n states that if g is a C function satisfying g(0)--0 and
Dg(O) 0 and if DEg(0) is a nondegenerate symmetric bilinear form of index k then g is
strongly right equivalent to

2)_+_ 2

__ __
2h(x)--(x+"’+x, xk+, xn.

The proof of the Morse lemma proceeds by two steps. First of all one shows that g
is strongly right equivalent to Q(x)-1/2D2g(O) (x,x) by writing g- Q+p and seeking a
diffeomorphism that eliminates p. The method for doing this is described below. Once
this is done, linear algebra is used to make a further coordinate change to diagonalize
Q. In this paper we shall concentrate on the first step; in infinite dimensions the second
step depends on having a suitable spectral theorem available.

Now we discuss the general procedure one uses to show that Q+p is right
equivalent to Q. Let (g denote the set of functions which are right equivalent to g. Let
Tg denote the formal tangent space to 0g at g. More precisely, let t be a curve of
diffeomorphism with t(0)-0 and 0-Id; then Pt(x)-g(t(x)) is a curve in (g with

Po g. It follows from the chain rule that

d

where A(x ) t(x)lt=0. Thus, a typical element of Tg has the form Dg(x). A(x), where
A(O)=O.

The deformation lemma is as follows:
.Let gt-- Q+ tp. Assume
(D1)pTQ,
(n2) Tgt= TQ for all t[0, II.

Then Q+p is right equivalent to Q.
For strong fight equivalence one modifies Tg to include the condition DA(0)-0,

corresponding to Dq,(0)--I. A complete proof of the deformation lemma in the infinite
dimensional case is given in the next section.

Next one uses the nondegeneracy hypotheses to show that indeed (D 1) and (D2)
are satisfied. For the Morse lemma this can be done directly since DQ can be identified
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with an invertible linear transformation T by DQ(x).y= (x, Ty). Then in order to
write p(x) in the form DQ(x).A(x), one can use Taylor’s theorem to write p(x)--
(x,p(x)) and let A(x)- T- l/)(x). This is how (D1) is checked. In fact, one has proved
that if p(x) vanishes at the origin, then p is in TQ. Thus TQ (p(x)[p(O) 0}.

One verifies (/)2)by showing that Tgt={p(x)lp(O)=O} either by repeating the
construction above for Tg or (preferably) by using a bit of algebraic machinery such as
Nakayama’s lemma. For more complicated singularities, the use of Nakayama’s lemma
is a practical necessity.

2. The deformation lemma. Let E be a Banach space. Let g, h: UR be C maps
(k_> 1) defined on a neighborhood U of 0 E and satisfy g(0) h(0) 0. For _< l_< k,
we shall say that g is C right equivalent to h at 0 if there is a C diffeomorphism :
V- Wof neighborhoods of 0 in E such that

q,(0)=0 and g(x):h(q(x)) for allx V.

Furthermore, if Dq(0)--I, the identity, we say that g is C strongly right equivalent to h
at 0.

THEOREM A. Let f and p be C real valued functions (k>_ 1) defined on a neighbor-
hood of 0 in E and satisfy f(O) =p(0) 0. Make these assumptions:

(El) There is an l>_ 1, and a C map A: UE defined on a neighborhood of 0 in E
such that

A(0)-0 and p(y)=-Df(y)-A(y) foryU.

(E2) There is a C map R: U--, L(E,E) (the bounded operators on E with the norm
topology) such that R(0) 0 and

Dp(y)=Df(y)o R(y).

Then f+p is C right equivalent to f at O. Furthermore, if in (El), DA(0)--0, then
f+p is C strongly right equivalent to f at O.

Remarks. (a) Conditions (El) and (E2) are precise versions of (D1) and (D2) in
the previous section, with Q replaced by f. Since Tf consists of functions of the form
Dr(y). A(y), clearly (El) is expressing the same ideas as (D1). For (E2), observe that

Dp(y)=Df(y)o R(y)

is equivalent to saying that for all [0, ],

Df(y)+ tDp(y)=Df(y)+ tDf(y) o R(y)

i.e., with ft--f+ tp,

where

Dft(y)-Df(y)oLt(y)

Lt(y)-I+tR(y ).

Thus there is a linear map relating Dft(y ) and Df(y). Since R(0)=0, Lt(y) is invertible
on a neighborhood of zero. Thus (E2) is expressing (D2). In fact the condition R(0)=0
can be replaced by [IR(y)ll< or invertibility of L for the right equivalence conclusion.

(b) If f is homogeneous of degree x, i.e. f(ty) tf(y) for a positive integer x, and
(E2) holds then (El) holds. Also, if R(0)=0 then DA(0)--0 (so one has strong right
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equivalence). To see this use (E2) to write

p(y)- foDp(y),ydr= foDf(y) R(ry).ydr

fol’-lDf(y) R(’y).yd’.

Thus, (El) holds with A(y)--f-lR(y)’yd. Note that A(0)--0 automatically
and R(0) 0 implies DA(O)-- O.

(c) Theorem A readily generalizes to the case in which E is replaced by a Banach
manifold. Condition (El) has intrinsic meaning independent of charts if A is a vector
field on E. Condition (E2) also makes intrinsic sense if R is a section of the bundle
over E whose fiber at xE is the set of continuous linear maps of TxE to itself; this is
a standard vector bundle associated with a manifold.

Proof of Theorem A. We first show that ft=f+ tp is C right equivalent to f for
small t. We find a curve of diffeomorphisms dPt(X)-dp(X,t ) such that q0=I,
and ft(qt(x))=f(x). To do this, we seek a vector field At(x)--A(x,t) of class C in x
and such that At(O)=O and

p(y)- -Df(y).A,(y).

If A is found, we let qt be its evolution operator defined by qt(x)--At(qt(x)) and
qo-- I. Then we have

d

"ft( fl)t(X)) --p(tt(X )) + Oft(t(X ))" at( ct( x )) --0.

Thus we get f(q,t(x))=f(x) as desired. Note that At(O) implies q/(0)= 0 and DAt(O)--O
implies Dqt(O)- 1.

Note that q’t can be defined (on some neighborhood of 0) for as long a t-interval as
A is defined. Indeed this follows from the fact that At(O)--O and the continuous
dependence of the solution curves on initial data. To construct At, we use (E2) to write

Dp(y)=Df(y)o R(y).

Therefore,

Dft( y)=Df(y)+ tDp(y)=Df(y)(I+ tR(y)).

Using this and (El), the equation Dft(y).At(Y)=-p(y) becomes

Df(y)(I+ tR(y)).A,(y)--Df(y).A(y).

Since R(0)--0, 14-tR(y) is invertible for y in a neighborhood of 0 and 0_<t_< 1, so we
can take

At(Y)- ( I+ tR( y))-A(y).

3. Tromba’s Morse lemma. This section shows that Tromba’s Morse lemma is a
direct and natural consequence of Theorem A. The setting is as follows.

Let E be a Banach space. Let -, ) be an inner product on E and B: E E- R a
continuous symmetric bilinear form. Assume

h" E-R is Ck k>_3
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and satisfies:

h(O)--O, Dh(O) O, D2h(O)(u,v)=B(u,v).

Consider the following conditions:
(T1) There is a linear isomorphism T: E E such that

B( u, v ) ( Tu, v ) for all u, v E (nondegeneracy).

(T2) h has a C- gradient relative to (., ), Vh: UE; i.e.,

Vh(y),u)-Dh(y).u.
Note. (T1) implies that T itself is symmetric (i.e. {Tu,)={u,T)), since B is

symmetric.
THEOREM B. (Morse-Tromba lemma). If (T1) and (T2) hold, then h is C-2

strongly right equivalent to f(x ) 1/2B(x, x) at O.
Proof. Note that Df(y).u=B(y,u)={Ty, u), so XTf(y)--Ty. By Taylor’s theo-

rem, write h=f+p wherep is Cg, has a gradient and p(0)-- 0, Dp(0)= 0 and D2p(0)- 0.
Since f is quadratic, Remark (b) following Theorem A, shows that it suffices to

show that (E2) holds with R(0)- 0.
To do this, use the fact that p has a { .,. ) gradient to write

Dp(y).u-(Vp(y),u)

(foDVp(ry)"ydr,u).
However, differentiating Dp(x).u=(Vp(x),u) in x, we see that DVp(x) is symmet-
ric. Thus

Dp(y)’u--(Y,(fo’DVp(Y)’Yd’)’u ).
Hence we can take R(y)- fo DXTp(y).yd.

Note that R(0)--0 so we have strong right equivalence, as required. []

Remarks. (a) There are versions of this theorem for which E is a Banach manifold.
The main difference is to let (., ) depend on the base point. These versions can also
be derived from Theorem A. Such generalizations are called for in minimal surfaces
(see Tromba [1981]) and in fluid mechanics where E is a coadjoint orbit (see Arnold
1978, App. 5] and Ebin and Marsden 1970]).

(b) If the hypothesis (T1) of Theorem B holds and if R(y) exists and has a C-2

adjoint R(y)* i.e.

(R(y)*u,v)-- (u,R(y)v),
then (T2) holds.

Indeed, Df(y) o R(y)= Dp(y), so

( Ty,R( y). u ) --Dp( y). u,

so

Vp(y)=R(y)*" TY.
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Thus, if (T1) and (E2) hold, the extra condition that Theorem B requires is the
existence of R(y)*. Ty. The R(y) chosen in the proof of Theorem B is symmetric, but
even when (T1) holds it is possible to satisfy Theorem A even when R(y)*. Ty does not
exist. An example is given in the following paper.

(c) If (T1) holds for two different inner products (-, ")l and (., .)2, then (T2)
will hold for (., )1 if and only if it does for (-, .)2. Indeed, using obvious notation,
the two gradients are related by

Vlh( y ) T2T- v,h( y ).

Thus, changing the weak metric does not aid in the existence of the gradient. Likewise,
allowing (., ) to depend on the base point, but assuming ( u, v ) x-- (Tx u, v ) 0 for an
isomorphism T (perhaps chart dependent) does not help with the existence of the
gradient.

In fact, ., .) can be any continuous symmetric bilinear form, degenerate or not
and the proof still goes through. One can always choose (-,.)--B(.,.) although it
may be computationally convenient to make a different choice. However, for the
splitting lemma considered below, where T need not be invertible, the choice of (-, )
really will affect whether or not the gradient exists.

(d) Assume (T1) holds for f(x)-1/2B(x,x) and let p(x)-h(x)-f(x), where h
satisfies the conditions preceeding (T1). Then conditions (El) and (E2) hold if and only
if there exists a C map _" UL(E, E) defined on a neighborhood U of 0 in E such that
1(0) 0 and

(R) Dp(y).u-(y,(y).u) forallyUanduE.

Indeed, if (R) holds, (El) and (E2) are verified with A(y)- -T-f l(,y). ,yd,
and R(y)-- T-l/(y). Conversely (E2) gives condition (R) with/(y)- TR(y).

(e) If E is finite dimensional or admits a "Ck duality mapping", then Theorem B
can be improved to k>_2 and the right equivalence is C- (and C away from 0). In
finite dimensions this result is due to Kuiper [1972] and in infinite dimensions to Tuan
and Ang [1979]. The same result can be proved by the methods of this paper by using
the Whitney properties of the remainder term in the form given by Tuan and Ang
[1979].

4. The splitting lemma. We now briefly discuss the splitting lemma of Gromoll
and Meyer [1969], which enables one to reduce infinite dimensional catastrophe theory
to the finite dimensional case. As usual, we want hypotheses that will be applicable to
elliptic variational problems--see the following paper for specific examples. We shall
work in the context of Theorem B.

Let E be a Banach space and h: E R be Ck, k_> 3 defined in a neighborhood U
of 0. Suppose h(0)--0 and write D2h(O)(u,v)--B(u,v). Let (-,-) be an inner product
on E and assume

(S1) there is a Fredholm operator T: E E of index 0 such that B( u, v)--( Tu, v ) for
all u, v E.

Since T is Fredholm of index 0, we can write E=K@L, where K--ker T and
L--rangeT (note that T is symmetric). Denote points in K@L as pairs (x,y). Also
assume:

($2)--(T2) h has a Ck-1 partial gradient 7yh: UL (i.e. (Tyh(u),v)-Dh(u)v
for all vL) and XTyh(0,0)-0.
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SPLITTING LEMMA. There is a change of coordinates if=x, fi=lx(y)=,l(x,y) such

that in a neighborhood of (0, 0), h has the form

h( Z,fi ) 1/2D2yg(O, O)(f,fi)+ r(),

where rl(O, O) O, Dxrl(O, O) O, Dyrl(O, O) I and r(O) O, Dr(O) 0 and D2r(O) O.
Proof. Consider

7yh U- L.

Let P be the projection of E--, L whose kernel is K, and note that P T restricted to L
is an isomorphism of L to itself. Observe that DyX7yh(O, 0): L- L is the operator P T.
Thus, the implicit function theorem guarantees that the equation

Tyh(x,y)-O, i.e., Dyh(x,y)-O

uniquely defines a function y F(x) near (0, 0); F(0)= 0 and F’(0)= 0.
Let g(x,y)=h(x,y+F(x)) and note that

(, 0)Dg(x,y)-Dh(x,y+F(x))o F’(x) I

An easy computation shows that Dg(x,y) 0 implies y 0 and D g(x, 0) 0 if and
only if Dh(x, F(x)) O.

Theorem B (with h depending on parameters) shows that there exists an x-depen-
dent change of coordinates y x(Y) such that

Theorem A can now be applied in a similar way as in the proof of Theorem B to the
first term 1/2 Dyg(X, 0)(9,.9) showing that there is a further coordinate change )7 xI,x(9)
depending parametrically on x, which transforms this term to 1/2DZyg(O, 0)()7,)7). Putting
these coordinate changes together gives the result. UI

Remarks. 1. Letting m dimK, this splitting lemma is a generalization of the usual
form of the splitting lemma: a function whose Hessian has corank m at a critical point
can be decomposed as the sum of a 2-fiat function of m-eariables and a nondegenerate
quadratic form in the remaining eariables. See, for example, Wasserman [1974, p. 137].

2. The proofs we give are for k_>3 and give coordinate changes of class k-2.
However, as in remark (e) following Theorem B, this can be improved to k_>2 and
coordinate changes of class C- if the Banach space L admits a C duality mapping.

3. To find the critical points of h, it is enough to find the critical points of g
restricted to the finite dimensional space K= ker T.

4. To find a normal form for h, it is enough to find one for glK. Note that the
computation of g is not necessarily an easy matter as its definition depends on the
implicitly defined function F. However, using implicit differentiation one can in princi-
ple calculate the Taylor expression of g to any given order.

Since K is finite dimensional, ordinary catastrophe theory can be used to classify
generically what happens in these situations. If h depends on parameters, the splitting
lemma is to be used in a parametric way; a specific example is worked out in the
following paper (see Example 7). The general results of Chillingworth [1980] also
generalize to the present context. Finally, we refer to Magnus [1980] for a splitting
lemma under hypotheses similar to those described here.
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EXAMPLES FOR THE INFINITE DIMENSIONAL MORSE LEMMA*

MICHAEL BUCHNERt, JERROLD MARSDEN: AND STEPHEN SCHECTER

Abstract. Examples are presented which show how to use the Morse lemma in specific infinite dimen-
sional examples and what can go wrong if various hypotheses are dropped. One of the examples shows that
the version of the Morse lemma using singularity theory can hold, yet the hypotheses of the Morse-Palais
and Morse-Tromba lemmas fail. Another example shows how to obtain a concrete normal form in infinite
dimensions using the splitting lemma and hypotheses related to those in the Morse-Tromba lemma. An
example of Dancer is given which shows that for the validity of the Morse lemma in Hilbert space, some
hypotheses on the higher order terms must be made in addition to smoothness, if the quadratic term is only
weakly nondegenerate. A general conjecture along these lines is made.

Introduction. In this paper we discuss several examples relevant to the Morse
lemma and singularity theory in infinite dimensions.

We begin with some historical comments on the various methods that have been
used to prove the Morse lemma. The original method of Morse uses induction on the
dimension of the space and does not, as given, apply to infinite dimensions. See Milnor
[1963] for this proof. The Palais method was introduced in Palais [1963]. It is a
modification of the original method that works in Hilbert space under the hypothesis of
strong nondegeneracy of the quadratic term.

The Moser-Weinstein method is a variant of the singularity theory method de-
scribed in Golubitsky and Marsden [1983] (this issue, pp. 1037-1044). It was adapted to
the Morse lemma by Palais [1969]. Rather than directly join the quadratic part f to f+p
by f+ tp, as in the preceding paper, one joins df to df+ dp by df+ dp. Palais’ [1969]
theorem states the following: if E is a Banach space, h: ER is C3, Dh(0)=0, and
D2h(0), regarded as a map of E to E*, is an isomorphism, then there is a C diffeomor-
phism defined on a neighborhood of 0 in E such that

k(O) O, D(O) I( identity),
and

h(th(x))-h(O)+-D2h(O) (x,x).

In Hilbert space this result reduces to that in Palais [1963]. We call the condition on
DEh(0) strong nondegeneracy. If the map of E to E* associated to DEh(0) is injective, we
say DEh(0) is weakly nondegenerate.

The Morse-Tromba lemma was introduced in Tromba [1976]. It is motivated by
the fact that in many elliptic variational problems one does not have strong nondegen-
eracy of the quadratic term. Rather, this is changed to weak nondegeneracy at the
expense of putting special hypotheses on the nonlinear terms. The necessity of weak
nondegeneracy occurred already for Hamiltonian systems in Marsden [1968]. Tromba’s
original proof was an adaptation of Palais’ [1963] proof. A proof of the Morse-Tromba
lemma using the Moser-Weinstein method was given in Choquet-Bruhat, Fischer and
Marsden [1979]. The Morse-Tromba lemma is Theorem B of Golubitsky and Marsden
[1983]. The singularity theory method, described in that paper, yields a result strictly
stronger than Tromba’s. Examples 5 and 6 below illustrate this.
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*Department of Mathematics, University of California, Berkeley, California 94720.
Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650.
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For spaces admitting a duality map (such as Hilbert space or Ws’p spaces with p
even), the Morse-Tromba lemma is valid for C2 functions with C changes of coordi-
nates (by Remark (e) following Theorem B of Golubitsky and Marsden [1983]). We do
not know a C2 counterexample if E is a general Banach space. We conjecture that there
is not such an example.

The Morse-Tromba lemma suggests the question: can the Morse-Palais lemma be
generalized without putting conditions on the higher order terms? We conjecture that
the answer is no. More precisely,

CONJECTURE. Let E be a Banach space and let B: EEg be a continuous
symmetric bilinear map such that x-B(x, ) is not an isomorphism of E and E*. Let
f(x)-1/2B(x,x). Then there is a C3 map p: Eg with p(O)-O, Dp(O)--O, and D2p(O)-O
such thatf andf+p are not C right equivalent.

For E a Hilbert space, this conjecture has been verified by E. N. Dancer (private
communication). His class of examples is presented below in Example 8.

In the examples that follow, the labels (El), (E2), (T1), (T2), (S1), ($2), Theorem
A and Theorem B refer to Golubitsky and Marsden [1983]. A couple of these examples
are simple and well known but are included for completeness.

Example 1. This example shows that nondegeneracy of D2h(0) in the sense of (T1)
is not sufficient for the validity of the Morse lemma. Let E--12 and let h be the C
function

2_1h(x)-- n xn 7 E Xn"
n--1 n-l

Let (x,y)-Y=l(1/n)x,yn. Then (T1) holds with T--I. However (T2) fails, since the
only possibility would be

Th(X )n- Xn- nxEn n=l,2,.--

which is not defined on open sets in 2. Indeed, the Morse lemma fails for this function.
The quadratic term has no zeros other than the origin, yet h vanishes on the sequence
(0,0,.-.,3/2n,0,-.-), which approaches 0 in 12. If the cubic term is changed to

1/2E= l(1/n)x3,, then the gradient exists and the Morse-Tromba lemma applies.

Example 2. This example shows that Tromba’s hypotheses (T1) and (T2), but not
those of the Morse-Palais lemma, can be expected to hold for many elliptic variational
problems. If f is a bounded region in R" with smooth boundary, WS’P(f],gt ") denotes
the Sobolev space of maps u: f m whose derivatives up to order s are in Lp (see
Friedman [1969], for example). For p--2 we write W’2=H. If m--1 we write
Ws,P(,)--Ws’P().

Let us begin with the one-dimensional case.
(a) Let E=Hl([a,b]). We define the function g: ER by

g(u)- f[u(x)]dX+ fa[U(x)]3dx=f(u)+p(u ).

Composition properties of Sobolev spaces (Palais [1968]) show that g is C. Considered
as a linear map EE*, the bilinear map D2g(0) is U(v2fabuV). This map is
injective but not surjective. For example the delta function 8x(V)--v(x) for a<x<b is
in E* but not in the image of D2g(0): E E*. Thus the hypotheses of the Morse-Palais
lemma do not hold. (If fab[u(x)]2dx is replaced by fab[U(X)]2dX+fab[U’(X)]2dx, then
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the hypotheses of the Morse-Palais lemma do hold; this quadratic functional is similar
to the functionals used in the variational approach to geodesics.)

On the other hand, let (-,-) be the L2 inner product on H1. Then the gradient
XZg(u) relative to (-, ) is given by Vg(u)- 2u+ 3u2, which is C. Moreover, DVg(0)

2I. Consequently, Tromba’s Morse lemma applies, so g can be transformed to the
functional fb[ u(x)]2 dx.

In this example the transformation can be seen directly. Observe that g(u) can be
written as g(u)--fab[U(X)(1 +u(x))l/2]2dx. Now if : (c,d)CN-N is C then u
h u is C on (uHllc<u(x)<d for all x[a,b]). Hence the map uu(1 +u)1/2 is
C on (uHll-l<u(x)<o for all x[a,b]), has derivative the identity at u-0,
and hence is a local diffeomorphism.

Tromba’s proof of his Morse lemma applied to this example also yields the
transformation uu(1 +u)1/2. So does the proof of Theorem A. For if one solves
p-- -df.A by A(u)- -u2/2 and dp-df R by R(u).v-3uv/2, one obtains A(u)-
-u2/2 and for At(u) we get the expression -[1 + 3tu/2]-lu2/2. Note that A(u)-
--foZR(u) ud’, in agreement with Remark (b) following Theorem A of Golubitsky
and Marsden [1983]. Integrating this vector field leads to the inverse of the transforma-
tion uu(1 +u)/2.

(b) We now sketch a typical multiple integral variational problem in higher
dimensions. (Proofs rely on standard elliptic theory and Sobolev estimates, which are
omitted here.) Let E be Wg’P(f), the Ws4’ functions which are zero on Off, and let
s >n/p+ 1. Consider h: E R defined by

h(u)-W(Du)dx+ K(u)dx,
where Wis a smooth function of R" to NI, K is a smooth function of R to Nt, and Du(x)
is identified with a column vector or a point in N’. Suppose that

and

w(o)-o, DW(O)-O, K(O) DK(O) DK(O) 0

D2W(0)" ( ,n)->cll llllnll for allj,11R", where c>O.

Standard Sobolev inequalities (cf. Palais [1968, Thm. 9.10]) show that h is a smooth
function. Let ., ) on E be given by

( u, v ) Du" Dv dx.

Then

and

Dh(u)" v- DW(Du)" Dvdx+ DK(u)" vdx

D2h(O) (u,v)-(Du)VM(Dv)dx
where D2W(0) (, 11) TM11 for an n n positive definite matrix M. Then (T1) holds
for (Tu)(x)--A- div(MDv), using the classical fact that A. W,p(f) WS-2,p() is an
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isomorphism (Friedman [1969]). Also, T is an isomorphism on these spaces, for, as is
readily checked, div(MDu) is elliptic with trivial kernel. (T2) holds with

vh(u) A- div[DW(Du)]-A-’DK(u).

For this example, again the hypotheses of the Morse-Tromba lemma hold, but those of
the Morse-Palais lemma do not. Examples like this occur in minimal surfaces (see
Tromba 1981]) and in elasticity (see Chillingworth, Marsden and Wan 1982] and
Marsden and Hughes [1983]).

Example 3. (a) This example will show that Theorem A is not limited to functions
of the form quadratic + higher order (as the Morse-Tromba lemma is). Let E HI([a, b])
and let

Let

g(U)-- fab[ U(X )] 3dx "t- fabtU(X )] 4dx.

f(u)-- fat’[u(x)]3dx and p(u)- fab[U(X)]4dx.
The equation p(u)=-Df(u).A(u) can be solved by A(u)=-u2/3, and Dp(u)=
Df(u) o R(u) is solved by R(u).v=4uv/3. Note that

2R

(See Remark (b) following Theorem A in Golubitsky and Marsden [1983].) Hence g can
be transformed to f by a C transformation. This transformation, as in Example 2a,
can be found directly by writing g(u)=fab[U(X)(1-’U(X))I/3]3dx. Then (u)=u(1 +
u)/3 is a suitable transformation.

An easy calculation shows that the diffeomorphism obtained by integrating the
vector field At(u) -[1 + 4tu/3]-1u2/3 is the inverse of q(u) u(1 + u)/3.

(b) Let E=H([a, bl) and let g(u)=f(u) +p(u) where f(u)=fab[U(X)]3dx and
p(u)= {fab[U(X)] 2 dx}2. Theorem A applies to g and shows that g can be transformed to

f. Indeed, p(u)= -Df(u).A(u) can be solved by A(u)- 1/2fab[U(X)] 2 dx and Dp(u)-
Df(u) o R(u) is solved by R(u).v--fabU(x)v(x)dx (both A(u) and R(u).v are con-
stant functions). Note that A(u)= folrR(ru).udr. On the other hand there does not
seem to be any explicit diffeomorphism that one could write down by inspection of g.
The conjugating diffeomorphism is given by integrating

Odi’ (u t)-
--1/2fb[q(u’t)]2dx

Ot + fabtk( U, ) dx

and setting t= 1. It seems unlikely this could be solved explicitly in any simple fashion.

Example 4. We now give an example of a function h which is C3, (T1) holds, Vh
exists and is continuous but is not C 1, andyet the Morse lemmafails.

Thus the hypothesis that XTh be C cannot be weakened to CO in the Morse-Tromba
lemma.

Let E=Lq([0, 1]) and let : R --,R be a C function such that ’(2) 1, _<2,_<
and ’(h)=0 if 11_>2. We assume is monotone increasing with = -M for ,_<-2
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and -M for ,_> 2. Let h" E R be given by

3)

For q_>2, f is deafly C. Let (., ) be the L2 inner product on zq([0, 1]); then (T1)
holds with T--I. We claim that if q is an integer, then p is Cq- but not Cq, and Vp
exists, is continuous, but is not C1. Thus with q_>4 we get a C function. Let us
indicate the proof of these facts for q-4.

To prove that p is C3, we let k()=,(,3). By Taylor’s theorem,

(x_x0)2
k=0

+R(X,X0)(X-X0)

where limx_x0R(h,,0)=0 and, from the definition of , k(k) and R are bounded
smooth functions. Thus, suppressing the argument x, for u and u0 continuous functions
of x we have the identity

 o’,  uuo no3p(u)-- ll//(k)(UO)
k

dx+ )(u- )3dx
k--O

Since (k)(0) and R(h,,0) are bounded continuous, (k)(Uo) (resp. R(u, uo)) extends
to a continuous mapping from L4 (resp. L4L4) to L4. Using this fact and the Schwarz
inequality, it follows that p(u) depends continuously on uL4, and each integral above
depends continuously on (u, uo) L4 L4. Thus the identity holds for all (u, uo) L4

L4. Since tk(k)(uo) (k--0, 1,2,3) is bounded, (Vl,.. ",Vk)fO(k)(Uo)Vl VkdX is a
bounded multilinear functional on L4. Using the Schwarz inequality and the Lebesgue
dominated convergence theorem we see that the mapping that associates to u0L4 the
k-multilinear functional (Vl,-. ",Vk)f(k)(Uo)Vl’’" VkdX is continuous from L4 to
the bounded multilinear functionals on L4. Also, limu_,,,oR(u, uo)-O. It follows from
the converse to Taylor’s theorem (Abraham and Robbin [1967]) that p is C3.

Now an easy check shows that X7p(u) exists and is given by

re(u)- u)

If this were C 1, its derivative would be

v

Choose a number a such that k"(a)/3 :0 and let

a on [0, l/n]
Un-- 0 elsewhere

and

v,-{ on[0,1/n],
elsewhere.

Then one sees that u,0 in L4, Ilvll- in L4, but P(u,,).v,,O in L4. Since P(0)=0,
XTp(u) is not C 1. (One sees in a similar way that p is not C.)
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Finally, we note that h has a sequence of critical points u, approaching the origin,
namely

-1 on[0,1/n],
u,-

0 on (l/n,1].

Since this is not true for f, the Morse lemma cannot hold for h.

Example 5. We give an example to show that (El), (E2) and (T1) can hold,
without (T2) holding. Thus, the Morse lemma is valid, Theorem A applies, but Tromba’s
Theorem B does not.

Let E-l, the space of sequences x, with Z,oo= lxl<. Let h--f+p where

2_1f(x)=- 2 x. -(x,x),
n=l

(., ) being the usual 12 inner product, and

Since p is induced by a continuous trilinear map, h is C. Also, (T1) holds with T= I.
(E1) holds with

and (E2) holds with

as is easily checked. However (T2) cannot hold using the 2 inner product (or, by
Remark (c), following Theorem B, any inner product such that (T1) holds). If x7h exists,
so does XTp (since vf(x) x). But Vp would be

which is not in 11. Note also that R(y) does not have an everywhere defined 12 adjoint;
see Remark (b) following Theorem B.

Example 6. A variation on Examples 2 and 5 gives an example which is a proto-
type for problems in elasticity in which two bodies are in contact at a point. Like
Example 5, this example has (El), (E2) and (T1) holding, but not (T2).

Let f C R be a region with smooth boundary and 0; for instance, let 2 be the
unit disk in the plane. Let E W’p, s>nip + 1, the Sobolev space Ws’p with Dirichlet
boundary conditions, and let h: E R be given by

h(u) f llOull dx + u(O)
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As above, h is C. Let (u,v) on E be defined by (u,v)--fa(Du.Dv)dx. Then (T1)
holds with T--I. Let

u(0)uaf( u) - fallDullx andp(u)

We show that p cannot have a gradient Vp with respect to (., ) (except in the case
s-- 1, n 1), and thus (T2) cannot hold (except in the case s-- 1, n-- 1, in which case
(T2) holds) for Vp would have to satisfy

Dv" D(Vp(u))dx-faDv.Dudx +v(O)fau2dx + 2u(O)uvdx.
This implies

(as distributions)

where 80 is the Dirac delta function at the origin. But 80 is not in Ws-2,p unless s=
and n- 1, in which case 30 IV-,P. In this latter case Vp(u) is given by the formula
u-(fau2)A-3o-2u(O)A-u (using the fact that A: W’P W-,p is an isomorphism).
Thus Tromba’s hypotheses are satisfied only in the case s-- 1, n- 1. In the case s 1,
n- 1, p-2, the Palais-Morse lemma hypotheses are also satisfied since (.,-) is the
Hilbert space inner product for H.

On the other hand, for arbitrary s and n (with s>n/2 / 1), p- -df.A is solved by
A(u)=u(O)A-u, and dp=dfo R is solved by R(u).v--2u(O)A-v-v(O)A-lu (note
that A(u)-- -fd,R(u)" ud), so Theorem A applies.

Example 7 below concerns the splitting lemma under hypotheses compatible with
Tromba’s Morse lemma. We shall use the splitting lemma from the previous paper for
problems in which there is an additional parameter.

Example 7. As in Example 2, let s>n/p+ and E= W’P(f), the Ws,p space
with Dirichlet boundary conditions. Assume that )o is a simple eigenvalue of the
Laplacian A on and define h: E NI R by

h(u,X)-  IIDull + (Xo+X)u +G(u) aN,

where G(t)= t3-t (higher order terms) is a C function from R to N. We shall apply
the splitting lemma to h and bring it to normal form. We find that

(a) Dh(u,h) (v,p.)-- fa[Ou. Dv+(Xo+A)uv+1/21u2 + G’(u)v]dx,
(b) D2h(u,A).((v,l), (w,v)) fa [Dv.Dw + (Ao + A)vw + G"(u)vw + ,uv +

Iuw dx,
(c) D3h( u, X) (( v, lx ), ( w, ,), ( y, o )) fa[G’"(u)vwy+ ovw-+- ,yv -t- Iyw] dx.
Define (v,w)--feDv.Dwdx. Then D2h(O,O).((v,), (w,,))--fa[Dv.Dw+

hovw]dx= (Tv, w) where Tv=(I--AoA-)v. Since A is elliptic, T is Fredholm of index
0. The null space of T is N(T)=(Uo) where uo is an eigenfunction of A for the
eigenvalue )t o. The range of T is R(T)=(Uo) +/-, the space of vectors in E that are
L-orthogonal to u0. Let P be projection onto (u0) +/-. Write uE as u-auo+t,
 e<Uo> +/-.

Let Vh(u,A)-(l-(Ao+A)A-)u-A-G’(u). Then Dh(u,A),(,,O)-
(vh(u,X),v>, and PVh is what was called Tyh in the splitting lemma. Solving
PVh(u,X)=O using the implicit function theorem gives a function fi(a,h) such that
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PVh(auo+a(a,)),)=O. Now a(0,0)=0, and D(0,0)=0 because the kernel of
p o Dvh(O,O) is (Uo) R. Clearly t(0,))=0 for all , since vh(0,,)=0 for all ,.

Let v denote a typical element of uo) +/-. Let k(a, v,)) h(auo+ (a,)) + v, 2), so
that Dk(a, 0, )). (0, w, 0) = 0 for all w uo ) +/-. There is then an (a, ,)-dependent change
of coordinates v rl,x)(6) with rl,x)(0) 0 and D?,x(0) I, such that

1 2kk(a,rl(,,x)(g),,)-k(a,O,X)+-D (a O,X)(g,g).

To find a normal form for k (and hence h) it remains to find a normal form for
g(a,)=--k(a,O,h)=h(auo+(a,),,). Now,

(a) Dg(a,k). (,lz)=Dh(auo+gt(a,,),,). (uo+Dft(a,)). (,),),

(b) D2g(a,k) (,#)2-D2h(auo+(a,k),k). (uo+D(a,k). (,),#)
+Dh(auo+5(a,X),X). D25(a,X). (fl, #)2,

()

D3g(a X). (fl -D3h(auo+a(a,h),h) (fluo+Da(a,X). (fl ),

+ 3D:h(auo+5(a,X),X)

+Dh(auo+5(a,X),X). D35(a,X). (fl,g)3.

Therefore

(i) g(0, 0) h(0, 0) 0,
(ii) Dg(O, 0) 0 because Dh(O, O) O,
(iii) D:g(0,0)=0 because

)2 2DD:h(O,O) (#Uo :h(0,0) (u0,0): -#:(Tuo,Uo)-#
(iv) O3g(0,0) (,)3-#3fa"’(O)ugdx+ 32fudx,

using the formula for D3h; the terms invoMng D:h and Dh give 0.

Assume (by normaling) that fuudx- and assume fuugdx O. Since G"’(0) 0,
we have

1 )3 1
g(a,)--.D3g(O,O)’(a + ...-ka3+a2+ ...,

Let us multiply a and h by constants to put this in the form

kvO.

g(a, X) a + 3)kit2 +

The higher order terms are divisible by a2, since g(0,,)-h(0,,)-0 (recall (0,,)-0),
and g,(0,h)-0 because Dh(O,h)-O. Let us put g into normal form using the ideas in
Wasserman [1975]. First note that g(a,h) has the form

g(a,h)- a3z( a) + 3a2hq( a,h )
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where z(0)= 1 and q(O, 0)-1. By the universal unfolding, theorem for cubic singular-
ities, there are functions/3(a,h), o(h) and z(h) such that

where

and

>o, o(o)-o,

Using the chain rule in some straightforward calculations we find that

o’(0)-0 and o"(0)<0.

Thus, there is a further change of coordinates/z-/z(?) with/x(0)- 0,/’(0) >0, such that

Since g(0,h)=0, {[/3(0,h)]2-3[/x(?)]2}/3(0,h)+(X)=0; and since g(O,)=O,
3{[/3(0,,)]2-[#(,)]2)/(0,,)=0. Since /3(0,,)=0, /3(0,X)=e/z(X) where e=+--1.
Hence "r(h):2e[Iz(h)] 3, so g=/33-3/x2/3+2e/x3. Letting :/3-e/, we get g:’y3q-
3e3,2/x. If we differentiate each side of this equation twice with respect to a and once
with respect to h, and set (a,X)=(0,0), we find that 1 =[,(0,0)]2[,x(0,0) +e/’(0)]. But
3,x(0, 0) =/3x(0, 0) e/x’(0) 0 and/#(0)> 0; therefore e 1. Thus we obtain the normal
form

in the new coordinates (3,,/x). Hence there is a change of coordinates respecting the
parameter such that the higher order terms can be eliminated.

Note that g is the potential function for a transcritical bifurcation: if we set
g(a,)=0 we get

3a2+6a+2a( )-0.

The solution set is therefore the h-axis and a curve tangent at (0,0) to the line
a + 2X-0. The expression g(a,)=3+ 3/x-/ puts the potential function for this bifur-
cation problem into normal form.

Normal forms for the equations g-0 by coordinate changes respecting the
parameter are found in Golubitsky and Schaeffer [1979]; see Marsden and Hughes
[1983, Chap. 7] for simple proofs adequate for the present example. Golubitsky and
Schaeffer point out that for many bifurcation problems, the equation g--0 can be put
into normal form by a coordinate change respecting the parameter, but the potential
function g cannot.

Our approach to Example 7 should be compared with, for example, Chillingworth
[1974] and Zeeman [1976], which consider a one-dimensional problem in which difficul-
ties with the function spaces do not occur (i.e the energy norm is a complete Hilbert
space norm) and for which the bifurcation parameter is not treated as distinguished.
The example of Beeson and Tromba [1981] has the function-space complications of our
example (i.e. the energy norm is not complete) but has additional complications due to
a group action. However there is no distinguished bifurcation parameter.
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Example 8 (E. N. Dancer). This example proves the conjecture in the introduction
for Hilbert spaces. Let H be a Hilbert space with inner product -,. , and let B:
HH-,R be a continuous symmetric bilinear map. There is a bounded self-adjoint
operator L: HH such that B(x,y):Lx,y. Suppose that L is not an isomorphism.
Let f(x)- 1/2B(x, x). We shall find a continuous homogeneous cubic polynomial p"
H--,R such that f and f+p are not C right equivalent in any neighborhood of the
origin. Thus any generalization of the Morse-Palais lemma in Hilbert space must place
restrictions on the perturbation p.

Let o(L) denote the spectrum of L. Since L is not an isomorphism, 0 o(L).
Case 1. N(L) . Then vf(x) Lx 4 0 for x :/= 0. We shall find a continuous

homogeneous cubic polynomial p: H-R such that v(f+p)(x)=Lx+ Vp(x)=O at
points x arbitrarily close to 0. Thenf andf+p cannot be C right equivalent.

There exist w o(L), w 4= 0, such that wn --, 0. For each n let I be a closed interval
centered at w such that the I are disjoint and radius (I.)<lw.l/2. Let Pn be the
orthogonal projection corresponding to In that is given by the spectral theorem, and let
H PnH. The subspaces H are mutually orthogonal subspaces of H, invariant under
L, and LIH has spectrum lying in In.

Choose enH such that Ilenll-1. Then IlLen-Wnenll<lw.I/2. Let zn:Len-Wnen.
Decompose z as zn=onen+%y where (en,yn)=0 and IlYnll--1. If z is a multiple of
en, set Yn =0, % =0. Then Yn Hn (by invariance of H under L) and I%1, Inl<lWnl/2" We
conclude that Len Ine + %Yn where/n w + on. Thus Iwl/2 <:l/nl< 31Wnl/2.

Define Pn on span (en,yn} by Pn(aen + flYn) t3 + (3%/ln)a2fl Notice that 13’n/n
<(31w.I/2)/(Iw,,I/2)= 3. We find that L(’Yne,)+ Vp.(’ynen): 0 provided

and

3Y+%#n=O

i.e., provided 3’n
Finally, define p on H by p---ZPn- Since all the en’s and yn’s are mutually

orthogonal, p is a continuous cubic polynomial,

Proof. p(x ) T(x, x, x) T( u, v, w) symmetric mapwhere is the trilinear defined
by

%T(u,v,w)- 2 (u,en>(V,en>(W, en>+ 2 --(U,Yn><V,en><W,en>
%+ 2 --n <U,en><V,Yn><W,en> + 2 --n (U,en><V,en><W,Yn>

Each of these four sums is a bounded trilinear map. For example, the second sum is
estimated as follows"

(U,Yn><V,en><W,en>

[ <u,y >]’/. <v,e >. <w,e >]l/l[ullllvl[llwll. )
We have L(e)+ Vp(%e)=0 where %0.
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Case 2. N(L)va 7. Let (e,} be an orthonormal basis for N(L). Let p(x)--
Y,(x,e,) 3. Then Vf(x)-O for all xN(L), but ST(f+p)(x)vaO if xvaO. Thus f and
f+p are not C right equivalent.
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Abstract. An initial- and boundary-value problem for the Korteweg-de Vries equation is shown to be
well-posed. The considered problem may serve as a model for unidirectional propagation of plane waves
generated by a wavemaker in a uniform medium. Such models apply in regimes in which nonlinear and
dispersive effects are of comparable small order.
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1. Introduction. The Korteweg-de Vries equation, originally suggested in connec-
tion with a certain regime of surface water waves, has been derived as a model for
unidirectional propagation of small-amplitude long waves in a number of physical
systems. Because of the range of its potential application, and because of its very
interesting mathematical properties, this equation has been the object of prolific study
in the last few years. These studies have generally concentrated on aspects of the pure
initial-value problem,

(1.1) ut+ux+UUx+Uxxx=O,
(1.2) u(x,O)--f(x),

for xR and t_>0, say. Equation (1.1) is a version of the Korteweg-de Vries equation
in which the dependent and independent variables are nondimensional, but unscaled.
The initial dataf in (1.2) typically decays to zero at infinity, or is taken to be a periodic
function, though these do not exhaust the theory thus far existent (cf. Bona and
Schonbek [7] and Menikoff [20]). For comprehensive descriptions of results pertaining
to the KdV equation, as (1.1) will be named subsequently, the reader may consult the
review articles of Benjamin [3], Jeffrey and Kakutani [14], Lax [17], Miura [21], [22] and
Scott, Chu and McLaughlin [24].

The applicability of the KdV equation in a particular context depends on many
factors. Among the more universal of these is that the waves be unidirectional and
essentially one-dimensional in character. It must generally be the case that, at least
locally, the nonlinear and dispersive terms, uux and Uxx, respectively, represent small
corrections to the basic one-way propagator ut+Ux--O (cf. [4,2]). In attempting to
assess the performance of the KdV equation as a model for waves in a particular
system, the pure initial-value problem may not be particularly convenient. There might
be difficulty associated with determining the entire wave profile accurately at a given
instant of time. One method of obtaining unidirectional waves to test the appurtenance
of KdV is to generate waves at one end of a homogeneous stretch of the medium in
question and to allow them to propagate into the initially undisturbed medium beyond
the wavemaker. (Figure 1 shows an instance of this situation in the case of surface
waves in a channel. For this system x is proportional to distance along the channel, is
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*Institute for Informatics, University of Oslo, Oslo 3, Norway.
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proportional to elapsed time and the dependent variable / is the deviation of the
liquid’s surface from its equilibrium position at the point x at time t. Here the
dependent variable has been denoted r/since u is usually reserved for a velocity in fluid
flow contexts.) During the time when the waves propagate freely, it may be expected
that KdV can apply. Of course any real medium will have finite extent, and once the
waves have been influenced by another boundary the experiment should cease, as far as
KdV is concerned. In such an experiment it may be comparatively easy to measure the
passage of the generated waves at a fixed location at or away from the wavemaker. If
this is the case, the generated waves can be determined, at or near the wavemaker, and
at another station further away from the wavemaker. One could imagine using the
measurement nearest the wavemaker as data for the KdV equation. It may then be
possible to predict, perhaps numerically, the behavior of the waves further from the
wavemaker on the basis of the KdV equation, and to compare the prediction with the
measurements made well away from the wavemaker.

"r/t + x + ’r/x + XXX 0

r/(x,O) f(x) x

FIG. 1. Sketch of the experimental configuration and theproposed mathematical model.

The major accomplishment of the theory presented here is the demonstration that
the program, just described, can, in principle, be carried out. Let us agree to fix the zero
of the spatial coordinate x, which is along the direction of propagation, at the station
nearest the wavemaker where a measurement is to be taken. Then the mathematical
problem that accompanies the above discussion is expressed as the following initial-
and boundary-value problem (cf. again Fig. 1).
(1.3) ut+ux+uux+Uxxx=O for x,t>_O,

u(x,O)=f(x) for x_>O,
u(O,t):g(t) for t-->O.

According to the above general discussion, it could be warranted to take f0 and to
assume that g, which is determined experimentally, is consistent with small-amplitude
long-wavelength waves. These assumptions will play no role in the theory developed
here.
All that will be required is that f and g exhibit smoothness, which is entirely ap-
propriate to the use of KdV as a model equation, and that f decay to zero at infinity
appropriately. The smoothness requirement extends to the origin, and results in a
certain compatibility that must be satisfied between f and g. These conditions will be
spelled out presently.



1058 JERRY BONA AND RAGNAR WINTHER

The same initial- and boundary-value problem has been analyzed for the alterna-
tive equation, proposed by Peregrine [23] and Benjamin et al. [4],

(1.4) U -3
I- Ux AI- UU Uxxt 0,

in [5]. Results related to those established in the latter reference will be derived and
used in the attack on (1.3). The connection between KdV and (1.4) is a regularized
version of problem (1.3), namely,

(1.5) Ut-[-Uxt-UUx--Uxxx--eUxxt---O for x,t>_O,

u(x,O)=f(x) for x_>0,

u(0, t) g(t) for t_> 0,

where e>0. The regularized problem (1.5) intervenes in a substantial way in the
existence theory for (1.3) developed here. The regularized differential equation appear-
ing in (1.5) is the same tool used already in [7] and [8] in discussions of various pure
initial-value problems for KdV. The general outline of the theory herein is patterned
after that developed in [8]. The technical difficulties presented by the nonhomogeneous
boundary condition u(O,t)=g(t), for t_>0, require a more delicate analysis than that
effected in the last-quoted reference.

The present theory may be considered an extension of the earlier work of Ton [27]
and Bona and Heard [6]. Ton’s paper undertook the study of the problem,

Ut--UUx-t-Uxxx=O, x,t>0,

u(x,O)--f(x), x>--O,

u(O,t)--O, t_>O.

If the minus sign appears in front of the dispersive term, then the extra boundary
condition ux(0,t)=0 for t>0, is appended. For problem (1.6), with the positive sign
taken, the methods exemplified in Lions’ text [18], combined with the regularization
used by Temam [26] in an early paper on the periodic initial-value problem for KdV,
are used to obtain global existence of weak solutions and local existence of classical
solutions. (The interval of existence is proportional to the inverse of Ilfll6, in the
notation to be introduced in 2.)

Actually, problem (1.6) is not an appropriate model for water waves in a uniform
channel, as is suggested in [27]. For the differential equation in (1.6) is written in
travelling coordinates, and consequently the boundary condition, if it is to correspond
to observations of the disturbance at a fixed position in the channel, should be applied,
not at (0,t), for t_>0, but rather at (-t,t), for t_>0. This awkwardness is easily
obfuscated by the inclusion of the extra linear term ux in the differential equation, an
addition without serious consequence as regards Ton’s mathematical proofs. A more
serious objection to the theory developed in [27] is that the homogeneous boundary
condition u(0, t)--0, for t_>0, is not well-suited to model waves generated by a wave-
maker at one end of a uniform stretch of medium, as already explained. Moreover, for
problems of long-wave propagation, it is not anticipated that the flow will develop
singularities, and consequently it is expected that the model equation should have a
global theory of classical solutions, corresponding to suitably smooth data. These
drawbacks in the earlier theory are here shown to be methodological, and not inher-
ently a property of the model equation.

In [6], a local existence theory for (1.3) is developed, using the methods of Kato
[16]. The boundary data is required to be mildly smooth, but otherwise arbitrary. For
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technical reasons, this theory has not, thus far, yielded solutions defined globally in
time.

It is worth drawing attention to several comparisons which have been made with
experimentally obtained data, pertaining to the originally conceived application of the
KdV equation to small-amplitude surface water waves. We cite the studies of Zabusky
and Galvin [31] and Hammack and Segur [13], and of Hammack [12] using (1.4). These
studies all used pure initial-value problems for their theoretical predictions, even though
the experimental configuration was exactly as described earlier in justifying the further
study of the initial- and boundary-value problem considered here. That is, a uniform
channel of water, initially at rest, had waves generated at one end by a wavemaker. The
waves propagated down the channel and their passage was recorded at various stations
along the channel. Entailed in each of these studies was a transformation of data
measured over time, at a fixed location, to data measured spatially at a fixed instant of
time. The approximate transformations used in the above-quoted studies introduce
errors, which can be analyzed. In fact, the forthcoming work [10] addresses this issue in
some detail, and consequently it is not taken up here, except to report that quite
significant errors, particularly as regards the phase speed, can be expected when using
the approach of converting the boundary-value problem to a pure initial-value problem.

It is also worth noting that, at least for surface water waves, damping effects need
to be considered. Such effects were introduced, in an ad hoc way, in [12] and [13], and
more systematically in [10]. An additional term that models the damping due to the
boundary layers on the bottom and sides of a uniform channel of shallow water, at the
level of approximation entailed in the KdV equation, has been derived carefully by
Kakutani and Matsuuchi [15]. The incorporation of such dissipative terms in the initial-
and boundary-value problem (1.3) is under study, but will not be addressed here.

The paper is organized as follows. Section two sets out the notation and terminol-
ogy to be used subsequently and presents a sample of the main results in the paper. In
3 the regularized problem (1.5) is considered, and is shown to admit a satisfactory
theory when e is fixed and positive. A priori e-independent bounds for solutions of the
regularized problem are derived in 4 and 5. Passage to the limit e $ 0 is effected in [}6,
where smooth solutions of the initial- and boundary-value problem (1.3) are shown to
exist. The paper concludes with some commentary concerning aspects not covered in
the present study.

2. Preliminaries and statement of the main result. For an arbitrary Banach space
X, the associated norm will be denoted I1" IIx. The following spaces will intervene in the
subsequent analysis.

If is a bounded domain in R n, then CJ() denotes the space of real-valued
functions which have classical derivatives up to order j in f, and whose derivatives, up
to orderj, extend to a continuous function on . Ifj-0, C() will be denoted simply
C(f). The norm on C(t2) is

Ilfllc<  - sup If(x)l,
xf

and the norm on C(f) is

(2.1) Ilo fllc<  ,
lal-<j

where a-(a,-.., an) is a multi-index of nonnegative integers, lal-a + +a, and
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The notation for r/xr and Ot for)r/)t will be employed throughout when it is
convenient. If f is unbounded, C(f]) is defined exactly as in the case that f is
bounded except that the function and its derivatives are required to be bounded. The
norm is again defined by (2.1).

The space Coo()-NjCJ() will be used, but its usual Frrchet-space topology
will not be needed. (R)(f) is the subspace of Coo(f) of functions with compact support
in f]. Its dual space, (R)’(), is the space of Schwartz distributions on .

If fl is open in R n, then CJ(f) is the continuous real-valued functions defined on
f and possessing classical derivatives up to order j which are continuous on f]. No
restrictions are placed on the behavior of the functions near the boundary of f. This
class can also be given a natural Frrchet-space topology, but this topology will not
figure in the developments here. Naturally, Coo(f)- N.C().

If T> 0, we will systematically use the abbreviation C(0, T) for C([0, T]). Similarly,
cm(o, T) will stand for cm([0, T]).

For any real p in the range [1, oo), LP(fl) denotes the collection of real-valued
Lebesgue measurablepth-power absolutely integrable functions defined on ft. As usual,
Loo(f) denotes the essentially bounded real-valued functions defined on fl. These
spaces get their usual norms,

for _<p < o, and

Ilfllu)- essential supremum If(x)l-
xfl

If _<p--< o, and m_>0 is an integer, let wm’P(fl) be the Sobolev space of L’(f)-func
tions whose distributional derivatives up to order rn also lie in LP(fl). The norm on
wm’p(fl) is

P P

When p= 2, W"P() will be denoted Hm(). This is a Hilbert space, and H(fl)
L2(fl). For s>0, not necessarily an integer, HS() is defined by interpolation. For
s>0, H(fl) is the closure in HS(fl) of (R)(f). For s>0, H-() is the dual of H()
with respect to the pairing which is the extension by continuity of the usual L2(fl)-inner
product. The noninteger-order Sobolev spaces only intrude at one point in our analysis,
and then only in the interest of sharpness. Details concerning these spaces may be
found in Lions and Magenes’ work [19] or in Stein’s text [25], for example. The
notation Hoo()-FIjH2(fl) will be used for the C-functions on f, all of whose
derivatives lie in L:(fl).

Finally, H{o(l) is the set of real-valued functions f defined on fl such that, for
each q (R)(fl), qf H(fl). This space is equipped with the weakest topology such that
all of the mappingsfqf, for q (R)(fl), are continuous from H{oc(fl) into H(f). With
this topology, H{o(fl ) is a Frrchet space (cf. Treves [28]). Let R + denote the positive
real numbers, (0, o). A simple but pertinent example of the localized Sobolev spaces is
H{o(R +). Interpreting the foregoing definitions in this special case, g H{oc(R +) if and
only if gH(O, T), for all finite T>0. Moreover, gng in Hi’o(R +) if and only if
g,g in HS(0, T), for each T>0. Here and below, the abbreviation H(0, T) has been
used for H((0, T)).
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In the analysis of the quarter-plane problem (1.3), the spaces HS(fl) will occur
often, with s a positive integer and fl-R + or f-(0, T). Because of their frequent
occurrence, it is convenient to abbreviate their norms. Thus let

(2.2a) I1" I1,-I1" I1<"+ and l" Is,r II" Ilus(0,r)
If s-0, the subscript s will be omitted altogether. So

(2.2b) I1" II--I1" and I" Ir=1" 10,r.
Some special cases of the Sobolev embedding theorems will be used occasionally

and are worth recalling here. Let I be an open interval on the real line, not necessarily
bounded. If s> 1/2 + m, where m is a nonnegative integer, then

(2.3) US(I) C C(I ),
algebraically, and continuously with respect to the norms on these two spaces. (More
precisely, an element in H(I) is, after possible modification on a set of Lebesgue
measure zero, a cm-function on I, all of whose derivatives up to order m are uniformly
continuous on I, and so may be extended to I.) In the special case where I= + and
s-k, a positive integer, it is also useful to recall that iffH(+), then,

(2.4) f(x),f’(x),... ,f(k-l)(x)--O as x-- + o.

An inequality that will find use is the following, valid for fHI(R+). According to
(2.3), such a function is bounded and continuous on R +, and furthermore,

(2.5) Ilfll +)-< (llfll II/’
This inequality, which is sharp in fact, follows from the observation that, for any
yEN + andfHl(N +),

Syf(xfZ(y)_ 2 )f’(x)dx<_2 fZ(x)dx f’(x)]2dx

-<211fllllf’ll.
Spaces will be needed to describe the evolution in time of the spatial structure. If X

is a Banach space, _<p_<, and -<_a<b<_, then LP(a,b; X) denotes the space
of measurable functions u:(a, b) -+ X whose norms are pth-power integrable (essentially
bounded, ifp- ). These are Banach spaces in their own right, with the norms

IIIlIILP(a,b;X) (Sabil/’/( )’l dt ) lip
for p< o,

and

I1"11 essentialsupremum
tG(a,b)

The subspace of L(a,b;X) of continuous and bounded functions u:[a,b]X is
denoted Cb(a, b; X). (In case a and b are both finite, the subscript b, for "bounded", is
dropped.)

These spaces all possess localized versions. The only one appearing here is the
space L]o(+; X) of measurable maps u:+ X which are essentially bounded on any
compact subset of R +.

Finally, if X is still an arbitrary Banach space, we may consider the X-valued
distributions (R)’(a,b; X) on the interval (a,b). Formally, (R)’(a,b; X) is the set of linear
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and continuous maps of @(a, b) into X. If T 0,(a, b; X), its distributional derivative
is defined by

dT
dt

for q (a, b). Thus, if fLP(a, b; X), then f may be viewed as an X-valued distri-
bution via the definition

for tp (R)(a, b). The integral is, of course, X-valued, and converges since tp has compact
support. Thus, "temporal" derivatives of LP(a, b; X)-functions may always be defined,
at least in the distributional sense. There is a considerable theory pertaining to when
distributional derivatives are in fact classically defined. Some of these results will be
called upon later. Specific uses of this theory will be referenced precisely, but the reader
may consult [18], [19], [25] or [28] for general commentary concerning such issues.

The following is a special case of the main result of this paper. It serves simulta-
neously to give orientation and define the goals of the paper.

THEOREM. Consider the initial- and boundary-value problem (1.3) and suppose that
the data f, g has f H4(NI +) and g Hoc(R +). Suppose that f and g satisfy the compatibil-
ity conditions,

g(O) --f(O),
g,(O)-- (fxxx(O) +f(O)fx(O) +fx(0)).

Then there exists a unique solution u in Lo(R +; H4(It +)) of (1.3) corresponding to the
data f and g.

Remarks. By the term "solution", we will always mean, in the first instance, a
solution in the sense of distributions on the quarter-plane. The term classical solution is
reserved for a function which is continuous and continuously differentiable the re-
quisite number of times, and which satisfies the differential equation pointwise every-
where, and the initial and the boundary conditions pointwise.

Note that since gHo(+), g CI(0, T), for any T>0. Also, fH4( +) implies
fC3b(+). In consequence, the compatibility conditions are both well-defined. The
first compatibility condition simply expresses the continuity of the solution u at the
origin. The second condition would necessarily hold for a classical solution.

The theorem above is a part of Theorem 6.2 below. There it will also be established
that if fU_H3k+ 1( +) and gHlkoc+l(l +), where k is a positive integer, and if corre-
sponding higher order compatibility conditions hold, then the solution u lies in the class
Loc( +; Hak+ l( +)). In particular, if k_>2, it is easily inferred that u is a classical and
global solution of the quarter-plane problem for the KdV equation.

3. Theory relating to the regularized problem. In this section, interest will be
focused entirely on the regularized initial- and boundary-value problem (1.5), repeated
here for convenience.

(3.1a)
with

(3.1b)

Ut-I-Ux-l-UUx-t-Uxxx--eUxxt---O for x,t>_O,

u(x, 0) =f(x for x _> 0,

u(O, t) g( ) for t_>0.
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For consistency, the restriction

(3.2) u(0, 0) =f(0) g(0)
will be imposed throughout the discussion. For the present, the positive parameter e

will be treated as a fixed constant, in the range (0, 1], say. Following the development
in [8], let

(3.3) v(x,t)-eu(el/2(x-t),e3/2t).
It is immediately verified that u is a smooth solution of (3.1) if and only if v is a smooth
solution of the problem

vt+(l+e)vx+VVx-Vxx,-0 in a,(3.4a)
and

(3.4b) v(x,O)--F(x) for x>_0,

v(t,t)--G(t) for t_>0.

Here :((x,t): t>0 and x>t}, F(x):ef(e/2x), and G(t):eg(e3/2t). The depen-
dence of F and G on e is suppressed, since e is viewed as fixed here. Of course (3.2)
implies and is implied by

(3.5) F(0)-- G(0).
The initial- and boundary-value problem (3.4) is somewhat peculiar, owing to the
domain (a sector of angle rr/4) in which it is posed (cf. Fig. 2).

v(x,O) F (x)

FIG. 2. The regularizedproblem, after the change of variables.

Related initial- and boundary-value problems have been analyzed by passing to an
associated integral equation. This method proves to be effective in the present circum-
stances.

To convert (3.4) into an integral equation, proceed formally as follows. Write (3.4)
as

l)t--l)xxt-- -(l +e)Vx-VVx,



1064 JERRY BONA AND RAGNAR WINTHER

and, for fixed x>_t, integrate this relation over the temporal interval (0,t). There
appears

(3.6)
where

and

w-wxx:S forx>t,

w(x,t):v(x,t)-F(x),

S(x,t)- -f0t[(1 +e)vx(x,s)-Fv(x,S)Vx(X,s)] ds.

The solution of (3.6) may be expressed in the form

(3.7) w( x, ) ae +- e-Ix-ms(, ) dl,

by the variation of constants formula. Of course a=a(t), and it has been assumed
tacitly that S and w are bounded. If t_>0, then at x-- t,

ft
o

_it_mS(G(t)--F(t)-v(t,t)-F(t)-w(t,t)-a(t)e-t+- e l,t)dt.

Hence,

(3.8) a(t)-e G(t)-F(t)-- e-lt-ms(l,t)dl

The result of (3.7) and (3.8) is that

e_(X_t) e-lt-mS(, t) dv( x, ) F(x ) + e-(X-t)(G( ) F( )) --+_1 ft e-Ix-mS(, t)d

Since _> t, this simplifies to

(3.9) v(x,t)-F(x)+e-(X-t)(G(t)-F(t))+ M(x-t,l-t)S(,t)dl,

where

(3.10) M(y,z)- [exp(-Lv- z[) exp(- (y+ z))].
Replacing S by its definition in terms of v,and integrating once by parts, (3.9) may be
expressed in the form

(3.11) v(x,t)--F(x)+e-(X-t)(G(t)-F(t))

]+ K(x-t,l--t) (1 +e)v(l,s)+- (l,s) dsdt,

where

(3.12) 1K( y,z) -- [exp(-y-z)+ sgn( y-z)exp(-ly-z[)]

The boundary term that appears in the integration by parts vanishes because e-Ix-m--
e-(x+ti)+2t when =t and x>_t. Notice that K(O,l-t)=--O, so that v(t,t)=G(t), for all
t_>0. Note also that v(x, 0)= F(x), provided the consistency condition (3.5) holds.
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Equation (3.11) is the desired integral equation. It has been derived formally, and
thus far its relation to solutions of (3.4) is not rigorously established. Our object now is
to make a rigorous connection between solutions of the integral equation and solutions
of (3.4), and to show that the integral equations possesses solutions, at least for small
time intervals.

Turning to the second objective first, let T>0 and let ET be the Banach space of
bounded continuous functions defined on the closure of the set

fr= ((x,t)" t(O,T) and x>t).

r is equipped with the supremum norm. Let A denote the operator that maps a
function w Er into the function

(3.13) ( Aw)(x, t) F(x) + e-(X-O(G( t) -F( t))

ft f0t[ 12( 1+ K(x-t,l-t) (1 +e)w(l,s)+2w l,s) dsd,

defined for (x, t) fr- Because the kernel K is integrable, and assuming that F and G
are bounded and continuous, it is plain thatAwr also. Existence of a solution of the
integral equation (3.11) will be provided by showing that, for T small enough, A is a
contraction mapping of a ball centered at the zero function in r. The following
estimate is the basis on which this assertion is established.

Let u and w be elements of Er. Consider the difference of their images under the
operator A,

Au(x,t)-Aw(x,t)

K(x--t,l-t) l+e+- -For fixed in the interval [0, T],

sup [Au(x,t)-Aw(x,t)[
x>t

--<sup IK(x--t,l--t)ldlsup
x>_t

w(,s)1 + e+-u(5,s) +- ds.

But, for x> t,

ft ftle2t-’x+t)+sgn(x-I)e-lx-OldlIg(x- t, -- t )l d--

=- le2’-(+*-e-*ld +- (e2t-(x+r;)+et-X)d

1 e 2(t-x)-< 1.
Hence, as 0-< t-< T,

suplAu(x,t)--Aw(x,t)l<--sup +e+-u(,s)+w(,s)
x>t >-t

ds

(llull  + Ilwll  )
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It follows that

(3.14) I[Au-Awller sup IAu(x,t)-Aw(x,t)l
(x,t)ar

This inequality implies the desired result. Let 0(x, t)--=0 and set

(3.15) R(r)=-211aOIle<--nllFIIc</)/ 2.11allc(0,).
Let BT- (wEr: IIwlleT<_R(T)} and let

(3.16) O(T)= T[1 +e+R(T)].
Then it follows straightforwardly that, for u and w in Br,

I1u-awllo(Z)llu- wll,
and

R(r)-<[O(r)+ 1JR(r).IIAuII<--IIAu--AOII/ IIA01I -<o(z)llull/
Because of the last two inequalities, A will be a contraction mapping of Br if O(T)_< 1/2.
Referring to (3.16), one appreciates immediately that, for fixed data F and G, this
certainly holds for T sufficiently small. In fact, it is worth noting that, essentially
because of the inequality in (3.15), for any M>0 we may take

(3.17) { }T=min M,
2(l+e+411FIIc(+)+21lGllc(o,g))

and have O(T)_<1/2. Thus (3.11) has a solution in r, for T sufficiently small. This
result is summarized formally in the following.

PROI’OSITION 3.1. Let M>O, G C(O, M) and F Cb(R +) with F(O) G(O). Then
there exists a positive constant

To- Zo( llFII c<+),
such that for any T’ with O<T’<_mirt(To,M), there is a solution of (3.11) in r,.
Moreover, for any T(0,M], there is at most one solution of(3.11) in Er.

Proof. The question of existence has already been settled. Suppose there are two
distinct solutions v and w of (3.11) in Er- Since v and w are continuous, there is a
t0[0, T) such that v=--w oE to, and on no domain t is ts still true, if t>to. Let
U(x,t)-v(x,t)-w(x,t), in to- Define

Uo( x, ) F(x ) + e-(X-t)( G( ) F( ))

+ K(x-t,--t) t (1 +e)V(,s)+ U2(,s) dsd,

for (x, t) D ((x, t)" o _< _< T and x _> }. Plainly Uo is bounded and continuous on D.
Then the integral equation

u(x,t)-- Uo(x,t)+ K(x-t,-t) (1 +e)u(l,s)+u t s) dsdl

=Ju(x,t),
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defined on D, has two distinct solutions, which we denote by v and w again, though
they are in fact v and w restricted to D. Moreover, while these two solutions agree at 0,

they do not agree identically in any neighborhood of o
The existence argument presented above is easily adapted to show that, for R large

enough and for t-t(R) near enough to 0, is a contraction mapping of the ball/R
of radius R centered at the zero function in Cb(Dl), where

D ((x,t)" to<-t<-t and x>_t}.
But if

g_>max(llvll, [Iwll  ),
then .4 has two distinct fixed points v and w in /. This contradiction forces the
conclusion v w on fr, and the proposition is established. Vq

It will be important in subsequent sections to have smooth solutions, up to the
boundaries, of the regularized problem (3.1) at our disposal. This amounts to the
program of relating solutions of the integral equation (3.11) to solutions of the trans-
formed problem (3.4). The following result will be sufficient for our later needs.

PROPOSITION 3.2. Suppose that F C(+) and G cm(o, To), where k >_ 2, m >_ 1,
and k>_m. Suppose also F(0)- G(0). Let v be a solution in T of the integral equation
(3.11), where 0< T<_ To. Then

(3.18) OOtJvr, forO<_j<_m and O<_i<_k+j.

Moreover, v is a classical solution of the transformedproblem (3.4) in fr. Conversely, if v
lies in and is a classical solution of (3.4) on r, then v is a solution of the integral
equation (3.11) over r, and so v satisfies (3.18).

Remark. The partial derivatives in (3.18) may be defined at the boundary of fr by
the obvious one-sided differential quotients. The reader will appreciate that a function
v defined on fr does not possess a classically defined partial derivative with respect to
at the point (0,0). In case j>0 in (3_18), the condition OOtJv7. connotes that this
partial derivative exists classically in fir\_((0, 0)}, is bounded and continuous there, and
that it may beextended continuously to .

Proof. First note that if FC Cbk(+) and G C’(0, T), where k>_m, then

(3.19) Vo( X, ) F(x ) + e-Xet( G( ) F( ))
has O/v0 ET, for 0 _< _< k and 0 _<j_< m. Also, since v 7-, then

f0 1/92.(3.20) J(x,t)= (1 +e)v(x,s)+ (x,s) ds

has Jt Er- A short calculation using Leibniz’ rule confirms that

vt(x,t )- DtvO(x,t)-K(x-t,O)J(t,t )

-I- O K( x l ) J( l ) dl -+- K( x l ) Jt ( l ) dl

Simplifying,

(3.21) vt(x,t)-igtVo(X,t)-e-X-Oj(t,t

+ e2t-x+)J(l,t)dl+ K(x-t,l-t)Jt(l,t)dl.

Thus v r.
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By dividing the range of spatial integration at -x, it is readily seen that vxr,
and that

(3.22) v(x,t)- OVo(X,t ) + K_(x-- t,x- t)J(x,t)-K+(x- t,x- t)J(x,t)
+ L(x-t,-t)J(,t)d,

where

(3.23) L(y,z) - {exp( v zl) + exp( -y z ) ),

K+/-(x--t,x--t)-- lim K(x-t,l-t),

and-x+ means $ x while --, x means ’ x. Thus it appears that

(3.24) Vx(X,t)-OxVo(X,t)+J(x,t)+ L(x-t,-t)J(,t)d;.

Since k>_2, 0xv0 may be differentiated with respect to x. Moreover, since vxr,
J(x, t) may be differentiated with respect to x. And, the integral on the right side of
(3.24) may be differentiated with respect to x. Performing the indicated differentiations,
we see that

(3.25) Vxx(X,t)-O2xVo(X,t)+Jx(X,t)+ K(x-t,-t)J(;,t)d.

This representation shows plainly that vxxEr. Formula (3.25) may be simplified by
use of the original integral equation. Thus,

(3.26) vxx(x, t)- OxVo2 (x,t)+J(x,t)+(v(x, t)-Vo(X,t))
=J(x, t)+v(x,t)+F(x)-F(x)

--fot[(1 +e)Vx(X,S) +V(X,S)Vx(X,s)] ds+v(x,t) + Fxx(x)--F(x ).

It is now clear that vxx is differentiable with respect to t, and that

Vxxt(X,t)--(1 /e)Vx(X,t)/v(x,t)Vx(X,t)/vt(x,t ).
So, if k_>2 and m_> 1, any solution v in r of the integral equation (3.11) is a classical
solution, up to the boundary, of the transformed differential equation (3.4a). As
already remarked, a continuous solution of (3.11) has v(t,t)--G(t), for O<_t<_T, and
has v(x, 0) F(x), for x _> 0, provided the consistency condition F(0) G(0) holds.

Further regularity of a Er-solution of the integral equation may be established by
similar arguments. As this issue is important in our subsequent investigation, a little
more detail is warranted.

First, if m_>2, then since V ---’T’ it follows that every term on the right-hand side
of (3.21) is differentiable with respect to t. Moreover, each of these derivatives lies in
Er, as is easily verified. So Vtt.T This argument may now be iterated, with the
conclusion that O/v r, for 0 <j_< m.

A similar argument, based on (3.26), may be used to show that 0v, for
0< < k. Specifically,

(3.27) Ot+2v(x,t)=OtxV(X,t)+Otx+2F(x)-OtxF(x )-- t0x/+l /e)v(x,s)/-v (x,s ds,
"0

for/-0, 1,.--,k- 2.
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Since v T, it follows from (3.24) that vtrand that

(3.28) vt(x,t)-OtOVo(X,t)+Jt(x,t)+e-(-J(t,t)
+ L(x-t,-t)Jt(,t)d- e2t-<x+)J(,t)dl.

Finally, by using the differential equation, the results already derived, and induc-
tion, mixed partial derivatives of the form 0 0/v, wherej_> and i_> 2, are seen to lie in

r, provided thatj_<m and i_< k +j.
If, on the other hand, v is a bounded classical solution of the differential equation

(3.4a) which satisfies the boundary conditions (3.4b), then necessarily F(O)-G(O)
because v is continuous at the origin. Moreover, in this case, each step of the formal
construction leading from (3.1) to (3.4) is easily validated. In consequence, v is seen to
satisfy (3.11). Hence by the argument just elucidated, pertaining to solutions of the
integral equation (3.11), satisfies the conditions of regularity in (3.18). This concludes
the proof of the proposition.

In our subsequent analysis, it will be convenient to have at our disposal smooth
solutions of (3.1) which are not confined to R + [0, T] where T is small. This corre-
sponds to providing smooth solutions of (3.4) on r’, where T’ is given. It seems
natural to iterate the local result propounded in Proposition 1. This will be effective as
soon as an a priori bound on the L-norm of a solution defined on 2r is provided.
More precisely, suppose a classical solution v of (3.4), defined on 2T for some T>0, is
in hand. And suppose the boundary data G is defined at least on [0, To], where To> T.
Consider a new initial- and boundary-value problem,

(3.29) wt+(l+e)wx+WWx--Wxxt--O for(x,t) suchthatt>Tandx>t,

with

w(x,T)--v(x,T) forx>T,

w(t,t)-G(t) for t_>T.

The initial value of w is the terminal value of v. Just as for (3.4), (3.29) may be
converted to an integral equation, which in all aspects is similar to (3.11). A solution to
this integral equation may be inferred to exist on some domain of the form

{(x,t)" T<--t<T+ AT and x>--t).

Provided v and G are smooth enough, the solution w of the integral equation will
provide a classical solution of (3.29). In this manner, v is extended to a solution of (3.4)
on fr+r. As in Proposition 1, a lower bound for the size of AT depends on the
L-norm of the data in (3.29). Specifically referring to (3.17),

2 + e+ 41Iv(-, T)llc,(v,o) + 211GIIc(r,ro)

S_uppose it is known that, for the given data F and G, any solution v of (3.4) defined on
fir, for some T< To, has the property that

[lv[Ic() C-- C(To,F, (7).

Then a lower bound on AT can be impute_d, and in consequence, after a finite number
of steps, the solution may be extended to fr0- This conclusion is worth stating formally.



1070 JERRY BONA AND RAGNAR WINTHER

PROPOSITION 3.3. Let T0>0 be given, and Gcm(o, To) FCC(+) with F(O)-
G(O), where k >_ 2, m >_ and k >_m. Suppose there is a constant C, dependent on To, F and
G, such that for any solution w of (3.4) defined on fr, where T<_ To,

(3.30) Ilwllc(<--C.
Then there exists a unique solution v ro to (3.11), which is also a classical solution of
(3.4) and which satisfies the conditions of regularity expressed in (3.18). Moreover, v is

defined locally as the fixed-point ofa contraction mapping of the type in (3.13), by iterating
the result of Proposition 3.1 a finite number of times.

Provision of the relevant a priori bound is now considered. To this end, the
following technical lemma is useful.

LrMMA 3.4. Let FC(+) and G cm(o, To) with F(0)- G(0), where k >_2, m >_

and k>_m. Let v be a solution of (3.4) in ro" Let O<_p<_k and suppose that

(3.31) ixF(x)O asx +
for 0 <-j<p. Then

(3.32) OOtv(x,t)--,O asx +
uniformlyfor 0< t <-- To, for i,j such that 0 <- <-m and 0 <-j <-p + i.

Proof. Suppose it is determined that v(x, t) -, 0 as x --, + oo, uniformly for 0 -< _< To.
Since v is a classical solution of (3.4) on fro, it satisfies the integral equation (3.11) on

ro" Referring to formula (3.21) for v, it is clear that vt(x, t)-* 0 as x --, + oo, uniformly
for 0<t_< To. If m> 1, then upon differentiating (3.21) with respect to and using the
fact that v and v tend to 0 at + oo, it is straightforwardly assured that Vtt(X t)"-)0 as
X 00, uniformly for 0 -< t -< To. Continuin8 inductively, it follows that

a’,v(x,t)--,O as x-, + oo,

for O<_i<_m, uniformly for O<_t< To.
Next, by considering formula (3.22), we see that if p>0, then vx(x,t)--,O as

x --, + oo, uniformly for 0 -< t_< T0. Then from (3.28), v,t(x, t) --, 0 as x --, + oo, uniformly
for O<_t<_To. From the differential equation (3.4a), it is seen that Vxxt(X, )’* O, as
x -, + oo, uniformly for 0--< t--< T0. Continuing in the pattern of the proof of Proposition
3.2 leads to the conclusion that (3.32) holds.

The above analysis was all predicated on the desired result holding good for v
itself. The lemma will therefore be established as soon as it is confirmed that (3.32)
holds for =j= O.

For T>0, let be the closed subspace of r composed of those elements which
converge to 0 at +o, uniformly for O<t<_T. If F(x)--,O, as x + oo, then operators
of the type exhibited in (3.13) map into itself. Because a solution v of (3.4) is
provided in r., the uniqueness result of Proposition 3.1 implies that condition (3.30)
holds. So v is otained locafly as a f’oted-point of a contraction mapping of the form in
(3.13). This fixed-point may be determined by iterating the operator on the zero
function 0. The sequence {o}= thus generated (v =AO and v+ =Ave, for n_> 1) lies
in C and converges to o_in r. Thereforev. As a finite number of such steps are
needed to recover o on fir,, it follows that oCro This concludes the proof of the
!emma. U!

Attention is now turned fully toward derivation of a priori information concerning
smooth solutions of (3.4) which imply (3.30). A bound that will suffice is the subject of
the next proposition. The same bound will also be needed in 4. Because of this, it is
especially convenient to derive the bound in the context of (3.1). Of course the reader
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will realize that the theory, thus far developed for (3.4), implies the existence of smooth
solutions of the regularized problem (3.1), at least locally in time. This is simply a
matter of tracing the inverse of the transformation (3.3) which led from (3.1) to (3.4).
The precise result is spelled out in Theorem 3.8. For now, it is simply assumed that a
classical solution of (3.1) is in hand.

PROPOSITION 3.5. LetfC(+), gG CI(0, T), where f(0)- g(0), and suppose 0<e
<_ 1. Let u be a classical solution of (3.1), up to the bounda, on + X[0, T]. Suppose in
addition that fGHI(R+). Then for all t[0, T], u(.,t)nl(R+). Moreover, there are
positive constants ao and a,

and

a0-- a0( II/ll+  ’/ -IILll, Igl, )

a a (llfnl,, lgl,.r),
depending continuously on their arguments, such that

Ilu(", t)[l-<a0(3.33)
and

(3.34) Ilu(- ,t )11 =, +f’[z(o,s)+ (Uxx(O,s) eux,(O,s ))2] ds_< a,,
"0

for 0 <_ t <_ T. These inequalities hold uniformly for e in (0, 1 ].
Remark. While not stated explictly here or later, the Various constants that appear

in the development of our theory generally depend on T. Besides a direct dependence
on T, a0 and a also depend indirectly on T via the Ht(0, T)-norm of g,l,r. The
reader will quickly perceive that a0 and at may be presumed to depend monotonically
on T, for given f and g. In fact, a0 and al may be assumed to depend monotonically on
their arguments generally, but this will not be needed here.

Before proving the proposition, the following corollary result is stated. This is the
result of central interest for the present section.

COROLLARY 3.6. Let FC(+) and GC(O, To) with F(0)=G(0). Suppose in
addition that FH([I+). Then there exists a constant C, dependent on.JlF[I and the
H(O, To)-norm of G, such that any classical solution v of (3.4) defined on fir, for T<_ To,
satisfies

Proof. Let v be a classical solution of (3.4) on fir, for some T_< To. The inverse of
the change of variables (3.3) is

(3.35) u(x, t) =e-’v(e-t/Xx+ ,-s/2t, e-’/xt ).
Then u is a classical solution of (3.1a) on +X[0,T’], where T’=e-3/2T, which
satisfies the auxiliary conditions (3.16) where

(3.36) f(x)=,-IF(,-l/2x) and g(t)=e-’G(e-3/2t).
Here e>0 is fixed, and so f and g satisfy the hypotheses of Proposition 3.5. Hence the
H(R+)-norm of u is bounded on [0, T’] by a constant that depends on Ilfllt, and on
the H(0, T)-norm Lgl,r6 of g, say. Here, T =ea/2To Because of the basic inequality
(2.1), it follows that u is bounded on [+ [0, T’] by a constant C dependent only on
Ilfll and Igl,r;. In particular, C does not depend on T’ for T’ in the range [0, T].

But, v is defined from u via the transformation (3.3). Hence the desired result
follows, and the corollary is established.
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Proof of Proposition 3.5. First note that since fC(+)NHl(g+), f(x), f’(x),
f"(x)--,O as x + o (cf. [9]). Let v be defined from u as in (3.3). Then by Lemma 3.4,
b/v(x,t)O, as x +o, uniformly for O<_t<_T, for 0_<j_<l and 0_<i_<2+j. Be-
cause u is recovered from v by (3.35), btu(x,t)O, as x +o, uniformly for
O<_t<_T, for/ and , with #+,_<2. Thus u,ux, ut, ux, Uxt and utt tend to zero at +o,
uniformly for 0 -< t_< T.

Let U(x,t)-g(t)e- and w-u- U. There is a constant c. such that, for O<_t<_T,

u(., t)ll_< Ig( )1_< c, {gl, ,.
So to prove (3.33), it is enough to establish a similar estimate for w. Now w satisfies the
initial- and boundary-value problem

(3.37) wt+w+ww+Wxx-eWxt-p-(wU) in + X [0, T],

where p (U + U+ UU + Uxx eUxxt) and

(3.38) w(x,O)=f(x)-g(O)e- forx+,
w(O,t)-O for t [0, T].

Multiply (3.37) by 2w and integrate the resulting expression over (0,M)(0,t). There
appears, after integrations by parts, and using the auxiliary conditions (3.38),

(3.39) w2(x,t)+ew(x,t)]dx+ wf(O,s)ds

=fo[w(,0) +w(,0)] d

+ -(,-5(,-(,lx/(,l
+x(,l+(,Wx,(,-(,cr(,/ ds

+2 ,)w(,)dd- U(,)w:(,)dd.

Because U(x, ) g( )e-x, it follows that

uIIc+ to, ), Uxllc+ to, a) gll<o,)c, Igl, ,.
Similarly, since e_< 1,

so that

I1(", t)ll2lg’(t)l+ 2lg(t)l+ g2(t),

for all (M,t)+X[O,T]. If

)- x., )+ x., )]

and if hM denotes the supremum, over [0, T], of the second integral on the right-hand
side of (3.39), then the inequality

WM(t) WM(O)+hM+CI(Igll,T)+C, IglI,T WM(S)ds
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emerges. Gronwall’s lemma implies

WM( t) <[ WM(O) +hM+ C,(]g[,,r)] e*’’r,
for O<t<T. Reference to (3.38) will convince the reader that w(.,0)H(R+). So
WM(O) is bounded, as M--, + o. In fact,

w,(0) -fo w-(x, 0) +w(x, 0)] x- w(0),

as M- + o. Since u and Ux tend to zero as x --, + o, uniformly for 0_< t_< T, so also do
w and wz. It follows that hM -- 0 as M- + o. Hence,

lim WM(t)<_[W(O)+C(IgI,T)]e%’,,

for all [0, T]. Thus for each [0, T], w(.,t)H(l+), and

Ilwll<- c_(llfll+ ’/llixll, Igl,,),
for any e in (0, ]. This is the desired bound on the L:( +)-norm of w, and so (3.33) is
shown to be valid.

2Now multiply the regularized equation (3.1a) by the combination
and integrate the resulting relation over + (0,t). After integrations by parts, in
which the fact that u and various of its derivatives vanish at + oo is used repeatedly, it
is verified that

S0
ex::

f0t[ 2(0,S)-"[-H2(s)] ds(3.40) (1 + e) u2( x, t) dx + u

So=( +) yx(X)X-5 y(x)ax

 0t[l ]+-
where

g2(s).H(s ) Uxx(O,s ) 17Uxt(O,s ) +7
Elementary inequalities, including (2.5), show that

fou (x, t) dx <_ Ilu(", t)IIllu(., t)II,+<- V/i- I1"(", t)II’/-II,,x(., t)I1’/

<-Ilu(" t)ll+llu( t)ll ’/3-2

Putting together (3.40), the last observation, and the already established (3.33) yields,

Ilux(.,t)ll+fot[ux2(0,s)+H2(s)]ds
-3 (x)ax+:Z -3g ()+(+

where a0 is the constant on the right of (3.33). Inequality (3.34) now follows, and the
proposition is proved.

A theorem of global existence of solutions of (3.1) and (3.4) is now in view. Its
statement is postponed until after examination of one other aspect, of importance in
the analysis in [}[}4 and 5. This aspect is embodied in the next proposition.
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PROPOSITION 3.7. Let FC(+)f3 Hk(R +) and G cm(o, T), with F(0)- G(0),
k>__3, m>_ and k>_m. Let v be the solution of (3.4) defined in r. Then there exists a
constant C such that, for each [0, T],

provided that 0 <_j <_m and 0 <_ <- k +j.
Proof. Throughout the demonstration, C will denote various constants which are

independent of in [0, T]. It will be convenient to introduce another condition, denoted
(,), which, for a function w defined on fr, amounts to the requirement that w(. ,t)
Hl((t, o)) for [0, T], and that

(,), w(’, t)II /,<t,))-< c,
independently of in [0, T].

According to (3.33) and (3.34) in Lemma 3.5, (,) holds for v itself. Thus v and v
satisfy (,). For one-dimensional domains, H is an algebra, so that products of H
functions are again in H. Thus (1 + e)v+1/2v2 satisfies (,). Hence if, as before,

f0 V2(x,s)] dsJ(x,t)- (1 /e)v(x,s)+ -then at satisfies (,). So J and ar satisfy (,). It then follows from formula (3.21) that v
satisfies (,) as well. This observation may be used inductively to show that )]v satisfies
(,), for O<_i<_m. Turning now to spatial derivatives, since k> formula (3.24) shows
that vx satisfies (*)l. This means in particular that J satisfies (,). Since k>2, then
FxxH(R+), so, by reference to (3.26), one sees that Vxx satisfies (*)1" Proceeding
inductively, and using (3.27), it follows that i)v satisfies (*)l if j<_k-1, and so
satisfies (,).

From (3.28), vt is observed to satisfy (,). The differential equation (3.4a) shows
that l)xx satisfies (,). Using the differential equation, the results already in hand, and
induction, mixed partial derivatives of the form 0/v, wherej_> and i_> 2, are seen to
satisfy (,) whenj_< rn and _< k +j 1. Hence /v satisfies (,) provided that 0 _<j_< rn
and 0_< <k +j. The desired results are now all established.

It is worth summarizing the accomplishments of the present section. As the
transformed problem (3.4) is only of transient interest, the theory is recapitulated in
terms of the regularized problem (3.1). Thus the results stated now are consequences of
the established propositions and the transformation (3.35) taking (3.4) to (3.1).

THEOREM 3.8. Let e>0 and T>0 be given. Suppose fCb(+) and gcm(o,T)
with f(O)-g(O), k >_ 3, m >_ 1, and k >_m. Then there exists TO>0 and a unique function u
in Cb( + [0, TO ]) which is a classical solution of the initial- and boundary-value problem
(3.1) corresponding to the given f and g. Additionally,

(3.41) Oi O/u Cb(+ X [0, T ]),

for and j such that 0 <-j <- m, 0 <_ <_ k, and +j<_ k. Moreover, iffHr(R +), where
r>_ 1, then u may be extended to a solution of (3.1) on + X[0, T]. In that case, there is a
constant C such that, for 0 <_ <_ T,

II0 0ju(.,t)ll-<c,

for andj such that O<-j<-min{r,m}, O<_i<_r, and i+j<_r.
As a corollary to this theorem, the following result emerges. It is this corollary

which will find explicit use in the upcoming sections.
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COROLLARY 3.9. Let e>0 be given. Let fH(R +) and gC(R+), with f(O)-
g(O). Then there exists a unique solution u of (3.1) defined on the quarter-plane + +

which is bounded on finite time intervals and which corresponds to the data f and g.
Moreover, u C(+ +) and, for each k >_O,

(3.42)
for all ,j >-- O.

Proof. The existence of global solutions follows immediately from the theorem and
the uniqueness result. Also, for any i,j>_O, k>0, and T>0, w-Ox O/u is uniformly
bounded in Hk( +), for 0 -- t--< T.

It remains only to check that the mapping t-o w(-, t) is continuous, from [0, T] to
Hk(+). But, in fact, uL(O,T;Hk(R+)) and utL(O,T;Hk(+)). It follows im-
mediately (cf. [19]) that u C(0, T; Hk( +)). The corollary is now verified. [2]

4. Estimates in H3( +) for the regularized problem. The purpose of this and the
next section is to derive a priori bounds, which do not depend on e, for solutions of the
regularized initial- and boundary-value problem,

(4.1a) ut+Ux+UUx+Ux,x-eUxt-O in + [O,T],
and

(4.1b) u(x,O)--f(x) for xGr +

u(O,t)-g(t) fo t[0, r].
Here T is a fixed positive real number, and the aspired-for bounds will hold indepen-
dently of in [0, T].

Throughout this section it will be assumed that fH(+), gC(O,T), and
f(0)-g(0). In consequence of Corollary 3.9, for any e in (0, 1], there is a classical
solution u-- u of (4.1) which is such that

uC(+[O,T]),
and, for integersj, k >_0,

O/uC(O,T;H’(+)).
Some preliminary relations, established via energy arguments, will be derived in a
sequence of technical lemmas. These prefatory results will be combined to obtain
e-independent bounds for u within the function class C(0, T; H(+)) and for u within
the function class C(0, T;H( +)).

As a start on this program, recall that from Proposition 3.5, there is a constant a,
depending only on II f I1 and Igll,T, such that, independently of e in (0, 1],

(4.2) Ilu(’, t)[I =,/ for[ u.2(O,s)+(Ux(O,s) eUxt(O,s))2
ds<_a,,

for all in [0, T]. So, from (2.5) it follows that

(4.3) Ilull =c+t0,l)-<2 sup (llu(.,t)llllu(.,t)ll)<-a,
O<_t<_T

and, because of the differential equation (4. a),

(4.4) fot(Uxxx(O,s)-eUxxt(O,s))2ds- fot(gt(s)+ux(O,s)--I--g(s)ux(O,s)):Zds
_< c c( Ilfll , Igl , ),

for all in [0, T].
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If u is the solution of (4.1) and [0, T ], define

A2(t) sup (llu(.,)ll/llx(.,)ll
O<_s<_t__

[ 2 2 xL(O, (o,)] d,Uxxx(O S xt eUxxtx(O )+ )+ )+ (o )+
and

(O,s)ds.B2(t) sup
Ost

It will be shown that A(t) and B(t) are bounded on [0, T], independently of e small
enou#. The first step in obtaining ts result is the following H2( +)-estimate.

LEMMA 4.1. Let T>0,fH(+), gH(O, T), with f(0)=g(0). There exist posi-
tive constants el, a2 and c 1, where

el--el(llflll,lgll,T), a2-a2(llfll2+el/llfxxxll,lgll,r),
Cl--Cl(]]f]l,

such that the solution u of (4.1) corresponding to the data fand g satisfies
Ilu(.,t)ll+ [=Uxxx

a2+cle 2(s)B(s)ds---- Uxx

provided that t[0, T] and e (0,el].
Remark. The presence of the last term on the right-hand side of the above

inequality means that tNs estimate is not directly effective in bounding Ilu(’,t)ll2,
independently of e.

Proof. For each in [0, T], define V(t) as

(9 )2 3UU+14 9 2]V( ) 3eu Uxx-- u + eUx dx.

Multiply (4.1a) by u3- 3u, differentiate (4.1a) once with respect to x and multiply the
8u add the two equations thus obtained, and integrate their sumresult by -6uu xx,

over N + X (0, t). After several integrations by parts, there appears,

(4.5)
9 t Hxxx(O,s ) + )] dsV( ) V(O) + [ 2 Ux(O,s

----t[lg4(S)+ lg5(S)--3g(s)ux2(O,S)+g3(S)uxx(O,S) g2(s)u(O,s)
6--6g(S)Ux(O,s)Uxxx(O,s)+ g(s)Ux(O,s)

18
xx(O s) (0,)]3 (0 S)Uxx(O s)- T Ux’ ds

t+ [6gt()ux(O.,)Uxx(O.s)+6g()ux(O.,)Uxx,(O.,)

-3.(o.,Ux,(O..)-g(,)Ux,(O.)] d,

+e u+6u 3u2uu] dxds.Nxx tNxNxxx
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Because of the relation (4.2), the first seven boundary terms on the fight-hand side of
(4.5) can be bounded in terms of the data f and g and a suitable small multiple of the
two boundary integrals on the left-hand side of (4.5). Using (2.5) and (4.2), it follows
that for any i} >0,

fo’ -(o,)Uxx(O,)a(4.6) u

(O,s)ds-<llullc+t0,,l u(O,s)d u

1/211 / 1/2<_ sup (ll,.,x(.,s)ll .,.,xxt-,,)ll
O<_s<_t

Since

--<a}-3+( sup Ilux(-,S)II2+ fot2(o,S)ds}.UxxO<_s<_t

’gt(s)u(O,s)u.(O,s)ds<-iluxllc,,(+to,tl)lgtlr u(O,s)ds

a similar bound holds for the term

e gt(S)ux(O,s)Uxx(O,s)ds.

The estimate (4.2) also implies that

As a consequence, bounds similar to that in (4.6) obtain for the terms

fot 2 fotg (O,se u(O,s)ut(O,s)ds and e (S)Uxt )ds.

Making use of (4.4), the term,

may be bounded in the same way.
Still relying on (4.2) and (4.3), the term

Hence,

0

fO
0

2 dx< 3a31/23 uudx<-311ull(+to,t) x

fo( 9 ) 2 dx<V(t)+3a,3/23eu Uxx
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But, by (4.3), lul does not exceed the value all/2 on +[0, T]. Consequently, if
e (25al)-1/2, then for 0<e_<el,

6 fo 2 dx<V(t)+3a/2Ux

for all in [0, T].
Therefore, if (4.5) and a suitable multiple of (4.2) are summed, and use is made of

the above estimates, then for in [0, T] and

Ilu( ,t)ll + f0 [ Ux2 (0,s Uxt(O,s)] ds

18 f0 (0 s)ds<_a2- -- Uxx(O,S)Uxt

fotfo 2 3U2UxUxt] dxds.-F e [3UxxUt-F 6UxUxxxUt-

Here, the constant a2 stems from V(0) and from the various combinations of a that
appear in the foregoing estimates. The desired result now follows from the last relation,
(4.2), and the definitions of A(t) and B(t). [

The estimate of the HV(g +)-norm of the solution u of (4.1) given in Lemma 4.1
will be used in determining the following bound for A(t).

LEMMA 4.2. Let T>0, fHoo(R +), g C(O, T), with f(0)--g(0). There exist posi-
tive constants a and c2, where

a -a (llill +4/"llL..xll, Igl,.,,) and c -c, (llill,, Igl,,,),

such that the solution of (4.1) corresponding to f and g satisfies

A2( ) -ec2[A3( ) + e(1 +A2(t))B2( t)] <--a + ei/ZC2fotA2(s)B(s ) ds,

for all in [0, T] and e in (0, e].
Remark. The e appearing in the above statement is that derived already in Lemma

4.1.
Proof. As in the proof of the last lemma, the desired result will be obtained from a

technical "energy" argument. In the proof, various constants dependent on aspects of
the data f and g will appear. These will generally be denoted simply by c, and this
symbol’s occurrence in different formulae is not taken to connote the same constant.
Define, for each in [0, T],

Multiply (4.1a) by 12UU2x-- -u4 differentiate (4.1a) once with respect to x andUxx
multiply this by 12u2ux, differentiate (4.1a) twice with respect to x and multiply this by

21__635 Uxxxx-UUxx, add the three resulting equations and integrate their sum over
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R / (0, t). After many integrations by parts with respect to the spatial variable x, there
appears,

Uxx(O,sW( ) W(O) + Uxxxx(O,s ) + )] ds

fot[ t/x2x(0’ 2(0,S) 5 g6(S)g(s) s)+6g2(s)u) g (s)---
(o,)-g4()(u(o,)-u,(o,)) + 8g()u

+ 12g:()u(O,)(u(o,)-ut(o,))

4(0 )-g:() : (0 ):(0 )(u(0 ) u,(0,)) + 3u-12g(s)u u

.x(O.l.xxx(O.l(.xx(O l-.x,(O.)
5

144 u/(O S)Uxx(O,s)Uxxx(O,s)35

14 7 36
l.x(O.l.xxxx(O.l .xx(O.l+ g(l.xx(O.l (

216 "xx(O, "xx,(0 +..(,xx(O "xxx(0,] ds
35

72
UxUxt-]- 24UUxUxxUxt-I--UxxUxxxUxt+e u

72 36
Uxx --UtUxxx+ yUxUxxxxUxt_2t_ 12uu 2 2 dxds

First note that, because of (4.2), there is a positive constant c, depending on Ilfll
and Igl,r, so that

(llUxxx(. t)ll / llUxxxx(. ,t)ll A( ) < w( ) / c,

for all in [0, T]. Also, in consequence of (2.1) and (4.2), there is another constant c,
depending again on II f I1 and Igll,T, such that, for any 8> 0,

(4.8) Iluxllc(/xto,,l2 sup (llUx(.,s)lllluxx(.,s)ll)
O<_s<_t

By an analogous argument,

(4.9) IlU)cxl]
2 ( }Cb(+X[O,t])--C--3"’ sup Iluxxx(.,)ll

O<_s<_t
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Taken together with (4.2), these estimates imply that there is a constant c, depending on
II f I1 and Igll,r, such that for all > 0,

ux(0(4.10) S )Uxx(O,s )u,,x(O,s ) ds

(o )d(O,)d
t o

c -+ .xxx(O.d + sup II.xxx(’.sl

By adding (4.7) and a suitable positive multiple =(sup0slu(’,s)ll) of the in-
equality stated in Lemma 4.1, and using (4.2) and (4.3), bounds silar to those
ebited in (4.10) may be shown to hold for N1 the bounda terms on the right-hand
side of (4.7) except for the last three. Choosing appropriately, it may thus be inferred
that, for all e in (0, eli, and for all in [0, T],

0

g.xx.

Here a- a(ll II1 + e/allfxxxll, lgl,r) and e- 0(111 II 1, Igl,r).
To complete the proof of the lemma, it suffices to control suitably the boundary

terms appearing on the right side of inequality (4.11). To tNs end, observe first that
(4.2) and (4.9) imply

(4.12) U,x

lluxxllc+to,,] ]Uxx(O,s)-eUxt(O,s)[+elUx,(O,s)])ds

c(-+a(t))(
for any 8>0, where the constant c depends on Ilfll, Igl, and T. Next note that
equation (4.1 a) implies

(o,)dS)Uxx

t[gt(s)+ux(O,s)+g(S)ux(O,s)--eUxxt(O,s)]Uxxt(O,s)ds.
Integration by parts in the temporal variable yields

’[g,( ) + u(0, ) +g()ux(O, )] Uxx,(O,s ) d

=[gt(s)+u(O,s)+g(s)u(O,s)]u(O s)l=t0
[t[ gtt( S ) + Uxt(O,s ) + gt( S )Ux(O,s ) + g( S )Uxt(O,s )] Uxx(O,s ) ds.
o
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From (4.1 a) it also follows that

(4.13) Uxt(O,s)-eUxxxt(O,s)-[Uxx(O,s)+u(O,s)+g(S)Uxx(O,s)+Uxxxx(O,s)].
Hence, due to (4.8) and (4.9), for any i>0 there is a constant ca, depending on 8, [Ifll
and Igl2,r, such that

(4.14) f0 Uxxx(O,s )Uxxt(O,s ) ds

’ (O,sld8 e Uxx

t2 ]t(l+g(s))Uxx(O,s)Uxxxt(O,s)ds.+# A2(t)+ Uxxxx(O,s)ds -e

Similarly, it follows from (4.8), (4.9) and (4.13) that, for any 8 >0,

(4.15) - S)UxtUxx(O, (0, S ) ds

c,+ (+ .xxx(O,le - .xx(O,.xxx,(O,e,

where the constant c depends on , Ilflll and Igll,r. Combining (4.15) with (4.11), (4.12)
and (4.14), and choosing in a perspicuous way, there appears,

(4.16) 2A(t)-eO2[A3(t)+e(1 +A(t))B(t)]

( )
holding for all e in (0,el] and in [0, T]. Here,

a-a(ll/ll+I/=llfxxxxll,lgl=,) and

To estimate the boundary terms on the fight-hand side of (4.16), use (4.9) again to
deduce that, corresponding to any >0 there is another constant c, dependent on

II f II1 and N,,r, such that

1[ __ 2

S E2<tU:xxt(O )ds

ft 2c"+a(tl+ 1o Ux,(O,ld.
So, the only term still presenting difficulty is the finn one in (4.17). To estimate

tNs quantity, differentiate the regularized equation (4.1a) twice with respect to x,
multiply the result by 2eUxxt and integrate over N+X(0,t). The effect of these
operations is to produce the relation

2[ 2(4.18) e(llUxx(.,t)ll-lluxxxx(. ,t)]l) +e Jo Uxxxt(O,s)ds
(O,s)sUxxt

+ u(o,)uto,)d- (uu)u,dd.
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The last integral on the right-hand side of (4.18) seems somewhat awkward. However,
after integration by parts,

fo’fo fo"fo(UUx)xxUxxxtdxds- (3UxUxx+UUxxx)Uxxxtdxds

-u(x s dx =0- blxxx

+ 3UxxUxxxU+ 3UxUxxxUx- UxxU
Also, by (4.8) there is a constant c, dependent on lfll and Igll,r, such that

f’ (O,s)Uxxx(O,s) (O,s)ds<eB(t)Huxll
2

e u u, c(+xto,,])+ Ux(O,s)ds

ce(1 +A(t))B(t)+A(t).
And,

ux(O S)Uxx(O )Uxx,(O,)d<lluxll z (0,)dsc(a o,,]) Ux(O,s) ds+e Ux,

ceAa(t)+A2(t).
Referring to the definition of A and B below (4.4), and applying elementary estimates,
it follows at once that

2e 3UxxUxxxUx+ 3UUxxxxUx- UxxxU

13e’/ZtA(s)B(s)ds.
Here, and above, the restriction e is used. The last few relations combine with (4.18)
to produce the inequality

(4

}.
If, in (4.17), 6 is now chosen small enough, the desired inequality follows from (4.16),
(4.17) and (4.19). This completes the proof of Lemma 4.2.

To make effective use of Lemma 4.2, an estimate for B(t) is needed. The following
result will be sufficient.
Lh 4.3. Let T>0,fH(R+), gH(O, T), with f(0)-g(0). There are positive

constants a4 and c, with

a4-a,(llu,(.,o)ll,,Igl.) and c3-c3(llfH3,1gl.),
such that the solution of (4.1) corresponding to the data fand g satisfies the inequality

for all in [0, T] and in (0, 1].
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Proof. Let v(x,t)-ut(x,t ). Then v satisfies the variable-coefficient partial dif-
ferential equation

(4.20) vt + v + ( UV )x -- Vxxx EVxxt- O

holding for (x,t) in + [0, T]. Multiply (4.20) by 2v and integrate over N + (0,t),
where [0, T]. Then, it follows that

(4.21) llv(" t)llZ/llvx( t)ll = f0’=., + v;(O,)d

IIv(’, 0)11= + llVx(. ,0)ll
2 + t(1 +g(s))g(s)ds

+2 ’g,(s)[xx(O,s)-eVx,(O,s)] ds- Uxdxds.
Next, multiply (4.20) by 2(ext-UV-xx) and integrate again over N + X(0,t). This
leads to

(4.22)

(l+)llvx( ,)11 = u(x,t)v2(x,t) dx+ ’(vO,+[o,-vO,s]) d
__

t 2 2(--(1 +e)llVx(. ,0)ll f(x)v(x,O)dx+ gtt(S)[E g S)] ds- g.(l/(0.e- g(,(l[xx(O.-x,(O.]e

+ (Ux-)&s.

The underlying equation (4. a) implies that

v3dxdx v2(Ux+UUx+Uxxx-eUxxt)dxds.

The last term on the right side of this relation is potentially troublesome, but after
integration by parts,

t 2 tV2Uxxtdxdx --E gt (S)x(O,s)ds-2g vdxds.
Also,

Lu(x )v2( x, ) dxllullc/ to,tlllv( ., t)ll
2
cl[v(. ,t)ll 2,

where c depends on Ilfll and Igl,r, as in (4.3). The desired result thus follows by
adding an appropriate multiple of (4.21) to (4.22) and making the kind of estimates
based on (4.2) that are, by now, familiar.

Recapitulating the outcome of Lemmas 4.2 and 4.3, if u is the solution of (4.1)
corresponding to initial data f and boundary data g, and A and B are the associated
functionals defined below (4.4), then A and B are restricted by the system of inequali-
ties

(4.23) AE( ) ec:z[ A3( ) + e(1 +A:( ))B:( )] <_a + e/2CEfotA:(s )B(s ) ds

(t-<a4+c [(l+a(l) + l]e.
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holding for all in [0, T] and e in (0,e]. The constants e, a3, a4, 2 and 3 have all been
previously determined to depend simply on T, on various norms of f and g and on
[[ut(. ,0)[[. The system (4.23) will be exploited to obtain the following bound on u,
which holds uniformly for e sufficiently small.
LE 4.4. Let T>0,fH(g +), g H(O, T) be given with f(0)= g(0). Let u be

the solution of (4.1) corresponding to the data f and g. There are positive constants e2 and
c4, both depending on [[f[14, [giz,r and [[ut(" ,0)[[, such that for e in (0,e2] and in [0, T],
both A(t) and B(t) are no larger than c4.

Proof. For each M R such that

(4.24) M>max(A(0), B(0)),
let

tM=inf(t[O,T]: A(t)>M or B(t)>M},
with the understanding that if the set over which the infimum is taken is empty, then
tM: T. To establish the lemma, it suffices to show that tM= T for some M and all
sufficiently small e.

Observe that on the interval [0,tt), where M is supposed chosen as above, (4.23)
implies that

(4.25) [1-eczM(1 +eM)]A2(t)-<a3+el/czfotAZ(s)B(s)ds+c(eM)2,
for(1 +A( ))B’(slds+ecTmBZ( ) -<a4+ c s

For each M satisfying (4.24), choose e2-e2(M)U_.(O, min(1/2,el)) such that for all e in
(0,2),

2(eM)2(4.26) 1 c:eM(1 + eM) >_ - -< 1, c3eTM3 -< 1.

Further, let Al(t ) +A(t). Then from (4.25), it follows that for all in 0, tM) and for
all e in (0, e2),

A(t) _<6 + 4a3 + 4c2e/zf/AZ(s)B(s ) ds,

n2(t)-< +a4+C3fotAl(s)B2(s)ds.
Hence, in this range of and e, there are positive constants a, fl and 3’, independent of
M, such that

(4.27) AZ ( ) -< 3’ el/2 /’tA2+2 Jo l(S)B(s)ds’

+2Vfo (s)B2(a s)ds.

(First choose a and/3 large enough, and then choose 3’ large enough._Note then that a, fl
and 3’ only depend on the constants a3, a4, c2 and c3.) Define A and B to be the
maximal solution of the system

1 --e1/2
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Then, Al(t)_>__Al(t)_ and B(t)>_B(t), for all for which A(t) and B(t) are finite.
Moreover, A and B may be determined explicitly as,

fle’a
and B(t)-A(t)--

l_el/2eW l_el/2eW,

whenever exp(3,t)<e-1/2. Therefore, if M is chosen so that

M>2max(a,fleVr},
and then e2 is chosen so that, as well as satisfying (4.26),

-elE/Eevr> 1-2’
then tt= T for all e in (0,e2]. Taking c4--M the lemma is now established.

The constants e2 and c4 in Lemma 4.4 depend on Ilut(., 0)Ill, since the constant a4

in Lemma 4.3 had such a dependence. In order to control the size of A(t) and B(t),
uniformly for small e, some estimate of Ilut(-,0)11 must be obtained in terms of the
data f and g. An appropriate bound is forthcoming if the data satisfies the additional
compatibility condition,

(4.28) gt(O)- fx(O) +f(O)fx(O) +fxxx(O)]

LEMMA 4.5. Let T>0,fH(N+), gH(0, T) with f(0) g(0). Suppose the data f
and g also satisfy (4.28). Then there is a constant a5 depending on [[f[[4 such that

Ilut(.,o)[lla,

for all e in (0, 1], where u is the solution of (4.1) corresponding tofand g.
Proof. Let q(x)=-[L(x)+f(x)L(x)+Lxx(X)]. Then ut(-,0) is a solution of the

boundary-value problem

Ut(" ,O)--EUxxt(" ,O)--D,
ut(O, 0)--g/(0), lim ut(x 0)=0.

X-- O0

Hence, ut(-, 0) is given by

(4.29) u,(x,O)-e-X/’/2g,(O)+ M(x,li)q)(li)dli,

where, as in (3.10),

M,( x, l ) 21/2 [exp( lx ll/e’/ ) exp( (x + li )/el/2 ) ]

It follows immediately from this representation that

el/4
[[Ut("’ 0)[I 2" Igt(0)[ + CI[I[’

where c is a constant which is independent of e. Since gt(0)=(0), and because of the
definition of q, it is concluded there is a constant a depending on Ilfl14 such that

(4.30) Ilu,(.,0)ll_<a,
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and this relation holds uniformly for e in (0, 1]. Differentiation of (4.29) with respect to
x leads to the relation

Uxt(x,O) --1--- foe-(X+)/’/e/2
e-’/’/:g,(O) + p( ) dl

x
e(X_V,%().

2e e(-X+)/’/2()d+

Integrating the right-hand side by parts, there appears the formula

e_X/e/2 (o(4.31) Uxt (X, O) 1]0(0) gt(O)] AV
Jo

M(x, )qOx(

where

/ exp( (x(x,)-
2e,/2

[exp(-lx-lil/e’ )+ +)/e’/)].
The integral on the right-hand side of (4.31) presents no difficulty. For it is readily
verified that

where again c denotes a constant independent of e and p. The presumption (4.28) has
the effect of eliminating the other, potentially troublesome term from the right-hand
side of (4.31). Again taking account of the definition of p, it follows that there is a
constant a, depending on ]lfl]4, such that

(4.32)
holding uniformly for e in (0, 1]. Taken together, (4.30) and (4.32) imply the desired
result, r-,1

Combining the imports of Lemmas 4.4 and 4.5 leads directly to the principal result
of this section.

THEOREM 4.6. Let T>0 be given, and letfH(g+) and gH(O, T) and suppose
the compatibility conditions

f(0) =g(0), gt(O)+fx(O)+f(O)fx(O)+fxx(O)=O

hold. Let u be the solution of the regularized initial- and boundary-value problem (4.1)
corresponding to the given data f and g. Then there is a constant a6, depending on ]]fl]4
and [gl2,r, such that

I[u(", t)[13 /

for all in [0, T] and e in (0,e2]. Here e2 is the positive constant arising in Lemma 4.4,
and so depends on Ilfll4 and Igh,r as well.

Remarks. A somewhat stronger result than is stated in Theorem 4.6 is available
from the foregoing analysis. This strengthened result has been eschewed, for simplicity
and because it is not needed in what follows. Nevertheless, it is worth recording that

ellUxxx(.,t)l[
2 f0T 2 2 2 (O,s _(at_ [Uxxx(O,s)--Uxxxx(O,s)-+- Eblxx (0, S)’qt- Uxt )] ds< 6 )2

as well, provided that e lies in (0,e2] and lies in [0, T]. The constants e2 and a6 are
those specified in the statement of the last theorem.
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The various constants appearing in the statements of results in this section may all
be taken to depend continuously and monotonically on both T and the norms of the
data that occur. This follows immediately upon examination of the presented proofs.
Such an aspect is without crucial significance in what follows, and so will be passed
over.

5. Higher-order estimates for the regularized problem. The derivation of e-indepen-
dent bounds for solutions of the regularized initial- and boundary-value problem (4.1)
is continued in this section. The bounds established in 4 would be sufficient to
establish an existence theory set in the space L(0, T; H4(I +)) for the quarter-plane
problem (1.3). Smoother solutions would be expected to obtain provided the initial and
boundary data is appropriately restricted. A proof of such further regularity, presented
in 6, is based on the additional estimates to be obtained in the present section.

The assumption thatfH(+), gH(O, T), and f(0)-g(0) will continue to be
enforced throughout this section. This hypothesis will be recalled informally by the
stipulation that the data f and g is smooth and compatible. Ifj is a nonnegative integer,
the notation

u S -O/u
will be convenient, and employed henceforth. This section consists of two technical
lemmas, which lead directly to the principal goal, Theorem 5.3. The first technical
result generalizes Lemma 4.4.

LEMMA 5.1. Let fH(+) and gH(O,T) be given, with f(0)-g(0). Let u be
the solution of (4.1) corresponding to the data f and g, and let k be a nonnegative integer.
There is a constant

bl--b(g[k+,T max (}[u(J)(.,O)l}4, l[u(J+l)(.,O)][l))ojk

depending continuously on its arguments, such that

+ [

[u(?

for aH in [0, T] and e in (0, e2]. Here, e2 is specified in Lemma 4.4.
Proof. First note that for k-0, the desired result is implied by Lemma 4.4. The

proof proceeds by induction on k. Let k be given, and suppose that the stated
estimates hold for all nonnegative integers less than or equal to k-1. Let v-u(k),
where u is the solution of the regularized initial- and boundary-value problem (4.1)
corresponding to the given smooth and compatible dataf and g. For in [0, T], define

a=(t) sup {llv(.,x)ll + ll xxxx(.,x311
ost

+ Vxxxx(O,s ext+ )+

and

2BZ(t)-- sup (l[vt(.,s)l[} + v;t(O,s)ds.
O<_s<_t
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The induction hypothesis implies that

(5.1)

Ilvll   .+
where here, and in the remainder of this proof, c will denote various constants which all
depend on the same variables as the constant b given in the statement of the lemma,
but which will always be independent of e.

For any integerj_> the function uo) satisfies the equation

(5.2)
where

uj) + u(xj %- ( uuj %- hj( u ))x%- UxJ)xx- eu(J)xt-O’

J u(i)u(j-i)hj( u) -The induction hypothesis also implies that

(5.3) lih(u)ll,=o,r;w,=n+)) <-cllh(u)ll=<o,r;,n+) <-c.

The functions A(t) and B(t) will be estimated via an energy inequality derived from
equation (5.2). Taking j--k, differentiate (5.2) once with respect to x, multiply by

-2Vxxx and integrate the resulting expression over R+(0,t). The outcome of this
process may be written

(5.4)

where V2(t) = II v(., t)ll 2 + ell Vx(’, t)ll 2.
Inequalities (5.1) and (5.3) imply that

fotfo [UI)%- hk(U)] xxDxxxdxdsc(l%- fotll/)( ,s)[123ds ).
Because of (2.1) and (5.1), for any 8>0, there is a constant c such that for all in

[0, T],

(5.6) II1)llLoo(o,t;w-.oo(R+))<%-{ sup I[19(" S)I[2)
O<s<_t

Combining (5.1), (5.2), (5.3), and (5.6), it follows that, for all >0 and [0, T],

{Vxx(O,s ) + [uv+ hk(u)] xx(O,s) %-l)xxxx(O,s)--8lgxxxt(O,s)} 1)xx(O,s)ds

<cn+8{ sup [Iv(-s)ll= 2 } t3 + V;xxx(O,s)ds--E Vxxxt(O,s)Vxx(O,s)ds.
Ost
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Together with (5.4) and (5.5) this implies that for all 8>0 there is a constant c such
that

(5.7) g2(/) _.1_ lot [ 2 2V;xx(O,sV;x(O,s) + )] ds

]2( 8AE(t) 2e Vxxxt(O S)Vxx(O,s)as_<cn 1+ A s)ds +

where A is defined above (5.1).
Next, differentiate (5.2), again with j-k, twice with respect to x, multiply by

-2%,xx and integrate over R + (0,t). After suitable integrations by parts, there
appears

(.8) v(,)+ fot[VL(o,)+ vL.(o,)] d
v(o)-2 Vxxt(O.)Vx(o.)a+2 [.v+h(U)]xxVxxxxaXa.

holding for all [0, T], and where

(t) IIv( t)ll
z 2

". +llvxxxx(’.t)ll
Obsee that

t  uv xxx,xxx X  
(UVxx+3UxVxx+3UxxVx+UxxxV)Vxxxdxds

4xx(O.75() )+ 3.x(O )Vxx(O.)Vxxx(O.s)

3u(0. ) v(O. )v(o. ) + .xxx(O. )v(O. )Vxxx(O. )]+ ds

UxVxx+ 6UxxVVxxx+ 4UxxVxVxxx + UxxxVVxxx dx ds.

The induction hypothesis and the fact that

(.+dc ()d
implies that there is a constant c such that

uVVxa Ilv( ,)ll.+llu( ,)llllv( ,)ll a

Also, it follows directly from the regularized equation (4. a) that

Uxxxx eU(1) (UUxx Ux

Hence, from (5.1) and the induction hypothesis,

UxxxVVxxxdxds . +lluxxxx( .)llllvxxx( .x)ll as
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for all in [0, T]. By (5.1) and the above estimates, it may now be concluded that

(uv)xxxVxxxxdxds<_c 1+ tA2(s)dsq- Vxx(O s)ds

To estimate the rest of the third term on the right-hand side of (5.8), note that

fo’fo        xxxVxxxx X  
’(h(u))(O,s)(O,s)ds- (h(U))xxxxVxxxdxds.

Equation (5.2), once-differentiated with respect to x, is

Together with the induction hypothesis ts relation implies that

Therefore, using again the induction hypothesis and the estimate above, we may
conclude that

t t t 2 ](5.10) 1+

It remains to estimate the boundary term on the right-hand side of (5.8). The
equation (5.2), withj= k again, implies

l)xxt(O,s)l)xxx(O,s)ds

fO
Integrating by parts with respect to s yields the relation

fotVXxt(O,s ) ( tgt(O,s ) -l"l)x(O,s ) + ut)-f- h k( U )] x(O,s ) } ds

l)xx(O,s ) (1)t(O,s ) --3t-vx(O,s ) -3
I- ul)-- h k( U )] x(O,s ) }1;

fo Vxx(O, x,s)(vtt(O,s)-l-l)xt(O,s)-t-[uI)-Jt-hk(U)] (0 s)) ds.

From (5.1), (5.3) and (5.6), and the fact that Vtt(O,s)---g(k+2)(S) and vt(O,s)-g(k+)(s),
it thus appears that for any 6>0 there is a constant c such that

(5.11)

The estimates (5.8), (5.9), (5.10) and (5.11) and the identity

--Vxt-- Vxx-Jl UV2t h k( U )] xx"-l)xxxx-- E1)xxxt,
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obtained from (5.2), now imply that, for all i>0, there is a constant ca such that for all
t[0, T],

r(,) + fo’ Vx(O,)+Vxx(o,)+Vx,-(o )]

c, + 3(le+ ;(0,le +

-2efo’[1 +g(s)]v,(O,s)v,)c),(O,s)ds.

By adding this estimate and a suitable multiple of (5.7), and using the induction
hypothesis again, it appears that for each 6>0 there is a constant c so that, for all in
[0, T],

(5.12) A2(t)<_% 1+ tA2(s)ds +6e2 cxxt(O,s)ds.

Inequality (5.12) is not useful until the second integral is bounded. This may be
accomplished by virtually the same argument as was used to bound the corresponding
term appearing in the proof of Lemma 4.2. Differentiate (5.2), with j= k, twice with
respect to x, multiply the result by 2eVxxxt, and then integrate over R+(0,t). This
leads to the identity

2 2 2
(5.13) ([]Vxxx(’,t)[I -IlVxxxx(’,t)l[=) + JoV;xxt(O,s)ds

{ llxxx(" o) ll IIxxxx( ) }
+2e Oxxxx(O,s)Oxxxt(O,s)ds--2e [uO+hk(U)]xxxOxxxtdxds.

Since (5.2) implies that

[.+h(.]xxxxxx,eXe

it follows from (5.9), (5.10) and the induction hypothesis that for all [0, T],

c + [(+(l(]e+ ;xx(O,e

In consequence of (5.12) and (5.13) we therefore infer the estence of a constant c such
that

(5.14) A2(t)c(l+t[A2(s)+A(s)B(s)]ds},
for all [0, T].

Next B(t) will be estimated. Let w u+ ). By (5.2) w satisfies the equation

(.) wt+ Wx+ [UW+h+ ,( u)]+w-xxt-O.
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Multiply this equation by 2w and integrate over R + (0, t) to obtain

IIw(’,t)ll’/llw( ",t)llz/ w;,(O,s)ds

IIw( ,o)ll=+llw( ,o)ll - fo+ [l+g()]w:(O,)d

+ w(O,)[w(o,)-wt(o,)]d

The induction hypothesis therefore implies that, for all >0, there is a constant ca such
that

(5.16) 2IIw(.,t)ll-+llw(.,t)ll=+ w;(O,)d

<cs[1-+- fotB2(s,ds]q-fot[Wxx(O,s)-eWxt(O,s’]2ds,
for all t[0, T]. To complete the satisfactory estimation of B(t), multiply (5.15) by
2(EWxt- UW Wxx) and integrate over R + (0, t). This yields

fo’ fotg(,)w(O, )[Wx(0, ) w.,(0,,)]d,--2 wt(O,s)w,(O,s)ds-2 s s-

+ {2UWWx--UtW2+2[hlc+l(U)]x(Wxx-l-uw--eWxt)} dxds.

Integration by parts implies that

[/l(.l]xxeX

’[h+(U)]x(O,s)x(O,s)ds- [h+(U)]xxxdxds,

and that

fotfo
x:

fo
x:

s--te [hk+l(U)]xwxtdxds-e [h+,(U)]x(X,S)w(x,s)dxl,=o

-efotfom[hlc+l(U)]xtwxdxds.
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Hence, it follows from the induction hypothesis that for all t [0, T],

fotfo [hk+l(U)]x(Wxx-I-uw-eWxt)dxds

<e211Wx(" t)l12 ( fo fo 2+c 1+ [B(s)+A(s)B(s)]ds+ w;c(O,s)ds

Therefore, if (5.17) is added to a suitable multiple of (5.16), it follows that

(5.18) Bz(,)<_c{l+ fot[B:z(s)nLA(s)B(s)]ds }
for all tE[0, T] and all e in (0,e]. Here, without loss of generality, e= has been
presumed to be strictly less than I.

From (5.14), (5.18) and Gronwall’s lemma it now follows that there is a constant c
such that

for all E[0, T]. This completes the induction argument and hence the proof of Lemma
5.1. []]

The bounds established in Lemma 5.1 are just what will be needed in {}6, except
that, so far as is known now, not all the arguments of the constant b are independent
of e. To attain the goal for this section, it will suffice to give conditions on the data f
and g which imply that flu(Y)( 0)II and flu(y+ )(., 0)II, O<_j<_k, are bounded, indepen-
dently of e sufficiently small. This amounts to extending Lemma 4.5.

We have not succeeded in giving an absolutely straightforward generalization of
Lemma 4.5 to the casej>0. However, by modifying the data, in an e-dependent way, a
result is obtained which is sufficient for our purposes in the next section. Before stating
this lemma, some convenient notation is introduced.

Let #)(x)=I(x), and for each integery>_ define functions (p(Y) inductively by the
recurrence

(5.19) tP(J+ ’)-- (x)+ 4"xx)x +
i=0

Also, for nonnegative integersj, let

g(J)( ) OtJg( ).
Here is the result alluded to above.

L,NNA 5.2. Let fH(N+) and gH(O,T) be given, with f(0)=g(0). Let k
be a given integer and suppose additionally that

g()(0)=()(0) forj= 1,2,.-.,k.

Then there exists a family {g}o< in H(O, T) such that
(i) g(0) g(0) and lim,0[g, glk+ ,T 0;
(ii) there exists a constant b2, depending continuously on Ilfll3k+ , such that

for 0j k and aH e (0, 11, where u denotes the solution of (4.1) with initial data f and
bounda@ data g.
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Proof. First, two sequences of functions {J)}<_j<_ and {w(J)}<_j<_ are intro-
duced. These will be used momentarily to define the modified boundary data ge(t). Ifj
is an integer in the range [0,k], let v(j)-[3(k-j)/2] and define w(/) and p/) on R +

by w() q0 =f and, recursively forj> 0,

(5.20)

and

1 j--1 (W(ei)W(eJ_i_l))j)_ (W{e j- 11 )x 21- (W(e j- 11 )xxx "-[--’

v(j)

(5.21 t w(+) exp( X/E1/2) E "( 2i (j) fo Me(X )dOx )(o)+
i=0

Here, as in the proof of Lemma 4.5,

Me(x l)- [exp(_lx_ll/el/2)_exp(_(x+l)/e/2)
281/2

and

(5.22)
with

where

/2 exp( (x )].37I(x,li)--2el/[exp(--lx--lil/el )+ +)/ei/2

Note that w(j) has been determined as the solution of the boundary-value problem

v-,Vxx-,
v(0)-X(/) and lim v(x)-O,

v(j)

x</>- 2
i=0

forj- 1,2,--.,k.
By differentiating (5.21) the following identities are obtained, for all integers r>_ 1,

(5.23a)

and

(5.23b)

( 02xr+ lw(eJ) )( x ) exp(--x/el/2 )e-<r+ l/2)( i ei( O2ximrj) )(O)

-+- fom&(x,)(O2xr+’qJ))()d
r--I

(02xrW(eJ))(X)- exp( x/El/2) E-r (/) E Ei( 0x2iq0<j) )(0)
i=0

-}-f0 Me(x )( 2r <j)

Hence, there is a constant c, independent of %<J), +/) and e, such that

(5.24) [[w(/)l[3(_+)+
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for O<_j<_k. Using (5.20), (5..24) and a simple inductive argument, it follows that there
is a constant b2--b2(llfll3k/l) such that

independently of e in (0, 1] andj in [0, k].
For each e (0, 1] define modified boundary data g(t) by

k tj
g,(t)--g(t)+ [X()--(J)(0)].

j=l

Observe that g(0)= g(0). Also, since g()(0)= ()(0) by assumption,

(5.26) g})(0) (
for jk.

Now let u, denote the solution of (4.1) with initial data f and boundary data g. It
follows inductively from (5.20), (5.22) and (5.26) that u)( 0)-w}) for 0jk, and
hence the desired bounds on u?)( 0) follo-- from (5.25).

To complete the proof it is only required to check that

lim [g- glk+ ,r O.
e$0

Because of the definition of g,, ts is equivalent to showing that

for Ojk. Referring to the definition of ) below (5.22), and keeping in nd the
bounds in (5.25) and the simple inequality (2.5), we see that

+ o(,),
as e $ 0, for 0j k. More precisely,

(5.27)  cb2 .
Hence it is enough to show that

lim I?)(0) (g)(0) l= 0,

for 0j k. This latter relation will be proved by establisng that the estimate

(5.28) (i)II W3(k_i,,(,+ eel/4,

holds for Oik, where the constant c=c(]lfll3k+ ).
The inequality (5.28) is proved by induction on i. For i= 0 and 1, (5.28) follows

since 0) o)=f and ) ). Assume (5.28) holds for j, where j<k. In order
to establish the result for i=j+ 1, note first that the definitions (5.19) and (5.20) imply
that

Oij

where c= c(ll f ll3+ ). Since
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for O<_i<_j, by the induction hypothesis, (5.28) will follow if it can be demonstrated
that, for 0 _< i_<j,

(5.29) ilqi) w(ei)ll w3,k_i),oo(R+) CEI /4,
where again c-c(llfll,+ ). The fact that wi) solves (5.22) means that

w(O(x) pO(x) exp( x/e’/2)[X( O(O)]+eM(x
Differentiating ts relation with respect to x, in the same way that (5.21) was differen-
tiated to yield (5.23a, b), and using (5.27), we readily obtain the estimate,

where the constant c is independent of w0, ) and e. The bounds expressed in (5.25)
thus imply that

(5 .30)

where c-c(llfl[3k+ ). Also implied by (5.25), and the triangle inequality, is the estimate

where c-c([Ifll3g+). Standard results in the intewolation-theory of Banach spaces
now come to our rescue (cf. (2.5) and [19, Chap. 1]). Thus, if h denotes )-wi), then

1/2 1/2

where c-c(llfll3g+l). Ts completes the induction argument in favor of (5.28), and
thus finishes the proof of the lemma.

The outcome of Lemmas 5.1 and 5.2 is conveniently collected in the following
theorem. Ts is, in effect, a gher-order analogue of Theorem 4.6. In the statement of
the theorem, e2 is the same positive constant that already appeared in Theorem 4.6.

THOM 5.3. Let T>0 and a positive integer k be given. Let fH(R+) and
gH(O, T) and suppose that g()(0)-()(0), for Ojk, where the functions () are
related to f as in (5.19). Then there exists a family {g}0<, in H(O, T) such that

(i) g,(0) g(0), lim, 0lg,- gig+ 1,T 0;
(ii) there exists a constant b3--b3(llfll3k+,lglk+,r), depending continuously on its

arguments, such that

I[u-’(. t)l]

--fo ([)x4 U(j- 1)(0, S )]2 - [ )x3 U(j- 1)(0, S )]2

holds for <_j <_ k and all e in (0, e21. Here, u(j- 1)(X, t) Otj- u(x, t) and u denotes the
solution of (4.1) with initial data f and boundary data g.

6. Existence and uniqueness of solution. The major undertaking of this paper is to
prove existence of smooth solutions of the quarter-plane problem for the KdV equa-
tion. Using the theory developed in 3, 4 and 5, this task becomes comparatively
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simple. Recall that a function u-u(x, t) is sought such that

(6.1a) ut+ux+uux+uxxx-O for x,t>O,

subject to the auxiliary conditions,

(6.1b) u(x,O)-f(x) for x_>0,
u(O,t)-g(t) for t_>0,

wheref and g are given functions.
The issue of uniqueness of solutions of this initial- and boundary-value problem is

especially straightforward to settle. As the uniqueness of solutions of (6.1) is useful
later, it is established first.

THEOREM 6.1. Let T>0 and s>. Then, corresponding to given auxiliary data f and
g, there is at most one solution of (6.1) in the function class L(O, T; Hs(R +)).

Remarks. As usual in this paper, we mean, at the outset, by the word solution a
distributional solution of (6. a) for which the auxiliary conditions (6. lb) can be given a
well-defined sense. Of course if u is a distributional solution of (6. a) which is addition-
ally known to lie in a class of smooth functions, it will follow that u is a classical
solution of the differential equation. This point will be amplified later in this section.

Proof. Suppose that u, v L(0, T; Hs(R +)) are both solutions of (6.1) correspond-
ing to the same data f and g. The H(+)-norm of u and v is thus essentially bounded
on [0, T]. In particular, for almost every in [0, T], u(.,t), v(.,t)HS(+). Invoking
the Sobolev embedding results (cf. [19, Chap. 1]), it may therefore be supposed that, for
almost every in [0, T], u(-,t), ux(-,t), v(. ,t) and vx(-,t) are bounded and uniformly
continuous functions on +. Moreover, u,u, v and vx are essentially bounded on
R + [0, T]. From this it follows straightforwardly that both u and v converge, in
L(0, T), in the limit as x $0. Thus the boundary value in (6.1b) is taken on meaning-
fully.

Let w-u-v and X-1/2(u+v). Then w is a distributional solution of the linear
variable-coefficient differential equation

(6.2a) wt+w+(xw)+wx-o in R+ (0, T),

which satisfies the auxiliary conditions

(6.2b) w(x,O)-O forx +, w(O,t)-O fortin[0, T].

The boundary condition in (6.2b) holds at least in L(0, T), whereas it will appear
presently that the initial condition is valid at least in the sense that IIw(-, t)ll--’ 0, as 0.

Since nq( +) is linearly and continuously embedded in H(+), for q>s, we
may, without loss of generality, suppose that s<3 and let r--3-s. Note that 0<r<3/2.
Note also that w and (Xw) lie in L(O,T;HS-(+)) and that wx lies in
L(0, T; H-r(R /)). From (6.2a) it is thus apparent that w lies in L(0, T; H-r( +)).

The spaces H( +) and H-r( +) are viewed as being in duality in the usual
manner. The pairing between them is denoted by sharp brackets -, ). (For a detailed
exposition of these spaces, and the duality between them, the reader is urged to consult
the first two chapters of Lions and Magenes [19].) Note especially that since, for almost
every in [0, T], wH(+) and w(0,t)=0, it follows that wH(R+), for almost
every in [0, T]. Thus wL(O, T; HS( +) NH( /)). For this, it is crucial that r<3/2
of course. Otherwise a second boundary condition w(O,t)-O would be implied by
membership in H( /).
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that
In this situation, it is a standard result (el. 18, p. 71]) that w C(0, T; L2(I +)), and

(6.3)
1 d

dt IIw(-, t)[I-- (w, wt).

Thus, in particular, the initial value in (6.1b) or (6.2b) is taken on meaningfully. The
fight-hand side of (6.3) lies in L(0, T). Hence IIw(" ,t)ll is absolutely continuous, and
upon integrating (6.3) over [0, t], using the equation (6.2a) and the zero initial condition
in (6.2b), there appears

(6.4) llw(’,t)ll W, Wx+(XW)x+Wx) d-.

Since wx and (XW)x are continuous square-integrable functions, for almost every t, and
w(0, t) 0, it is straightforward that

( w, wx ) -foW(X,t)Wx(X,t)dx-O,
and that

(w, (XW)x) w(x,t)[X(X,t)w(x,t)]dx

-l fo (--- w x t)X(X t)dx

where

-< XxII L(. (0, r))II w(’, )11 --< MIIw(’, )ll,
In the last step, the fact that s>- was vital. Finally, we claim that (w,Wx)>-O, for
almost every in [0, T]. Fix and let h(. )-w(., t). Then h HS(R+)NH(R +). Let/
be a function in H(R +), say, such that

10xJ/(0) 0xJh (0) for 0_<j<s-.

Then h -/ H(R +). Hence there is a sequen.ce (q, }]o in (R)(R +) such that k, h -/ in
the Hs(R +)-norm, as n - 00. Let h, k, + h. The sequence {h, }]o has the following
properties:

(i) h, H(R +) and h,(0): 0, for all n;
(ii) h, h in HS(R /), as n--,

Then i)3h,O3xh in H-r(R +) and h,h in H((R +), as n 00. Hence,

( h’hxxx ) -n-oolim ( h,, i)3xh, ) n-,oolim foh,(x))3xh,(x) dx
lira xh,,(x)h,,(x) dx

lirn -
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Putting together the pieces, there appears

Ilw(., t)

for in [0, T]. Gronwall’s lemma thus implies that IIw(" ,t)ll=0 on [0, T], whence w=0
and so u-v, as required.

Attention is now turned to the existence theory. It is convenient to recall here the
notation introduced in 5. Namely, if f is a given sufficiently smooth function defined
on +, then set (0)___f,

(6.5a)

and inductively,

( )qO)(x)--- f(x)+f2(x)+fxx(x) x’

(6.5b) q(J+’)(x)-- xJ) + O4xJ’L +-
i=0 x

Remember that J)(0) gJ)(0), where gtJ)(t) 0/g(t) as before, is just the jth-order
compatibility condition implied by the KdV equation (6.1a) for solutions that are
sufficiently smooth at the origin (0, 0). Here is the main result.

THEOREM 6.2. Let k be a positive integer, fH3k+l(R+) and gHo+(R+). Sup-
pose the k + compatibility conditions

gJ)(O)--cpJ)(O) for O<_j<_k,

hold, where #) is defined above. Then there exists a unique solution u in
L]o(R +; H3k+ (R +)) of (6.1) corresponding to the data fand g. In case k> 1, u defines a
classical solution, up to the boundary, of (6.1) in the quarter-plane R + R +.

The proof of this result relies on the theory for the regularized problem developed
in [}[}3, 4, and culminating in Theorem 5.3. To make use of the last-quoted result, the
following technical lemma seems essential.

LEMMA 6.3. Let f and g be as in Theorem 6.2. Then there exist sequences (fN)

_
Hoo(R +) and (gs)O C_ Coo(R +) such that

(i) g)(0)-- q/)(0) for 0 <_j <_ k;
(ii) fNf in H3k+1(R+), gN-g in nlkoc+l(+).

Here) is as defined in (6.5) withf replacingf andg)- OtJgv
Proof. Let (fv) C_Hoo(R +) and {hv) c_C(R +) satisfy condition (ii) in the

statement of the lemma, relative to f and g, respectively. Define

aJV-h)(0)-)(0) for O<_j<_k,

where h O/hv and p) is given as in (6.5). Then set

gN(t)--hN(t)--P(t),
where

By construction, for 0--<j <-- k,

k tj
P(t)- a7

j--O "’
g’)(O)- h)(O)-av-
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Moreover, gs C(R +), for each N. It remains to verify that gs- g in Hl*oc+ I(R +). This
will be true if and only if Ps 0 in Hloc+ I(R +). But, for Ojk,

lim a-lim [h)(0)-)(0)]-0,
sincef and g satisfy k+ 1 compatibility conditions. Let T>0 be given. Then

j=O

where the constants depend only onj and T. Since a 0, as N +, for eachj, it
follows that

as N +. Since T>0 was arbitrary, the lemma is established.
The next step in the proof of Theorem 6.2 is to establish that solutions of (6.1)

exist in casef and g happen to be infinitely smooth.
PROPOSITION 6.4. Let there be given a positive number T and a positive integer k.

LetfH(R +) and gH(O, T) satisfy k+ compatibility conditions,

(o) (o) for o k.

Then there exists a solution u of (6.1) in L(O, T; H+(+)) corresponding to the data f
and g. Moreover, there exists a constant

such that

(6.6) ](-’(., t)]l + .(., t)],,
for jk, where u()- {u. The constant b depends continuously on its arguments.

Proof. The proposition follows from Theorem 5.3. More precisely, Theorem 5.3
provides the following. There is a >0 and a family (g)o<,H(O,T) such that
g(0) =f(0), and

[g--g[k+,r0 as0.

Let u be the solution of the regularized initial- and boundary-value problem (4.1),
corresponding to the data f and g, Then there is a constant b=b([[f[[k+,[g[k+,r)
depending continuously on its arguments, but independent of in (0, ], such that

2 2 2+ +

for Ojk. (In (6.7), the subscript e has been suppressed when writing u.) And, from
Corollary 3.9,

O/uC(O,V;nm(n+)),
for all nonnegative integers and m. Thus

{/U)o<n is bounded in L(0, T; H3( +)),
for Oj<k, and

{U}o<n is bounded in L(0, T;H(+)).
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If H is any Hilbert space, then L(0, T;H) is the dual of L1(0, T; H). (Here, H is
identified with its dual space.) In consequence of this fact, the unit ball in L(0, T; H)
is compact, for the weak-star topology induced by Ll(0, T; H). Hence, by taking a
sequence from (0,/] converging to 0, and passing progressively to further subsequences,
we deduce the existence of a sequence { n}l with e $ 0 such that if

un(x,t)-un(x,t ) n- 1,2,3,. .,
then there are functions u and U. in L(0, T; H3(I+)), 0<j<k, and a function Uk in
L(0, T; Hl( +)), such that

(6.8) uo--, u weak-star in L(0, T; H3(R +)),
O/uoU. weak-starinL(O,T;H3(R+)) for 0<j<k, and

Otku Uk weak-star in L(0, T;H(+)),
as n +c. Since u u weak-star in L(O,T;H3(+)), certainly unu in
@’(0, T;H3(+)). Hence O/uo--,O/u, for all j, at least in the distributional sense.
Because of (6.8), we may therefore identify Uj with O/u, for O<j<_k.

Note also that if XTu-(Oxu,Otu), then { XTun} comprises a bounded sequence
in L(0, T; H1( /)) L(0, T; H(R /)). Since H(/) C Cb( /), this means that each
component of { X7u} is a sequence uniformly bounded in L(+ (0, T)). In conse-
quence, (}o forms an equicontinuous sequence, when restricted to any compact
subset of+[0, T]. Hence for any M>0, (u,} is precompact in C([0,M][0, T]),
by the Ascoli-Arzela lemma. So by passing to still further subsequences, and finishing
off with a Cantor diagonalization, it may be presumed that

u u as n + c, uniformly on compact subsets of + [0, T ].
(More precisely, this argument leads to the conclusion that u--,v, uniformly on
compact subsets of +[0, T], as n +o. This in turn implies that UnV in
0,( + (0, T)) and thus leads to the identification v-u.) Exactly the same argument
holds good for OtJUn, providedj<k. Thus, for O<_j<k,

(6.9) OtJun OtJu as n +, uniformly on compact subsets of R + [0, T].
By a different argument, which makes use of the fact that H(O,M) is compactly
embedded in L2(0,M) for any M>0 (cf. [8, Lemma 7]) it may also be presumed that

(6.10) OtuOtu asn- +, almosteverywherein+[0, T].

By passing to a further subsequence, if necessary, it may be supposed as well that,
asn-

UnOxUn ---> W

OxU "--> D

03x Un’-> V

weak-star in L(0, T; H2( +)),
weak-star in L(0, T;H(+)),
weak-star in L(0, T; L2(N +)).

2 2 +Because of (6.9), u,,u and u,,u in (R)’( (0, T)). Hence the identifications
w-1/23xu2, v- 3u, V= O3u follow. Moreover, OtO2u,, is bounded in L(0, T; H-(R +)),
so e,,OtO2 u,,---, 0 strongly in this space, as n

The reader will now appreciate that there is in hand enough information to pass to
the limit n--, + oo in the regularized equation and conclude that, at least in the
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distributional sense, u satisfies the KdV equation,

U A
1- U dr- UUx .Af_ Uxxx 0,

in R+(0, T). Moreover, as u(x,O)=--f(x) and u(O,t)-g(t) for 0<e_<8, it follows
from (6.9), for example, that

and
u(x,O)=f(x) forxg +,

u(O,t)-g(t) for t[0, Tl.

Thus u does indeed provide a solution of (6.1) on R+[0, T]. Moreover, by the
lower-semicontinuity of the norm, relative to weak-star convergence, (6.7) implies that

for 0_<j<k, and

II<J>(

where b- b(llfll3k+ t, [glk+ ,T) is the constant obtained earlier from Theorem 5.3.
Notice that, if k-1, then utU.L(O,T;HI(I+)) and ux, UUxL(O,T;H2(g+)).

Hence, from the differential equation, Uxx L(O,T;HI(R+)), whence u
Z(0, T; H4(R +)). If k> 1, this type of simple argument may be continued inductively.
The outcome is that

(6.11) O/u + (0, +)),
for O<_j<_k.

Finally, (6.11) and standard interpolation results ([ 19, Chap. 1, Thm. 3.1 ]) yield the
following additional smoothness results:

(6.12) /uC(O,T;H3(’-J)-’/2(II+)),
for 0_<j<k.

In particular, if k> 1, certainly uC(O,T;H4(+)). Therefore, ut, ux, uu, and
Ux all lie in C(0, T;H(R+)). As this latter space is embedded in C(+ [0, T]), it
follows that, after possible modification on a set of measure zero, all the derivatives in
the differential equation are continuous, and bounded, functions. Consequently, if
k> 1, u is a classical solution of the quarter-plane problem for KdV.

The proof of the proposition is now completed.
Remark. Because the solution u obtained in Proposition 6.4 lies within the realm of

the uniqueness theorem 6.1, the entire family (u}0<<_ is inferred to converge to u, in
the various senses appearing in the proof. This is because we actually prove that any
sequence {en}] in (0,], with end0, as n + o, has a subsequence such that the
corresponding functions (u,} converge to a solution of (6.1), which by uniqueness must
be u.

The last proposition gives very nearly the result stated in Theorem 6.2. The only
essential difference is that f and g are assumed to be infinitely differentiable. Using
Lemma 6.3, this added assumption is shown to be unnecessary.

Proof of Theorem 6.2. Suppose now that fH3k+(l +) and gHoc+(g +) are
fixed, and that f and g satisfy the first k/ compatibility conditions, as in the
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statement of the theorem. Fix T>0. By Lemma 6.3, there exist sequences (fN} C_
H(R +) and {gs} C_ C(R +) such that

(6.13) fsf in n3k+ I(R + ),
gN g in Hk+ (O, T),

as N + oz. And, for each N>0, fN and gs satisfy the same k+ compatibility
conditions satisfied by f and g. The last proposition thus applies, and it is concluded
that there is a solution us of (6.1), on + [0, T], corresponding to the data fN and gN"
Moreover, O/UNL(O, T; H3(k-j)+ I(R +)), for O<_j<_k, and if

bm-b(llfmll3k+ 1’ Igmlk+ I,T)’
then for O_<j< k,

olu,,,11 H3(" +)) bN, o,’< u,<ll ,-,.,,, +,,-<
Because of (6.13) and the fact that b is bounded as its arguments vary over a bounded
set, there is a constant B, independent of N, such that

(6.14a)
for 0_<j<k, and

(6.14b)

In consequence of the bounds expressed in (6.14), the arguments of Proposition 6.4
may be repeated without essential change (the extra smoothness available during the
proof of the proposition was not used, nor was the regularizing term -eUxxt). It is
concluded therefore that (us} converges to a function ur, say, in the various ways
already detailed in the proof of Proposition 6.4. As before, ur provides a solution of
(6.1) corresponding to the dataf and g, on / [0, T].

The above argument applies for any fixed T> 0. Define a function U on + +

by,

U(x,t)=ur(x,t),

provided that < T. This is well defined because of the uniqueness result. It is dear that
U provides the solution whose existence was contemplated in the statement of Theorem
6.2. The fact that U is a classical solution of the problem (6.1), if k> 1, follows exactly
as in the proof of Proposition 6.4. The theorem is thus established.

It is perhaps worth comment that Theorem 6.2 also holds if k-0. This result
subsists on the e-independent HI(R. +)-bound established in Corollary 3.6. The proof of
existence of these weaker solufions while a little more delicate than the proof of
Theorem 6.2, fits more or less directly into the framework exposed in the proof of
Proposition 6.3. (The extra ingredients may be found, for example, in [8, App. A].) For
this reason, we content ourselves with a statement of this further consequence.

THEOREM 6.5. LetfHl(R +) and gHlo(+), and suppose f(0)= g(0). Then there
exists a solution u in Lo(R +; Hl(l +)) ofproblem (6.1) corresponding to the data f and g.

Remarks, By a solution we mean as usual a solution in the sense of distributions.
In this case the uniqueness result does not apply.

Note that, for any T>0, utL(O,T;H-2(+)), from the equation. Hence u
C(0, T; H-1/2( /)) (cf. again [19, Chap. 1]), so the initial-value is taken on in a weak,
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but meaningful way. Note as well that L(0, T; Hl( +)) C_L(0, T; Cb(R +)). Hence for
almost every t in [0, T], u(x, t) is continuous in x at x 0. Thus the boundary-values are
also obtained in a meaningful way.

7. Conclusion. The quarter-plane problem (1.3) is argued to be a natural config-
uration in which to use the KdV equation for the prediction of wave propagation in a
uniform channel. The general idea behind the use of this form of initial- and
boundary-value problem for testing the appurtenance of the KdV equation may be
appreciated by reference to Fig. 1. With the liquid initially at rest (f--=0), a wavemaker
located at one end of the channel is activated. The passage of the waves down the
channel is recorded by probes, the recording nearest the wavemaker being construed as
the boundary data g(t). Note that if the waves are in the regime to which, formally,
KdV applies, then they are expected to be smooth, and so g will lie in (R)(0, T), for some
T>0. In consequence, the data so determined will satisfy the compatibility conditions,
expressed for example below (6.5), to all orders. Hence the theory developed herein is
applicable.

Our theory demonstrates that problem (1.3) has unique smooth solutions corre-
sponding to such smooth and compatible data. This is a step in the direction of a
satisfactory mathematical analysis of the situation envisaged in Fig. 1. Another im-
portant step, which has not been treated here, is a result of continuous dependence of
the solutions on variations of the data. Also, in considering comparisons of the model’s
predictions with laboratory-scale experiments, some compensation for dissipative ef-
fects must be included (cf. [10]). Less important, but still of some mathematical interest,
is a possible improvement of the regularity theory to bring this aspect into line with the
theory for the pure initial-value problem (cf. [8] or [16]). We have shown that if
f.H3k+ (! +) and gHk(+) satisfy the appropriate compatibility conditions at
(x,t)-(O, 0), then the quarter-plane problem has a solution in L]o(R +;n3+ 1(1 +)).
Whereas, we confidently expect the solutions to lie in C(R +;H3k+( +)). In fact, this
latter point seems to be related to a sharp version, of continuous dependence of
solutions on the data.

It deserves emphasis that a satisfactory numerical scheme for the configuration in
view here is essential to effect any quantitative comparisons of laboratory data with
predictions of the model. Especial care must be exercised here. First, control of the
high-frequency end of the Fourier spectrum must be assured. Otherwise an untenable
error may be created near x-0, due to the large negative phase and group velocity
associated to such components (cf. [4, [}2]). Secondly, the integration will in fact take
place on a bounded spatial domain, forcing the imposition of additional boundary
conditions. This in turn will lead to consideration of an initial- and two-point-
boundary-value problem for the KdV equation, and to consideration of the relation of
such a problem to the situation studied here. The difficulties seem numerous enough to
warrant insisting on a scheme having rigorously derived error bounds. Thus far, such
schemes seem to be available only for the periodic initial-value problem (cf. [1], [2], [29]
and [30]).

Finally, it is worth remarking that the methods embodied in this paper might yield
a comparison theorem between the quarter-plane problem (1.3) for KdV and the
analogous quarter-plane problem for (1.4) studied in [5], and used in the comparisons
with experimental data reported in [10]. Such a program of comparison of model
equations has been carried out for the associated pure initial-value problems in [11],
using the general line pursued herein. Thus there is some cause for hope that a similar
result is obtained in the present context.
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A FREE BOUNDARY PROBLEM ARISING FROM A BISTABLE
REACTION-DIFFUSION EQUATION*
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Abstract. The pure initial value problem for the bistable reaction-diffusion equation

Vt’--Vxx ff’f(v )
is considered. Here f(v) is given by f(v)--v+H(v-a) where H is the Heaviside step function, and a
(0, 1/2). It is demonstrated that this equation exhibits a threshold phenomenon. This is done by considering the
curve s(t) defined by s(t)--sup{x:v(x,t)=a}. It is shown that if v(x,O)<a for all x, then
limt_ollv(.,t)lloo=O. Moreover, there exists a positive constant c* such that if the initial datum is suffi-
ciently smooth and satisfies v(x,.O)>a on a sufficiently long interval, then s(t) is defined in R +, and
lim/_ o(s(t) c’t) exists. Regularity and uniqueness properties of s(t) are also presented.

AMS-MOS subject classification (1980). Primary 35K55

Key words, reaction-diffusion equations, threshold phenomena, free boundary problem

1. Introduction. In this paper we consider the pure initial value problem for the
equation

(1.1) vt--Vxx+f(v),

the initial datum being v(x, 0) q(x). We assume that f(v) v + H(v a) where H
is the Heaviside step function and a (0, 1/2). This equation, but with smooth f, has
many applications and has been studied by a number of authors (see [1], [3], [4], [7], [8],
[9]). Equation (1.1) is also a special case of the FitzHugh-Nagumo equations:

e_>O, 3,_>0,

which were introduced as a model for the conduction of electrical impulses in the nerve
axon. Note that (1.1) can be obtained from (1.2) by setting e =0 and w----0 in R R +.
In their original model, FitzHugh [5] and Nagumo, et al. 11 chose f(v) v(1 v)(v
a). McKean 10] suggested the further simplificationf(v) v + H(v a).

Our primary interest is to study the asymptotic behavior of solutions of equation
(1.1). One expects equation (1.1) to exhibit a threshold phenomenon. That is, if the
initial datum q(x) is sufficiently small then one expects the solutions of (1.1) to decay
exponentially fast to zero as . This corresponds, for example, to the biological fact
that a minimum stimulus is needed to trigger a nerve impulse. In this case we say that
q0(x) is subthreshold. One expects, however, that if (x) is sufficiently large, or
superthreshold, then some sort of signal will propagate. Threshold results for equation
(1.1) with smooth "cubic-like" f have been given by Aronson and Weinberger [1]. Fife
and McLeod [3] showed that if the initial datum is superthreshold, then the solution of
(1.1), with smoothf, will converge to a traveling wave solution.

*Received by the editors November 20, 1981, and in revised form August 25, 1982. This material is
based upon work supported by the National Science Foundation under grant MCS80-17158, and sponsored
by the U. S. Army under contract DAAG29-80-C-0041.

Mathematics Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706.
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Throughout this paper we assume that the initial datum, (x), satisfies the follow-
ing conditions:

(a)
(b)
(c)
(d)
(e)
(0

(x)Ct(n),
(x) [0, 1] in R,
(x)=(-x) in R,
’(x)<0 in +,
(x0)=a for some x0>0,
"(x) is a bounded, continuous function except possibly at Ixl-x0.

This last condition is needed in order to obtain sufficient a priori bounds on the
derivatives of the solution of (1.1).

Note that in some sense x0 determines the size of the initial datum. We expect,
therefore, a signal to propagate if x0 is sufficiently large. In order to be more precise we
consider the curve s(t) given by

(1.4) s(t)--sup(x v(x,t)--a}.

We say that the initial datum is superthreshold if s(t) is defined in + and limt_. s(t)
--+ o. In this paper we show that if x0 is sufficiently large then (x) is indeed
superthreshold. We also analyze the asymptotic behavior of the curve s(t). We prove
that there exists a constant c* such that if (x) is superthreshold, then lim t-. (s(t ) c*t )
exists. That is the solution eventually propagates with constant velocity.

Note that because f(v) is discontinuous we cannot expect the solution of equation
(1.1) to be very smooth. By .a classical solution of equation (1.1) we mean the following"

DEFINITION. Let Sr= (0, T) and Gr=((x,t)Sr, v(x,t)=/=a). Then v(x,t) is
said to be a classical solution of the Cauchy problem (1.1) in Sr if

(a) v, along with v, are bounded continuous functions in St,
(b) in Gr, Vx and v are continuous functions which satisfy the equation

vt--Vx+f(v),

(c) limtoV(X,t)-q(x) for eachx.
We can now state our primary result.
THEOREM 1.1. Choose a (0, 1/2). Then there exist positive constants and c* such that

if q(x) satisfies the conditions (1.3) with xo> O, then (1.1) possesses a classical solution in
+, and q(x) is superthreshold. Furthermore,

(a) s(t)cl(+),
(b) s’( ) is a locally Lipschitz continuous function,
(c) lim/_ oo(s(t)- c’t) exists.
Actually, assumption (1.3c) is not needed in the proof that limt_(s(t)-c*t )

exists. All we need assume is that s(t) Cl( +) and limt
Theorem 1.1 plays an essential role in a recent paper [15] in which the author

proves a threshold result for the full FitzHugh-Nagumo system. That result is proved
by showing that the variable v(x,t) in (1.2) lies above some comparison function,
u(x, t), which is essentially the solution of a scalar equation of the form (1.1). If we
define o(t) by o(t)-sup{x u(x,t)--a} then the properties needed about r(t) in [15]
follow from Theorem 1.1. In particular, in order to apply the basic comparison theo-
rems it is crucial that o(t) is sufficiently smooth. In order to prove threshold results it is
needed that limt_. o(t)= o if the initial datum is sufficiently large.
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Note that for the model we are considering it is trivial to give sufficient conditions
for the initial datum to be subthreshold. In particular, if (x)<a for each xR then,
from the maximum principle (see [12, p. 159]), v(x,t)<a in R+. Hence v satisfies
the equation

vt-v-v in Xl +.

From this it follows that Ilv(", t)lloo-0 as o, and the initial datum is subthreshold.
To prove Theorem 1.1 we first demonstrate that if the initial datum tp(x) satisfies

the conditions (1.3) then there must exist some positive T such that in the interval
[0, T], s(t) satisfies the integral equation

(1.5) a--f K(s(t)-j,t)p(j)d=Ltdr fS(’) K(s(t)-t,t-)d
-s()

where K(x,t)--(e-t/2,1rl/2tl/2)e-xE/4t is the fundamental solution of the linear dif-
ferential equation t:xx-k Here we give a formal explanation of why this is true.
We then show how to construct a solution of the initial value problem (1.1) given a
smooth solution of (1.5).

From assumptions (1.3c, d) we expect that vx(x, t)<0 in R + R +. In this case
s(t) will be a well defined, continuous function for some time, say t[0, T]. It also
follows that v>a for Ixl< s(t) and v<a for Ixl>s(t). Let X be the indicator function of
the set : ((x,t) v(x,t)>a; O<_t<_T}. Then, for Ixl:/:s(t), v(x,t) satisfies the inho-
mogeneous equation

(1.6)

with initial datum v(x, 0)= (x). Formally the solution of (1.6) can be written as

v(x,t)-f_ K(x-,t)(,)dWfotd’r fs(’)- "-s(’)

Setting x s(t) in (1.7) we obtain (1.5).
LEMMA 1.2. Suppose that s(t) is a continuously differentiable function which satisfies

the integral equation (1.5) in [0, T]. Then the function v(x, t) given by (1.7) is a classical
solution of the initial valueproblem (1.1) in [0, T].

Proof. Setting x s(t) in (1.7) and subtracting the resulting equation from (1.5) we
find that v(s(t),t)=a in [0, T]. Differentiating both sides of (1.7) we see that for
xvs(t), v(x,t) satisfies the differential equation vt=Vx+f(v) in R(0, T]. It also
follows from (1.7) that limtoV(X,t)=q(x ) for xR. We now show that v(x,t) is
differentiable whenever x s(t).

First assume that Il<s(). Then v(,) satisfies the differential equation

Multiplying both sides of this equation by K(x-,t-) and using the fact that
K+K-K=0 we find that

( Kv),- (Kv) + ( K,v )-K.
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Assuming that Ixl<s(t) we integrate this last equation for -s(z)<<s(z), e<<t-e,
and let e-+ 0 to obtain:

(1.8a) v(x,t)-f_ K(x-l,t)qn(l)dl-fotK(x-s(z),t-)as’()d
Xo

fotg(x +s(-),t-r)as’(r)dr-fotg(x-s(’),t-’)v,(s(" )- ,’)dz

+ (x ),t--r ,r)dr+ aK(x-s(),t-)dr

g-a (x+s()

0 -s(l

Next assume that >s(). Then e(,) satisfies the differential equation:

e-e+e=0. Multiplying both sides of tNs equation by K(x-,t-) we find that

(,-() + ( =0.
We integrate this equation for s()<< m, e<<t-e and let e0 to obtain

f tg(xs ),t(.8b) K(x-,t)W(8)dS+ (z
X

+ (x--s ),t--r ,$)dr-

Similarly, for <s(z) we obtain

Adding (1.8a), (1.Sb), and (1.8c), and using (1.7) we find that for (0, T)

(1.9) ’[K(x-s(r),t-r)[v,(s(,) + ,,) v, (s(z)-,, )]
+,(,),,-,)[ v,(-,(,) + ,)-v,(-,(

However, because of assumption (1.3c) it follows from (1.7) that v(x,t)=v(-x,t) in
X (0, T). Therefore, (1.9) can be rewritten as

.)][v.(,(.) +,,).-v,(.(,)- )I

From ts it follows that v(s(t)-,t): v(s(t)+,t) for each E(0, T)].
I 2 we present some notation and prove a few prelinary results which are

needed throughout the rest of the paper. In 3 we show that for some time T there
exists a solution of the integral equation (1.5) in [0, T]. We also demonstrate that
s(t)ECi(O, T) and s’(t) is a locally Lipsctz continuous function. From the proof of
these results it will be clear that we may choose T: + if x0 is sufficiently large. In 4
we prove that the solution of (1.5) is unique among Lipschitz continuous functions.
Finally, in 5 we show that there exists constants O and c*, wch depends only on the
parameter a, such that if x0>O then limt+(s(t)-c*t ) ests.
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2. The operators and O. We first introduce the following notation.
Assume that k(x, t) is the solution of the linear differential equation

(2.1)
in R R + with initial conditions

Note that +(x, t)-f-o K(x-l,t)q(l)dt where K(x,t) is the fundamental solution of
(2.1).

Now suppose that (t) is a positive, continuous function defined or t[0, T]. For
values of o and which satisfy 0_<t0<t_< T we define the operators:

Note that s(t) is a solution of the integral equation (1.5) in [0, T] if and only if

for all values of o and such that 0 _< o< t_< T.
DEFINITION. Suppose that a(t) is a positive uniformly Lipschitz continuous func-

tion defined in [0, T]. We define a(t) to be a lower solution in [0, T] if dO( a)( ) >_ O( a)( )
in [0, T]. If dO( a)( ) <_ O(a)( ) in [0, T] then a(t) is said to be an upper solution in [0, T].

In Theorem 4.1 it is shown that if a(t) and fl(t) are respectively lower and upper
solutions in [0, T] then a(t)<_fl(t) in [0, T]. This will imply that the solution of (1.5) is
unique among uniformly Lipschitz functions. We prove threshold results by showing
that if x0 is sufficiently large then some vertical line ll(t) ff is a lower solution in +.
Hence s(t)>_Y, in +. Using this preliminary result we then show that limt_os(t)=

In the rest of this section we prove those properties of the operators
which are needed for the proof of Theorem 1.1. We assume throughout this section that
a(t) and fl(t) are positive continuous functions defined on an interval [0, T].

LEMMA 2.1. Assume that for to<t, a(to)<_fl(to) and ot(tl)> fl(tl). Then Oto(a)(tl)
>

Proof. Recall that Oto(a)(tl)=q(a(to),to)-q(a(t),t) where q(x,t) is the solution
of the linear differential equation

with initial datum k(x, 0) (x). From assumption (1.3d) and the comparison theorem
(see [12, p. 159]) applied to x(x,t) it follows that x(x,t)<0 in +. Therefore,
(a(to),to)>/(fl(to),to) and b(a(tl),tl)<(fl(tl),tl). From this the proof of the
lemma follows immediately. Vq

LEMMA 2.2. Assume that a(t) >-- [3(t) in [0, o ], a(t)> fl(t) for some (0, o), and
a(to)= fl(to). Then dP(a)(to)>d(fl)(to).

Proof. This is an immediate consequence of the definition of .
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LEMMA 2.3. Assume that a(t) C(O, T). Then tX)(ct)(t) CI(0, T) and

(2.2) ’(a)’(t)=ff_ K(a(t)-l,t)d+fotK(a(t)+a(’),t-’)[a’(’)+a’(t)] d"
XO

+ tK((t)--(),t-)[&()--’(t)] d.
Proof. Note that

()’(t) lim ![()(t+e)--()(t)]
eo E

=lim[t+ed
e -(,)K(a(t+e)-’t+e-)d

0 "--a()+a(t)--a(t+)
K

eO E "--a()+a(t)--a(t+e)
K

td
()+a(t)- a(t+ e)

+

Passing to the limit we obtain (2.2).
We conclude this section by finding sufficient conditions on the initial datum for

there to exist lower and upper solsutions. We assume throughout that the initial datum,
(x), satisfies the conditions (1.3). We first wish to prove that there exist positive
constants and r such that if x0>O then for some (xo-r,xo) the vertical line
l(t)= is a lower solution on R +. The proof of this result is broken up into a few
lemmas.

X0L.MMA 2.4. Let ,(Xo)(t)- fdz f_oK(Xo ,to z)d andfix e(O,1/2-a). There
exists a positive constant O(e) such that if Xo>O(e), then P(Xo)(t)+(Xo)’(t)>_a+e in
+.

Proof. Let

1/2-a )a=a+e, -min
2to l+to

to- -log(--a), O(e)--max(1,2tolog 2t1/2 )
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Assume that Xo->O(e). The proof will be broken into two steps. First assume that
(0, o). Then, using (2.2), we have

(2.3)

fo f_-of -, f_t(Xo)(t)+t(Xo)’(t)-- ’d (xo t-)d+
O

K(xo_,t)d
x x

-fo’, fx_ooIC(xo-t,t-),t/fIC(xo-t,,),
s: s-_ soxIc(xo- t, t-) at+ I(xo- t, t) at

We now show that for -(0, t)

f_ Xo--/2, t--’) dj< 8.XK((2.4)

From this and (2.3) it will follow that for (0, o)

>1 >1da(Xo)(t)+d(Xo)’(t)_---(1 + t)8_--(1 +to)8->a.
Now (2.4) is true because for -[ 0, t)

f-xOK(xo_li,t_)dii_ e-(t-) -Xo

oo 2rl/’ii--)l/2 f- exp( (x-l)2/4( t- " ))dt

e-(t-r) f5xo

)1/2
exp( -(xo-1)/a(t-z))dl"

2,/rl/2(t--,r

The last inequality is true because xo> O(e) _> 1. Therefore,

2(t-,r) ’/2

fo K(xo_,t_,)d<
1/2

e-Xo/2(t-r)e-(t-r)

2tl/2
q/.l/2

e-Xo/2t<_.2,,t/2
,//.1/2

e-O(e)/2t<"

Now assume that t-->to. Then

O(Xo)(t) +(Xo)’(t)>--(Xo)(to)

Since

fo,Od, fX_o K(xo_l,to_.)dt2_ 1 --e-’
oo 2
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we conclude from (2.4) that

+ x0)’(t)
e-t

2 -t>--a"

LEMMA 2.5. Fix e(O,1/2--a) and let O-O(e). Let 01-O+(4a/e)1/2 and

a for IxlO,
0 for Ixl0,

h(x)- a--(x-O for x(O,01)
e )2a--(x+O forx(--O,, --0).

Assume that:
a) q(x)>h(x) for Ixl<_x,
b) q(x)>_h(x)-O for Ixl>x.

Then there exists (0, 0 ) such that the line ( ) is a lower solution in R +.
Proof. Because of our assumptions on qo(x) there exists a function l(x) such that

(2.5)

(a)
(b)
(c)
(d)
(e)
(f)

(g)

(x) C=(- c, c.),
h(x)<qg(x)<q(x) for Ixlx,
h(x)<_q(x)<_q(x) for Ixl>x,
q’l(x)<0 for x>0,
q01(X)=l(--X ) in R,

q91(x)<a+- in R,

q0’l’(X) >_ - in R.

From these assumptions it follows that (ff)--a for some unique constant >0.
Let +(x, t) be the solution of (2.1) with initial datum q9 (x). Since qg(x) >_ q0 (x) in R +

it follows from the maximum principle that /(x,t)>-ql(X,t ) in +. We show that
a-q(,t)<_(Y.)(t) for t. From this it follows that a-k(,t)<_a-(Y,t)<_

(ff)(t) and hence the line ll(t) is a lower solution in R +.
We wish to show that a-ql(,t)<_(Y)(t), or /l(Y,t)>_a-()(t) for t+.

Let g(x,t)=q(x)-()(t). We show, using a comparison argument, that /(x,t)>_
g(x,t) in +. Since (ff)=a this certainly implies the desired result.

In order to apply the maximum principle note that

o)= 0),

and

gt--gxx+g [(X’)(t) + (.)’(t)]

(<_-(a+e)+ a+ +--O-/,t-Plxx++l.

In this last calculation we used Lemma 2.4 and assumptions (2.5f, g). From the maxi-
mum principle (see [12, p. 159]) we conclude that l(X,t)>_g(x,t) in /, and the
result follows.
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LEMMA 2.6. There exist positive constants r and 0 such that if the initial datum p(x)
satisfies (1.3) with xo>O, then, for some (xo-r, xo), the line ll(t)-ff is a lower
solution in R +.

Proof. Choose e (0, 1/2- a), r- (4ale)1/2, and 0 0(e) + r. The result now follows
from the previous lemma. U]

We now prove the existence of an upper solution.
LEMMA 2.7. There exists a linear function 12(t) such that lz(O)=xo and 12(t) is an

upper solution on [0, a/2].
Proof. Recall the function p(x, t) defined to be the solution of (2.1) with initial

datum q(x,0)=(x). From assumptions (1.3d) and (1.3f) it follows that there exist
positive constants i1 and t2 such that It(x,I)l<2 and px(x,t)<-i in the region
(x0/2, o) (0,a/2). Let M=(1 +82)/81, and define/2(t) by 12(t)--Mt+xo.

In order to show that 12(t) is a supersolution in [0,a/2], consider the curve/3(t)
defined implicitly by the equation k(/3(t), t) a- t, /3(0) x0. Note that /3’(t)
(-1-/t(fl(t),t))/qx(fl(t),t)<m. Hence fl(t)<lz(t ) in (0,a/Z). From Lemma 2.1 it
follows that for (0, a/2)

O(12)(t)>O()(t)--a--((t),t)--t.
On the other hand,

Therefore, (12)(t) < O(l2 )(t) for (0, a/2), which means that 12(t) is a supersolution
in [0, a/2]. E]

3. Existence and regularity of s(t). Throughout this section we assume that there
exist linear functions l(t) and/2(t) which are respectively lower and upper solutions in

[0;T] for some positive time T. Recall that s(t) is a solution of the integral equation
(1.5) in [0, T] if and only if

Oto(S)(t)--Oto(S)(t )

for O<_to<t<_T. We prove the existence of a solution of (1.5) in [0, T] by constructing a
sequence of continuous, piecewise linear functions (Sn(t)) with the properties that
s,,(0) x0 and, if we set 9 =jT/n,

Otj(s,)(tj+,)--dtj(sn)(tj+,) forj--0,...,n--1, n--l,2,.--.

This sequence of functions is shown to be equicontinuous and uniformly bounded.
Therefore, by the theorem of Arzela and Ascoli some subsequence of (Sn) converges
uniformly to a continuous function. This continuous function is shown to be a solution
of the integral equation (1.5).

LEMMA 3.1. For each positive integer n there exists a continuous piecewise linear
function sn(t ), defined in [0, T], such that ll(t)<_sn(t)<_12(t ) and, if we set tj=jT/n,

tj(Sn)( tj+ ) Otj(Sn)( tj+ ), j--0, 1,...,n-- 1.

Proof. Fix n. Set s,(0)=x0 and suppose that we have found points Xo,X,...,xk
such that ll(tj)<_xj<_lz(tj), j-0, 1,.-.,k, and, if s,(t) is the piecewise linear function
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connecting the points (xj, t.), then

tj( Sn )( tj+ 1)--Otj(Sn)( tj+ 1), j--0, 1,...,k- 1.

For x(l,(tk+,), 12(tk+,)), let

a(x)(t)-{sn(t)
the line segment connecting (x, t ) and

for <-- ink
(x,t+l) for t,<t<_tk+.

By induction the proof of the lemma will be complete once we have proven the
existence of a point x,+ such that lt(t,+ )<_x+ <_12(t+ ), and dPtk(Ot(Xk+ l))(t/+ 1):
Otk(a(xk+))(t+). To prove the existence of X+l we first let x=l(t+) and show
that t,(a(x))(t+)-Ot(a(x))(t+)>-O. We then let x-l_(t+) and show that

dtk(Ot(X2))(tk+l)--Ot/((Ot(X2))(tk+l)<O. Since t(a(x))(t,+)-Ot(a(x))(t+) is a
continuous function of x it will then follow that there must exist a point xk+ [x,x2

such that d#t/((a(x+l))(t+)--Ot(a(x,+l))(t+)=O.
Note that a(xl)(t)>--l(t) for t(O, tk+). From Lemma 2.2 it follows that

O(a(x))(t,+l)>_O(l)(tk+). Therefore, since ll(t ) is a lower solution, (a(x))(t+)
--O(a(x))(t+l)>_d(ll)(t,+)--O(l)(t+l)>--O. Since a(x)(t)=sn(t) for t(O, tk) it
follows that d(a(x))(t)-O(a(xl))(t)=(sn)(t)-O(Sn)(t)=O. Hence,

(llt/(( O( .X; ))( tk .I )-- Ot/(( O( X ))( tk+ )

>0.

A similar argument shows that t,(Ot(X2))(tk+l)--Ot,(Ot(X2))(tk+l)O. From our
previous remarks this completes the proof of the lemma.

In order to apply the theorem of Arzela and Ascoli to conclude that a subsequence
of {s,(t)} converges uniformly to a continuous function we need to show that the
sequence {s,(t)} is equicontinuous. We now prove this to be true if T is chosen
sufficiently small.

LEMMA 3.2. If T is chosen so that e-t(r)/T<--1/4 then the sequence (s(t)} is equicon-
tinuous on [0, T].

Proof. Let B be the region bounded by/l(t),/2(t), t-0 and t: T. From assump-
tion (1.3d) it follows that q(x, t)<0 in B. Choose 1 to be a positive constant such that
+(x, t)<-1 in B. From assumption (1.3f) there exists a positive constant 2 such that
[t(x,t)l<2 in B (see [6, Thm. 6, p. 65]). Let M:supo<_,<t<_rK(ll(t)+l(z),t-) and
f:min(6l/4M, T).

Since each function s,(t) is piecewise linear it suffices to show that the derivatives

s,(t) are uniformly bounded whenever they exist. We first find a lower bound on s’(t)
for t[0, T] and n-0, 1,2,..-. In fact, suppose that p is a positive integer such that
p{<T. We show that s(t)>--2PSE/ for each n and tG(O,pt-) such that s,(t) is
defined.

Suppose that this is not true. Then there must exist positive integers m and n such
that l<_m<_p, s,()<-2m62/Sl for some /’((m-1)t-,rot-), and s,(t)>--2m-ls2/6
for <(m- 1)L Since s,(t) is piecewise linear we may assume that for some integer k,
s(t)>_--2m2/l for t<tk=--kT/n, and s(t)<--2m2/8l for t(tk, tk+l). We show
that dp(s,)’(t)-O(s,)’(t)>O for t(tk,tk+l). This immediately leads to a contradic-
tion because P(Sn)(tk)--O(S,)(tk):(Sn)(tk+ l)--O(S)(tk+ l)--O.
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We first estimate t(s.)’(t) for tU_(tk, tk+l). Using (2.2) it follows that:

We show that [I] >0. Recall that for rE(0, (m-- 1)tl), s,(r)_> -2m-l2/t >s(t). Hence

l)t’ [2s( )g(sn( ) q- Sn(’r ), l-- "r )

[ 2] K(sn(t)-sn(z) t-z)ldv.s:(t)q-Em-l-l
The right-hand side is positive if for each r<(m- 1)tl,

2s;,(t)
e-(t-r) ( (Sn(t)-[-Sn(’r))2 )2,lr/2(t_,r)/2

exp
4(/--)

S’n(t)+2m-ll 2,/2(t_,r),/2
exp

4(t-z)

or

S(t) -[- 2 162/61

This is true because

by assumption, and

I,(T)2 )T 4

We have therefore shown that [I] >0. On the other hand,

[II]-->f 2s(t)K(ll(t)+l,(z),t-)dz>-2s,(t)t,M.
m--l)q

Therefore, (s.)’(t)>2MtlS,(t ).
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We now show that O(s,)’(t)<2M{s,(t) for t(tk, tk+ 1)" This is true because

O(Sn)’( ) --x(Sn( ), )s( ) --/t( Sn( ), )
< 6,s;(t) + 62 4Mrs;(t) +2
<_ 4M[s;( ) 2M[s;( ) 2M[s,( )

We have therefore shown that d(sn)’(t)>O(s,)’(t ) for t(tk, tg+ ). As was men-
tioned earlier this leads to a contradiction. Hence, the uniform lower bound on s,(t)
follows. Using a similar argument one can obtain a uniform upper bound on s’n(t ). In
fact, if P is chosen so that Pt-< T then one can show that s(t)_<2e((1 +2)/81) for each
n and t(O, Pt-) such that s,(t) is defined (see [13] for details). From our previous
remarks this concludes the proof of the lemma.

Since the sequence {sn(t)} is equicontinuous, and uniformly bounded by the lower
and upper solutions ll(t) and/2(t) on [0, T], the theorem of Arzela and Ascoli guaran-
tees that a subsequence, {s,k(t)}, converges uniformly on [0, T] to a uniformly Lipschitz
function s(t). To simplify notation we write {Snk(t)} {s(t)}.

LEMMA 3.4. s(t) is a solution of the integral equation (1.5) in [0, T].
Proof. Let e be an arbitrary positive constant and choose o [0, T]. We show that

I@(s)(to)-O(s)(to)l<e be estimating, for sufficiently large n, each term of the inequal-
ity

I(s )( o ) -O(s )( o )1 I(s)( o )--(Sn)( tk )l +I(Sn)( tg )--O(Sn) ( k )l

+ Io O(s )( to )1.

Here k is chosen so that o (tk, ttc+ ).
It follows from the construction of s,(t) that Itb(s)(tk)-O(sn)(t)l-O. Further-

more, because the function k(x, t) is uniformly continuous and the sequence of func-
tions (sn(t)} are uniformly Lipschitz continuous, it follows that IO(Sn)(t)-O(s)(to)
<e/2 for n sufficiently large. It remains to show that I(s)(to)-(s,)(to)l<e/2 for n
sufficiently large. Setting X-s,(t) s(t0), ts is true because

f

-s.()

:l_fo d,f’"(’+t-t)+XK(sn(tk)__,t__)d
I’tk--t --S(Z+to--tk)+

+
t)+x

*s.(z)

ltk--tol+4 sup
Ortk "dO 2/2(tk--$

-2
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if n is sufficiently large. In the last inequality we used the fact that s(t) is a Lipschitz
continuous function and Its-t01< 1/n.

Note that the results of [14] now imply that s(t) C1(0, T), and s’(t) is a locally
Lipschitz continuous function. In [14] it is shown that this is true for (0, ) for some
>0. We may choose T as long as we know that s(t)>0 and s’(t) is bounded in
(0, T). Both of these conditions are satisfied. It is true that s(t)>0 in (0, T) from the
assumption that there exists a lower solution ll(t ). Furthermore, since it has been
proven that s(t) is uniformly Lipschitz continuous, it follows that s’(t) is bounded
wherever it is defined.

We have now shown that if T is chosen so that there exist linear functions ll(t ) and
12(t) which are, respectively, lower and upper solutions in [0, T], and e-t’(r)/T<_1/4, then
there exists a smooth function s(t) which satisfies (1.5) in [0, T]. Combining this result
with Lemmas 2.6 and 2.7 it follows that there exist positive constants r and 0 (as in
Lemma 2.6) such that if q(x) satisfies (1.3) with xo>O then s(t) is a smooth function
defined in all of R +. Furthermore, s(t)>xo- r in R /.

4. Uniqueness. The following theorem demonstrates that the solution of (1.5) is
unique among uniformly Lipschitz functions.

THEOREM 4.1. Suppose that a( t) and fl( ) are respectively lower and upper solutions
in [0, T]. Then a(t)<_fl(t) in [0, T].

Proof. Note that we must have a(O)<_Xo<_fl(O). If, for example, a(0)>x0, then
q(a(0),0)<a. It follows there must exist some time, to, such that k(a(t),t)<a-t for
t(O, to). Therefore, O(a)(t)--a-q(a(t),t)>t for t(O, to). On the other hand,

-s()

for all +. Hence, O(a)(t)> (a)(t) in (0, o), which contradicts the assumption
that a(t) is a subsolution. A similar argument shows that it is impossible for fl(0)<x0.

If a(0)<fl(0), then we must have a(t)<(t) in (0, T). If not, we let to:inf{t:a(t )
_>/3(t)). Then a(t0) fl(t0) and a(t) </3(t) in (0, o). Lemma 2.1 now implies that
O(a)(to)>O()(to), while Lemma 2.2 implies that @(a)( to ) < dp( )( to ). Since a(t) is a
lower solution and/3(t) an upper solution, we now have

This is an obvious contradiction.
Throughout the rest of the proof we assume that a(0)=/3(0) x0.
Suppose the lemma is not true, and let to:inf(t[a(t)>(t)}. Then, a(t):(t) for

[0, o]. This is because, if a(t)< fl(t) for some [0, 0], it would follow from
Lemmas 2.1 and 2.2 that

@(a)(to)<@(#)(to)<-e(B)(to)=e(a)(to).

This, however, contradicts the assumption that a(t) is a lower solution.
We prove the lemma by showing that there exists some t> o such that a(t)> fl(t)

and (a)(t)< (fl)(t). This leads to a contradiction for the following reason. Since
a(t)> fl(t), and a(0) fl(0), it follows from Lemma 2.1 that 0(a)(t)> 19(fl)(t). If it is
also true that (a)(t)< (fl)(t), then, since fl(t) is an upper solution, (a)(t)<

( fl )(t ) _< 19(/3 )( )< O(a)( ). This, however, contradicts the assumption that a(t) is a
lower solution on [0, T].
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For t>to, let e(t)-a(t)-fl(t). Choose f>t0 such that e(t-)>0 and e(t)<e(t-) in
(0, t-). Then,

-()+(i)

O(a)(t-) + [I1 +[II].

Recall that we wish to choose f so that (fl)(t-)>(a)(t-). Note that [I]>0. This is
because, if (,) (0, e(t-)) X (0, to), then la(t-)- (fl(,) + )l<la(t-) + O(z)- l, and, there-
fore, K(a(t-)-(B(,)+li),f-,)>K(a(t-)+ fl()-li, f-,).

To complete the proof of the lemma it remains to choose i so that [II]>0. We
rewrite [II] as

where

a,(t-)- +

A2( f ) ( (1, )" to <_<_f -a( ,) <_t<_ fl( ,) + e( f ) )

Let

,l(f)-- inf K(a(t-)-, t--- ),
(t, ) /t(/-)

sup t--).
(f, ),(/)

Then [II]_>kl(t-)bt(Al(t-))-,2(t)/x(A2(t-)) where/ is Lebesgue measure on .
We now show that lim$ol(t)-oo and limt,o(t)=O. The first limit follows

because both a(t) and fl(t) are uniformly Lipschitz continuous. That is, there exists a
constant L such that if t>to and e(t)>O, then la(t)-l<_L(t-) for all (,’) Al(t).
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Therefore, if (, -) A(t), then

e-’-) ((a(t)--j)
2 )2l/2(t_,r)l/2exp 4(t--z)

2r/2(t_z)/2
exp --(t--)

--> )/2exp -- ( t-- to )
2r/2( t-- to

Hence ,(t)-inf(, )A,(t)K(a(t)-I,t-r) as $ o.
On the other hand, 2(t)0 as St0 for the following reason. If (,-)A2(r),

then <0. Hence, a(t)-l>a(t). Therefore, for (,) A2(t),

e-tt-r) (ct(t)2 )2l/2(t_,r)l/2exp 4(/--’)

From this it follows that X2(t)--sup(t,,)A2(t)K(ot(t)--,t--’)O as t $ o.
Now choose t>t0 so that e(t)>0, e(t)<e(t) for t(to, t), and X(t)>4X2(t )

for t(to, t). Let h(t)-fl(t)+(t/t)e(t). We consider two cases.
Case 1. Suppo_se there exists (to, tl) such that a(_t)<_h(t) for all t_<t-, and

a()-h(D. L_et_B(t)- ((x,t)" to<-t<-t-; h(t_)_<_x<_fl(t)+e(t)}. Then B(D_CA,([), _and
I(B())-1/2e(t)t. Therefore,/(A(t-))_> 1/2e(t)t. On the other hand, I(A2(t))<_2e(t)t. It
now follows that

[II]>X(t-)t(A(t-)) X(t-)t(A(t-))

e(t-) t-- x z(t-)2 e(t-)t-= 0._> 4)2(t-)-

Case 2. Suppose there exists a sequence (t,} such that tk Sto, a(tk)>h(tk), and
e(t)<e(tk) for t<tk.

Let L be a uniform Lipschitz constant for both a(t) and fl(t). Choose k so that
hl(t,) >(8Ltl/e(t l))X2(t2).

Let

6(t)- -L(t-to)+a(to) for t>to,

32(t)-L(t-to)+t(to) for t>to,

Q- ((x,t)lSz(t)<_x<_8(t)+e(tk), to<-t).

Then A(tk)D Q, and #(Q)--[e(tk)]2/4L. Therefore, tX(Al(tk))>[e(tk)]2/4L. As be-
fore, Ix(A2(tk))<2e(tk)tk. Note that e(tk)>--(tk/t)e(t). This is because a(tk)>h(tk)-
fl(tk)+(tk/t)e(t), and hence, e(tk)--a(tk)-- fl(tk)>(tk/t)e(t).
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Letting -tg it now follows that

[II] >,(tk)tX( Al( tk)) --)a( tk)l( A2( tk))
8Lt

e(tl ) e(tl)-2e(t)X2(t)t

Therefore, [II]0, and the proof of the lemma is complete.

5. Asymptotic behavior of s(t). In this section we show that if (x) is super-
threshold, then limt(s(t)-c*t ) exists for some constant c* wch depends only on
the parameter a. One way to think about c* is that it is the speed of the unique (up to
translation) traveling wave solution of (1.1) satisfying lim_ U(z) and

lim U(z)-0 (see [1]). Recall that a traveling wave solution of (1.1) is a solution of
the form u(x, t)- U(z) where z-x- ct. In ts paper it will be useful to tnk about c*
in a different fashion which we now describe.

Suppose that u(x,t)-U(z), z-x-c’t, is the unique traveling wave solution of
(1.1) satisfying lim U(z) and lim. U(z) 0. Let o(t) be defined implicitly
as u(o(t), t)- a. Since the translate of a traveling wave is also a traveling wave we may
assume that (0)-0. Then o(t) is given explicitly as (t)-c*t. A derivation silar to
that given for (1.5) shows that o(t) must satisfy the integral equation:

a--f
Using the change in variables --t, --c*t in the integral on the right-hand side
of this equation, we find that

(5.1) a_fK(c,t_,t)U()d__tK(f0f, ,_

for each R +. Letting in (2.1) we find that c* must satisfy the equation:

To see that there must exist a unique solution, c*, of (5.2) we let h(c) be the function
defined by

Note that h(0)-1/2, h’(c)<O for c(0, 1/2), and limh(c)-0. Since a(0, 1/2)
there must exist a unique solution of (5.2).

We now show that for x0 sufficiently large, both liminf(s(t)-c*t) and
lim sup,(s(t)- c’t) exist. This is done by constructing continuous functions (t) and
B(t) which satisfy (t)<s(t)<B(t), and both lim,((t)-c*t) and lim,(B(t)-
c’t) exist. The construction of (t) goes as follows.
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Let M= -h’(c*). Then M>0, and, since h(c*)-a, there exists a positive constant
e such that e<c*/2, and if 18l<e, then h(c*-8)>a+SM/2.

For (x, t) R R +, let

(5.4) B(,)- f fm K(x-li,t-r)dlid-e-’

and

x-, t-’r ) ddr.

Note that if (x, ) (1, ) +, then

(5.6) g(x,t)<2e-x.
This is because, if (x, t) (1, m) N +, then

g( x ) fotf e-(t-"

2qrl/Z(t--,r) 1/2
e-(X-)z/4(t-Od d’r

lotf"____ e--(t-r)

o 2r/(t--)1/
e--)/4t-r) dt:dr

2 _xft 1/2 --(t--r)

r/2
e Jo(t ) e d<2e-x.

Before we construct a(t), it is necessa to define a few more constants. Let
r= min{c*- e, }. Choose N so large that (3/M)e-rN<e, and let

6 -rN(5.7) X--c*N+e
Finally, choose 0 so large that if xo>O, then s(t)>X in N +. TNs is possible because of
Lemma 2.6.

Let

a(t)-- 3
c*t + --r e-rt+ e-rN

for t [0,N),
for t_>N.

Note that a(t) is a continuous function and

3 e_rt(5.8) a’( ) c* --for t>N. Hence, a’(t) is increasing for t>N, and limt_.o et’(t)-- c*.
We now show that a(t)<s(t) in R +. Clearly this is true for [0,N]. To prove

that et(t)< s(t) for >N we show that (a)(t)> a for >N. This will imply the desired
result for the following reason. Suppose that a(T)-s(T) for some T>N. We assume
that a(t)<s(t) for < T. Then, from Lemma 2.2, (s)(t)>(a)(T)> a. However,
O(s)(T)--a-4,(s(T), T)<a. Since t(s)(T)--O(s)(T) this is impossible.

So suppose that T>N. We wish to show that t(a)(T)>a. Let l(t) be the line
tangent to a(t) at t-T. That is, l(t)--a’(T)(t-T)+a(T). Since a"(t)>0 for t>N, it
follows that a(t)>l(t) in (0, T). It follows from Lemma 2.2 that tb(a)(T)>tb(l)(T).
We prove that (I)(T)> a.
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Note that/(0)>0. This is because

3 -rr] 3 rr+e_rvc*--e ]T+c*T+ rr[e- ]>0.

This implies that

r).

Now, h(a’(T))-h(c*-(3/M)e-r). Since (3/M)e-rv<e, and T>N, it follows that
h(a’(T))>a+3e-,r. On the other hand, B(T)-e-r<_e-r. To estimate g(a(T),T),
note that, since/(0)>0, it follows that a(T)>a’(T)T. Hence, (5.6) implies that

g( 1(r ), T ) <2e-"’(r)r_< 2e-(e’-Or_<2e-r.
These comments prove that (l)(T)>a and, hence, (a)(T)>a. This completes the
construction of a(t), and the proof that ct(t) has the desired properties.

We now construct/3(t). Let tn=-log(a/2n), n= 1,2,-.., and choose cn so that
h(c,)=a-a/2n. Note that c. $c* as noc. Let l--2SUPo<t<t,s(t). For t[0,tl] let
fl(t) c + ,, and for > let fl(t) to be the continuous, piecewise-linear function
defined by fl’(t,)=c, for t(t,,t,+). Clearly fl(t) is a well defined function which
satisfies fl’(t) -+ c* as --) oo. It remains to prove that s(t)< fl(t) in R +.

Certainly s(t)<fl(t) in [0,ti]. Suppose there exists T>t such that s(T)=fl(T)
and s(t) </3(t) for < T. Assume that T t,, t,+ ]. We show that this must imply that

aO(s)(T)>a-- -n >(I)(s)(T),

which contradicts the fact that s(t) is a solution of (1.5).
First of all, note that k(s(T), T)<e- r. In fact, k(x, ) < e-t for all ( x, ) R / +.

This follows from the maximum principle applied to (2.1) and our assumption that
p(x,0)[0, 1]. Since T[t,tn+l) we have that de(s(T),T)<e-t,--a/2n. It now fol-
lows from the definition of (9 that O(s)(T)>a-a/2n.

It remains to prove that (s)(T)<a--a/2n. Let l(t) be the line defined by

l(t)-c,(t-T)+s(T).

Then s(t)<_fl(t)<_l(t) in (0, T). From Lemma 2.2, it follows that O(s)(T)<_O(I)(T).
However,

Since h(c,)-a-a/2n, we obtain the desired contradiction.
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Before continuing with the proof that limt_oo(s(t)-c*t ) exists we introduce some
notation which will be used throughout the rest of this paper.

Let )-limsupt(s(t)-c*). Choose (tn}, n- 1,2,. -, so that

(5.8a)

(5.8b)
Let

s(t,)>c*t+X-1/n,

s(t)<c*t+,+ 1/n for t>t,.

l(t)-c*(t-t,)+s(t),
J-(t<tn’l(t)<s(t) )
H.--(t<t’s(t)<--ln(t) ),

A- fj’l.(fs(’)K(S(tn)-’tn-’r)dd’r’r)

Note that (5.8) implies that s(t)<l(t)+ 2/n if t>tn.

The next couple of lemmas give us some sort of estimate of how much the curve
s(t) can oscillate for t<t, n--1,2,..-. They demonstrate that for n large, and t<tn,

the curve s(t) must be very dose to the line l,(t) in some sort of weighted L sense.
LEMMA 5.1. A, 0 as n

Proof. Fix m<n. Since s(t)<lm(t)+2/m for t>t,, it follows that

-[I]+[II].
NOW,

tm (tn--r) --tin)[I]_< e- dr<-e-(t"

On the other hand,

[II] _< f_t" fl"(’)+4/mK(s(tn)-,tn-,r)d}d,r
"1.(’)

[4/mfO K(----c*,-)dd,<
M

for some constant M which does not depend on m and n. We have shown that

M __(tn__tmAn<_+e

for all m<_n. Let m-n/2 if n is even and m-(n+ 1)/2 if n is odd. It follows that

A<_2M/n + e-t"/2, and the proof of the lemma is complete. V1
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LEMMA 5.2.
Proof. Note that

((S)(tn)-- ftn f/n(Z’U(s(ln)-,tn--)ddT- f_
+ fcnfln(z)s(r)K( s (tn)- ,tn --")dd"- fotnfs((c)K(S(tn)-,n --T)ddT

=[II- Jill + [III]- [IV] < [I] + [III].

Now, [I]= h( c*)-- a, while, [III]--A,-B,. Since

it follows that

Bn--An-}-(S( tn ), tn )

Since each term on the right-hand side of this equation 0 as n- c, the result follows.
Here we briefly outline how the proof that limt_o(s(t)-c*t ) exists will be com-

pleted. For each n we construct a sequence of positive constants {8"k), k=0, 1,..-,
with the property that if ,--Y=0 i,g, then ,- 0 as n- o. Furthermore, letting h,(t)
be the piecewise continuous function defined by

(5.9) khn(t)-- In(t)-- 2 nj
j=0

for <_

for tn+k<t<-t,+k+ 1,

we show that h n(t) --< s(t) for each n. This implies that l,(t) 8n <s(t) for each n and
> t.. Since we already know that s(t) < l,(t) + 2/n for each n and > t,, this will
complete the proof. In what follows we set t,k----t, + k.

The , are defined inductively. Fix n and suppose we have already chosen

nl,’’’,n,k_l. Furthermore assume that for t<tnk hn(t)<s(t ) where h,(t) is defined
by (5.9). We show how to define 8n" It must be chosen in such a way that h,(t)<s(t)
for (t,k, tn, k+l]" From the definition of 8nk it will be clear that if 6n----Z-0 6n, then

80 asn.
LEMMA 5.3. If is sufficiently large then d(hnk )( ) > a for each ( tnk tn, + ]"
Before proving the lemma we show that it implies that hn(t)<s(t ) in (t.,t,,+l].

If this were not true, then there must exist some T(t,g,t,,k+l] such that hn(T)--s(T),
and hn(t)<s(t ) for all t<T. From Lemma 2.2 this would imply that (s)(T)>
(h,)(T)>a. Since O(s)(t)<a for all this is impossible.

Proof of Lemma 5.3. Assume that (t,k, t,,k+l ]. To simplify the notation we set

h,j(t)-l,(t)-Y/i=oS, for tR. Then (5.9) becomes

s(t) for t--<t,
h,(t)-

h,j(t) fort(t,j,t,,j+].
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Note that

Now, using (5.4) and (5.6), we have

[II <_a( ) + g(hn(t), t) <_e-t+ 2e-c’t <- 3e-re-r,"

Here we set r=min(1,c*). Next consider [II]. Using the fact that hn(-)-hnk(.r ) for
(tn, t), we rewrite [II] as

0 "hk(r) 0 h(r)

=[II,]-[II21.
Note that

>
t-, ’(Z)K(hn(t ) ,t )dldz[Iil]_f_: fh.,_ -hnk(’r

f’f lK(-- c*t--, -,r ) d,r dl >_SnkMl
’o ---2

for some constant M which does not depend on n. On the other hand, hn(z) s(z) for
’<t,, hn,,_(’)<h,(" ) for z(tn,tn, g_), and hn, k_(r)<l,(r ) for <t. Therefore,

Lt"fh"’’-’()K([112]<

f’)(O, tn-- l)" s(r

[II2ll + [II221.



1128 DAVID TERMAN

To estimate [IIz we set Gn-((,r)’rnnf’)(O, tn_l) s(r)<<ln(’r)} and P.(t)--
sup(, .K(h.( ) t, r)/K(s( tn ) I, t. r ). Then

f .f[II2 K(s(t.)-,t.-) K(s(t.)-,t.-)

Note that if (,z)G. and t>t.k, then K(h.(t)-,t-r)<e-. It follows that there
exists a constant M, independent of n, such that if (t.k,t.,k+ ), then P.(t)e-M2
Hence, [II]e-kMB.. Finally consider [II]. Let .-measure H.(t._,t.).
Note that.0 as n . This follows because B. 0 as n . Hence,

e dr
H (’1 (t , tn) "t 62ff

<e-k[1--e-gr%].
Setting ..- 3L., we have that [II2]_<.e-g. Note that ).0 as n .

Combining all of these estimates, we have shown that

O( h. )( ) >a- 3e-rke-rt" +.kMl erk[M2B. +.]
Hence (h.)(t)>a if we set

-rk

8,,k----eM, [3e-rt"+M2Bn+]n]=--Kne-rk"

Note that K.0 as n o. An immediate consequence is that if 8.-Xook=0 8.k, then
8.0 as n.
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STEADY STATES OF A SYSTEM OF PARTIAL DIFFERENTIAL
EQUATIONS MODELING MICROBIAL ECOLOGY*

SZE-BI HSU

Abstract. In this paper we discuss the existence and uniqueness of solutions for the boundary value
problem

u"(x)--F(u(x))v(x),
0_<x_< 1, X,x,O>O,

Xv"(x) -[F(u(x))-Olv(x),
u’(0)--0, u(l)- 1,

v’(0) =0, v’(1)-0,
which arises in microbial ecology. The growth rate F(u) of bacteria satisfies F(0)--0, F’(u) >0. We study this
problem by using Rabinowitz’s global bifurcation theorem and the maximum principle.

1. Introduction. In [1], D. Lauffenburger, R. Aris and K. Keller study the effects
of random motility on growth of bacterial populations. Consider a population of
bacterial cells confined to a finite region, with a diffusible chemical substrate present in
the medium. This substrate is assumed to be the nutrient that is rate limiting for
growth, and it is further assumed that it enters the region at a boundary. For simplicity,
we consider one-dimensional geometry, with uniform conditions in the transverse
dimensions, so that the cells are confined to the region 0_<x_<L. Substrate enters the
region at the boundary x=L, and is present there at a constant concentration de-
termined by ambient conditions. We assume Monod’s model for the growth of bacterial
populations along with exponential nonviability or death. Then the model equations
are

Oh 02b
.ql_ f(s ) ke] b(1.1)

0t --/,
0x a

OS=D 02S
O--i Ox

f(x )b

for 0_< x_< L. The boundary conditions are

(1.2) Ob
ox=O, s--so

0b 0s
0x

=0, 0- 0

at x-L,

at x-O.

Here:
f(s)--ms/(K+s),
b(x, ) bacterial cell density at position x and time (mass of viable cells per

volume of medium),
s(x,t)--substrate concentration at position x and time (mole of substrate per

volume of medium),
/ random motility coefficient of bacterial cells,
D substrate diffusion coefficient,

*Received by the editors July 9, 1982. This research was partially supported by the National Science
Council of the Republic of China.

*Department of Applied Mathematics, Chiao-Tung University, Hsin-Chu, Taiwan.
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ke- death rate of bacteria population,
Y--yield coefficient (mass of viable cells produced per mole of substrate),
s0- constant concentration of substrate present at boundary x--L,
m- maximal growth rate of bacterial cells,
K--the half-saturation constant.

Introducing new dimensionless parameters

s x Dt bmL2 L
U

s O-- - "r
L2

19 O-- k ,
ys(O)D -- D

L
x----m, F(u)-1 u-f(s(O)u)

yields equations

K/s (o) + u

u 2u
(1.3) -=O-----F(u)v,

v v
0--- -+(xF(u)--O)v

with boundary conditions

(1.4) u(1,’)= 1,

0v

In [1] the authors assume F(u)= for u>u and 0 for u<_Uc, where F(uc)=O/x,
and compute the steady states of (1.3), (1.4). That is, they try to solve the nonlinear
problem (1.3), (1.4) by linear techniques. The main purpose of this paper is to show the
existence and uniqueness of steady states of (1.3), (1.4). Our technique is to apply the
global bifurcation theorem of Rabinowitz [5] and the maximum principle [6].

2. Statements of main results. Consider the steady state problems of (1.3), (1.4)

u"(x)=F(u(x))v(x),
v"(x) -(xF(u(x)) -O)v(x),

for 0 _< x <_ with boundary condition

(2.2) u(1)= 1, u’(0)-- 0,

v’(1)--0, v’(0)--0.

We may assume that F(u) satisfies

F(0)=0, F’(u)>0 for u>0.

Our main result is the following theorem.
THEOREM 2.1. (i) If xF(1)--0<0 then the trivial solution (Uo(X), Vo(X)) of (2.1),

(2.2) is the unique nonnegative solution where Uo(X ) =-- 1, Vo(X ) =-- O.
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(ii) If xF(1)--0>0, then there exists a unique solution (u(x), v(x)) of (2.1), (2.2)
with u(x)>0, v(x)>0 for O<_x<_ 1.

3. ProM. Our approach is very similar to that of Cushing [2] and Butler et al. [3].
Before we prove our main theorem, we note the following lemmas.

LEMMA 3.1. Let (u(x), v(x)) be a solution of (2.1) and (2.2) with u(x) > O, v(x) > O,
O<_x<_ 1. Then

(i) O<_u(x)<_ 1.
(ii) If (u,v)(Uo,V0) and xF(1)--0>0, then u(x) is a strictly convex and strictly

increasing function on 0 <_x <_ while v(x) is a strictly increasing function on 0 <_x <_ 1,
and there exists 0<xo< such that v(x) is strictly convex on (0,Xo) and strictly concave
on (Xo, 1).

Proof. From u’(0)=0, u(1)= and u"_>0 (i) follows easily. If (u,v)(Uo,Vo), then
obviously u(0)=/= 1; otherwise u------1 and v----0. From the uniqueness of solutions of
ODE’s and the first equation of (2.1), u(0)4=0. Hence u(x)>0 for 0_<x_< 1. We claim
v(x)>0 for 0_<x_<l. From the uniqueness of solutions of ODE’s and the second
equation of (2.1), v(0)> 0. Suppose the claim is not true. Then there exists 0< < such
that v() 0 and v’(/2) 0. Then v(x) 0, and this is the desired contradiction. Hence
u">0 on (0, 1) and u(x) is a strictly convex and strictly increasing function on
0_<x_< 1. Obviously it is impossible to have rF(u(x))-O>O for all 0_<x_< 1, since then
v"(x)<0 for 0 _<x _< 1, which contradicts to the boundary conditions v’(0) 0 v’(1).
Hence there exists a unique x0,0<Xo< 1, such that F(u(xo))-O=O and v"(x)>0 for
0<x<x0, v"(x)<0 for x0<x _< 1. Obviously v(x ) is strictly increasing on [0, ].

Proof of Theorem 2.1(i). Suppose (u(x), v(x)) is a nonnegative steady state,
(u,v)(Uo,V0). Then u(x)l and v(x)0. From the second equation of (2.1),
boundary conditions v’(0)= v’(1)= 0 and Lemma 3.1 (i), it follows that

f01 foO-- v(x)[tF(u(x))--O] dx> v(x)[xF(1)-O] dx>O.

This is a contradiction. Hence we complete the proof.
Before we prove the second part of Theorem 2.1, we need to state the local and

global bifurcation theorems, respectively, due to Krasnoselskii [4] and Rabinowitz [5].
LEMMA 3.2 [4]. Let Tx--A +D be a continuous one-parameter family of operators

from a Banach space X to itself, such that A is compact and linear and satisfies IIDx-Dyll
=o(llx-Yll). Then a bifurcation of the equation Txx-x (xX) can only occur at char-
acteristic value * (reciprocal of a nonzero eigenvalue) ofA, and will occur if* has odd
multiplicity. In this case, the bifurcation point corresponds to a continuous branch of
eigenvectors of Tx in a neighborhood of the zero of X.

LEMM 3.3 [5]. Let Tx, A, D, X be as above, and let S be the closure of the set of all
nontrivial solutions of Txx-x as , ranges over R. If ,* is a simple characteristic value of
A, then S contains two subcontinua C+, C whose only point in common for near * is

(*, 0), and each of which either
(a) is unbounded, or
(b) contains (, O) where 4 * is a characteristic value ofA.
LEMMA 3.4. For any positive solution ( u, v) of (2.1) we have

v(O)>X_[ 2((/x)v(1)+ l) ] 0
X e+e-

u(O) where a-
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Proof. From (2.1) we have the following inequality:

(3.1) u,,+X_v,, o (x) where

(u+-X v)’(0)-+’ )-v (1)-l+-v(1).

Comparing (3.1) with the equations

U" aU,

u’(o) =o, U(I) +X--v(1)
yields

U(x)-( (’/x)v(1)+l )(eX+e-X)<-u(x)+v(x)efd+ e-V
O_<x<O;

in particular,

>x__[ 2((x/,)v(1)+ l)- u(0)] >__xv(O)--h eC-d+ e-fd
2((h/r)v(1) + 1)_ 1]e4ff+ e-4ff

Proof of Theorem 2.1 (ii) (existence). Setting U- u u0, V=v v0 in (2.1), we have
for 0<_x<_ 1,

(3.2) U"=F(1)V+g,(U, V),
hV"=OV-F(1)V+g2(U, V),
U(1)-O, V’(O)=O, V’(O)--O, V’(1)--O

where gl(U, V)-- o(]l(U, V)ll), g(U, v)--o(ll(f, V)ll) as (U, V)--, (0,0). Consider the lin-
ear system

(3.3) U"=F(1)V,
,V" OV, O_<x_<l,
U(1)=O, U’(O)--O, V’(O)--O, V’(1)---O.

It is easy to show that (3.3) has only the trivial solution U----0, V----0. Let B be the
Banach space of continuous function on 0_<x_< with the supremum norm. If h l,

h 2 B, let Ll(hl), L2(h2) respectively, be the unique solutions of

(3.4) U"=h,, U’(O) O, U(1) =0,
(3.5) XV"=OV+h2, V’(O)=O, V’(1)=O.

Obviously L, L2 B --, B are linear and compact operators.
Write (3.2) formally as the following operator equation:

(3.6) V V V



1134 SZE-BI HSU

where

V L2(-F(1)V )

G( U)- ( F(1)LI L2(g2(U’ V))+LI(gl(U’ V))
L2(g2(U,V))

and L* B B B B is compact and linear while G B B B B is compact and
G(U, g)-o(ll(g, V)II) as II(g, V)II-0. We now formally treat x in (3.5) as a real
parameter. Consider the eigenvalue problem

CLAIM. The characteristic values of L* are x* O/F(1) and

0+)t(nr)2

Kn-- F(1)
n=l,2,...

Let be a characteristic value of L*. Then there exists (v):/: (0) such that

-F(1)L, Lz(F(1)V ) )( (
or the system

U"=F(1)V,
XV"=OV-F(1)V,
U(1)-O, U’(O) O, V’(0) 0, V’(1) =0

has nontrivial solutions.
If F(1)-0<0 then U=0, V=0.
If F(1)--0=0 then the eigenspace belonging to (,)-i =(O/F(1))-i is generated

by (Ul, Vl), where U(x)=(F(1)/Z)(x2- 1) and Vl(X)= 1. If F(1)-0>0 then V"+
aV--0, a--(xr(1)--0)/)t>0, V’(0)=0-- V’(1).

In order to have V0, a must satisfy nr and V(x) Ccos n rx, U(x)
(--F(1)C/(n)Z)cosnrx where C is an arbitrary constant. Hence the eigenspace be-
longing to (,)-i =((O+X(nr)Z)/F(1))-i is generated by (U,,,V,,), U,,(x)=
--F(1)/(nr)2.cosnrx, V(x)=cosnrx.

By Lemma 3.2, bifurcation does indeed occur for --*, and we obtain a continu-
ous branch of solutions of (3.6) all of which are nontrivial except for the solution
(*,0,0). A Lyapunov-Schmidt series expansion of these solution (, U, V) near
(*, 0, 0) reveals that we have solutions of (3.6) that correspond to the positive solutions
of (2.1). In fact, let

(3.9) V(x ) ,O, ( x ) + O(x ) + O(x ) +
V(x ) #,(x ) +,(x ) +,(x ) +



PARTIAL DIFFERENTIAL EQUATIONS MODELING MICROBIAL ECOLOGY 1135

and we find that

UI (x)--F(1)#l(X),
#[’(x)-- l(X)--*F(1)#l(X),
0(1)--0, 0(0)--0, I{(0)--0, l’(1)--0.

Choose 0(x)- U(x), 17"l(X)- V(x) and obviously gl >0 by Theorem 2.1(i).
To complete the proof for the estence part, we need to show that such a solution

exists for all >*. Since * is a simple characteristic value of L*, it follows from
Lemma 3.3 that there is a continuum C of solutions of (3.6) all of wch are nontrivial
except for the solution (*, 0, 0) such that C either is unbounded or contains (, 0, 0)
for some n.

Our approach is first to elinate the latter possibility. Let D be the nontrivial+
solutions of (2.1) corresponding to C. We claim

(3.10) (,u,v)D u>0, v>0 and *.

Since u>0, v>0 near the bifurcation point (*, 1,0) and C is a continuum. If
(3.10) does not hold then by Lemma 3.1 there exists (0, u, v) D such that u(0) 0
or v(0)-0. If u(0)-0 then from u"-F(u), u’(0)-0 it follows that u--0, wch
contradicts u(1)-1. On the other hand, if (0)-0 then from v"---V(oF(u)--O),
v’(0)--0 it follows that v=0 and hence u--1 wch contradicts the fact D does not+
contain a trivial solution. It is obvious from Lemma 3.1 that *.

Now we suppose C contains (, 0, 0) for some n. A Lyapunov-Schmidt expan-
sion about (, 0, 0) as in (3.9) reveals

U(x ) Vn(x ) + E2 0n,2(X ) +’’’,
v(x ) ) + ( z ) +...,
r--Kn+n_le+ ’’’,

where U(x)-(-F(1)/(n)2)cosnx, (x)-cosnx, r-(O+X(n)2)/F(1). It ob-
viously contradicts (3.10) in a neighborhood of (r,0,0). Hence C must be un-
bounded.

Now let A, Y be the projections of D onto the real as and B B respectively.
To complete the proof of the efistence part we show that

(3.11) A- [*, ).

Suppose (3.11) does not hold. Then we may assume A-[r*,] and Y is un-
bounded. Then there exists a sequence of points ((, u, %))=1 in D+ such that
0Aand ]](u,%)]] as n. Since ]u(x)] for all 0x 1, by Lemma 3.1
and 3.4 it follows that o(1) + and %(0) + as n . From Lemma 3.4, there
exist N00, C>0 (C is independent of n) such that %(0)>Cry(I) for all nNo. Now
we choose e>0 sufficiently small that F(e) <0 and let

C(F(1)-O)x= C(ffF(1)-O)-(F(e)-O)
then 0<xo< 1. We claim:

(3.12) There exists n>No such that Un(XO)<E.
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If (3.12) does not hold, then u,(xo)>e for all n>No and hence u,(x)>_e for all
Xo <_X<--1, n>_No. Then u,(x)>_F(u,(x))v,(x)>_F(e)vn(x)>_F(e)v,(O) for all Xo <_X<_
and minx0_<<_< u’,’(x)--+ + o0 as n-+ oo. But

U,(1)--Un(XO)--U’n(XO)’(1--Xo)+ uZ( )
2 (1 -x)2

>( min u,’(x)}.(1-Xo2)-+
Xo<_x<_

as n--+ oo,

and this contradicts the fact that O<u(1)-u(xo)< 1. Hence we establish (3.12).
Consider n as in (3.12). By the second equation in (2.1) we have

(3.13) foiV,(X)[ic,F( u(x)) -O] dx-O.
Let

x
L.H.S. of (3.13)- v,,(x)[x,,F(u,(x))-O]dx+ )[,,F(u,,(x))-O]dx.

Then

X0

< v,,(0) (ffF(e)--/7 )xo+ (1 xo ) v,,,(1) (ffF(1) -/7)
< v,,(0)(F(e) --/7)xo + C(I xo)(F(1) -/7) v,,(0)

v,, (0)[C(S(1) -/7) -Xo(C(F(1)-) -(iF(e)--0 ))]

Hence we obtain the desired contradiction and (3.11) holds. Q.E.D.
Our next step is to show the uniqueness of the nonnegative solution of (2.1), (2.2).

Before we prove it, we present the following lemmas.
LEMMA 3.5. Let (Ul,Vl) (U2,V2) be nonnegative solutions of (2.1) and (2.2) with

U U2. Then u =--u2, v I)2.

Proof. Suppose ui->u2 and uu2. Let O=VE/V. Then from (2.1), (2.2) we have

(3.14) 0" + 2( viV’l)’+t[x(F(u2)-F(ui))]-0’
o’(0)- O, w’(1)-0.

Since F(u2)--F(Ul)O from the maximum principle [6] it follows that 0---- constant>0.
But from (3.14) and u u2, we have a contradiction. Hence u ------u 2 and v --=v2.

LiMMA 3.6. Let (Ul,Vl), (U2,V) be nonnegative solutions of (2.1), (2.2) with u u2.
Then the curve y-- ul(x ) crosses the curve y-- u2(x ) a finite number of times on O<_x<_ 1.

Proof. From Lemma 3.5, the curve Y=Ul(X) must cross the curve y--u2(x) on
0_<x_< 1. Suppose y-ul(x) crosses the curve y=u2(x) an infinite number of times on
0_<x_< 1. Then there exists {x,)= such that ul(x,)-u2(x,) and there exists aU[0, 1]
such that x,--+a as n--+ . Obviously ul(a)=u2(a ). Let U(x)=ul(x)-u(x), O<_x<_ 1.
Since for any neighborhood of a, the curve y=Ul(X) crosses y=u_(x) an infinite
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number of times, the Taylor expansion of U(x) at a yields U’(a)-0, U"(a)-0,
’"(a ’"(a a). From (2.1) we haveU’"(a)-O. Hence u )-u’2(a ), u (a) u2(a), u )-u2

v (a ) v2(a ), v’(a) v(a), v’’(a ) v’(a). However the uniqueness of the solution of
the ordinary differential equations (2.1) yields u u2, v----v2. Hence we complete the
proof of the lemma.

Proof of Theorem 2. l(ii) (uniqueness). Suppose we have two nonnegative solutions
of (2.1), (2.1), say (u,v), (U2,V2) with UIF-.U2 under the assumption xF(1)--0>0. By
Lemma 3.1(ii) u, u2, v, v2 are positive on 0_<x_< 1. From Lemmas 3.5, 3.6, the curve
y=u(x) crosses the curve y=u2(x) a finite number of times. Let x0=0, Xn+l and
Xl,...,x be the points where two curves cross each other. Without loss of generality,
we may assume u->u2 on [Xk,Xk+ 1], where O<_k<_n, k even, and u2>_u on [Xk,Xk+ 1]
where O<_k<_n, k odd. In order to obtain a contradiction, we discuss two cases.

Case 1. v (0) _< v2(0). Let ta v2/v on 0 _<x _<x 1. Then we have

(3.15) ta"+2(v’--)ta’+ta[r(F(u2)-F(ul))]-O,Vl
ta’(0) 0.

Then the maximum principle yields v2(x)>vl(x) for all O<x<_x. We claim y-v2(x)
must cross y-vl(x) at some point c (xl,x2). If not, then v2>_v , u2>_u on [Xl,X2].
Since u2(x2)-u(x2) and u’2(x)>-u(xl), u2(x)-u(x), it follows that

F(u (n))v (n)ana 
Xl

This is a contradiction. Similarly, let -v/v2 on c <_x<_x
2. Then

(3.16) " + 2( v’--2)’+[x(F(u)-F(u:))]-0,1)2 (Cl)- 1.

The maximum principle yields v>192 on (Cl, x2 ].
Repeating the arguments shows that there exist C2,’’’,Cn, Xi<Ci<Xi+ 1’ i= 1,’’’,n

such that Vl(Ci)=v2(ci), i= 1,...,n, Vl>_V2 on [ci,ci+l] where is odd, and v2>_v on
[ci, ci+l] where is even. If u>_u2 on [x=, 1] then v2>_v on [c, 1]. Consider (3.15) on
[c,, 1]; then the maximum of ta=v2/v occurs at x--1 but to’(1)=0 and we obtain a
contradiction. If u2>_u on [x, 1] then Vl>_V2 on [c,, 1]. Similarly, consider (3.16) on
[c,,1]; the maximum of =v/v2 occurs at x=l, but ’(1)=0 and we obtain a
contradiction.

Case 2. v2(0)<v 1(0). We claim that the curve y-- v l(x) must cross y v2(x) at
some point ?0 (0,x). If not, then u _>u2, v _>v

2 on [0,x]. Since Ul(0)_>u2(0), u(0)-
u(0)- 0, we have
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By the arguments in Case 1, there exist ,-..,, such that xi<Oi<xi+, i-1,..-,n
such that v(;)-v2() and v l, v2 cross each other at g. Applying the same arguments
as in Case we obtain a contradiction.

Hence we establish the uniqueness of solutions for (2.1), (2.2).

Discussion. We have established the existence and uniqueness of steady states for
the equations (1.3), (1.4). As for the questions about the global behavior of solutions for
this dynamical system, it is currently under investigation. From our numerical studies,
the steady state should be globally asymptotically stable. This paper is the first step in
discussing the effects of motility in the model studied in [1] which will provide a
reasonable explanation for the phenomena in microbial ecology.
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THE QUENCHING OF SOLUTIONS OF LINEAR
PARABOLIC AND HYPERBOLIC EQUATIONS WITH

NONLINEAR BOUNDARY CONDITIONS*

HOWARD A. LEVINE"
Abstract. In this paper we examine the initial-boundary value problems (a): ut=Uxx, 0<x<L, t>0,

u(O,t)=u(x,O)=O, ux(L,t)=q(u(L,t)) and (fl): utt-Uxx, O(x(L, t>O, u(O,t)---U(x,O)’--Ut(x,O),
u(L,t)=q(u(L,t)) where q(-o,l)(0,) is continuously differentiable, monotone increasing and
limu__.-q,(u)= +o. For problem (a) we show that there is a positive number Lo such that if L<--Lo,
u(x,t)<_l-8 for some 8>0 for all t>0, while if L>Lo, u(L,t) reaches one in finite time while ut(L,t
becomes unbounded in that time. For problem (fl) it is shown that if L is sufficiently small, then u(L, t)_< --8
for all t>0 while if L is sufficiently large and folq(r/) dr/<, u(L,t) reaches one in finite time whereas if
fq(r/) dr/= o, u(L, t) reaches one in finite or infinite time.

In either of the last two situations ut(L, t) becomes unbounded if the time interval is finite. If u reaches
one in infinite time, then fd u(x, t) dx and u(x, t) are unbounded on the half line and half strip respectively.

1. Introduction. In his paper [5], Kawarada studied the behavior of solutions of

(A) Ut:Uxx’qI- 1/(1--u(x,t)), t>0, 0<x<L,

u(O,t)=u(L,t)--O, t>0,

u(x,0)--0, O<_x<_L.

He showed that if u(L/2,t) reached one in finite time, T, then ut(L/2,t ) was un-
bounded on (0, T), in fact limt_r-ut(L/2,t)--+ . He called this type of regularity
loss quenching. In the same paper, he showed that if L>2v-, then quenching must
occur as u(L/2, t) does then reach one in finite time. In [1,2] and independently in [6]
it was shown that there is a number L0<2(L0 1.5307) such that if L<Lo then u
cannot quench, even in infinite time whereas if L>L0 u must quench in finite time. In
[6] it was also shown that if L---L0 the former situation holds. In [1], [2], [6] more
general nonlinearities were also studied.

Let us make the following operational definition, which is weaker than Kawarada’s.
We will say that a solution of an evolutionary equation quenches in some seminorm (in
x) depending on if (i) the solution remains bounded in this norm while (ii) some
derivative in some seminorm of the solution becomes unbounded in finite time. We
shall sometimes say that a solution quenches in infinite time if (i) and (ii) occur but the
solution exists on [0, Ll [0, o).

In [3] the following nonlinear initial boundary value problem for the wave equa-
tion was studied.

(B) utt--Uxxqt- 1/(l--u), t>0, O<x<Z,
u(O,t)--u(L,t)--O, t>0,

The interest in (B) was theoretical. Whereas for (A) heavy use of the maximum
principle was made, for (B) it was necessary to employ other arguments, specifically

*Received by the editors October 12, 1981, and in revised form July 12, 1982. This research was
supported in part by the Science and Humanities Research Institute of the Iowa State University of Science
and Technology.

*Department of Mathematics, Iowa State University, Ames, Iowa 50011.
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energy arguments, to establish global existence and no quenching, even in infinite time,
for small L and a differential inequality argument to establish quenching for large L.

Although our interest in (A) and (B) was theoretical, both problems have their
origin in physics. Problem (A) arises in the study of electric current transients in
polarized ionic conductors [5]. Problem (B) can be viewed as the initial-boundary value
problem describing the motion of a wire composed of a magnetic material carrying an
electric current in the presence of a second wire also carrying a current. Stoker and
Minorsky [9], [10] give a phase plane analysis of the analogous ordinary differential
equation which describes the motion of a current carrying conductor restrained by
springs and subject to the force due to a magnetic field of an infinitely long parallel
wire conducting a current I. The equation has the form

2(t)= kx( ) + k?/(a- x( ))
where x(0), (0) are prescribed.

We were aware of the physical motivation for (A) before we wrote [6]. However
Arje Nachman kindly brought to our attention the references [9], [10] (unfortunately
after [3] had appeared). In the same spirit and in the hope that the knowledgeable
reader will have a ready application for them, we present our results for problems (a),
() below.

It is the purpose of this paper to examine the corresponding problems when the
solution is driven by the boundary conditions rather than by the forcing term. Specifi-
cally, we study

and

Ut--Uxx t>0, 0<x<L,

u(0, t)-0, t_>O,
t>0,

u(x,O) =0, O<x<_L

Utt’--Uxx t>0, 0<x<L,
u(O,t) :0, t_>0,

Ux(L,t):ck(u(L,t)), t>0,

U(x,O)-’-Ut(x,O)--’O OxZ.

(By simultaneous scaling in x, we can take L-- 1 in Problems (a), (/3) provided
the boundary condition at the right endpoint takes the form

Ux(1,t)-Lck( u(1,t)), t>0.

We shall therefore take L--1 and use the boundary condition above without further
mention of this reduction.) Here q: (- o,1) (0, z) is continuously differentiable,
monotone increasing and limu_ l-qffu)- + o. The boundary and initial data are taken
to be zero, not only for convenience, but also so that one can isolate the effects of the
nonlinearity on the solution. While the results for (a), (fl) are similar to those obtained
for (A), (B), there are several differences worthy of mention. In the first place we show
here that not only does, for large L, u(1, t) (problem (a)) become one in finite time but
also ut(1,t ) becomes infinite in finite time. The same is true for problem (/3) if
f01qffr/)dr/< o0. If, for (fl), f01q(/)dr/= + o, then u must quench in finite or infinite
time. If this time is finite, ut(1,t ) becomes unbounded in finite time also. If this time is
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infinite then u is unbounded on [0, 1][0, 0) and fu2(x, t)dx is also unbounded on
[0, 0). This is a somewhat weaker result when q(u)= 1/(l-u) than for (B). On the
other hand, it is shown for both Problems (a), (fl) that if L is small then quenching
cannot occur for either problem, even in infinite time. The results for problem (a) are
sharp while there is a gap for problem (fl). That is, for problem (a), there is L0>0 such
that if L<_L0 no quenching at all is possible while if L>L0 u quenches. For problem
(fl) there are L, L2 with 0<L <L_ such that if L<L no quenching at all can occur
whereas if L>L2 some kind of quenching must occur. These results are in accord with
the general principle that small domains are more stable than large domains.

It is perhaps worth mentioning that, via the change of variable

v(x,t)-
.1

we may reduce (a) to

(0l’)

vx(1,t):L,

0<x<l,

0_<x_<l,

t_>0,
t>0.

t>0,

(In ], [2], [6] the condition at x was u(1, t) 0.) The same substitution reduces this
problem to

(ol’") l) Vxx - (Jt ( /Ar ( "l) ) ) l) "]- t2 0<X< 1, t>0,
v (x, 0) xI’(0), 0<x<l,

Certainly (a’) and (a’") are similar looking problems and we might therefore expect
(indeed it is our goal to show) that the results obtained for (a) are similar to those
obtained for (a"). However, there is no obvious correspondence between the solutions
of (a) and (a") or between (a’) and (a’"). For example, the stationary solutions of (a)
(when they exist) are linear in x so that (for q(u)-- 1/(1- u)) the stationary solutions
of (a’) are quadratic polynomials in x since

On th other hand, (again for 0(u)-- 1/(1-u)) th stationary solutions of (") (when
they xist) ar transcendental functions of x (s [1],[2],[6]). Thrfor a sparat
treatment is needed for (). Similar rmarks apply to probbm (/3).

The plan of th paper is as follows. In 2, we treat problem () first establishing
global existence for small L and then quenching or large L. In 3, problem (/3) is
analyzed in th sam manner. In 4 w discuss loal xistn. Th loal xistn

(a") ut=uxx+L2O(u), 0<x< 1, t>0,

u(x,0) =0, 0<x<l,

u(0,t)=0, t_>0,

ux(1, t) =0, t_>0.

Using the techniques of [1], [2], [6], it is possible to study the problem
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result for (/3) is of special interest. This ordering of topics introduces a slight nonlinear-
ity in the development of our results. We apologize to the reader for this. However, the
more interesting results, namely Theorem 2.5, Corollary 2.7, Theorem 3.1 and Corollary
3.4, come first and provide the main thrust of the paper.

A word about notation. We let Dr= (0, 1) (0, T) if T< o and D (0, 1) (0, o).
Likewise, if T<o, Fr=(0,1)(0}U(0,1}[0, T) and F=(0,1)(0}U{0,1}
0, o) denote the parabolic boundary of DT and D respectively.

The results of this paper, as well as those of [1]-[6], have some higher dimensional
analogues. For example, in [1] and [2], problem (A) was studied in several dimensions.
However, the blowup of u has yet to be shown for such problems. Likewise, Lieberman
and the author have obtained some extensions of the results for problem (a) in several
variables, but again with less sharp results than in one dimension. (However, we have
an example of infinite time quenching in two dimensions, which cannot occur in one
dimension.)

The hyperbolic problems (B), (fl) present a more difficult challenge in several
space dimensions. For both problems, it is fairly easy to obtain quenching if the space
domain is large enough. However, the question of global existence for small domains is
open when d2/dx 2 is replaced by a second order elliptic operator. Smiley and the
author have extended the global existence result when d2/dx 2 is replaced by an elliptic
operator of sufficiently high order. The essential ingredient in the global existence
argument is the existence of a continuous imbedding of W01’v() into L(f) for
sufficiently large p, i.e., an inequality of the form

_<const. lu(y,t)lVdy

for f CRn, f bounded, 8f smooth and u=0 on a portion of 8 of dimension n-1.
Finally, nothing has been established about the behavior of utt, even in one dimension.

The above paragraph corrects one of the concluding remarks of [3]. We note one
other correction (typographical) for [3]. On p. 395, we should have

F(x,t,u)-- -q(-u) ifx[2n--l,2n).

2. The parabolic problem (a). By a solution of (a) in Dr we mean a function
u(x,t) continuous in DrD Fr, u< 1 on Drt3 Fr, and twice continuously differentiable
in x and once in in Dr. Known regularity results permit differentiation of the
equation in Dr. The following lemmas are easy consequences of the maximum principle
and the boundary point lemma for parabolic equations (These are sometimes referred
to as the first and second maximum principles for parabolic inequalities. See [7, pp.
164, ff.]).

LEMMA 2.1. If u solves (a) in Dr, then u>0 there.

Proof. For any e>0, if u had a nonpositive minimum in D._e, by the maximum
principle it would have to occur on Fr_e. Since u,(1,t)_>0 if O<t<_T-e it cannot
occur on line x- 1. Since u is not identically zero, u>0 in Dr_ for all e> 0.

LEMMA 2.2. If u solves (a) in Dr, then u,(x,t)>O in

Proof. Put r u,(x, t).Then rx r in Dr, r(0, t) >-- 0 by Lemma 2.1, r(x, 0) 0
and r(1, t)>0 so r>0 in Dr again by the maximum principle and the boundary point
lemma.

LEMMA 2.3. If u solves (a) in Dr, then ut(x,t)>O in Drt5 (1) (0, T).



QUENCHING WITH NONLINEAR BOUNDARY CONDITIONS 1143

Proof. We work in DT_ with 0<h-< e/2 and 0_< t-< T- e. Define v(x, t)-
u(x, + h ) u(x, ). Then v solves

l)t--l)xx 0<x<l, O<_t<T-e,

v(x,0)>0, 0<x<l,

v(O,t)--O, O<_t<_T-e,

Vx(1,t )- L[q( u(1,t + h )) -q( u(1,t))] O<t<_T-e

where is between u(1,t) and u(1,t+h). Since t+h<_T-e/2, u(1,t) and u(1,t+h) are
bounded above by 1- 8’ for some 8’ >0. Therefore there is a number k< 0 such that
k + Lq’(j)<0 if t<_T-e and h<_e/2. Now set w-vexp(kx-k2t). Then

w w + 2Xw O

w(0,t)=0,
w(x, 0) >0 (by Lemma 2.1),
wx(1,t)--(+Lq())w,

in DT_e,
O<_t<_T-e,
O<x<_L

O<t<_T-e.

By the maximum principle, w cannot have a nonpositive minimum in Dr_ f)(0, 1) (T
--e}. Moreover w cannot have a negative minimum at a point (1,t0) (0<t0< T-e),
otherwise (because of the choice of )) wx(1, to)>0 at such a point whereas it must be
nonpositive at a negative minimum. Therefore w>_0 in Dr_ and hence v_>0 in D.

It follows that, wherever it exists, Ut(X,t)O. Now v--U satisfies

vt-Vxx, 0<x<l, O<t<T-e,

v(x,O)>_O, O<_t<_T--e,

v(1,t)-Lck’(u(1,t))v, O<T<_T-e.

Since v >_ 0, v cannot vanish at any point in the set ((x, t)10 -<x< 1,0 < t_< T- e} unless
v=--0 by the strong maximum principle. However if v----0, then u(x,t)--f(x) for some f
and consequently f(x) 0 since u(x, 0) 0. But then, for 0 < < T- e, ux(1, t) 0
Ldp(u(1,t))>O, a contradiction. If v(1,t0)-0 for some o, O<to<_T-e, v(1,t0)-0
also. Therefore, by the second form of the strong maximum principle, [7, p. 190], v--0
in ((x,t)lO<_x< 1, O<_t<_to or x- and 0<tt0}. Thus, as before, u(x,t)--f(x)--O in
this latter point set and hence u(1,to)-O-Lq(u(1,to))>O. Therefore v-ut>O
whenever it is defined except along x-0.

Remark 2.1. The content of Lemmas 2.2 and 2.3 is that the maximum of u in any
closed domain Dr must occur at the point (1, T).

COROLLARY 2.4. The solution ofproblem (a) is unique.

Proof. One lets u, u2 be two solutions. If w-eXX-X2t(u-u2), then w satisfies the
same initial boundary value problem as the w of the preceding lemma except that
wx-()+Lqd())w where is between Ul(1,t ) and u2(1,t). Since w--_0 and -w_>0 by
the first part of the proof, we have w----0.

LEMMA 2.5. Let f(x)--ax where a< is a root of a-Lq(a) and let u solve problem
(a). Then u(x,t)<f(x) for all (x,t)Dr.

Proof. Put v(x,t)--f(x)-u(x,t). Then v(O,t)-O,v(x,O)--f(x)>O, vt-v and
Vx(1,t)=a-L(u(1,t))-L((a)-qffu(1,t)))-Lqd()v where is between a and
u(1, t). By the same argument with w-eXX-X2tv as in Lemma 2.3 we conclude that v>0
in Dr
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Remark 2.2. The equation a-Lq(a) need not have any solutions in (0, 1).
We shall assume for the purpose_s of this section that if u_< -i on Dr, then u may

be extended to be a larger domain Dr+ on which u_< -i’ (i’<) for some o>0 and
sufficiently small. This will be established later.

THEOREM 2.5. Either (a) u exists on D and limt_ +u(x,t)-ax where a-Lqffa)
and a< or (b) for some T<, limt_ r-u(1,t)- (u quenches in finite time).

Proof. Suppose (b) fails. Then since u(1, T)_> u(x, t) on Dr for all T, by the
comment on continuation, we may assume u exists (and is less than one) for all t_>0.

Let

G(x,y)_(x, O<_x<_y<_l,
y, O<_y<_x<_l

denote the Green’s function for d2/dxZ with boundary conditions G(O,y)- Gx(1,y)- O.
By Lemma 2.3,

lim u(x,t)-h(x) (_<1)

exists. Put

Then

F(x,t)=fo’G(x,y)u(y,t ) dy.

Ft(x,t ) folG(x,y)ut(Y,t) dy>O
by Lemma 2.3. Using the differential equation and integrating by parts we find

Ft(x,t)-(yUy-U)lo+XUyl -u(x t)+xLq(u(1 t))
Clearly,

(2.1) lim Ft(x,t )- -h(x)+xLq(h(1))=--M(x) if h(1)< 1,
t--’ + o [ -’" O if h(1)- 1.

where M(x)>_O. Now for any x,t we have

a(x,y)ey_<7.
It is easy to see that if f(t) is a bounded function such that f’(t)>_O and

lim_f’(t)=_>0, then =0. Therefore h(1)<l and M(x)=O so that h(x)=
xL(h(1)) so that with a=h(1) we have the theorem.

COROLLARY" 2.6. If a=L(a) has no solutions in (0, 1) then u(1, t) reaches one in

finite time.
Example 2.1. (u)=(1-u)-, fl>0. Then it is easily checked that a=L(a) has

no solutions if L>L0=/(1 +fl)-(l+l, one solution smaller than one if L=Lo and
two solutions smaller than one if L<L0. In particular, if fl-- 1 and 0<L_< 1/4

lim u(x,t)=a_x,

where a 1/2 (1 /1 4L ).
COROLLARY 2.7. Suppose L is so large that u(1,t) reaches one in finite time. Then

ut(1, t) becomes infinite in finite time.
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Proof. We invoke (4.3) of this paper which is used to establish local existence. With
f(x) 0 there we find that

u,(x,t)=LG(x, 1; t)q(u(1,t))

+LforG ( x 1; ,1) qd( u(1, ,1)) un(1, n )) dl

Since ’>0 and un_>0 it follows that

ut(1,t)>_LG(1, 1; t)q(u(1,t)),

where G is the Green’s function following (4.1). Since G(1, 1,t)>0 on [0, o) and
(u(1, t)) + o in finite time, the result follows.

3. The hyperbolic problem (/3). Here we consider weak solutions of (/3).
DEFINITION 3.1. A continuous function u on DrU Fr is a weak solution of problem

(fl)if
(i) u(1,t)< 1 for 0_<t<T;
(ii) u(O,t)--u(x,O)--ut(x,O)=O 0_<x< 1, 0_<t<T;

(iii) u has weak derivatives Ux, ut, which, as functions of x are in L2(0, 1) for each
t(0, T);

(iv) for every qCp(r) with k(0,t)-0

+ [n(y,n)un(y,n)-,y(y,n)Uy(y,n)] dydn

(C denotes piecewise C functions);
(v) The following conseation law holds:

(3.2) E(t)=--’ u2t(x,t)dx+- u ’t)(rl)drI-E(O)(-O).
Remark 3.1. Notice that the boundary condition at x-1 has been incorporated

into (3.1) and (3.2) because Ux(1,t ) need not be defined for specific points. Notice also
that (3.2) implies 0_<u(1,t). Equation (3.2) can be obtained formally from (fl) in the
usual manner. See also Theorem 4.2.

We shall assume for the purposes of this section that if u is a weak solution on

DrtA Fr and u_< 1-$ on (1} [0, T] then u may be continued as a weak solution on

D(r+o U F(r+o for o sufficiently small and positive while u_<l-iS’ (/$’</$) on x= 1.
This will be established in the next section.

THEOREM 3.1. Let u be a weak solution on (fl) on DrU Fr. Let

L,= sup
0<_8<_1

where

while

)2 o"

L2= sup (1-8)/(1-8).
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(a) lfL<L then T= + and u cannot quench, even in infinite time, i.e., lu(x,t)l
1- 8 on x for some 8> O.

(b) IfL>L2 and fdO(,/)dr/< +, then T< andlimt_r-u(1,t)= 1.
(c) IfL>L2 and f0O(r/) dr/-- +, then T<_ andlimt_r-u(1,t)= 1.
Proof. We first note that since xI,(1) 0 and xI,(0)_>0, L xI’(t$o) for some t$

0[ 0, 1)
which solves xI,’(80) 0 or

oq(o) do-- (1 60)q(1 8o)

(xI,(1)=0 by l’H6pital’s rule, xI’(0)>0 if fdq(o)do< +z, otherwise xI,(0)--0). There-
fore

(1-io)
L-- ff(l_80)--<L2,

as should be the case.
(a). For any L<L there is a i (0, 1) such that L<xI’(8). Let T be the largest

time such that u(x,t)<_ -i on x- 1. From (3.2) and the (sharp) inequality

.x(X.lex.

we have, for 0<x< 1,

(3.3) u2(x,t)<_2L u(!

If we take note of the monotonicity of the integral with respect to the upper limit, and
take the supremum over ( } [0, T] on the left of (3.3), we find that

which contradicts the choice of 81- This, together with the remarks on continuation,
proves that u(1, t)< 1-81. Using (3.3) and the definition of 8, (a) follows.

(b). Suppose (b) fails, i.e., T= + and u< on x 1. Define

r(x, t) flG(x,y )u( y, t) dy,
"o

where G is the Green’s function given in Theorem 2.5. There results

Ft(x,t)=folG(x,y)ut(Y,t ) dy.

Since for each x, G(x, ) is admissible in (3.1), we find

Ft(x,t)-L tG(x, 1)th(u(1,rl))drl- Gy(x,y)uy(y,)dyd,1.

Therefore Ftt exists and

Ft, (x, t) Lxq( u(1, t)) folGy(x,y )Uy(y, t) dy
x

=Lx(u(1,t))- Uy(y,t)dy

Lxq( u(1, t)) -u(x, t).
Since 0 -< u(1, t) < and L>L=, we have L >_ u(1, t)/(u(1, t)) + e for some e> 0. Thus
Ftt(1,t)>_eq(u(1,t))>_e(O) so that F(1,t)>_1/2eq,(O)t 2. On the other hand, if we take
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square roots of both sides of (3.3) multiply through the resulting inequality by G(1,y)
and integrate over [0, 1], we find

( ol(3.4) - G(1,y)dy ’t)(/) d/
"0

Since we are assuming fck(o)do< o, (3.4) is not possible for all t>0. Hence u(1,t)
reaches one in finite time.

(c) This also follows from (3.4). If u(1, t)_< 1-8 on 0, ), then (3.4) will again be
contradicted. Hence limt T-U(1, t) where T_< +.

Before stating an important corollary, we look at an example.
Example 3.2. If (u)=(1-u)-t, fl>0, then u reaches one along x-- in finite or

infinite time provided

L>L:z(fl)_ fl,(1
__

j)--(l +fl).

If 0<fl< 1, part (b) of Theorem 3.1 applies. On the other hand, if L<LI(fl) where

max (1-8)/ln(1/8)-8o(1-8o) fl-1

o_<_<,max - (1-- fl ) (1-- 8 )2/(1-- 8 -1 ) 8o(1 8o )I f14: 1,

where 21n8o- 1- 1/80 if fl- and 28o-(1 +fl)8o-(1-fl)-O if f14: 1, then u cannot
quench, even in infinite time. To see this, one simply calculates ’(8) and shows that it
has a unique root 8o (0, 1) while ’(8) changes from being positive for 8< 8o to being
negative for 8>8o. We notice that for fl= 1, L2(fl)=0.25 while Ll(fl)0.20365 and
8o - 0.2847.

Remark 3.3. Since X(8) (1 8)/q(1 8) vanishes at 8 0 and 8 1, L L2
provided there is 8o (0, l) such that 8o maximizes both X and xI,. Then we have
X(8o) xI’(8o). This reduces to the requirement that the equations

have a common solution 8 8o. This cannot happen if q’ is strictly increasing since then

(1--ao)2 (1-ao)
’(1-80)- f0’-ar/ff’(,/) d/< ’(1-80)

as an integration by parts shows. Thus these techniques are unlikely to yield optimal
results.

COROLLARY 3.4. If u solves ( fl ) and
(a) u(1, t) reaches one in finite time T, then

lim Ux(1,t)-- lim ut(1,t)= +o, or
tT- t-T-

(b) u(1, t) reaches one in infinite time, then

limsup max u(x,t)- limsup flu2(1,t)dx- /
t-,+ 0--<x--<1 t- "0

The proof of this corollary is postponed to the end of 4 because it depends upon
a certain auxiliary function introduced in the next section.
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(al)

COROLLARY 3.5. If U(1, t) --< for all t, then for all >0 and all x, 0<x< 1,

cp ( l ) d *l

Proof. This is an obvious consequence of (3.3).

4. cal existence. In ts section we exane the questions of local estence and
continuation of local solutions of problems (a), (fl). Since these questions reduce to the
study of nonlinear Volterra integral equations, copious detail will not be needed.

We begin with problem (a). The solution of

wt=w+F(x,t), 0<x< 1, t>0,

w 0,t)=0,
Wx(1,t)=o

can be found by elementary means. It is

(4.1) w(x,t)-- folG(x,y; t)f(y)dy+ fotfolG(x,y; t-,1)F(y,l)dydi,
where G(x,y;t) is the heat kernel for the homogeneous problem. In fact, with
1/2 :n+

G(x,y;t)-2 sinh,,xsin)yexp(-)Et).
n--l

It is well known that G>0 on the half strip and Gxx- Gyy- Gt, Gy(x, 1; t)- Gx(1,y; t)-
G(O,y;t)-G(x,O,t)-O, and

folG(x,y;t)dy<-l.
Consider next problem (ct) with inhomogeneous nonnegative initial data u(x, 0) ---f(x). If
we set

w( x, ) u( x, ) xLck( u( 1, t)),

then w solves problem (Ctl) with w(x,O)-f(x)-Lck(u(1,O)), F(x,t)-
-xLck’(u(1,t))ut(1,t ). Therefore u must solve, on Drt3FT, the nonlinear Volterra
equation

(4.2)

+ a(x,y;

-Lf(u(1,0)) yG(x,y;t)dy-L G(x,y;t-)(u(1,))dyd.
If one integrates by parts in this last integral, uses Gt- Gyy and again integrates by
parts, one sees that (4.2) takes the more pleasant form

(4.3) u(x,t)-- folG(x,y; t)f(y)dy+ZfotG(x 1; t--r/)q(u(1, r/))dr/.
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It is now a straightforward matter to prove the convergence (pointwise) of the following
iteration scheme on Dr provided T is sufficiently small:

Uo(X,t)-O,
(x,t)- fG(x,y;t)f(y) dy + LffG(x, 1; t--/)( u(1, /)) d/.n+

"0 "0

Since G>0 and q is increasing, u,>0 for all n. Moreover u>u0-0 so q(u,(1,t))_>
q(u,_ (1, t)) if u,>_u,_. Thus by induction u,+>_u, on Dr. Now supposef(x)_< 1-28
and un_< 1 -8, then u,+ _< 1 - also provided T is so small that

(1-28)+L(1-8)forG(x, 1,T-n)drl<- l-8,

i.e., provided T is so small that

sup a(x, 1,
0_<x_<l

Clearly this is always possible. Thus the sequence {u,),__l of iterates is an increasing
sequence of continuous functions, bounded above by 1-8 if T is sufficiently small.
Now by the monotone convergence theorem, lim,_u,-u exists and satisfies (4.3) and
hence (4.1). Thus we have established the following:

THEOREM 4.1. If T is sufficiently small, then problem (a) possesses a unique solution,
C in t, C2 in x in Dr and continuous in r. Moreover, if u<_ -i on r then u may be
continued as a solution on Dr+r, U Fr+ r, for T’ sufficiently small and u<_l-i’ where
&< on Dr+ r’.

We turn next to problem (/3). We consider first the inhomogeneous problem

(fl,) wtt--w,,,,+F(x,t ), 0<x<l, t>0,

w(O,t)--wx(1,t)--O, t>0.

We let

B-- { f: R Rlf,f are piecewise continuous,

f(x) =f(2 x) -f( x) =f(x+ 4) ).
We extend f, g and F(., t) for each so that f, g,F(., t)B. This amounts to requiring
that f(O)=g(O)=F(O,t)=O and that f,f’,g,g’,F,F are continuous on [0, 1]. The solu-
tion of (fl), which is then given by the d’Alembert formula

(4.4) u(x,t)--[f(x+t)+f(x--t)]

fx+ x+t-nF(
again has the property that w(., t) B for each t_> 0.

For the purpose of the argument that follows, we shall assume q, C2( o, 1). Let
H(x) B be defined by

l<x<2,
H(x)- lx -l_<x_<l,

-(2+x), -2_<x<--I

on (-2,2).
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Suppose we have a solution of (fl) with inhomogeneous initial data, f, g. Define, for
0_<x_< 1,

w( x, t) u( x, t) LH(x )q,( u( 1, )).
Then w solves (ill) with

F(x, t) LH(x ) d2( u(1, ))/ dt 2

w(x, O) --f(x ) LH(x ),(/(1)),
wt(x, O)-- g(x)--LH(x)’( f(1)) g(1),
w(O,t)--Wx(1,t)-O.

Therefore, for w, the data are in B (for each t). Therefore u solves problem (/3) weakly
if and only if u solves

(4.5) u(x,t)--Uo(X,t)---L,l,(f(1))[H(x+t)+H(x--t)]
1Lg(1)dp’( f(1))g+tH(rl)drl+LH(x),( u(1, )) -2

L ,(u(1
drl2 x-t+n

H

where Uo(X, t), the so-called free solution, is given by
1 fx+t(4.6) Uo(X,t )

If one integration by parts is carried out in the last integral on the right of (4.5), we find

(4.7) u(x,t)-Uo(X,t)+LH(x)q(u(1,t))--Lq(f(1))[H(x+t)+H(x--t)]

:z -d-{n q,(u(1,n))[I-I(x+t-n)+I-l(x-+n)] n.

The quantity in brackets in the integral on the right of (4.7) is piecewise continuously
differentiable. Thus we may integrate by parts one more time and obtain

fot,l,(u(1,l))-[H(x-t+rl)+H(x+t-rl)]drl(4.8) u(x,t)-Uo(X,t)+ sL
d

where now c <x< o, > 0. The kernel in the integrand in (4.8) is piecewise constant
and cannot exceed two in absolute value.

It is clear from (4.8) that if u solves (4.8) in R [0,] and is continuous there, then
u and u exist and are piecewise continuously differentiable except on the lines x-n,
x +--t-n where n is an integer. In fact, the second derivatives exist except on that point
set, so that the solution is classical except on that point set. Therefore (4.8) need only
be solved in the larger space

B-- (u" R[O,]-Rlu(x,t)--u(1-x,t)
u( x, t) u(x + 4, t), u is continuous}.

Let

B(8)- (uB,llu(1,t)l< -15 )
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For u B, let

Ilull=suP(lu(x,t)l,O<t<_,O<x <_ 1).
Let, for f, g B, be so small that

(4.9) lu0(1,t)l- 1 f+-[f(1 + ) +f(1- ) + - ttg( l ) drl

for 0_< t_< ’r say. This can be accomplished if (1)1< 2. Let

(,,Uo)- {uB(*)lllu-uoll<-).
Define

by

: B(,*,Uo)-(,*,Uo)

where

for( Su )( x, ) Uo( X, ) + -L k( u(1, l ))K( x, t, l ) drl,

almost everywhere (except where x-(t-) is an integer).
We need to show that -is well defined and that it is a contraction. We note that if

uB(o,,Uo),

(-)(,)-o(1,)+gz; [’(-(-n))-n’(+(-n))],(,(,n))n.

Therefore, since IN 2,

+-,,(1-)(,)(,) -+,,( -).
Thus if

(4.10) ,,2/(L(1--)),

we have that ]u(1, t)[ also. Moreover

if

(4.11)
Thus ff is well defined. Also one verifies readily that

if u, v (0, 8, Uo). Thus will be a contraction if, in addition to (4.9)-(4.11),

_<1-26

dK(x,t,)-- -d- [H(x+t-l)+H(x-t+)]



1152 HOWARD A. LEVINE

(This assumes q’0 in any neighborhood of zero.) Therefore for T< 1Tlin(’rl, ’i"2, "r3,7"4)
we have proved the following theorem:

THEOREM 4.2. There exists, for any L>0 and 8 (0, 1) a unique weak solution of
problem (fl) on some domain Drfor T-- T(L, i) sufficiently small, which satisfies [u(1, t)[
<_ 1-i9 for O<_t<_T. This solution is classical except on the characteristics, so that (3.1)
and (3.2) hold and therefore u(1, t)>_0 on [0, T]. Moreover if ’<, this solution may be
continued to Dr+ r’ with 0 <_ u(1, t) <- ’ on [0, T+ T’] for sufficiently small T’> O. The
extended (in x) solution satisfies (4.8) on R [0, T].

Proof of Corollary 3.4. (a) From (4.8) with f-- g-0, we see that

(4.13) u(1,t)- Lfotq(u(1,))[H’(1-(t-,1))-H’(1 + (t-,l))] dy.

A few moments reflection will convince the reader that

H’(1-x)-H’(1 +x)-2H’(x-1).
Using this in (4.13) and taking the (distribution) derivative of the rsult yields (where n
is the largest integer such that 2n

_
t- 1),

(4.14) ut(1,t)-L,(u(1,t))+2L (-1)Pdp(u(1,t-2p-1)).
p=0

If u quenches in (finite) time T, and if N is the largest integer such that 2N< T- 1, then
as t--, T- the sum on the right of (4.14) approaches

N, (-1)(u(1,T-2p-1))
p=0

while the first term becomes unbounded. This proves part (a) of the corollary.
To prove part (b), we see from part (b) of the proof of Theorem 3.1 that if u(1, t)

reaches one in infinite time then

lim flG(1,y)u(y,t)dy- +
’0

Thus there is a sequence of points (x,t) with 0<x< and t,o + o such that

lim u(x,,L)- +

Using these points in the inequality preceding (3.3) we find

lim u2 ( x, t ) dx + c

Acknowledgment. The author thanks Professor Gary Lieberman for some helpful
discussions and the referees for several comments which improved the earlier version of
this paper.
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ISOPERIMETRIC INEQUALITIES IN THE TORSION AND CLAMPED
MEMBRANE PROBLEMS FOR CONVEX PLANE DOMAINS*

L. E. PAYNEt AND G. A. PHILIPPIN

Abstract. Bounds for the curvature of the level curve of the torsion function through an arbitrary point in
a convex region D, are used to derive improved isoperimetric inequalities for maximum stress, the torsional
rigidity and other functionals. These inequalities are exact if D is either a circle or an infinite strip. A similar
procedure is used in the clamped membrane problem, and again improved isoperimetric inequalities are
derived.

1. Introduction. In this paper we make use of some recent results of Makar-
Limanov [4] and of Acker, Payne and Philippin [1] to sharpen a number of inequalities
that have appeared in the recent literature. In [4] it was shown that the level curves of
the torsion function for a convex plane region D are convex. The analogous result for
the first eigenfunction in the fixed membrane problem was established by Brascamp
and Lieb [2]. We show in this paper that the proof of Makar-Limanov actually leads to
pointwise bounds for the curvature of the level curve of the torsion function through an
arbitrary point in D. The method employed by Brascamp and Lieb [2] does not yield
the corresponding bounds for the curvature of the level curves in the clamped mem-
brane problem; however, the method of proof employed in [1] does yield such bounds.
It is these bounds for the curvature of level curves which enable us to improve a
number of inequalities derived in [5], [6], and [8].

In 2, we consider the elastic torsion problem and derive isoperimetric inequalities
for the maximum values of the torsion function and its gradient, as well as isoperi-
metric inequalities for the torsional rigidity. These inequalities have the unique feature
that the equality sign holds not only when D is the interior of a circle but also in the
limit as D tends to the infinite strip. In 3, we derive improved bounds for the absolute
value of the gradient of the first eigenfunction u in the fixed membrane problem, as
well as a sharper bound for the corresponding eigenvalue ?1- To make these latter
estimates explicit, it would be helpful to have a nonzero lower bound for the minimum
value of Igradul on 0D, but the authors are not aware of the existence of any such
bound in the literature. Section 4 gives an improvement of the lower bound for ?qma
derived in [6].

2. The torsion problem. In this section, we consider the problem of the torsional
rigidity of a beam whose cross section is a convex bounded plane domain D,

(2.1) A----2 in D, b-0 on0D.

It is well known that all level curves of the stress function k(x) are also convex. The
proof of this statement has been given by Makar-Limanov in [4]. It is based on the fact
that the function

(2.2) M(x ) ,ij,i,j- o2A+ 1[(A)2--,ij,ij]
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with

is superharmonic, which implies that M(x) takes its minimum value on the boundary
0D of the domain D:

(2.4) M(x)>_minM(x)-Mmin-mJn(ko3)>O.
0D 0D

We shall use this fact to obtain upper and lower bounds for the curvature

of the level curves k=const. from which various isoperimetric inequalities can be
established. It turns out that these inequalities will be sharper then those given by
Payne in [5]. Using normal coordinates with respect to the level curve q=const., we
have

(2.6)

(2.7)

(2.8)

where q, =0/0n is the outward normal derivative, and 6s=06/0s is the tangential
derivative of k along the level curve. Thus (2.4) can be rewritten as

(2.9) M(x)-o3k-24,{2k4,,,+kZ4,Z++;,2s} --> Mmin--> O,

which is equivalent to the following quadratic inequality for the curvature:

(2.10)
k 2 r2s Mmin0k--(o + 4q.’) +--+ 2 q.,o 2

or

(2.11) k
0"
2 24’02_ - 24’02

Here we have used the abbreviation

(2.12) O(x) o2+4q.,.

Inequality (2.11) leads to the following inequalities for the curvature k of the level curve
in terms of the stress function k, the stress o- k,ik,i and Mmin:

(2.13)

On the other hand we have

(2.14)
0 2o--n -2ko
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so that we obtain differential inequalities relating and its normal derivative by
multiplying (2.13) by 20:

(2.15) 2q
1+ 1--2o2

These inequalities may be expressed in a more compact form if we replace by a new
function/9, defined as

(2.16) 0-=+4-.

Differentiation of (2.16) yields

(217) On n 2V@-
and insertion of (2.16) and (2.17) into (2.15) leads to the inequalities

0n 2Mmin __< < 2Mmi

Inequalities (2.18) state that the differentials dq and dO of the two functions q(x), 0(x)
along any orthogonal trajectory of k=const. (also called fall line of k) in the inward
direction are related as follows:

(2.19) d+ > dO
> d__

0 - +q
(_) _2Mrn

We now integrate (2.19) along the fall line from the point P(x)D to the (unique)
critical point of q, which gives

(2.20)
0-+" /02-- 8mmin /maxmax O0-Jc. /Og--8mmin 1

with

(2.21) 0o-- *- 1/21,:q,max-- 4ma
Multiplying the second inequality in (2.20) by gr-(Oo + 0o2- 8Mmi. ) and using again
(2.16), we obtain

(2.22) /(I)2- 8Mmin --< ( 00 + /Og 8Mmin ) .
Squaring (2.22) and solving for leads to

(2.23) --< 4Mmin

 (Oo+ (00+ ;00 -
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The first term on the right-hand side of (2.23) may be rewritten as follows:

(2.24) 4Mmit I Mmin ]max0o(l+l__8emin/0g) --2
1-

2max

so that (2.23) leads finally to the following upper bound for o:

(2.25) O" 2 O(lmax-- l),
with

(2.26) a--2 1+ 1--2q,,m--’--
In particular, the maximum value of o which occurs on the boundary OD of D, is
bounded above by

(2.27) OmZax--< a+m.
Inequality (2.25) is an improvement on an earlier result by Payne, who established in
[5], that

(2.28) 02 >--4(+max--+).
Inequality (2.28) is isoperimetric in the limit as D degenerates into an infinite strip,
whereas (2.25) is exact for the circle and for the infinite strip, since the function M(x)
introduced in (2.2) is a constant for any ellipse. For practical purposes, a lower bound
for Mmin is needed. Such a bound is easily obtained using the isoperimetric inequality

(2.29) mino- O’min->’kD max

established by the authors in [7]. We have then

kminO&n >_ kminkmax.(2 30) Mmin liDn (ko3) > -3

With this bound for Mnn in (2.26), the equality sign still holds in (2.25) for the circle
and for the strip. Let us mention that (2.25) remains true for a nonconvex domain D
with

(2.31) a-ao-2 1+ 1- 2----o
where 0 is the smallest value + can take on the set of its critical points. Note, however,
that now Mmin is negative.

A different bound for 09- has been obtained by Fu and Wheeler [3], i.e.,

(2.32) o2<-d(2-kmind),
where d is the radius of the largest circle inscribed in D. Here again the equality sign
holds for the circle and for the infinite strip.

An upper bound for 6max may be obtained by integrating the inequality (2.25)
along a ray from the point PD to the nearest point P0 on the boundary. If r is the
distance from P, we have

(2.33) dr
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from which we obtain

(2.34) 2fm 2/+max + --< d.

Evaluated at the critical point, (2.34) gives

a d2 ( mmin)(2.35) lmaxd2 1-- 8%m------
or

(2.36) d 2 d/d2 Mmin Mmin<26max<d2+d d 2

2 2

We mention finally that isoperimetric inequalities involving functionals defined on
D, such as the torsional rigidity P given by

(2.37)

may be obtained from (2.25) by integration over D or along the boundary 3D. We have,
for instance,

(2.38) p_<.. 2aa4’2Amax,
4A2

(2.39) g,m-->L---
where A is the area of D and L is the length of OD.

3. The embrae problem. The method indicated in {}2 can also be applied to the
first eigenfunction u(x) of a vibrating membrane defined in a bounded plane domain D
and fixed on its boundary 0D:

(3.1) AU+XlU=0 in/), u=0 onD.

In [1 ], Acker, Payne and Philippin introduced the function

(3.2) II(x) 2kq3 )2+ (Au u iju,ij, q-- / iu,i,U

to establish their version of the proof that if D is strictly convex, then the level curves of
u(x) are also convex. In contrast to M(x), defined in (2.2), II(x) takes a positive
minimum value at some interior point P of D. In fact we have

U2 )2q2+,
>0 VxD.(3.3) II(x)--> IImin - u min

Using normal coordinates, (3.3) becomes, as shown in [1 ], a quadratic inequality for the
curvature k of the level curves u const.:

(3.4)

with

(3.)

{(’t’) } u:
k- 2--q 4q u u rain q

qb-- q2 + klu2



ISOPERIMETRIC INEQUALITIES, TORSION AND CLAMPED PLATE PROBLEMS 1159

Solving (3.4) after dropping the last term we obtain the following bounds for the
curvature:

(3.6) u {1--1--()2umin()-2}--<kq--<u {1 +1--()2uu min()-2}’u
We note now that if we take the normal derivative of along a level curve

u const., we have

(3.7) 0__ 2kq2On
The inequalities (3.6) and (3.7) then lead to

(38) q{ , (q)2 ()2)<Ob { _._(b) 2

--’-- - - min ---n -<q - min

which can be reduced to a more compact form in terms of the new function 2(x),
defined as

=ufa.(3.9)
We have

with

U min

An integration of inequalities (3.10) from a point PD to the (unique) critical point of
u along a fall line leads to

U
.._ 2__2rain Rmax(3 12) <:

u umax min
with

(3.13) ’0 U max

From the second inequality in (3.12) we obtain after some reduction

U2 2 )min(3 14) --<2 A 4

with

(3.15) rain Umax Umax
2min

Inequality (3.14), whose last term may be rewritten as

U 22min h U2II__ n(3.16) 2
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(3.17)
with

leads finally to the following upper bound for q2.

q2_<fl( 2Umax

(3.18) nB-T
Inequality (3.17) is valid for strictly convex domains only, in which case it is an
improvement on an earlier result by Payne and Stakgold [8], who established that

(3.19) q2_<)( 2Umax _u2).
Let us remark that (3.19) is exact for the infinite strip, whereas inequality (3.17) is not
directly applicable. For practical purposes a lower bound for fmi is needed. Using the
arithmetic geometric mean inequality we established in [1] that fl(x) is bounded below
by qminV-I where qmin (>0) is the minimum value of q on the boundary D. We have
therefore

(3.20) fl_-- 1 + 1
X,U:max

Integrating (3.17) from a point P in D to the nearest point P0 OD, we obtain

(3.21) arcsin( u .)<_dUmax
where d is the radius of the largest inscribed circle in D. Evaluated at the critical point,
(3.21), together with (3.20), yields

2 qmind(3.22) )l-->-7-7, r +
Umax

4. A Iurther application. In this section we will establish the following result:

(4.1) max>-- j?_2/a,

wherej-2/t is the first zero of the Bessel function of order 1- 2/a. The other notation
has been introduced in 2 and 3. Inequality (4.1) is isoperimetric with equality if D is
a circle or an infinite strip. It is a sharp version of a result established by Payne in [6].

For the proof, we introduce the auxiliary one-dimensional boundary value prob-
lem

(4.2)
af"(t) +-f’(t) +f(t) --0,

f’(0) --f( *max 0,

which has the positive solution

(4.3) f( ) t(l-a)/2J(l _a)/2( ),
if the parameters a and i are related as follows:

b-- 1/2(4.4) 8 =J(l-a)/2 max
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The inequality (4.1) is then a simple consequence of the fact that the positive function
h(x), defined in D as

(4.5) h(x)=f( rnax--(X) ),
satisfies the differential inequality

(4.6) Ah+*h_<0 in D,

with

(4.7) ,*

and

(4.8)
Indeed we have with (4.6) and (4.8),

4max

h-0 on0D.

(4.9) o>_f

a,
D

--ffDUh(t*-Xl)dX,,
from which we easily conclude the desired result" A*--<AI- To prove (4.6), (4.7), we
differentiate (4.5):

f"8,/(4.10) h,k=

wheref’ denotes the derivative offwith respect to its argument. Another differentiation
leads to

8f’ [a+l t,.k,k_l]_X, 8X 6,6,k_1(4.11) Ah+h*h-
k:ax--+ 4 l//rn’ax-- + 4A-’--’ "m=--+

where we have eliminatedf" using (4.2). In view of (2.25) we select a and A* so that

(4.12) a+l_ 82
4 4k* a

where a is defined in (2.26). With this choice wehave

(4.13) Ah+’*h-8:z IX--ax-- IX max--
According to (2.25) the second factor in (4.13) is nonnegative. It remains to make sure
that the third factor in (4.13) is nonpositive, i.e.,

(4.14) f(t) f’(t)Ao Vt(O 6/max)4 a
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To this end we introduce the function

(4 15) F(t)_t4/, f(t) +1 f’(t___) )4 t

Using (4.2) and (4.12) it is easily checked that
4/a

(4.16) F’(t)----]- (t).

On the other hand we have from (4.2)

(4.17) (taf’) --taf<--O Vt(0,/,rna).
The function tf’(t) is therefore monotone decreasing in (O, 3/,ax ), which implies
f’(t) <_ O. In view of (4.16) we conclude then that

(4.18) F(t) fotF’(t) dt<-O,
and an insertion of this inequality into (4.13) completes the proof.
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A BOUND FOR THE RATIO OF THE FIRST
TWO EIGENVALUES OF A MEMBRANE*

GIUSEPPE CHITI"
Abstract. An isoperimetric inequality for the eigenfunctions of the Laplacian is proved, using rearrange-

ments of functions. This result, together with a technique introduced by Payne, Polya and Weinberger (J.
Math. Phys., 35 (1956), pp. 289-298), gives an upper bound (not isoperimetric) for the ratio of the first two
eigenvalues of a membrane.

1. Introduction. Consider the equation of the vibrating membrane with fixed
boundary,

(1) Au+Xu-0 in,
u-0 on

where is a bounded domain in R2. Denote by kn, n--1,2,--, the sequence of
eigenvalues of problem (1), numbered according to nondecreasing magnitude, and, by
u,,, the sequence of the corresponding eigenfunctions. Our aim is to find bounds for the
ratio 2/. This question is a particular aspect of a more general problem: to find
inequalities among the first n eigenvalues of (1) which are independent of the geometry
of the domain. The general problem is considered in [4] and [7], while in [1], [3], [6], the
cases n-2, n--3 are examined. One of the results proved by Payne, Polya and
Weinberger in [7], was the following:

(2) k2< 3.
They also conjectured the inequality

(3) ?2--<a?,

where a is the value for the disk and is approximately 2.538 In [1], Brands improved
(2), obtaining

(4) 2_<2.6871,

and later de Vries [3] showed that

(5) ,2<2.658k.

We prove in this paper that

(6) ,2-<2.586X

The result is based essentially on the following
THEOREM. Let u be an eigenfunction ofproblem (1), corresponding to the eigenvalue. Then u satisfies the inequality

(7) U2dX
3 xf lxl=u = dx

*Received by the editors May 17, 1982, and in revised form September 20, 1982. This study was
performed within the G.N.A.F.A. of the Italian Consiglio Nazionale delle Ricerche.

tIstituto Matematico Ulisse Dini, Viale Morgagni 67/A, 50134 Firenze, Italy.
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where Jo is the first positive zero of the Bessel function Jo. Equality holds in (7) if and only
if f] is a disk (centered at the origin ofR2 ), and u is the first eigenfunction of (1).

The inequality (7) can be easily extended to Rm, m>2; using the same methods we
use here, one can see that (6) is the two-dimensional version of the following inequality:

m J(m/Z)-,Jm/z(J<m/E)-)
fo m/2)--,(J(m/2>-1 r

Also (7) can be extended to any power uk of u, provided k is positive. This leads, in the
case m- 2, to the inequality

k2< ( k2 2k "-2 fdrJZ(Jr)dr
Jo2k- 12k- folr3SoEk(jor) dr

valid for k> 1.

2. Rearrangements of functions. The technique we use to prove the theorem is a
symmetrization technique, namely rearrangement of functions. Let u be a real measura-
ble function defined in fl, and consider the distribution function of u,

/x(t)--meas{x" [u(x)l>t).
By definition, see [8], the decreasing rearrangement of u is the function

u*(s)-inf{t>_O" /(t) <s),
while the function u*,

u.(x)- u,(
is the spherical rearrangement of u. The domain of u* is the interval [O,M], where
M=meas; u* is defined in the disk S, centered at the origin of RE, such that
measS-M. Since u, u*, u*, all have the same distribution function, if u is in Lp, we
have:

(8) ffup-fMu*p-’O --fsu-p"
3. From u to u*. In this section we study the behavior of the functional

fu=/fdxl u - under symmetrization.
LEMMA 1. Let u be a real measurablefunction defined in f]. Then

2 fsu*2(9)
falx[2 u2 fslXl2 U* 2

Proof. From (8) it follows that (9) is equivalent to

(10) fsIXI2U*2fIx[2u2

A well-known result of Hardy and Littlewood shows that

(,,> fotuvl -fo V,U*
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for any pair of real measurable functions u and v; here v. is the increasing rearrange-
ment of v,

v,(s)=v*(M-s).

Replacing v with the function Ixl2, defined in 2, we have:

(12)

From the definition of Ixl,, we obtain

Ixl:(s)>_s se[O M]

and using (12) and the definition of u*:

U --U.2- X U

4. Comparison of u* with a Bessel function. From now on we suppose that u is a
solution of problem (1). The aim of this section is to compare u* with the function

(14) z(x ) Jo( /Zlxl)

It is easy to verify that z is a solution of

(15)
Az+,z--O

z--0

where

in Sx,

on Sx,

(16) s- (x eR="

LEMMA 2. Let u be a solution ofproblem (1), corresponding to the eigenvalue h, and
let z be the function defined in (14). Then:

fsu*2 fsxZ 2(17)
_
fslxlZu .2 fsJxlZz 2"

Proof. We normalize u in such a way that

(18) fsu*Z=f 2 2.
Sx

In [2,{}4] the following result is proved. If condition (18) holds and Mx=measSx,
M=measf, then: a) Mx<-M; b) there exists s t, st (0,Mx), such that

z*()_>u*(), [o,,1,
(19) z*(s)<_u*(s), s[s,,Ma].
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From (18) and (19) we have

=S H.2

k 0

This, together with (18), concludes the proof, since

X N U.2,
r.,o

and

x

5. Proof of the theorem. Using Lemma and Lemma 2, and the definition of z,
we have

(20) fau2 fdrJ(Jr)dr
fn[xl2 u 2 <j

2

fo r3Jo ( jor) dr

The value of the right-hand side can be computed, using for instance, the formulas in
[5, p. 262], and we obtain (7).

6. A bound for 3, 2/A t. This section is devoted to an application of the theorem,
which enables us to obtain an upper bound for the ratio k2/, of the first two
eigenvalues of problem (1). Let Ul(X,Xz) be the first eigenfunction of (1). We choose
coordinate axes such that

fx U dx fx2u dx O

With this choice, since the functions XlU and X2U are orthogonal to u, we have

12 dx(21) A.2<_
fnlgradx’ul

i-- 1,2,y.x dx

which implies

(22) fn(Igrad x u112 + Igrad x2 u,I: ) dx
Y.lxl u21 dx

Integrating twice by parts, using the fact that u solves problem (1), we obtain

2 12 2fu lgradxUl +]gradx2Ul dx fn]x]21grad ul ]2dX Al fnlx] Ul dX + 2faU2l dX,
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and from (22)

fdx(udx

From (7) we have

(6)
since Jo> 2.40482, this implies (6).

Acknowledgment. The author wishes to thank Prof. Murray H. Protter, who intro-
duced him to this subject; thanks are also due to Dr. M. G. Gasparo, who helped
handle Bessel functions.
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SINGULAR PERTURBATIONS FOR A SEMILINEAR HYPERBOLIC
EQUATION*

GEORGE C. HSIAO AND RICHARD J. WEINACHT)

Abstract. The Cauchy problem for a semilinear hyperbolic equation with a small parameter is consid-
ered. The reduced problem is of parabolic type and, although there is no reduction of order, there is an initial
layer. An asymptotic solution with boundary layer corrections is constructed and, for a restricted class of
nonlinearities, is shown to be uniformly asymptotically valid for sets bounded in the time direction.

1. Introduction. We consider the pure initial value problem for the semilinear
hyperbolic equation

(1.1) Ze[u]:: e2utt-["ut--Uxx-’-F(u), t>0,

where e is a small positive parameter. The Cauchy data are

(1.2) u(x,O;e)=f(x),

(1.3) ,Ut(x,O;,)"-g(X),

For e 0, (1.1) becomes the semilinear parabolic equation

(1.4) Ut-Uxx:F(U), t>0,

for which the single initial condition

is appropriate for a well-posed problem.
Thus there is a boundary layer at t---0. By means of a composite expansion

method [19] we construct an asymptotic solution to all orders in e. For a restricted class
of nonlinearities F and initial data f,g, we prove uniform asymptotic validity on
regions bounded in the direction. Our main result embodying this assertion is for-
mulated in the theorem in {}5.

For linear problems (e.g. F=0) "hyperbolic-parabolic" perturbations of the type
treated here have been considered by several authors, including Zlamal [20], [21],
Bobisud [2] and Bensoussan-Lions-Papanicolaou [1]. In particular the present authors
treated the problem (1.1)-(1.3) for F------0 in [9], and for weakly nonlinear F= e2/ in [10].
A physical interpretation of the problem (1.1)-(1.3) in a purely mechanical setting is
given in [9],[10]. In addition, for F0, (1.1) is precisely the "wave equation of heat
conduction" proposed by several authors (see Nowinski [16, Chap. 7] and the refer-
ences therein) to oversome the shortcoming of the usual equation of heat conduction
(e 0), which predicts infinite speeds of propagation. Our results confirm in a rigorous
(and more quantitative) way previous conclusions that the perturbation term e2utt has
an appreciable effect only for small times. Moreover, "initial layer corrections" are
given, to all orders.

Singular perturbation problems for hyperbolic equations where there is a loss of
order in the reduced equation have been treated by de Jager [12], Geel and de Jager [7]

Received by the editors October 16, 1981, and in revised form September 23, 1982.
Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19711.
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and Geel [6] as well as Genet and Maudaune [8]. As in the work of de Jager and Geel,
our proofs depend upon energy estimates and a fixed point theorem. There is a
considerable difference in the details, however, since the characteristics in our case
depend on e.

The overall restrictions on the nonlinearity F are the monotonicity condition

(1.6) F’(z)<0

and, from a physical point of view, the very reasonable condition

r(o)=o,

as well as smoothness up to an order depending on the order of the approximation (see
the theorem in 5 for a precise statement). Our main result gives uniform asymptotic
validity on any strip R [0, to] for which the reduced problem (1.4)-(1.5) has a bounded
classical solution. For smooth F, of course, there is always a local (i.e. for small time)
solution of the reduced problem. If, in addition, the boundedness of F’ on R is
assumed, then our results become global, i.e. on any such strip. Naturally, this limits
the growth of F at oo (even without invoking (1.7)):

Similar growth limitations are considered by Brrzis-Nirenberg [3] (see also Ces-
ari-Kannan [4]), who are not concerried with singular perturbations.

Results of this paper have been extended recently by Esham [5] to nonlinear
evolution equations in Hilbert space.

A previous version of the present work, but with restrictions on the growth of the
nonlinearity at infinity, was presented at the Conference on Nonlinear Partial Differen-
tial Equations in Engineering and Applied Science at the University of Rhode Island in
June, 1979. The results of the present version were reported at the Annual Meeting of
the American Mathematical Society in San Francisco in January, 1981 (Abstract
783-35-32).

2. Formal expansion. Guided by our results [9] for the case F0, we use the
stretched variable [- t/e2 and make the following ansatz for the solution u of (1.1)-(1.3)"

n=0

which yields upon substitution into (1.1)-(1.3) the parabolic initial value problems for
the

F(Vo),
(2.1) U,,t- U,,,x- F’(Uo)U, n- 1, (x,t)g (0, oo),

Fn-Un_2,tt n>_2

f(x), n-O,
xe ,
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and the ODE problems for the V"

(2.3) V. ,tr+ V. ,;’= I O,

a+ v._2,,

n-0, 1,

(2.4) V,r(x, 0) xN,
u_ ,,,(x, O),

n -0,

n_>l,

together with the matching condition

(2.5) V,(x,D-,o as [ oe

for all n >0. The terms F, and G, in multi-index notation are

z,- e"(v(x"))(I"li.I,- )[v’(x")] <" [v"(x")l <’"’

where the sum is over all a such that
n

ia--n
i=1

and

a,,’- 2 Ittl!l’l’l!
F(Ittl+h’l)( U(x’O)[V(x’/’)]tt’

where the last sum is over all fl, , with fl va 0 such that

n--1

i(fli+’ri)--n--1
i--I

and

[k/2l

Wk(x,;)-- E D[nUk-2m(x,O)im/m!.
m=O

Thus all the problems for the U, V are linear except that for U0 which satisfies a
semilinear IVP for the heat operator with smooth initial data f. Partially inverting the
problem for U0 leads to consideration of the nonlinear integral equation

(2.6) v-K [/1 +K F(v)],
where K and K are the familiar Poisson

K[tol(x,t)’-_ y(x-I,t)to(l)dl
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and the Duhamel-Poisson operators

respectively, and

7(z,t)’- (4rt )- ’/2exp( z2/4t }

is the fundamental solution of the heat operator in one space dimension.
If f and F’ are continuous on R, and f is bounded on Nt, then, via the contraction

mapping principle, it is easy to establish locally (i.e. on some strip So:-- [0,t0],
to>0) the existence and uniqueness of a continuous bounded solution of (2.6). Such a
solution is necessarily a classical solution of (2.1)-(2.2) for n 0 on S0. Moreover, from
(2.6), one can bound the derivatives of U0 on SO (see the lemma below), provided the
data f and F are sufficiently smooth. If, in addition, F’ is bounded on Nt, then the
results are global, i.e. on R [0, oe).

If such a U0 is known on any such strip SO (perhaps larger than guaranteed by the
above argument), the problems for the remaining Un (n>_ 1) and all the V are linear
and their solutions are global on SO and one obtains representations and estimates for
the Un, V and their derivatives analogous to those [9] for the linear case. It is to be
emphasized that in the problems (2.1)-(2.2) and (2.3)-(2.5), the derivatives of F are
evaluated only at Uo(x, t) as (x, t) ranges over So. Hence the continuity of F(J) on
ensures the boundedness of F(J)(Uo(x, t)) on So.

We summarize these results in
LEMMA 1. Assume for n =0 that (2.1)-(2.2) has a unique bounded classical solution

Uo on SO N [0, o ]. Let l, m and n be nonnegative integers and assume that f, g belong
to CS(R) with f(J),g(J) bounded on g for O<_j<_s, s=2n+ l+ 2m. Suppose F belongs to
cr() with r=n+ l+ 2m. Then there exists a constant C, independent of x, (and e), and
a polynomial P dependent on l, m, n, such that on SO

IO’ O V (x, llF’"+’- l’ll to ).
Moreoverfor 0

(2.9)  gx’ u.(x, o)1-< IlFr-2ll;to ).
Here IIq,(ll denotes the supremum norm over N of all derivatives (including the function
itself) off, g up through orderj andllF(l]l indicates the maximum over <_l<_j of

sup Uo( x, t))l
as (x,t) ranges over So. Ifj<_O (as happens when l=m=n=O), IIF(J)II is to be replaced
by unity.

The long induction proof of these results uses in a key way (2.6) and Gronwall’s
inequality. The induction step for V+ is based upon the estimate

[D’D‘r ; { o)1x’n+ e-. IDU,t(x,
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where Q is a polynomial, 1n_,- etV_, and (n+ ,- etGn+ ,. The induction step for Un+
is based upon the estimate

IDt DUn+,(x t) sup IDx U+,(x
So

m

j=l

+ [D-jDJ-2+l( Ft( Uo)+1 )l)
-x l,tt

where ,+ is the F+ appearing in (2.1) with the ghest order term F’(Uo)U+
missing. In caring out the induction proof we find it necessa to hypothesize (2.9)
separately.

Remark. If one assumes also that F’ is bounded on , then the above results are
global, i.e. on S0 for any o.

3. A priori estimates. In ts section we use energy integrals to obtain the a priori
estimates (3.2) and (3.3) related to the solution of the initial value problem

Z] t>0,

where q is a given positive continuous function which is bounded and bounded away
from zero,

(3.1) O<qo <_q(x,t; e)<_q, < oo,

for small e and for all real x, and O<_-t<to with qo, q independent of e. The method of
proof is essentially the abc-method of Friedrichs (Protter [17], Morawetz [15]), but with
adaptations necessary due to the dependence of the characteristics of L on e. The use
of energy integrals for estimates in hyperbolic singular perturbation problems seems
first to have appeared in de Jager [12] (see also Geel and de Jager [7], Geel [6]), where
there is a loss of order in the reduced equation, and the characteristics are independent
of e.

We state our result as
L.MMA 2. Let Q denote the open rectangular region (a,) (0, to). Then there exist

positive constants eo,b depending only on qo,q (given in (3.1)), such that for any C/(-)
function Z which vanishes on both the bottom t’-0 and also on the sides x---a and x of
Q, one has

]Z(x,/,; g)]2 < [,()]- { b# fotO# ddT}7 I’ ,[zll=

for all (x, t) in Q, 0<e <- eo, and where

k(e) 1/2be2-F O(e4).
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Moreover, the usual H’(Q) norm of Z,

satisfies

+lz l=+lZxl=)drd ,

where RHS is the right-hand side of (3.2).
Remark. Of course, by density, the inequalities (3.2), (3.3) hold for a broader class

of functions than stated in Lemma 2.
Proof. For brevity, define

h(x,t;e):= [_,[Z](x,t),
I(X;):’-" ,Zt(x,O).

Then for arbitrary constants a, b (independent of x, t) to be specified later, integration
by parts of the identity for 0< < 0,

o--fotfaf(aZ-b bZt)(Z [ Z] + qZ-h)dd’r,
yields our basic identity

1 (6;  )l=dr/ (hF’Z-Z’BZ)dd,

where we have introduced the vectors Z := col(Z, Zt, Zx), F := col(a,b,0) and the
symmetric matrices

A ae2 be2 0
0 0 b

and prime denotes transpose of a vector.

aq bq/2 0 t
bq/2 b- ae2 0 10 0 a

The matrix A is positive definite if and only if b>ae2 >0. Under these conditions
the lowest (necessarily positive) eigenvalue ,(e) of A is given for small e by

.( e) ( b/2)e2 + 0(4 )

as an elementary computation shows. Then by use of the arithmetic-geometric mean
inequality we arrive at our basic inequality

(3.4)

where the symmetric matrix C is defined by

aq- a2/2 bq/2
C bq/2 b-ae2-b2/2

0 0

0

0

2
(3.3) IlZll n’(Q)<--to RHS,
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If a, b can be chosen according to the above restriction and such that C is positive
semidefinite, then (3.4) becomes

b fl

Hence by integration of both sides of this inequality with respect to from 0 to 0, one
obtains (3.3). On the other hand, by use of the elementary inequality

<xIz(x,t)l=-f (Izl + IZxl

we arrive at the pointwise estimate (3.2). In each case b is independent of e on (0, e0]),
with e0 determined as follows.

The matrix C is pointwise semi-definite for given a, b with b>ae2> O, if and only if

(3.5) q>_a/2, a( q-- a/2)(b- ae-b2/2) >-b2q2/4.

An elementary computation shows that for a-q0 (so that the first inequality in (3.5) is
satisfied), the second inequality in (3.5) is satisfied, provided that b is chosen between
the two positive roots of the quadratic function

J(b)’- [ q2 d- qo(2q- qo)] b2- 2qo(2q- qo)b + 2q(2q- qo) 82.

A careful but elementary analysis of the roots shows that there exists a positive eo so
that for 0<e_<eo the quantity b can be chosen independent of e on (0,eo], but
depending on qo, q such that J(b)<_O. The method fails if qo-0 or ql--k Ot. This
completes the proof of the lemma.

4. A related linear problem. To justify our formal asymptotic result we consider
here the linear initial-boundary value problem

(4.1). [,[v]----L[v]+q(x,t;e)v-h(x,t;e) in Q,

(4.2) v(x,O)--vt(x,O)--O ox,
(4.3) v(a,t)--v(fl,t)--O, O<--t<--to,

where Q is the open rectangular region (et,/3) (0, 0).
The a priori estimate of 3 is closely related to this problem and is used in the

convergence proof of our Galerkin approximations.
For problem (4.1)-(4.3) we use the existence/uniqueness and regularity results

embodied in Lemma 3, below. For s_> let/S(Q) denote the subspace of functions
which belong to the usual Sobolev space HS(Q) and which vanish on the bottom and
vertical sides of Q. Then letting e0 denote the positive number in Lemma 2 of 3, our
result is

LEMMA 3. Suppose for each e on (0,e0], the function q C(Q). Then for each
h L2(Q) there exists a unique generalized solution in Il(Q) of the IBVP (4.1)-(4.3).
Moreover for sufficiently smooth q and h (say q,h C3()) with h vanishing in a
boundary strip of the vertical sides of Q, the generalized solution of (4.1)-(4.3) is classical.

For q independent of one can use the Fourier method to establish the assertions
of Lemma 3 (see e.g. [11]). For q depending on t, however, an explicit reference for the
proof of Lemma 3 seems not to be available. Therefore, we have applied the Galerkin
method to prove the lemma. The existence/uniqueness of a generalized solution of a
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similar problem but with q independent of appears in Mikhailov [14, pp. 299-305].
The modifications to the present case are clear from the Galerkin scheme set forth
there. A boot-strap argument based on the Galerkin equations then yields the regularity
result. For the latter result the vanishing of h near the lower corners of Q is vital.

From Lemma 3 it follows that the IBVP (4.1)-(4.3) defines an (inverse) mapping
A, from L2(Q) into (Q). Moreover, again from Lemma 3, for smooth q the restric-
tion of A, to C3() functions which vanish identically in a boundary strip of the
vertical sides maps such functions into classical solutions of (4.1)-(4.3).

Main result. With the above preparations we can now state our main result in
THEOREM 1. Assume

(i) F’(z)<0
(ii) Fcr(R), r= max(8,N+ 6),
(iii) F(0) :0,
(iv) f,gns(R), s--2N+9.

In addition, suppose that the reduced problem (1.4)-(1.5) has a bounded classical solution
on the strip SO [0, o ], o> 0. Then the solution u of (1.1)-(1.3) admits the asymptotic
representation

(5.1)
N

u(x,t;e)-- Uo(x,t)+ X en[Un(x,t) + l/n-l(X,t/e2)] +O(eN+I)
n--I

as e--, 0 + uniformly on SO where N is any nonnegative integer.
Remark. The restrictions (i)-(iv) on F,f and g will ensure that (1.4)-(1.5) and

(1.1)-(1.3) have local solutions, i.e. on some strip [0,t0]. With the additional
assumption that (1.4)-(1.5) has a bounded classical solution on any strip, our proof will
show that (1.1)-(1.3) has a classical solution on the same strip for sufficiently small e.

Proof. The proof consists of examining the remainder Z := u-[U+ eV], where, for
v to be chosen,

l--0

v--I

X
1=0

and the Ut, V are the solutions of (2.1)-(2.2) and (2.3)-(2.5) respectively. Here 0< e <_ e0,
with e0 given in 3. In order to deal with homogeneous initial conditions, put w’- Z-X
where

with

S( x, t; e) ( t/e)(x; e)e-t/e2

1( .X; E)’-- --EvUv_ l,t(x, O) Ev+ 1Uv,t( 9, 0).

Then w is a classical solution of the initial value problem for

L,[w] -F’(U+eV+ X)w- G(w) + h
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with homogeneous initial conditions w(x, 0) = wt(x, 0) 0, and the known nonhomoge-
neous term h is given by

h "-[F(U+eV+X)-F(U+eV)]
+ [F(U+eV)-F(U)-eL[ V]] + [F(U)-L[ U]]--L[ X],

while the nonlinear term G is

(5.4) G(w)’- F(U+eV+X+w)-F(U+eV+X)-F’(U+eV+X)w,

i.e. the difference between F at u and a linear approximation thereto.
We consider now a related nonlinear initial-boundary value problem (IBVP). For

any fixed positive e and (Xo, to) with t0>0, introduce a C(R) cut-off function ’= (x),
which is identically one on the interval [x0--toxo+ to/e on the initial line cut off by
the characteristics of L extending backward through (Xo, to), and which vanishes
identically on (-,x0- 1-to/e and on [Xo+ +to ). Now let a=a(e)<xo-
--2to/e and/3-fl(e)>x0+ +2to and consider the open rectangular region Q’-
( a,/3) (0, 0). The IBVP in question is

(5.5) []=(ff)+/, in Q,

(5.6) (x, 0) = t(x, 0)- 0

(5.7) (a, t) =if(/3, t)-0, O<-t<-to

where G ’G and h ’h. The operator L in (5.5) is the same as that in (4.1) (also in {}3)
with

q(x,t; e)= -F’(U(x,t; e)+ eV(x,t; e)+ X(x,t; e)).

Since F’ is continuous and negative on R, then the q given here indeed satisfies the
condition (3.1) for e(0,e0], due to the boundedness of U+eV+X on the strip

[0, to]. Therefore the estimates of {}3 apply to so that the inverse operator A of
{}4 may be used. Hence we formally convert the IBVP (5.5)-(5.7) to the operator
equation

and we are led to consider fixed points of the operator A where

a.(v)’-

In the appendix it is shown that A has a unique fixed point w* which turns out to
be a classical solution of the IBVP (5.5),(5.7). Moreover, in the characteristic triangle
T, the triangular region bounded below by the initial line t--0 and above by the two
characteristics of L extending backward through (Xo, to), the solution w of the IVP for
(5.2) with homogeneous initial conditions and w* coincide.

The pointwise estimate (3.2) applied to w* yields

Iw*(x,t;e)l
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so that from (A. 1) in the Appendix and the arithmetic-geometric mean inequality

sup Iw*(x,t;e)l2< --1 F" f0 sup
a<--x<--fl ---" [k( )] ( p-- O)l 112,

’If II=,

Iw*(x,z;e)14dr

and hence from a quadratic Gronwall inequality (see e.g. [18]), using I1"11 to denote the
Lp(a) norm,

22[x()]-’llfill,.(5.9) sup Iw*(x t;e)l: --<
a_<x_<# 1-3,to

where 3’ "= (P-- a)[X(e)]- 2 II"II, II fill .
Taking into account the problems satisfied by Ut, Vt, one sees from (5.3) that

At this p_oint the estimates of the L2 norm of h proceed as in the linear case [9, p.
249] so that Ilhll- O(e2). Hence one has from (5.9) that w*- O(eV- ).

Thus by choice of v-max(N+ 2,4), the function w in T and therefore Z is
O(ev+ t) uniformly on So. From this the assertion (5.1) follows.

Appendix. The fixed point of A,. In this appendix we sketch briefly a proof, for
small e, of the existence and uniqueness of a fixed point in L2(Q) of the nonlinear
operator A introduced in (5.8). The fixed point is shown also to be a classical solution
of (5.5)-(5.7).

For several technical reasons involving the nonlinearity F, we were led to examine

A as a contractive map on the following closed subset of L2(Q) (as above II’llp
denotes the L,(Q) norm):

{vL2(Q)NLoo(Q)" Ilvll:-<o, Ilvll -<o},
where p, o (to be determined) are positive numbers in (0, 1) and may depend upon e.
Note that is not empty, since if

v oo _<[m(Q )] -,/2p,

then Ilvll_<p, where m(Q) denotes the area of Q and depends on e.

Proceeding to the needed estimates, we see from the definition of G in (5.4) and
Taylor’s theorem,

(A.1) I(v)(,t)l<-I()llv( t)! f0 IIF"ll*ndn< Iv(x t)l2

where

IIF(J)II, sup IFcJ)(X)I



1178 GEORGE C. HSIAO AND RICHARD J. WEINACHT

for [)q<-(lU(x,t;e)/eV(x,t;e)/X(x,t;e)l/ 1), for (x,t) in SO and e in (0,eo]. Thus
IIF)II, depends on eo determined in 3 but not on e in the interval (0,eo]. The fact that
I1,11-1 ensures that the argument of F" lies on a bounded interval. If F" was
uniformly bounded on R, there would be no need here to consider L as well as L2.

Hence from (A. 1)

and similarly,

II(v)ll < Ilvll- 2

(A.2) (v )112 <-
IIF" II.

2 ollvll=.
In a similar way for v in , i- 1,2,

(A.3) II(v)-g-,(v=)ll=<-fc(F)(llvlll +llv=ll)llv,-v=ll=,

~" F"ql and therefore on e0 but not e.where C depends only on IIF I1,, II- ,,.,
The operator A (-L) of 4 maps from L(Q) into l(Q), and H(Q) is

compactly imbedded into L2(Q) (see [13, p. 293]). In the present case the relevant
estimate is

for any v in/(Q). Therefore using the estimate (3.3) and (A.2)

[,A(v)ll2<_[m(Q)]’/2[X(e)]-’/2o. { IIF’’]I* }2 ollvl12/ 11;112

Similarly

{IA(v) oo-’<[X(e)]-l/2[m(O)]l/2{ ,l{F"I1,2
From these estimates it follows that for small e the operator A maps into itself,

provided that o-o(e) and 0-0(e) are chosen appropriately. Here we have used the
fact that Ilhl12 and Ilhll are O(e") for as large an rn as we wish by choice of ,.

Moreover by use of (A.3)

IIA(v,)-A(v=)ll=(F)[m(Q)]/z[h(e)]-’/2

(llvll + IIv=ll )llv- v=ll.,

allowing us to choose 0 to meet the previous requirements and also to make A a
contraction on balls of radius 0 about the origin in L:z(Q).

ThusA has the desired fixed point w* in L2(Q). But since

w*-AG(w*)+Ah,
it follows from the properties of A of 4 that w* is in/(Q) and so by boot-strapping
turns out to be a classical solution of (5.5)-(5.7), provided that F,f and g satisfy the
restrictions of Theorem 1 of 5.
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A CHARACTERIZATION OF THE SPACES
BY MEANS OF HOLOMORPHIC SEMIGROUPS*

S. J. L. VAN EIJNDHOVEN, J. DE GRAAF" AND R. S. PATHAK

Abstract. The Gel’fand-Shilov spaces $ff, a 1/(k+ 1), t= k/(k+ 1), are special cases of a general type
of test function spaces introduced by de Graaf. We give a self-adjoint operator so that the test functions in
those $ff spaces can be expanded in terms of the eigenfunctions of that self-adjoint operator.

AMS-MOS subject classification (1980). Primary 46F05, 35K15

1. Introduction. De Bruijn’s theory of generalized functions based on a specific
one-parameter semigroup of smoothing operators [1] was generalized considerably by
de Graaf [4]. In brief this extended theory can be described as follows: In a Hilbert
space % consider the evolution equation

where 9 is a positive, self-adjoint operator, which is unbounded in order that the
semigroup (e-tt)t>_0 is smoothing. A solution u of (1.1) is called a trajectory if u
satisfies

(1.2i)
(1.2ii)

Vt>0 V’r>O" e-au(t)-u(t+r),
Vt>0" u(t)%.

The limit limt,oU(t ) does not necessarily exist in !
6r The elements ofThe complex vector space of all trajectories is denoted by ,t-

-,a are called generalized functions.
The test function space ,a is the dense linear subspace of consisting of

smooth elements of the form e-tXh, where h% and t>0; we have ,:
LJt>oe-tt(6). The densely defined inverse of e-tgx is denoted by etgx. For each ,
there exists z>0 such that e*a makes sense. The pairing between $,a and ,a is
defined by

(1.3)

Here (.,.) denotes the inner product in %. Definition (1.3) makes sense for >0
sufficiently small, and due to the trajectory property (1.2i) it does not depend on the
specific choice of r. For further results concerning this theory we refer to [4].

The aim of the present paper is to show that for certain Gel’fand-Shilov spaces $
[2] there exists an operator 9 such that -c,a. This leads to the result that the
elements of the dual of ff can be interpreted as trajectories. Furthermore, we find that
a function in the studied $ff-spaces can be developed in a series of certain orthonormal
functions.

*Received by the editors February 19, 1982.
Department of Mathematics, Technological University, Eindhoven, the Netherlands. One of the authors

(SJLVE) was supported by a grant from the Netherlands Organization for the Advancement of Pure Research
(Z.W.O.).

1180



CHARACTERIZATION OF SPACES BY HOLOMORPHIC SEMIGROUPS 1181

2. Eigenfunction expansions of test functions in . Let us consider the following
eigenvalue problem in

dE

(2.1) dxEY+() xEk)y O,

where is a real number and k a positive integer. It is well-known that the operator
-d2/dx2+x2k has a point spectrum and the set of eigenvalues () is real, positive
and unbounded. In the sequel we shall regard it as ordered with hn+l kn, n--0, 1,,--
The corresponding normalized eigenfunctions (Pn } form a complete orthonormal basis
in E2(R). So by the Riesz-Fischer theorem everyf22() can be represented by

(2.2) f=
n--0

where a, ( f, q, ) is an e2-sequence.
First of all we gather some of the estimates for the eigenvahes X, and the

eigenfunctions q, of the problem (2.1), and then characterize {p, } as elements of certain
ff-spaces. We take ,(x)>0 for large positive values of x, cf. Titchmarsh [5,Chap.
VIlil.

From Titchmarsh [5, p. 144] we have

(2.3) ,,,--O(n2/(+’)), n-)m.

According to Titchmarsh we have the following estimates for the normalized eigenfunc-
tions

(2.4)
2 hln+V4kI  (x)l 3 for allxR, nN [5,p. 168],

(2.5) [q,.(x)l<-q,,,(xo)exp{-f(u’--X,,)!/du} for/-->/0-->hk/2 [5,p. 165].

We take XO--(kn)l/2k. From a straightforward calculation it follows that

2 { [x[k+l }[q’(X) --< -5 hi"+ 3/4kexp 4 k+l

for Ixl_>2X./2k. For any number a, 0<a< 1/4(k+ 1), we have

(2.6) [,l,,,(x)l <-g,,exp(-alxl"+), x,
where

2 )l.+ (2k+l (k+ l)/2kK,, -5 3/4kexp a).,, ).
The eigenfunction k,(x) can be extended to an entire function ,(z). We want to
estimate pn(z) in the complex plane. First we produce an estimate for Ik,(0)l. Let >0
denote a point at which p,2 reaches its absolute maximum. We have 0ln/2k.
Integrate the equality

d )2 d
dx ( l’ ( Xn-- x2k ) ---x ( ff/n2 )
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from 0 to . A crude estimate yields

2 1 + 2k kln+3/2+3/4kI;(o)1-< 3

Next, following the technique of Titchmarsh [5, p. 172] it can be shown that

k,(z)=Y()(z) + E (Y(m)(z)--Y(m-I)(z)}, ZC.
m--I

Here y(O)(z) k,(O) + zk(O) and y(m)(z ), m --> 1, can be obtained from

With

y(m)(z)---y(O)(z)-’l- (s2k--.n)y(m-l)(s)(W--s)ds.

lY(">(z)-Y<m-’>(z)l<ly(>(z)l{Izl:++x"} (2m)t
we get the estimate

Here

I+( z )1 K.(lz I)exp(Iz[++ -I x’/lz I).

4. + 3/4k 1/2K.(lzl)- -h. (1 +(1 +2k)x’./ll)_>ly<(z)l
Now let d>0. Then

exp( X’f+ Iz ) _< exp( d-klz[k+’)
whenever Izl_>d./++ and

exp( x’+/=Iz I)_< exp( d,(+ l)/2k )
whenever Izl d +/z Thus we have

(2.7) I+( z )1-K.(lz [)exp(dX(+ ,)/2k )exp(1 + d-k )lzl
++l

THEOREM 1. The eigenfunctions of the eigenvalue problem (2.1) are elements of the
space , where a 1/(k+ 1) and fl k/(k+ 1).

Proof. Since k, is an entire function and since it satisfies (2.6) and (2.7), in view of
the criterion of Gel’fand and Shilov [2, p. 220], the result follows. []

THEOREM 2. Letf2(),

and suppose there is >0 such that

a,,--O(exp(--’rh(n+"/Zk)).
Thenf$k/k+l

l/k+l"
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Proof. In (2.6) we can take a>0 so small that ’>a2k+. Then for some C>0 and
all x

[f(x)l X tan[lqn(x)l
n---0

<-C X Knexp{--(z--a2’+l)(n+’)/2k}exp(--alx[’+l)
n--O

So If(x)lC’exp(-alxlk+l) for some C’>0. Further we can take d>0 and d<-, so
that with the aid of (2.7)

If(z)l < 2 lanllq(z)l
n--0

_<exp((1 +d-)lzl+l) X K,,(lzl)exp(-(z-d)2t(k,+’)/2’)
n-O

-<C" exp((1 +d-’)lzl+’)
for some C">0. By the criterion of Gel’fand and Shilov as used in the proof of
Theorem f$k/k+l/k+l"

[’-1

Let 9 k be the self-adjoint operator in 2() defined by

d 2

(2.8) 9 k + x2k"
dx 2

Then as a corollary of Theorem 2 we have
COROLLARY 1. The test function space e2(a),, is included in /+/+ . Here k----

(k)(k+l)/2k.
Proof. The functions q, are the eigenfunctions of the positive self-adjoint operator

3 with eigenvalues (nk+l)/2k. Let fge),,. Then there exists h2() and z>O
such that

f e-,3,h.

This provides (f,p,,)-exp(--A(+/2’)(h,p,). So the coefficients (f,,) are of the
order exp(-,h(+ l)/2g). By Theorem 2 we havefg/’+

l/k+ " [-’]

We want to prove the converse of Corollary 1"
THEOREM 3.

__k/k+l
"2( ), 1/k+

In the proof of this theorem we need some lemmas.
LEMMA 1. Let Mr,Jr be nonnegative integers for r- 1,2,. .,n. Then

Oi’xJ’Di2...Di"xJ"- cij(l)xlJ-tlDli-tl,
1[

where D is the differential operator d/dx and where the coefficients ci( l) satisfy

J!I%(1)1-< (j-l)!

(c,j(l)--O if l>min(i,j)).
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We use multi-indices, and Ii1-i+ i2 + +in, i!"-il!i2! in!, etc.

Proof. See Goodman [3, p. 67].
LIMMA 2. Let f be an infinitely differentiable function which satisfies the following

inequalities forfixed A, B, C>0 and a, fl> O, a + fl >_ 1:

(2.9) [(xDtf)(x)[<_CABtkl/t, k,l-O, 1,2, .
Then for each n N and ,j f

(Di’xj’ Di"xJ"f )( x)lx C alnl(llJlUllilall

where C C, A =2a+leA, B =2elB and e-(a+B)-.
Proof. Let n M and i,j n. Then by Lemma

With the assumption (2.9) we estimate this series as follows:

I<--min(i,j)

_<CE 1 J!
1! (j--l)! li--11!

<_CAUlBII, 1--( (j-l)’ li-ll’
Ij-ll i-

The latter series can be treated as follows

l<--min(i,j)
I--T. (j- 1)! li- ll!

[j- 1[ u-zlli- II

_< sup sup J
i,i<_I,I [i-ll t(IZl !) I-1 Ij-ll!(IZlt)

-1

We have

( )-’
,<_j I11

With the aid of the inequality n <n <n !e n"

(1i1!) a lal’-’l<:

(li-II !)ot li--l

<--2lilellil([i[ !)[ (li-l[)(-)[li-tl<--2lile[lilli[/lil
and similarly

l-ll ) <2ol31JleOUllJlUl"
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Combining these results, we derive

(D xj’ Di’,xJ,f ) ( x ) < calnlil lj ’t all

2a+ eaA B 2"e#B. E]where A
LEMMA 3 Forf q /k+

/k+ we have

f(x)i<-KN p p-O, l,2,

where K andN are fixedpositive constants depending on f
Proof. Let a 1/(k+ 1), fl- k/(k+ 1). Let fff. Then there are positive con-

stants A, B, C such that for all x R

with l,q=0, 1,2,....
Now let p q N. Then

1(X Dqf )(X )1--< calnqlatqoq,

p

X
s--0

where Vs(D2, x2k) consists of a sum of (P) combinations of the form

(D2 )il(x2k )Ji (D2 )in(x2k )Jn
where i + + i--s andj + +j=p-s. With the aid of Lemma 2 we have

withA 20+e" and B 2"eB. So

](DX--x2)Pf(xl[C
p

C
s=O

=C(A
Substituting the values of and B it follows that

[(D2 x2 )Pf(x)1 C(A2+B2 )pp2pk/(k+ 1)

whereA=((2k)"A) and B 2B.
Proof of Theorem 3. Because of Corolla we only have to prove the inclusion

So letf/+/+. Put a (f,), nN. Then for eachpN fixed

With the aid of Lemma 3 we get positive constants KI and NI such that
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And

By (2.4) and (2.5)

n--0, 1,2,-.

8 tln+ 5/4k Ckkln+ 3/4k<-- +-3

where ck only depends on k. Therefore

la.l--<c kln+ 5/4kt-pgfN[p2pk/(k+ 1)

Finally taking the infinum of the right-hand side with respect to p we arrive at

lanl<_c,Kf X,+ s/4kexp (2fie-tNf-1/2/3) kln/’2O
with/3--k/(k+ 1). From this the assertion follows.

By taking Fourier transforms in Theorem 3 we derive easily
THeOreM 4.

$1/+ --$ek/k+l (n),

where k-((-d2/dx2)k + x2)+)/.
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ON SOME INTEGRAL EQUATIONS WITH LOCALLY FINITE
MEASURES AND L-PERTURBATIONS*

STIG-OLOF LONDEN%

Abstract. Let g C(R),fLoc( R +) and let/ be a real locally finite positive definite Borel measure on
R +. We investigate a relation between the solution of the nonlinear scalar Volterra equation

x’(t)+f[0, t]
g(x(t-s))dl(s)=f(t)’ t@R+’ x(0)=x’

and the solution of the linear equation with the same data

z’(t)+f[o, tl
z(t-s)dt(s):f(t)’ tGR+’ z(0):x"

This relation, when combined with results (established in this paper) on the set of bounded solutions of
certain limit equations

y(t)+fR+g(y(t--s))a(s)ds=O, tR,

allows us to obtain new asymptotic results for x(t) in the case when both/ and f are large in a precise sense.

1. Introduction. In this paper we analyze a certain connection between the
asymptotic behavior of the solutions of the nonlinear scalar Volterra equation

(1.1) x’(t)+ g(x(t-s))dlx(s):f(t), tR+-[0,), x(O)--Xo,
[0, tl

and the corresponding behavior of the solution of the linear equation with the same
data

(1.2) z’(t)+ z(t-s)dlx(s):f(t), tR+, z(O)-xo.
[0,t]

As a consequence of this connection we obtain some new asymptotic results on (1.1) in
the case when both g andf are large.

In the equations above, g, #, f, xo are given real-valued, while x, z stand for the
solutions. These solutions are always assumed to exist for R+, to be locally bounded,
and to satisfy the corresponding equations almost everywhere on R/. Throughout the
article the following basic hypotheses on g,/x, f will be made:

(i) g C(R),
(1.3) (ii) / is a real, locally finite, positive definite measure on R+,

(iii) fLo(R+).

Define Q(q,/x, T) for q0 Loc(R+), T>0, by

Q(p,lx,T)-fo%(t)(q.l)(t)dt, where

(1.4)
(,/J,)(t)

def f[0 qo( t- s ) dt( s ),
,t]

*Received by the editors June 11, 1981, and in revised form May 1, 1982. This work was sponsored by
the United States Army under contract DAAG29-80-C-0041. The work was done while the author was
visiting the Department of Mathematics and the Mathematics Research Center, University of Wisconsin,
Madison, Wisconsin 53706.

"lnstitute of Mathematics, Helsinki University of Technology, Espoo 15, Finland.
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and let x6L(R+). Then, as is well known [9], [10], a large amount of information
concerning the asymptotic behavior of g(x(t)) can be obtained provided one succeeds
in establishing

(1.5) sup Q( g, l, T ) <
T>0

where g- g(t) g(x(t)). Note that if in addition to x L(R/) one takes f small, i.e.,
fL(R+), then (1.5) follows easily.

If in addition to (1.3iii)f merely satisfies

(1.6) lim f(t) 0,
t---, o

then the asymptotic analysis of x(t) becomes significantly more difficult, as (1.5) is now
out of reach. However, by taking/ small enough, in particular by assuming

(1.7) f+t dll(/) <

(Itl is the total variation measure of /), and by working with the limit equation
corresponding to (1.1)

(1.8) y’(t)+fl+g(y(t-s))dl(s)-O, tR,

one may even now obtain asymptotic results on bounded solutions of (1.1) [3], [12].
Observe furthermore that if in addition to (1.3i) g(x) is taken locally Lipschitzian, then
(1.7) may be weakened to/x finite [4].

The aim of the present work was originally to extend the results of [3], [4], [12] so
as to apply to equations with/ only locally finite without excluding the possibility that
f satisfies only (1.6). However, making use of a simple device, one may connect the
asymptotics of (1.1) and (1.2) and thus reduce (under certain hypotheses) the asymp-
totic analysis of (1.1) to that of (1.2). The fact that (1.2) can be explicitly solved for z
independently of the size of/ and f then allows us to realize our original goal. This
approach has earlier been applied in [2, Thm. 3] to obtain a result ,on the integrated
version of (1.1). Our Theorem 1 is essentially a restatement for (1.1) of this result.

Theorem has the advantage of having a short and lucid proof. Also observe the
important point that nothing but continuity is imposed on g. The assumptions of
Theorem do, however, include a moment condition, (1.11), on the second derivative
of the differential resolvent of/. Although this condition is satisfied (Lemma below)
for dl(t) a(t) dt with a(t) nonintegrable but sufficiently monotone, it is still the case
that verification of (1.11) in general is quite hard if/ is only locally finite. It should also
be observed that Theorem requires/2() to be finite for 0v0, thus excluding cases
like dl- a(t) dt with a(t) t- 1/2 cos t.

One is consequently motivated to try to remove (1.11), (1.12). This is done in a
series of steps, Theorems 2-4. Theorems 2 and 3 constitute auxiliary results, but as they
are of independent interest we prefer to state them separately. Observe that these
statements concern equations with a finite measure a. Theorem 4 then corresponds to
Theorem but (1.11), (1.12) are now absent from the assumptions. Certain other
conditions have instead been added, in particular on g(x). These additional assump-
tions on g have the advantage of being easily checked, and they are not overly
restrictive. The added assumption that g(x) be locally Lipschitzian is basic to the
approach we use. The remaining additional hypotheses on g, roughly speaking, result
from the fact that in the first part of the proof of Theorem 2 we establish g(y(t )) LZ(R )
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(for which some condition of type (1.24) is needed if 0eZ), and not [y(t)+ g(y(t))] e
L2(R) (which perhaps only requires that g satisfies some smoothness condition). Al-
though the latter conclusion undoubtedly is the natural one (under the assumptions on
a made in Theorem 2), we have not been able to establish it without any sign condition
on g.

Our last result, Theorem 5, states a new boundcdness result on (1.1). It displays a
connection between the existence of bounded solutions of (1.1) and the total variation
of solutions of (1.2).

TrIEORI3M 1. Let (1.3) hold and assume r LAC(R/) satisfies

(1.9) r’(t)+(r.lx)(t)=O a.e. onR+, r(0)--1,
(1.10) r’ (L’ NBV)(R+).

Define , to be the measure corresponding to -r’, thus v([0, t])= -r’(t), >-0, and let

(1.11) fR+t dl’l ( ) < o.

Suppose

(1.12) 1/2 (to)l< o, to =/= O,

and let the set Z defined by Z (tolto 4 0, Re/2(to) 0} be at most denumerable and such
that

(1.13) Im/2 (to) =0, toZ.

Finally let x, z satisfy respectively (1.1) and (1.2) and be such that

(1.14)
Then if
(1.15)

x(LACL)(R*),

limz(t)=z()

z CLAC(R+).

exists (and is finite) one has

(1.16) lim [x(t+d)-x(t)]=O Vd>0,
too

(1.17) lim [r(oo)x(t)+[1-r(oo)]g(x(t))]-z(oo).
t-*oo

If in addition z’ L(R+), lim/_, oo esssup>_tlz’(s)l--O then limt_, o esssups>_tlx’(s)[-O.
By /2(to), to4:0, we mean lims_i,o,Res>o/i(S) where #(s)=fR+e-tdl(t). To see

that this is well defined, note at first that as/ is a positive definite measure then/ is a
tempered distribution [9, p. 229], and so the Laplace transform #(s) exists for Res>0.
Then observe that by (1.9)

fR+e-Str’(t)dt-x (s)[s+/2 (s)]-’, Res>0.

By (1.10) the left side is continuous for Res_>0. Hence limsio,Res>ofZ(s)[sH-ft(s)] -I
exists for toUR. One concludes that lims_io,Res>0/i(s) exists, possibly infinite, for
to :/= 0. The assumption (1.12) does, however, exclude this last possibility.

Concerning (1.10) note that this condition is (locally with respect to to near to--0)
weaker than the assumption r LI(R+). This is seen as follows. The Fourier transforms
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^def
’, (for h L(R), let h fne-"th(t)dt) may be written respectively as

i60[/2 ]-I + i0[#]-l+l
Thus (1.10) requires (locally) io[/2] -1 to behave as the transform of an Ll(R)-function
whereas the assumption rLl(R+) imposes (locally) the same behavior on/2-1. The
former is clearly a weaker condition near 0-0. If for example dl(t)-da(t) with
a(0)-0, a(t)- 1, 0<t_< 1; a(t)-O, t> 1; then/2(0)- 1-cos0+ sin and thus/2 does
locally near 0-0 conform to the requirements imposed by Theorem 1. Yet/2(0)- 0.

In applications, one of course frequently has r(c)-0. In this case (1.17) reduces
to limt_, oo g(x( )) z(o).

A class of only locally finite positive definite measures for which the corresponding
differential resolvents do satisfy (1.10), (1.11) is given by

LEMMA 1. Let d-a(t)dt where a(t) is nonnegatie, nonincreasing and convex on
R+ with aLl(0, 1) and s+t(s)=/=O, Res>0. Then rL(R+) and (1.10) hoM. If in
addition -a’(t) is convex then (1.11) is satisfied.

The fact that rLI(R+) under the assumptions of Lemma is proved in [8]. The
assertions (1.10), (1.11) follow by straightforward estimates making use of [8, Lemma
1], [1, Lemma 5.1]. See [5] for more details.

Our next result constitutes a first step towards eliminating (1.11), (1.12) from the
hypotheses of Theorem 1. It gives conditions under which the set of bounded solutions
of the equation

(1.18) y(t)+fl+g(y(t-s))a([O,s])ds-O, tR,

contains only the trivial solution, in case a is a finite measure and a(R+)- 0.
Define a(t)--a([O,t]). Thus &(o)- fR e-i’tda(t), and (o)- fR+ e-i’t a(t)dt.
THEOREM 2. Let

(1.19) g(x ) be real, locally Lipschitzian, x R,
(1.20) a be a real, finite, positive definite Bore! measure on R+

(1.21) aL’(R+).
Define Z by Z-(olRe&(0)-0) and suppose that Z can be written as the union of three
pairwise disjoint sets ZI, Z2, (0), such that

(1.22) ImS(o)-O,
(1.23) ImS(co)vO, oZ2,

Finally assume that for some K>0

(1.24) xg(x)>_O,

0 Zl,
inf Re ( 0 ) > 0.

oz(o)

IxlK.
Define Yr- (Yly LAC(R), Y satisfies (1.18), IlYllo(R
(1.25) Yk- (0).

<_K). Then

Observe that if y satisfies (1.18) then y also satisfies

(1.26) y’(t)+fR+g(y(t--s))da(s)--O a.e. on R.

Also note that (1.21) and the second part of (1.23) imply that Z2(0} must be
compact.
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From Theorem 2 one immediately deduces the following result concerning the
asymptotic behavior of solutions of

(1.27) x(t)+ft ,g(x(t-s))a([O,sl)ds-F(t), tER+
.t

THEOREM 3. Let g, a be as in Theorem 2 and suppose F is such that

(1.28) F BC(R+ ), lim F( ) 0.

Let x be the solution of (1.27) and assume

(1.29) IIxlILR+) <_ K,

where K is as in (1.24). Then

(1.30) lim x(t) 0,

If in addition,

(1.31) FLAC(R+),

then

(1.32) x LAC(R+),

lim g(x(t))-O.
t

lim ess suplF’(s )1- 0,
t--- o st

lim ess suplx’(s)l- O.
t-

From the above one finally obtains an asymptotic result on the bounded solutions
of (1.1) with assumed only locally finite and without (1.11), (1.12).

THEOREM 4. Assume ( 1.3) and (1.19) hoM. Let r LAC(R+) satisfy (1.9), (1.10) and
suppose

(1.33)

Also let

(1.34)

(1.35)
(1.36)

lim r(t)- lim (r,f )(t)-O.

def
Im/2(w)-0 foroZ- (0l04:0, Re/2(o)-0),

xg(x)>O, x4:0,

lim infx- g(x ) > O.

Finally suppose that x (LAC f3 L )(R+) satisfies (1.1). Then

(1.37) lim x(t) 0.

If in addition

(1.38)

then

(1.39)

lim ess suplf(s )l- 0,

lim ess suplx’(s)1- 0.
oo s>_t

As the solution z of (1.2) is given by Z-xor+r,f, it is clear that the assumption
(1.33) implies limt_ooz(t)-O. Analogously, (1.10), (1.38) yield limt_ esssup>_lz’(s)l
--0. Concerning the size of r we note that rL1(R+) is not explicitly required in
Theorem 4, only (1.33).
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Our last result concerns the existence of bounded solutions of (1.1).
THEOREM 5. Assume (1.3), (1.34) hold and let

(1.40) [g(x)l<-c[l +G(x)], G(x)>-ex2-c, xR,
def

for some c, e>0, where G(x)- fg(u)du. Let x, r be locally absolutely continuous
solutions of (1.1), ( 1.9) respectively and suppose that

(1.41)

(1.42)
Then

(1.43)

r,r’Ll(R+),

fLAC(R+), f’L’(R+).

sup Ix(t )1<.
t_R+

Earlier boundedness results on (1.1) with positive definite kernels (see [6], [11])
have required fLP(R+), with p= 1, 2. Obviously Theorem 5 allows much larger
nonhomogeneous terms.

2. Proot ot Theorem 1. Convolve (1.1) with r and use (1.9). This gives

(2.1) r,x’-r’ ,g(x)--r,f.
def

Note that if both fl, f2 are measurable functions defined on R+, then fl *f2-
ffl(t--s)f2(s)ds. An integration of the first term on the left side of (2.1) by parts
results in

(2.2) x(t)-foth(x(t-s))r’(s)ds-z(t ), tR+

def
where h(x)= g(x)-x, xR, and where we have used the fact that Z=xor+r,f.
Differentiate (2.2) to obtain

(2.3) x’(t)+f[o,t]h(x(t-s))d’(s)-z’(t) a.e. on R+

From (1.9), (1.10) and from the definition of v, it follows after straightforward compu-
tations (9- fR/ e-itdv(t)) that

(2.4)

(2.5) Img()-w2Im/2()lio+/2(w)l-2+l/2()121i+/2()1-2, 0,

(2.6) 9(0)--0.

As/ is positive definite we have Re/2_>0, R, v0, and hence

(2.7)
and by (1.12), (2.4), (2.6)

(2.8)
But by (1.13), (2.5), (2.6)
(2.9)

Re()>O, R,

Re(to)-O iffZU(0).

Img()-O ifZU(0).
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From (1.3), (1.10), (1.11), (1.14), (1.15), (2.7)-(2.9) it follows that we may apply 12,
Cor. 3b] to the equation (2.2). This gives (1.16) and

lim (x(t)+h(x(t))[1-r(o)])-z(oo).
t-oO

Substitute the expression for h(x) to get (1.17). Provided z’L(R+),
limt_.oo esssups>__tlz’(s)[-O, we obtain limt_.oo esssup>_lx’(s)l=0 by applying [12, Thm.
lb] to (2.3).

3. Proof of Theorem 2. We begin by demonstrating that

(3.0) sup Ilg(y())llz:(g)< o.
Y Yr

This will occupy us until the beginning of the paragraph containing (3.47).
For >0 we define

2-- sup f_ 12(3.1) m [g(y()) d’.
Y Yt,:

2Assume limt_.oo m OO, otherwise (3.0) holds. Then choose for each t>0, Yt Yk such
that

(3.2) ft_ [g(yt(z))12d=mt.

As Y/c is translation invariant, one also has

(3.3) sup fs+tlg(y(’r))l-d’r-sup fs+t[g(yt(’r))12d’r-mt.
y Yx" s--t sR s--t

sR

Take T>0 (we will later choose T sufficiently large) and let t> T. In the estimates
which follow we repeatedly obtain upper bounds f,., which are functions of T. Each
function f(T) is a priori given by g, a and K. In particular note that each f is
independent of and Yr. An odd-indexed bound fE+(T) is always a monotonically
decreasing function of T and satisfies

lim f2+ (T)-0,
T--, o

whereas an even-indexed boundf:(T) satisfies f2 Loc(R+).
Multiply (1.26) by g(yt(’r)), integrate over [-t,t], split the integral term into two

parts and define zt, gr, Gr by

(3.4) zt(’r)--g(yt(’r)) Iwl<t, zt(’)--O,

gr=suplxl_<c Ig(x)l, Gr--suplxl_<r IG(x)l. This gives, after an application of Parseval’s
relation,

(3.5) (2"a’)-lfR[’tl2Re6t()d<-2GI’:+fttg(Yt(’r))f(-r+t, oo)g(Yt(’r--s))da(s)dr]"
As a is positive definite, one has by (3.3) and after estimating the right side of (3.5) (see
[4, Assertion 1])

(3.6) [ ItRe&lEdo<--m2f(T)+f_(T), t> T.
"R
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Define ut, ft by
(3.7) ut(r)=y[(r ), Il_<t, u()-0,

O, "r<

f( g(Yt(’r-s))da(s), Il-<t,
(3.8) ft(r)- ,+t,)

f[,r-t,’+t]g(Yt(’r--s)ldt(s)’ "r>t.

Then

(3.9) ut(r)+fRzt(r--s)da(s):ft(r ) a.e. on R.

Note that as a is finite and ut, z have compact support, then ut, zt, ft(L1 nL2)(R),
and so the Fourier transforms to follow are well defined.

Choose % (0, 1) such that (recall the second part of (1.23))

(3.10) 2 Re(,)_>(0), 1,4_<%,
and let X>0 satisfy

(3.11) Ig(x)-g(y)l<XIx-yl for Ixl, lYI<-K.
def def

Denote ao max(l, sup,nl&()12),/3- infoz2Re(o). Then take any e(0, 1) such
that

(3.12)

(3.13)

(3.14)

2 Re (o) _>/3>0 for SO where

def
So (ldist(,Z2)e, Ilm&lZe,

Divide R in four pairwise disjoint parts S; as follows:

def
(3.15) S (,111> },

def
IIm 19- < e},(3.16) S2- (1o<11_<

(3.17)
def

5 (lo<lol_<e-, IIml=_>e, dist(o,Z_)>e),
def

(3.18) S4 So

Note that R- U4=Si In what follows Ki(e, T) will denote bounds which are indepen-
dent of and Yt, but which do depend on e and T.

Our next goal is to show that there exists a constant c (depending only on oo,
,

ao and in particular independent of t, Yt, e, T) such that, provided T is fixed sufficiently
large, then

(3.19) f\s4
for > T.
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By (3.9)

(3.20)
and so

(3.21) 2-’]a/] 2 -< ]St &] 2 -+-I1

wR,

Integrate (3.21) over R\S4 and estimate the right side. Obviously

f 12tl2da’(3.22) 12tfl2 dw<a
-<1,,,I

(3.23) fs2 I’t&12 da<eo-<l,l letl2 dwq- let Re&12 dw"

Then note that by (1.22), (1.23), (3.17) there exists (e) (0, 1) such that Re t(o) _>

61/2, w $3" Take any such 8. Then

(3.24) fs3fit&12daoS-lfR let Re &l2 dw.

By slight modifications of the estimates of [4, Assertion 2] one gets

(3.25) fR Iftl2d<-mtf3(T)+fa(T)’ t>T.

From (3.2t)-(3.25) and from (3.6) follows

(3.26) 2-fR lat}2dw<---Im2tfs(T)+-f6(T)
\s4

Choose g,, C(R) such that

Ig,(x)l_<X,

define a,,t, ,,t by

[tl 2 dw +e Itl 2
o-<11

Ixl K, lim suplgn(x)-g(x)l--’O
n-, m ixl<_K

o,

nt()-- --- [gn( yt(’r))]’
O,

Irl_< t,

Irl> t,

and observe that the three relations

lim L I’t()-&nt()12dw-O’
n

IS,t( )12 4gw1-2+ 21o1-IK, ( )1

Ifl,,t(.r)l<_Xlut(r)l, rR,
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are an easy consequence. Now use these three relations to estimate fo<v<<.lollfi,t[2dco
upwards. Use the first to replace t by fnt, the second for the step from &nt to co-l/,t.
Finally, by the third,

dco<T-2 Intl2dco-2r,-2 lfl/12d

G2rr,2,-2fa lutl2 d’--?2"y-2fR latl2 dco.

Hence, for any ,> 0,

(3.27) fv I’t[2dco<2X2"y-2fRlatl2dco+4g23:-I
Use (3.27) (with , coo, e-l) to estimate the right side of (3.26). (Note that

m foo<lol
l’" tl 2 dco + .fl,ol <_ ,oo I/I 2 dco. )

This yields

(3.28) 4-fR\S Iltl2dco<-lf5(T) flo. Itl2dco-F-lf7(T)fR I/,tl 2 dco
I<O

+ecof, Itl2dco+-lf8(T)
s4

where we have also used (3.12) and defined co 2ct0,2 + 22co-2. Choose T sufficiently
large so that

-lf7(T)<8-le 8- lfs(T)_< 8-’e.
From (3.28) one then has, for t> T (recall that e< 1),

(3.29) fa\s Iltl2dco<eflto 1/12 de0 + e[ 1-+-8colf, ltl2do+8,-f8(Z ),
I-<oo s4

and so (3.19) holds, with c + 8co and K 8-f8
In what follows we wish to eliminate the second integral on the right side of (3.29).

Thus we show that there exists a constant c2 (depending only on coo, ?, ao) such that
provided T is fixed sufficiently large then

(3.30) fR [ftt[2dco<ec2f, [.t[2dco+K2(e,T), t>T.
\S4 S4

By (3.21), (3.25), provided T is taken so.thatf3(T)<--ao,

(3.31) 2- fs, latl= dt <-f’s It&12 dc +fs4112 dr
2lOfs4[’tl2dcoq-f3(T)fR\s le/I 2 dco -t-A(T).
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Invoke (3.27) with 3’ % and then (3.19) to obtain

(3.32) fn\s I,t12 dto f. I,f,12 do
ol{

where Ol- 2’2-2[ + cl]; /2-2Xz2Kl +4gZ. Now use (3.32) to estimate the
last integral on the right side of (3.31). This yields

(3.33) fs4lfitl2doa<-12aOfs4lStl2dw+4fa(T)+4f3(T)2(e,T), t>T,

provided T is taken such that f3(T)e<4-, 3(T)2R20-2e_<o. Finally estimate the
right side of (3.19) with the aid of (3.33). The relation (3.30) follows, with c2 + 12aoC 1.

Take -o in (3.27), add fll_<ol,12doa to both sides and use (3.30), (3.33) to
estimate the right side. One obtains

(3.34) 18t12doa.2fs418,]2do)-Jl-g3(.,Z), t> T,

where 2 + 2)t2%-Z[c2 + 124o]. Use (3.34) in (3.25) to get

(3.35) fl Iftl2da<-O’2f3(r) fs, lS’12d*+K4(e’T)’ t>T,

where K4 --f3 K3 +f4"
By (3.20)[2t&l=<-2latl2+21f[ z. Ir,tegrate this inequality over R\S4 and invoke

(3.30), (3.35). This yields

(3.36) [ 18,&l2d-< 2el c2 + g21f 18,1 z dw +Ks (e, T), t> T,
’R\&

provided T is taken such that f3(T)<_e. But I,1=101 and hence

(3.37)
\S \S

which together with (3.36) implies

(3.38) "tRf 1St Rel2 doa <_ecf St[ 2 do + ,off2K5 ( e, T ),
\S S

for t> T and where c-2o[c+ 2].
Define A, B by

(3.39) A- (oaloa R\S4, IRea(o)l>_c3e/2},
(3.40) B- {o1o R\S4, IRea(oa)l<c3el/2}.
A combination of (3.38), (3.39) results in

(3.41) fARe l’t12 d6ol<cle--l/2fA I’t Re12 d6<c3el/2f& It12 de-I-K6 (e’ T),
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and from (3.34), (3.40) follows

(3.42) f Reltl2dol<_c3e/2fRB \S
I/12 do<--c3e2el/2f, I,12d+gT(, Z).

S4

Consequently

(3.43) fR \S4Re&[t[dOl<-c’el/2fs4lt[zdO+gS(e’T)’ t>T,

where c4 C3(1 / Y2).
Multiply (1.18) by zt, integrate over [-t, t] and use Parseval’s relation. This gives

(3.44) ft_ Zt ( T )Yt( T )dT_.fR 12t(o)lz Re&(t) do

/Zt(T ) g(y(z s))a(s)dsd.
"r+t,oo)

def
The right side of (3.44) (-- r(t)) can be shown (use [4, Assertion 1] as in (3.5), (3.6)
together with (3.34)) to satisfy

(3.45) Ir(t)l<_fs(T)fs412tld+K9(e,T), t>T.

Combine (3.43)-(3.45), use yg(y)>-O, [VI<--K (note that this is the first place where this
condition is used)and recall that by (3.10), (3.13), (3.18) 2Re(w)_>fl>0, toS4. This
yields

(3.46) fl-- fs4ltlZdo<el/2[c4/ 1] fs4ltl2do+Klo(e T) t>r,

2mprovided T is taken such that f5(T)<--e1/2 But limt_om and so, by (3.34), we
have limt_fs412tlZdo-. An examination of (3.46) reveals that this implies fl_<
2e/9[c4 + 1]. The constants ca and fl are, however, independent of e, which was taken
sufficiently small but otherwise arbitrary, and hence a contradiction follows. We con-

2< X.clude that sup/>0m
By (3.0) and (1.18), (1.21) we have

(3.47) sup IlYlIL=<)
Y Yr

From (1.20), (1.26) and as g(y(t))eL(R),

(3.48) esssup ly’(s)l< , y Yr.
sGR

A combination of (3.47), (3.48) implies y (L2 f)BUC)(R) and so

(3.49) y() =y(- )-0, YYr.

Multiply (1.26) by g(y(t)), integrate and use Parseval’s relation. This gives--by
(1.20), (1.21), (3.0), (3.47) all the integrals below are well defined--

G(y())--G(y(--))+(2r)-lfR l12 ReS do- 0,
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which by (3.49) yields

(3.51) fR 112Re& d-0, Y Yr.

Suppose (1.25) does not hold and let y Yr, Y(t) 0. Then y’(t) 0, and so by
(1.26) fR g(y(t--s))da(s)O, which shows that g(y(t))O. Consequently

>0.

Define S-(I()=/=0). From (3.51) and the definition of Z we have m((oloS
Z})-0. But Z-Z t_J Z2t3 (0} and by (1.22) m(Z t_J (0))-0. Hence

(3.53)
and

(3.54) fR 1’12Readt--fs 1’12Read-fz I’lRead>flfz 112d

where fl-inf,oz2Red(w)>0. Multiply (1.18)by g(y(t)), integrate and use Parseval’s
relation to obtain the first equality in (3.55). The first inequality follows by (1.24) and
.the second by (3.54). Finally observe that the second equality is a consequence of
(3.53).

(3.55) o<_fy()g(y(z))dr-- (2r)-fR I1Redo
<-B fzt ,t d, - -2-- I1=d.

Thus fRl,12do--O. This, however, violates (3.52), and consequently our assumption
y 0 is false and (1.25) holds.

4. Proof of Theorem 4. We begin by proving two auxiliary lemmas.
LEMMA 2. Let satisfy (1.3ii) and let, for A> 0, rx LAC(R+) be the solution of

(4,1) r(t)+X(rx,l)(t)--O a.e. on R+, rx(0)- 1,

and define r( r( ). Then if
(4.2) r’ .L’(R+)
and if (1.34) holds, one has

(4.3) rL(R+) for ,>0.

If in addition

(4.4) r’NBV(R+),
then

(4.5) r,NBV(R+) for X>0.

Proof ofLemma 2. Multiply (4.1) by rx and integrate over [0, ]. The result is

(4.6) r(t)-l+2Xftrx(rx. )()d-0.
"0
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As # is a positive definite measure we conclude from (4.6) that Irx(t)l -< 1, R+
def

h>0. Thus ?x(s)= fR+ e-Strx(t)dt is well defined for Res>0. But then, as/2(s) exists

for Res >0, we have that ?;,(s) is well defined for Res>0 and satisfies

)/2 (s) Res>0 >0.(4.7) (S )
s + X(z ( s )

(Re/2(s)_>0 implies s+,(z(s)=A:O for Res>0). As in 1 note that because by (4.2)
def

((s)/(s+ (z(s)) is the transform of h -r’ L(R+), then

/2(s)
Res>0,

lim
t2(z)

Res-0,
Rez>0

def
is well defined and continuous for Res_>0. Consequently/2(0:)- limsi,o,Res>O(X(S )
exists, possibly infinite, for w R, o 4 0. Clearly 1(0) fR r’(t) dt- r(o). We
claim that

(4.8) 0_</(0)_< 1,

or equivalently 0_<r(o)_< 1. The fact that/(.0)_>0 (r(o)_< 1) was already established.
Suppose h(0)> 1. Then by the continuity of h there exists x>0 such that Re(x)/(x+
/2(x)) > 1. But this implies x + Re/2(x)<0 which obviously cannot hold. Thus (4.8) is
satisfied.

Next observe that

(4.9) ,/2 (s) X/(s)
Res>0.

s+h(s) +(h--1)/(s)
As Re/2(s) _> 0 for Re s> 0, one immediately has + (X 1)/(s) =/= 0 for Res> 0. Sup-
pose +(,- 1)/(io:)-0 for some o:-0o4=0. Clearly this cannot hold if It(Oo)l- .
Thus let It(o)l<o. But then io:0+X/2(o0)-0 which by (1.34) and as/ is positive
definite is excluded. Therefore, recalling also (4.8),

(4.10) +(X-l)/(s) =/=0, Res_>0.

As h L(R+) we now have by (4.7), (4.9), (4.10) and an application of a result of
Paley-Wiener [7] that (4.3) holds.

To prove (4.5) we note that easy calculations give

(4.11) r(t)--()--1)(r’, ’(rx)(t)+,r t).

But by (4.3), (4.4) (r’ r;,) NBV(R+) and so from (4.4), (4.11) we have (4.5).
LEMMA 3. Let Ix, f satisfy (1.3ii), (1.3iii), let rx, r be as in Lemma 2 and assume

(1.34), (4.2) hold. Then if
(4.12) lim r(t)- lim (r.f)(t)--O

t--- o t-- oo

one has

(4.13) lim rx(t )- lim (rx.f)(t)-O, X>0.
t--* 03 t---> O
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Proof ofLemma 3. Straightforward calculations show that

(4.14) rx(t)- ( -1 )X (r.r)(t)+r(t).

Hence the first part of (4.13) follows from (4.3) and from the first part of (4.12). To get
the second part of (4.13) it suffices to convolve (4.14) by f and to apply (4.3) and the
second part of (4.12).

Proof of Theorem 4. By the above lemmas and by (1.3), (1.10), (1.33), (1.34) we
have

(4.15) r(L’fqNBV)(R+), A>0,

(4.16) zx(t)-0, A>0,

where zx x0rx + rx *f.
Convolve (1.1) with rx and use (4.1). Perform an integration by parts and define

hx(x)-A-g(x)-x, xR. Let vx be the measure corresponding to -r,; thus vx([0,t])
r,(t), _> 0. This gives

(4.17) x(t)+f hx(x(t-s))vx([O,sl)ds-zx(t ), t>O.
[0, t]

We wish to apply Theorem 3 to (4.17). From (1.19) follows

(4.18) ha(x ) is locally Lipschitzian, xR,

and invoking (1.35), (1.36) one has

(4.19) xhx(x)>-O for Ixl sup Ix(t)l,
tGR+

(4.20)
with

(4.21)
where

(4.22)

Rex(w)_>0, oR, X>0,

Re#x()-0 ifftZ, t3Z2t3{0 }

def
Z, {lv0, Re/2(w)-0, It2()l< },

def
i, 4:o, (,o11- ).

By (1.34)

(4.23) Im x(o)-- 0,

and using (4.3) and the first part of (4.13)

(4.24) Imx(t)-, tdZ2

fR+e-’"vx([o, tl)dt 1, oZ2
t_J (0).

By (4.15), (4.16), (4.18)-(4.24), an application of the first part of Theorem 3 to
(4.17) is permitted. This gives limtx(t)-O and so also limt_g(x(t))-O.

provided is taken sufficiently small.
The relations (2.4)-(2.6) hold with/ replaced by hg, v with vx and with the usual

def
interpretation if I/2()1- z for v 0. Hence (gx fR e-i’t drx(t))
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To complete the proof we note that

(4.25) zi(t)=xor(t)+f(t)+(r,f)(t) a.e. on R+,
By (1.38), (4.15), (4.25) we have limt_ esssup>_tlz(s)l-O. Thus an application of the
second part of Theorem 3 is allowed and (1.39) follows.

5. Proof of Theorem 5. The method of the previous section enables us to trans-
form (1.1) into

(5.1) x’(t)+ hx(x(t-s))dvx(s)-z(t ) a.e. onR+,
[0,t]

where h x, vx, zx are as in the proof of Theorem 4. From Lemma 2--which by (1.3),
(1.41) can be applied--we have

(5.2) rL(R+),
By (1.41), (4.14), (5.2)

(5.3) rx_LI(R+),
From (1.42), (5.2), (5.3) follows

(5.4) z,LI(R+), ,>0.

Multiply (5.1) by hx(x(t)), integrate with respect to over [0, T] and use the fact
that vx is a positive definite measure. This yields

(5.5) Hx(x(T))--Hx(x(O))<_forhx(x(t))z(t)dt,
where Hx(x)=,-G(x) 2-1x 2. Making use of (1.40) one shows that for any suffi-
ciently small , there e..st constants c 1, c2 (depending on ,) such that Ihx(x)l<_c +
c2Hx(x ), x _R. Therefore, by a simple application of Gronwall’s inequality to (5.5) and
recalling (5.4) we get

(5.6) sup Hx(x(T )) < o
T>0

But (5.6), the second part of (1.40) and the definition of Hx imply

(5.7) sup Ix(t)l<
tR+

We finally point out that under the present assumptions one also has, for all
sufficiently small ,,

fhx(’)(hx vx)(’) d,r< osup
T>0 "0

from which various consequences concerning the asymptotic behavior of x(t) can be
deduced.
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UNIFORM ASYMPTOTIC EXPANSIONS OF A CLASS OF
MEIJER G-FUNCTIONS FOR A LARGE PARAMETER*

JERRY L. FIELDS"
Abstract. Asymptotic estimates of certain Meijer G-functions are derived using contour integration

techniques. Making use of these results, asymptotic estimates of the generalized Jacobi functions are derived.

Notation and introduction. Throughout this work, extensive use will be made of
the following conventions and hypergeometric notation.

As usual, the logarithm of a real positive number is a real number, unless stated
otherwise, and if the functions f(z), g(z) are well defined, complex-valued, analytic
functions in a simply connected domain @, possibly on a Riemann surface, where
f(z) 4: 0, then the multiple-valued function

( f( z ) ) g,z)_ exp( g( z )logf( z ) } exp( g( z ) [log If( z )1 + argf( z )] ),
can be defined uniquely in 6 by explicitly specifying the argument of f(z), argf(z), at
one point in (R), and requiring that argf(z) be defined elsewhere in (R) by continuity.
When ]argf( z )1< r, this defines the principal branch of ( f(z ) ) g(z).

If a, b, c are arbitrary complex parameters, s,t are complex variables, and
p,q,m,n are integers such that O<_m<_q, O<_n<_p, we formally set

P

1-I
k--n+

+ co+ + ce+ t),
qq F(s+t) (s+ce)-1-IF(S-JI-c2J-I-t )

k
I(S-Jl-k-t-t), (S)t= 1(S ) =1

kj

pFq(z)-pFq bQ z --pFq b, ,bq
z

(be) 

m,n (ap,q (w)--a,l w al"’"ap)_ fF(b-t)F(1-as+t)wt
b, ,bq Fm(1-bQ+t)F(a,-t )

where L is an upward oriented contour which separates the poles of F(bM- t) from
those of F(1-as+ t), and which runs from -ic to +io (L-L0), or begins and ends
at + (L--L+), or - (L--L_). Under lenient conditions on the parameters a, b
these formal definitions yield well-defined hypergeometric functions, and Meijer G-
functions. For example, if none of the parameters -1 + b, k-1,. -,q, is a negative
integer, then the formally defined pFq(Z) is a convergent power series when p<_q, or
when p--q+ 1 and Izl< 1. If in addition to the b restrictions, one of the a’s is equal to
a nonpositive integer (-m), then p Fq(z) is a polynomial in z of degree m, at most.

The basic functional relationships for the G-function are

(at,) (1--bQ) (a) (c/a,)Gpm, b w bQ --Gqn,’prn W-I .c,,--,m,n m,n

ap’ W Lrp,q W bQ ap,q w c+ba"

*Received by the editors July 28, 1978, and in final revised form April 30, 1982. This research was

sponsored by the National Research Council of Canada under grant NRC A-7549.
Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.
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When the poles of the above integrand, interior to L, are simple, it follows from the
residue calculus that the G-function is a finite sum of hypergeometric functions, e.g.,

a,) -b)I’(1 au+bk)
:, F,,(1--be+bk)F,(ap--bt

1,1-ap+bkXp+IFq -bo+bk
p <q, or p-q and [w]< 1.

mnThus, Gp,q (w) is a multiple-valued function, properly defined only on a Riemann
surface with logarithmic branch points at w-0, and, when p-q, at w-1 or -1.
This means that in any equation involving G-functions, some care must be taken to
match up the proper branches of the various functions involved. For example, when
p< q, this last equation is valid for 0< w, arg w--0, and is valid for other values of arg w
by analytically continuing it with respect to w. For a more detailed discussion of
hypergeometric functions and Meijer G-functions, see [7], [8].

In [6], uniform asymptotic expansions for the Meijer G-functions,

r(n+l) (g.(w)
r(, + 2X) G;2’q w

r(n+ 1) aq+l,2In,j(W) r(n + 2h) p+3 ,q+l

1--n-2h,a,,n+ )be

1--n--2X,aj,ap,n+ )be ,a
j-1,..-,p,

were derived for q-p>_3, when n was large, essentially positive, and w was suitably
restricted. In this paper, where q-p- 2, Theorems 2 and 3 give similar results when w
is suitably bounded away from 0 and -1 for g,(w), and from 0 for ln,j(W ). The
asymptotic expansions for g,(w) and/.,j(w) employ, respectively, the asymptotic scales

Iwl +
w(n+,)2

as n+- o,

which permits Iwl to be unboundedly large, provided argw and arg(w + 1) are suitably
restricted. Theorem 8 gives pointwise asymptotic results for g.(e +__ix). The case q--p + 2

2 was considered by Watson [11 ].
When q--p+ 2, and w is suitably restricted, more explicit representations of g,,(w)

and l.,(w) can be given. For largwl<r, larg(w+ 1)l<r, we define the principal branch
of g.(w) to be

F(n+ 1) f. F(be+z-t)r(n+2+t)(o.1) gn(w)-F(n+2X) 2ri_o r(a,-t)I’(n+ l-t)
wt dt,

F(n+ 1)F(n+ZX+bp+2)
F(n +2h)F(2n +2+ 1)F(n+2X+ap)

w-,,-_x ( n+2X+be+2 -1) <lw,P+2FP+ 2n+2h+l,n+2h+a, w
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For largwl<2r, we define the principal branch of ln,j(W) to be

(0.2)
F(n+ 1) F(b,+z-t)F(1-aj+t)F(n+2)+t)

l",j(W)-F(n+2)) 2ri fLo F(a,J-t)F(n+ l-t)
wtdt

r(n+2X+a)r(1-n-2k-a)r(n+ 1)r(n+2X+b,+2)
F(n+2X)F(2n+2,+ 1)F(n +2,+a,)

w-n-2x F+ [ n +2,+b,+2
p+2 2n+2+ 1,n+2h+ap

r(n+ 1)r(n+:ZX- +a)r(1-a+bl+ )
r(n+ 2X)I’(n + 2-%.)r(1-a+ae)

1,1-aj+bp+2 )w-+a+3F+ n+2-aj,-n--2k+2-aj, l--aj+ae w

<lwl, larg wl< r,

aj--aq=/=O, -+- 1, +---2... (j=/=q), bk--aj=/= 1, --2,...,

j,q--1,...,p, k-- 1,. -,p+2.

Note that the first term in the series for ln,j(W ) is the analytic continuation of the series
for g,(w) in (0.1), i.e.,

F(n + 2X+ aj) F(1 n-- 2X-- aj)e+--ir(n+2X)gn(we+--ir )
Under lenient restrictions on the various parameters, the generalized Jacobi func-

tions

(--n,n+2X, l--ap )P+:zFp+I 1-be+
w n arbitrary,

can be written as a linear combination of the gn(W) and l,,2(w) when bp+:=0. Thus,
the existence of estimates for the g,(w) and l,,2(w) when n is large, implies the
existence of similar results for the generalized Jacobi functionsmsee Theorems 7 and 9.
In particular, when p 0, b 0, b fl, 2X a + fl + 1, g,(w) is related to the Jacobi
polynomial P’t)(2w-1) in the same way that the modified Bessel function K,(z) is
related to the Bessel function J,(z), i.e., in terms of the Hankel functions H)(z),
H(z),

g

H(J+3/Zl(z)_(2}ei,(+K(ei, ) j_+l
r -2’

whereas

P’t)(2w-1)-(- 1)"(1 +fl),n, 2FI (-n,n+a+fl+ll)l+flw
(-1)"F(n+ +/3) [ei,(l/:Z+O)gn(Wei.)_.ke_i,(1/:z+O)gn(we_ir)2rn!
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For the Jacobi polynomials P’’a)(2w-1), our asymptotic expansion agrees with the
classical result of Darboux, see Szego [10, (8.21.18)], but is valid in a wider sector than
previously recorded for the classical expansion.

The results of Theorems 2 and 3 can also be used to derive rational approxima-
tions to certain Meijer G-functions, see [5].

1. An integral representation for g.(w). The asymptotic expansion of g,(w) is
derived in Theorem 2 from the following integral representation, and its extension in
Corollary 1.1.

THEOREM 1. Let p+ be a positive integer; n, X, aj, bj be complex constants such that
p+2n a negative integer; o 1/2- 2X + Y__ a = b =/= an integer;

Re(n +2X)>0, Re(n+2X+bj)>O, j--1,...,p+2.

Next, let w be a complex variable restricted to the domain w-(O ), where
arg w arg( + w) 0, and

(1.1) j-(w)-log (f+ (l +w },
so that ww, implies/j>O, and e> 1.

Finally, let (z) be defined initially by

g(z)--F(o+ p+:’ (]"p+ 2, p+ 2 Z

0<lzl< 1,

As (z) is a solution of Ey--0,

arg=O ifw@w,

largzl<r, larg(1 --z)l<r.

= l’I (6-bj)-z(a+X) 8+X+-- (+ 1-aj),
j--I

a (p+ 2)nd order linear differential equation whose only singularities are the regular
singularpoints z=0, and o, (z) can be analytically continued outside Izl< 1, along any
arc avoiding these singular points. In particular, in the fundamental neighborhood near
z=l,

( (-’l]abranchcut’O<lz-ll<l’ }(R)- z"
largzl<r, larg(z-- 1)l<rr, arg(1--z)-r+arg(z- 1)

Norlund [9] has shown that (z) has the local representation

(1.2)

(1.3)

(z)--p(z)--(1--z)$(z)--[ei’r(z 1)] (z),
oo (1--z)j

$(z)- dj(l+o)j, do 1, 1-zl<l, largzl<,
j=O

which we will denote as the principal branch of (z), where the constants dj can _be
computed recursively from $p(z)-O. By continuity, l,(Z) and $(z) a__re defined on (R),
the closure of o. In fact, $_*(z) can be analytically continued outside of (R) to be a globally
analytic function function *(z) on a Riemann surface whose only singularities are loga-
rithmic branch points at z-O, and o. Thus, when z, *(z) has the local representa-
tion (z), which we will denote as the principal branch of*(z).
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Then for w w,
1--n-2X a, n+l)F(n+l) c+,l(1.4) g,(W)--r(n+2X)..,+2,,+ w

bp+2

F(n+l) F(-O) [e’-(t-1) -2x

e_ir. (=4XF(n+2X) 2i + Zf (t-1)2
dr,

where *, the loop contour of integration and the phases of the various factors in the
integrand of (1.4) are indicated in Fig. 1. Note that the t-plane has a branch cut along
[e 2, m), and that * starts/stops at +, encloses t-e2 locally with the negatively
oriented circ& It-e2l-o*, 0<o* <1e2e- 11, but encloses none of the other singularities
t-O, and e-2.

Also, for w @, *, O* sufficiently small, and

(1.5) x=awt or 1-x=
(t-e2)(t-e-2)

(t-l) (t-l)
a simpN computation shows that X @, and hence that e-ig(X) in (1.4) reduces to

In particular, the argument ofX- 1- e-(1-X) is ero at the point Q* in Ng. 1.

q5 arg- arg (t-eTM)
b arg (t-l)
p+ arg (t-e 2)

FIG 1. t-plane, a branch cut.

Proof. As g,(w) and g(X) are multiple-valued functions, they are properly defined
only on Riemann surfaces with logarithmic branch points at w-0,- 1, m and t-
O, 1, e-+2, m, respectively, and extreme care must be taken to match up the proper
branches of g,(w) and g(X) in the integral representation (1.4). For W(R)w, we take
for g,(w) the principal value defined in (0.1), while for g(X), we will take the principal
branch gp(X). A proof of Theorem can be constructed which exploits the analytic
continuation properties of $(X), as developed by Nerlund in [9], to explicitly evaluate
the integral in the theorem as the series in (0.1). Alternately, we give the following proof
of Theorem which was communicated to us by the referee.
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For w (R)w, tentatively assume

(1.6)

and choose such that

x<-Re,,
Then by definition,

( l)Re n+h+- >0,

Re( n +2) <x< Rebj,

Reo>0,

j=l,-..,p+2.

g,(w)-F(n+2 )
where

r+, r(n+2X+s)r(1/2--s)r(1--s)
2ri J_i F(n+ l--s)

f(s)wSds,

r(be+:-s)
f(s)-- r(--x-)r(1-X-s)r(ae-s)’

--(--s)--l{l+(9(s-’)}, s, Res_< a fixed number K,

and the integration contour separates the poles of F(n+2k+s) from those of
F(1/2-k-s)F(1-k-s)F(be+2-s). From the beta integral, we have for Res-x,

r(.+ 2x+s)r(1/2-x-s)r(-X-s)
r(.+ -4x+s ts-’-’(t-1)-2x-2"dt

As Reo>0, and +Re(n+2)>0, the last integral can be substituted into (1.7) and

the order of integration interchanged. This process yields the result

(1.8) x r(n+ 1) (t--1)
r(n+2X)  n’i +iOxf(s)dsdt2ri -i

where X has the same meaning as in (1.5).
Applying the residue calculus to the Mellin-Barnes integral in (1.8), we see that

when arg X--- arg (1 X) 0,

( Xf+,OX,f(s)ds_ "-’p+2, p+2

2ri -i
0 if I<X.

bp+2 -1’(o+ 1)
if0<X<l,

Moreover, for >0 and t=exp(2+ 2v}, it follows that

4w______t sinh2 < 1
(1.9) 0<X=

(t- 1)2 sinh2(/J +v) [ > 1
if e2<t,
if <t<e2.

Thus, in (1.8), the interval of integration can be replaced by [e2, ), and the last

factor of the integrand can be identified with p(X)/F(o+ 1), i.e.,

(-4XF(n + 1) o (t-1)-2x ( 4wt )(1.10) gn(w)-F(2n+h)F(o+l) fe’ i P (t--l)2
dt.
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Theorem is just a contour integral formulation of (1.10) which makes use of
Norlund’s results (1.2). To see this explicitly, let I denote the last half-line of (1.4). As
Reo>0, we can take p*-0 in Fig. 1, to shrink * in I into the two straight lines +
and - along the upper and lower edges of the branch cut [e2, o), respectively. From
(1.9), it follows that E+ t.J E- implies 0<X_< 1. Also, using the integration variable
v e__2, o), arg arg(1 + v) O, we have that + implies argX arg (1 X) O,
X@ and

(t--l)2

while - implies argX= O, arg(1 X) 2r, X (R) and

(t-l)2
-e p

(

Combining these results, we can write

I_Vr 4x r(n+ 1)r(--o) (v 4wv dv-g,,(w)
r(n+2X) 2ri 2, (V--1)2

in view of (1.10). By analytic continuation with respect to the various parameters, (1.4)
remains true when the tentative assumptions (1.6) are relaxed.

As the other results in Theorem follow from straightforward geometrical argu-
ments which are left to the reader, this completes Theorem 1.

Remark 1. The dj in (1.3) satisfy a linear difference equation of length (p + 3). The
first few dj. are as follows. Letting

)
p p+2

(x+l--X) x+--, 1"[ (x+aj)-- E AjXp+2-j,
j--l j--O

p+2 p+2

j--I j--O

we have by direct computation

dt BtCt C2,

2d2-[(1-B,)(1-Cl)-C2]dl +(B2C,-C3),
3d [(2- O )(2 C ) C2] dg_+ [B2(C 1) C3] d

+ (1 C,)(BzC C ) -]- (B3C C4 ).
Note that o C .

Remark 2. Consider the variable defined in (1.1). Simple computations show that
for w w,

e--l +w+f, sinh-f-, sinh2-2w(1 +w),

e-- 1 +w -, cosh-i +w, cosh2- + 2w,
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and that if we make the change of integration variable t=exp{25+ 2uei’} in (1.4), we
obtain

X=4wt=(sinh(-u))
-2

( t- )2 sinh

X- 1-
e-i"(t-e2)(t-e-2) (sinhu)sinh(2- u),

(1.11) (t--1) [sinh(- u)] 2

r(n+l)g,(w)-v/-ff(sinh)-2x-(cosh)
r(.+2k)

r(-o) 2(u_t)(n+x)(2u X--1
;(X)d(2u),X

2ri
e )XX 2ucoth/j

where 0 is an infinite loop contour in the u-plane, starting/stopping at , enclosing
u-0 with the positively oriented circle lu[-O, but enclosing none of the other singulari-
ties of the integrand, i.e., the points u=kl+ irq, k-0, or 2, and q an integer. The
u-plane is chosen to have ]arg u]_< r, and to have branch cuts as indicated in Fig. 2. This
copy of the u-plane will be denoted by o-, as long as Re_>0.

; Q"’’Q

-iv
2-i7r

-i
2-i2rr

--i2rr
-i2rr

2,-i37r

FIG 2. @L-surface, Re_>0, QE@,,, a branch cut.

If the complex variable is restricted to

(R))- (>0" larg (+ iqr/2)l<-r/2, q an integer),
then there is a 1-1 correspondence between @w and (R)ft. In fact, if (R) is contained in
@, a simply connected region located on a Riemann surface with logarithmic branch
points at -o and 5-iqr/2, q an integer, but with (R) not containing any of these
singular points, and (R)w is the image of @ff under the mapping w-sinh9- , then the
functions

--(w)-log[f+ i +w ], argO--0 if w6w,
w-w()-sinh2, argw-arg(1 +w)-0 if@
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are inverse, conformal mappings to each other on (R) and w. Some of the properties
of such (R), (R)w sets are indicated in Figs. 3 and 4. Clearly, is purely imaginary, if
and only if argw- arg(1 + w)- r (mod 2r), which, in turn, is true, if and only if
w [- 1,0]. The singular points --iqr/2, q an integer, correspond to the points w- 0,
or 1, as q is even or odd, respectively, and as the iqr/2 (R), the points 0, (R)w.
For more detail, fix 0 @ff. Then as varies along a straight line connecting 0 to

q-o+ iqr/2 on the -surface, w starts on the w-surface at w0- sinh20 and makes q
half-revolutions around w-0 and -1 without intersecting [-1,0]. If Wq-sinh2q, it
follows from continuity considerations that

arg Wq-- arg(1 + Wq ) qr, 12--111 + (--l) q+ 1] -- WqI--WO.

FIG 3. f-surface.

FXG 4. w-surface.

We now generalize Theorem to complex values of w and .
COV,OLLARY 1.1. Unless modified explicitly, the notation and restrictions of Theorem

will be assumed. On a Riemann surface with branch points at - and-iqr/2, q
an integer, let @ be the simply connected region defined as follows.--rl@- (>0" larg(+ iqr/2)l<--r/2, q an integer),
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where is the complex conjugate of (R), and (R) is the unbounded, simply connected set

defined by
a>0 B_>0,

(1 12) o-- --a+ifl"
a--O+ fl>O, fl4=qr/2, q an integer,
-_<a_<O- O<fl<rr/2,
a_< 1/31 <_ x, i5, x fixedpositive numbers

and represented in Fig. 3. Also, let 6w, the image of6 under the mapping w-sinh2 ,
be the corresponding simply connected region on a Riemann surface 6 with logarithmic
branch points at w O, and .

Then for-a+ fl 6, or w 6w
I’(n+ 1)(1.13) gn(w)--(sinh)-2x-(cosh)F(n+2X )

r(-o)
2ri

(1.14) K(u )_XX{ X-1 )2ucoth
g*(X), u,

X= { sinh(-u) }-2 X-1 (sinh u)sinh(2- u)
sinh 2ucoth 2u(coth)[sinh(_ u)] 2

where lies on the sheet 2L of 6fly, and is an infinite loop contour starting at o,
enclosing u-0 within the positively oriented circle ]ul= p, but enclosing none of the other
singularities of (2u)K(u,), i.e., the points u=k+irq, k=O, or 2, and q an integer.
The branch cuts in depend upon the choice of . For a>_O, we choose =o, and the
branch cuts as indicated in Fig. 2.

For a< O, we choose = + + 2, a contour of the generalform shown in Fig. 5,
together with its attendant branch cuts. In some special cases for a<O, =o, see Fig. 6.
As point sets,

FIG 5. ’-surface, Re <O, 6- Q (R),wtt branch cuts.
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i/’/"

FIG 6. 2b-surface, Re<0, jG6-, 0<imj<
’rr

2’ Q @(R)’ branch cuts.

(1.15) eo- (u--e+--ix; O<_x} U (u--oei/" --r<_/<_r),
e, Ce0, j--f U j**,j-1 or2,

C { u =ja + r" Irlj defined in (1.12) },
j** C (u=j+iq+ pei" --, q an integer}.

In all cases, crosses the positive real axis of & at Q, so that argu-O at Q.
Elsewhere in &, arg u is defined by continuity.

As u@o and imply that X@, the multiple-valued function K(u,) is
specified to have the well-defined local representation

K( u, l ) Kp( u, l )

_XX{ X-1 } {e-ir}2ooti $(X)-Xx
2-o]-h $,(X), u 6o, (R)o,

which we will denote as the principal branch of K(u, ). Elsewhere, for u and @#,
K( u, ) is defined to be K1,( u, ) analytically continued with respect to u and . This same
analytic continuation procedure applied to g(w)-g(sinhl) determines the branch of
g(w) which occurs in (1.13), and when applied to the functions gp(X), (l-X)=
[ei’(X-1)], $(X), for X@, yields the analytically continued form of (1.2), i.e., the
basic relationship

g(X)-(1-X)$*(X)-[ei’(X 1)] $*(X), u,
in particular, this determines the branch of g*(X) which occurs in (1.14).

Proof. For @0, G reduces to 0 and the corollary reduces to the alternate form
of Theorem stated in (1.11) of Remark 2. The remainder of the corollary follows by
analytic continuation with respect to u and .

Remark 3. In the proof of Theorem 2, it is actually shown that, for (R), K(u,)
can be analytically continued as a function of u into a neighborhood of u=0 which
depends on . Using the Maclaurin series expansion of K(u,) at u=0 as the defini-
tion of K(u, j), K(u,) could then be defined on G by analytic continuation along G.
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This would define K(u,) independently of any explicit mention of the multiple valued
functions (X) and *(X).

Remark 4. In the special case p 0, b2 0, b b, o 1/2- 2X b,

o+1
1/2-a

o+1

If in addition, X-1/2, then o--1/2-b, (Z)--zb(1--Z), and Theorem 1, Corollary 1.1
reduce to

gn(w)_F(n+ 1)r(n + l+b)
F(2n+2)wn+ 2F( n+ l’n+ _l)

V4-oe-iror(-o) f(e2’-) (wt) b

e_2
2ri + tn--i ((t--e)(t ))Odt

VUW(-I+2b)/4(1 .+_ W)(-l-2b)/4e-(2n+ 1)

X F(--o) (f?+)eU(2n+l)(2u)O(( sinhu)( sinh(2-
2ri o u sinh2

u) d(2u),
which is equivalent to an integral given by Watson [11, [}13] when b-0.

2. The asymptotic expansion ot g.(w) and I.,i(w).
THO.EM 2. Letp, n,X,aj, bj, o, dj,w,-a+i (a, real) and (R) be as in Theorem

and Corollary 1.1, with the additional restrictions that n be a large parameter such that

Inl--’ + o, arg n (9( n- 1) as n o and, aj, b be bounded with respect to n. Set

n* n +, with the general restriction In*l_>e,
(2.1) / Iwl + Isinhl2

2lw(1 +w)l Isinh2l

and let @ be a subset of (R) which depends on n, and satisfies the following restrictions:

(i) (32)- >l/n*l=o(1), as n o, uniformly for.
(ii) If l-- a + ifl , a<O, and 1/31 (0, r/2), then

[an*l>logln*[= o(an*) as n

We take 6 to be the image of (R) under the mapping w-sinh2 . In particular, (R) can be
chosen such that 6 contains the domain

{ largwl<-3r-’’lwl>-ln*l-{lgln*.}l+
(R)*w- w"

larg(1 + w)l-<2r-e2, [1 + wl->ln*l -’(logln*l} +4

where the e are small positive numbers independent of n.
Then for all l or w (R)w, there exist functions S() such that for m + an

arbitrary positive integer,

(2.2) r(n+ 1) p+:, (g,(w)-
r(n+2h) "P+’P+2 w

1-n-2,a,,n+l
bp+2

f-[(n + ,)2w] v(1-+-w)-V-Xe-2(n+XKS(n-k-k,),
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S(n+X,)- + Sg()(n*)-k+ - (9(1), n+X,
k=l

p+2 p

2"y---+ X bj- E aj., o--2X-2,,
j--I j--I

k/21 [(k-- 1)/21

Sk()= E Pk-2j,k(COth)k-2j+ E Qk-2j,k(COth2) k-2j,
j--O j--O

Pil --dl-- (o+ 1)(o+)k),
4P22- 4d2- (o+ 2)(30+4+ 3)d + (o+ 1)(o + 2)(o + X)(o + 2X+ 1),

12P02- (o + 1)(o + 2) ( 3d [30.2 + (3)k + 1)0 + 3X] } + 2X(X-- 1)(2X-- 1),

96P33-96d 24(0 + 3)(30 + 4X+ 6)d2

+ 3(o+2)(o+ 3)[9o2+ (24+25)o+ 16(X+ 1)2] dl
--(o+ 1)3(o+X)[7o2+(20X+ 15)0+ 8(X+ 1)(2X+ 1)],

96P13- ( o + 2)(o + 3) (24d2 [21o 2 + (24X + 53)0 + (48) + 32)] d,

+(o+ 1)(o+X)[9o+ (lZX+ 17)o+ (24X+ 8)] }
+ 16.(A--1)(2X--1)[dl-- (o+ 1)(o+,)],

2Qll--O(o+l ), 8Q22-(o-1)4, 48Q33-(o-2)6,

48Q13-(o)4{3dl-[3o+(3X 1)o+ (3h+2)] } +4,(X-1)(2X-1)(o)(o+ 1), etc.

The parameter o can take on integer values.
Proof. First, we establish Theorem 2 under the more restrictive condition

(2.4) 04: an integer.

Our proof follows from a series of lemmas, but before presenting them, we give a
general discussion of the salient features of the problem.

We begin by noticing that condition (i) deletes from (R) small discs around the
singular points iqr/2, q an integer, i.e., In*(2- iqr)l- o(1)< (16)- l, n (see
Lemma 1) and that condition (ii), except in the "passageways" 0<1/31<r/2, deletes a
strip to the left of the imaginary axis, to insure that lan*l m, n--, m, for a + ifl (R).

In light of Remark 2, and the notation of this theorem, we can write Corollary 1.1
in the form

(2.5)

g,,(w)_ vwV(1 +w)--Xe_2,,, F(n*+ l--X) F(-o) f2un,(Zu)OK(u,)d(Zu )

(2.6)

K(u,)_Xx X--1 g,(X)_Xx e-’
2ucoth 2tJ-oh (X),
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(2.7) (X)--(1-X)*(X)-[e"(X 1)]*(X), u, ,
+ X (1 xy
s=,

X= { sinh(- u) -2 X- (sinh u) sinh(2 u)
2ucoth (2u coth) [sinh(_ )]:’

where the integration contour in is described in Corollary 1.1, with p---19n*l in
(1.15), see Figs. 2, 5, 6 and note that if contains the subcontours Ej, then lan*l>logln*l
Also, the multiple-valued functions reduce to their principal branches when u0,
5 @, and are defined elsewhere by analytic continuation with respect to u and . For
u, the functions X, and (X- 1)/(2ucoth5) are of the form +(9(u), u--, 0.

To apply the contour version of Watson’s lemma to (2.5), we need to expand
K( u,/j) in a Maclaurin series at u--0, and estimate the behaviour of K(u,) along . In
Lemma 2, it is shown that for (R), K(u,) can be analytically continued into a
neighborhood of u=0, and that

g(u,)- ] (2u)kU,(), lul2r,
k=0

m--I

-1+ ] (2u)kgk()+(2u)mgm(U,),
k=l

where r is a number such that r>_18n*l->19n*l 1_
0, and Uk() is a polynomial in the

two variables coth and coth2. The structure of such Uk() functions is analyzed in
Lemma 3. Making use of this expansion for K(u, ), together with the fact that

r(-o) ffzun,(2u)O+,d(2u)_(_ 1) (o+ 1),
k an integer

2ri (n,)++k

we can write

(2.8) g.(w)-- f[(n*)2w]V(l +w)-V-ae-2n’(n*)2a-’ F(n* + l-))
I’(n* +,)

1+ E (o+l)kUk()(n*)-k+Rm(n*,)
k--I

(2.9) Rm(n, )_(n.),+o I’(--o) ff2un.(2u)O+mgm( u )d(2u)
2rri

In Lemma 6, it is shown that there exist nonnegative numbers M,s, t, independent
of -a+ ifl, n or u, such that for 5 @,

’e slul { + lun*l }t U go or ,
Igm(u,)l<

Moamesll[n*[t, u E or E2,

where oa is defined in (2.1). Making the change of variable v- 2un*, it is easy to see that
the contribution to Rm(n*,) from E0 or E is (q("ln*l-m), n--, m. The contributions
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to Rm(n*, 1) from the Ej. are much smaller. On E*, for n* sufficiently large,

tan(argn ) <Re(un*) -jln* cos(arg n*)l 1 +
11 2

2

The same estimates hold on Ej.**, and it is clear that the contributions to R,,(n*,/j)
from Ej are

(9 ( omln*llotn*l +me-lan*l+slal) ( ( wmln*[ ), n ,
where "- 1 + + Re o + Max(0, Re(o + rn)} so that

Rm( n*, ) --( 6onln*l-m ),

that
Finally, it follows from Lemma 7 that there exist polynomials in ?, e2k(k), such

m--I

(n*)2x-’ F(n*+l-’)--l+ E e2k(?)(n*)-2k+(n*)-2m(9(1),r(n*+X) =
n* , ]arg n’l< rr.

Utilizing this in (2.8) we arrive at the statement of Theorem 2 under the restriction
(2.4). Note that

S,(A)-(-11 ’ E e2j(,)(o+ 1)k_2jUk_2s(t),
j=O

has the same structure as the Uk(5), so that Lemma 3 is applicable.
We now remove the tentative assumption (2.4), that o is not an integer. As g,,(w)

and the first m terms of (2.8) are well defined whether or not o is an integer, it is
sufficient to show that Rm(n*,) has an alternate representation which is valid when
is an integer, and which can be analyzed by the previous methods. Choose m0 such that
Re(o +m)>0 when m>_mo. As K,,(u,l) takes on the same value at corresponding
points on E, e.g., u-xe-iE and u=xe on 0, all factors in the integrand of (2.9) are
single-valued, except for (2u)+’. Taking account of the branches of this factor, we can
write

(2.10)

Rm(n* ) (n*)+l (--1)m fe-2vn*(2v)+mKm(ve+-i,l)d(2v), m>_mo,

where E is essentially the straight line [0, o) properly deformed to avoid the singulari-
ties at -(k+ iqr), k--0, or 2, q an integer. Then (2.10) is valid for an integer,
o + m0>0, although a limiting form of Kin(re -+ i’, )/F(o+ 1) has to be taken when is
a negative integer. When $(X) is replaced by. $(X)/F(o+ 1), and o is an integer,
Lemmas 1-7 remain valid, so that Theorem 2 is true whether or not o is an integer,
provided m_> rn 0. Finally, the restriction on m0 can be removed, by noticing that

)- (9(1), n+X-o oo, k-O, 1,...,mo- 1.
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It is left to the reader to show that can be chosen such that @w* C(R)w. The
following lemmas complete the proof of Theorem 2. Unless modified explicitly, the
common notation of Theorems 1, Corollary 1.1 and Theorem 2 will be assumed in all
the lemmas.

LEMMA 1.
(A) If z x + iy, x andy real, then

Ixl <- sinhlxl-< Isinh zl- sinh2 x + sin2y <_ coshx,

sinhlxl_< Icosh zl sinh2 x + cos:y -< coshx _< eIxl

(B) If x andy are real numbers such that

[[<_- and Isinh(x + iy)l<K,

(C) If 21zl 1, then

<Zthen x + iyl_ 2
K<2K.

20
sinhz -1]

71coshz- 11 1, 8
tanhz

(D) For l general, we have

1_<2, Itanhl_<2, Icothl_<2, Icoth2l<_2.

Also, if D/n*l<- K, then Isinh2l_>lKn*l i.
(E) If 4i is a positive number less than 1, then Isinh2l_>48, implies

(.)12+ iqrl>_28, for all integer q.

Conversely, the condition (.) implies

21sinhjl->ji, 41tanhjI_>ji, j-- or 2 and 31cothl ->

(F) For l , we have

D/n,I< <__

31n*sinh2l-l, Iwl-<2 32’

In*(2+ iqr)l>- 16 for all integer q,

In* sinhjl->4j, In* tanhjl->2j, j--1 or2, and 31n*cothl>8.

Proof. Compute explicitly.
LEMMA 2. Let
(1) 16r Min( 1, [tanh1, Itanh 21},
(2) 8r* Min{ 1,1tanhl},
(3) 2L (u: lul_<’) c,
(4) Y(u,)-sinh(-u)/sinh, arg Y(u,/5)-O, when
(5) X=X(u,)={Y(u,)) -2.

Then we have the following results.
(A) If , then

_< 81n*lr - _< 32r_< 16r*,

and the loop part of o, , i.e., (U---lae i4’. 0-19n*1-1,
6L2r C 6Lr,
--rr<_<_cr}, belongs to 6"Lr.
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(B) For general, we have

Y( u,) (cosh u)[1 (coth)tanh u],

2ucoth- u 2u [1- (coth 2)tanh u] X.

sinh2u
2u

(C) If u (. Or. (. 6"1 then

Icosh u <-,

I(cth )tanh u <4’

tanh u
<

u 8’

IX- 11<-, largXl<,

and X, Xx and (X) are analytic functions of u, with Xx given by its principal branch.
Also, for tr,, Maxl$;(X(t,))l can be bounded by a constant independent of r, r* and

(D) If u 6b2r, 6, then

9 ( X--1 ) 3r
I(coth2)tanhu[<-, arg

2ucoth <-’
and [( X- 1)/(2u cothj)] is an analytic function of u, given by its principal branch.

(E) If , then K( u, ) can be analytically continued as a function of u to O2r by
the formula

((2 K(u $;(x)2ucoth

In particular, K( u, ) then has the Maclaurin expansion

(2.12) K(u,)- (2u)kUk(j), u6?L2r, /j@,
k=O

where the U() have the form
Uk()-- ds,t,k(COth)S(coth2)t-( 1)kUk(--),

s,t>--O
O<_s+t<_k

the ds,t, being numbers independent of :. The first few U,() are

Uo()- 1, (a+ 1)U,()- --SI()

(o+ 1)2U2()- $2()- (2)k-- 2)3
24

(o+ 1)3U3(/j)- -$3()-I (2X--2)3
24 S,(),

where the Sk() are defined in Theorem 2. Also, for 62r MaxlK(t, )l can be bounded
by a constant independent of r, r* and .

Proof. (A) and (B) follow from direct computations. To show that (20)(16r)_> 1,
one makes use of Lemma I(D). For (C), Lemma I(C) is applicable, e.g.,
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From (B), it is clear that log Y(u,) is an analytic function of u in r*, which implies
log X, X and Xx are also. Since

X- (2 coth)(tanh u) [1 (coth 26)tanhu]
[1 (coth)tanh u] 2’

2(cothj)(coth 2j) / coth:,
a direct computation shows that IX-11_<1314/3025<1/2. Since Izl<l implies
larg(ei+z)l<_(r/2)lzl, we have larg</4, so that Xx is given by its principal
branch, and (X) is an analytic function of u in r*" Finally, as u. implies
IX--ll<, and the coefficients of the series representation for (z) in (1.3) are
independent of r,r* and , Marl;(X(t, ))l can be bounded by a constant inde-
pendent of r,r* and . Part (D) is silar. For u:rCr., log[(X-1)/
(2ucoth)], [(X- 1)/(2ucoth)] are analytic functions of u, and

larg[(X-1)/(2ucoth)]l + + <
implies [(X-1)/(2ucoth)]" is given by its principal branch. Thus, the function on the
right-hand side of (2.11) is an analytic function of u. If in addition, u , largu</2
and g, so that arg(X-1)l<, then the right-hand side of (2.11) reduces to
K(u, () K(u, ). Conversely, the rift-hand side of (2.11) serves to analytically con-
tinue K(u,) to % when @. The rest of (E) follows by explicit computation. The
fact that K(u,) K( u, ), implies the symmetry property of the U(). Finally, as
l<N<3, and l<4(X-1)/[2ucoth]l<8, for u%--see the last line of (B), it
follows from (2.11) and (C), that MaNalK(t,)l can be bounded by a constant
independent of r, r* and .

LEMMA 3. Let

Tk()-- es,t,(coth)S(coth2)t--( 1)T(-),
s,tO

Os+tk

where the es,t, k are numbers independent of. Then:
(A) There exists a positive constant M independent of such that IZg(6)lMk(2).
(B) There exist constants a2, k, b2, k independent of such that

/2] [(- 1)/]

Tk()-- a-22,g(coth)k-:2+ b-:2,(coth2)-:2.
j=o j=0

Proof. First, from Lemma (D), we note that 2 1, and that

)s+tI(coth) (coth2,)tl-<(2, s and t_>O.

Then
k

Maxles’t’ (k+ 1) s0(2t _<]T,()I-< E (J+ 1)(20 ,I <-
Mg k

)J Mk(2t)g
j=0 s+t=j

Systematically using the relationship

2(coth)"(coth2)t__ (coth)" (coth2 )t--I + (coth)+ (coth2
for integers s, > 1, we can write

k k--I

T,()-- Aj,k(COth)-J+ Bj,(coth2)-j,
j=0 j=o
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where the Aj,k, nj, k are numbers independent of . Consider

k k-1

E
j=0 j=0
j odd j odd

=2-1(Tk() + ( 1)*+T(-) } =0.
Letting 2ir, we see that Dk(t)O implies Bg,k--O, jodd. Similarly, letting irr
implies A,k-O,j odd. Thus, (B) is true with A2g,k-- ak_2j, k and B2g,k-- bk_2j,k.

Remark 5. If-sinh and i +w -coth, the identities

coth=
2w+ 2

coth2-
2w+ 4w(1 + w)

sinh2’ sinh2’ sinh2
imply that

(sinh2)k’

where Pk(W) is a polynomial in w of degree k.
LEMMA 4. Let z belong to a domain (R)z on the Riemann surface , where argz,

arg(1-z) are bounded. Then there exist real numbers M (>_0), ’o, v l, ’o independent of
z, arg z or arg(1 z), such that uniformly, for z ,

(m) I$(z)l_<mlz- 11’, when ]z- ll< 19.

(n) I$(z)l--<Mlzl, when Izl< 19.

(C) I(z)l<M]zl when Izl > 2.
20,

(D) Ig (z)l <- M, when 19 < 21 19Izl < Iz-ll>
Proof. Since g(z) is the solution of a linear, homogeneous, differential equation

whose only singularities are the regular singular points z-0, 1 and o, for each choice
of integers (s, t) such that

Isr + argzl_<cr, Itr + arg(1 -z)l-<r,

$(z) can be expanded in terms of a basis of functions, as a finite sum of
algebraic/logarithmic functions in each of the regions described in (A), (B), (C). As
logarithmic terms can be dominated by algebraic ones, and only a finite number of
(s, t) need be considered, (A), (B) and (C) result. (D) is true, as the region described
therein is compact, and contains no singularities of $(z).

LEMMA 5. Let r,r*,X=X(u,l) be as in Lemma 2, and
(1) f 0 + irh or 2, a + ifl, where O, , a, fl are real;
(2) Y(u,) sinh(- u)/sinhf e-(1 e-a)/(1 e-a), arg Y(u,f)-O,

when l @, u[0,
(3) W= Y(u,2), X, (X- 1)/(2ucoth/j), or sinhu/u, u,

Then there exist proper numbers M,s, (i.e., nonnegative, independent of,n and u), such
that for Reu_<-r<0, @, we have:

(A) larg
(B) WI---
(C) /]--+

Under the stronger conditions Reu_ -r*, @, the results (A), (B) and (C) are also true

for W-2ucoth, X- 1, or 1-x-ei(X 1).
Proof. Note that if W and W2 satisfy (A), (B), (C), then W Wl" W2 also satisfies

(A), (B), (C). Thus, for the first part of the lemma when Re u_<-r, it is sufficient to
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prove the lemma for W= Y(u,f) and (sinhu)/u, as the other values of W can be
expressed as multiples of these functionsBsee Lemma 2(B). The contour is described
in (1.15). Throughout this proof, is the parameter occurring in (1.12) and (1.15). In
general then, we have the global conditions

(2.13) Ilmfl_<2x, %
Ilmul<2x+r, u,
lu-f/irql>-19n*1-1 u for all integer q.

Just as in Lemma I(E), it follows from the last line of (2.13), that

(2.14) Isinh(- u)l>ll8n*1-1 u,

The argument computations are straightforward, e.g., if u , (R),

larg Y( u, a)l
_<6+2rr,

arg[ e" (1 e 2a-2u )
(1 --e 2a)

_<2x+2r,

u_< -r<0_<Re2,

Re u _< Re <_ 0,

Re_<Reu_< --r,

and

sinhu)arg
u

For u<0, uE, (R),

arg[ e+--ie-u (1-e2u) Reu_< -r.

sinh u
-[coshul

tanh u
u

Y( u, a )1- Icosh ul .11 (cotha ) (tanh u )1-< el" + lun*l],

as Icothl<ln*l, by Lemma I(F). The lower bound for Y(u,) is more difficult.
Equation (2.14) implies

[Y(u, a)[- _< 18ln*l Isinh a

but unfortunately, in general, this is not sufficiently sharp for our purposes, and we
must consider several subcases. As f--0+ iq, we have

Y(u, a)l-’ ,/ sinh2 0 + sin2 q

V sinh ( 0 u) + sin2 q
<_1, when0<_0<_0-u,

and in particular, for u_<-r<0<Re2. For 0_<0, we first prove the intermediate result

IY(u, )1-1 < 576e21[ + lun*l] u_< -r<0.(2.15)
If sin:_> k,

IsinhflIY(u,a)l-l_< <2eIl, u<_--r.
 0+1/4
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Whereas, if sinE0_< 1/4, then 21coshfll->21cosl_>v, and it follows from the definition of
r, in Lemma 2, that

16r
_< Max(Isinh ill, Icosh 21 2 cosh(-)

2 [cosh2f][} <2e2[[
2[cosh[

Then (2.14) implies, for u- -lul--r<0,

IY(u, )1-’ _<(18)(16) sinh f r
un*

16r u

<--(18)(32)e21llun*l< 576e1[ + lun*l],
the desired intermediate result. Equation (2.15) implies (B) when

<0<0 u< -r as IOI <
or

0
0--< 1, u--< - as 101-< 2lul.

Finally, if 0 _< 1, 0/2 _< u_< r,

iY(u,f)l_l<_e_ (l+e2) <
(1 --e20-2u)

2elul 2 elul

l_eo l_e_

which completes the proof of (B).
For (C), we note that when u Ej,j- or 2, then a<0,

IRe( ka u )1 I1 + 19n*l-IRe(j-u)l<_19n*l-, j+k-3.

Also, from the special shape of o (cf. Theorem 2(ii)), it follows for 0, that
[an*[--> 2. We then have for u ., ,

elRe(U-u)lln,cosh Re(f u ) <IY(u, t2)l-’ <
sinhlOI lan*l

IY( u, )l-1 8In* cosh 0l_< 8e 21lln*

sinhu
u

sinhu
u

cosh Re u dRe ul

IRe ul Jlal-19n*1-’
eRe ln*[

< 2eZl,lln,lan*l-

-’ lul IIm ul (2x + z’)ln*l-<
sinhlRe ul

-< + < +
lan*l-

< 2(t-+- r)ln*l,

which completes the lemma, when Re u_<- r.
Similarly for Re u_< r* < r<0, (R)f, consider l/V= 2u coth. Under these

conditions, we have

[arg(2ucothl)l<-largul+arg(l+e-2’)<3r Re>_0 u
--e-2

<--arg(e+-iu (l+e2)) <4r, Re_<0,u
(1-e2)
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lucothl<lun*l< +lun*l, u0 or,
<_[IReul/lImul]ln*l<_[1 /2/r/ 21al]ln*l
_< e2+’+Zlalln*l, u or

ltanhl
[u coth[- < <Max(8 641u tanh) <64[ 1 + [un*l] u o or

In*l In*l <]n*l2 uE or]u cothl- IReu lan*l-
where again the special shape of has been used. Thus, 2ucoth,
(2ucoth)[(X-1)/(2ucoth)]-X-1 and 1-X=e(X 1), satisfy (A), (B) and (C),
completing the lemma.

LMM 6. Let Uk() be as in Lemma 2(E), and
(1) m + be a positive integer;
(2) Km(u,) for u, be defined by

k=0

Then there exist proper numbers M( 1), s,t (i.e. nonnegative, independent of , n and u),
such that for u , , we have:

(A) [Km(u,)lMwmel{ 1 +[un*l}t,uo or;
(B) IK(u,)lMmellln*lt, uE or .

The constant M depends on m.

Proof. In what follows, we will use the notation of Lemma 2. From Lemma 2(E)
and Cauchy’s estimate for the remainder of a series, it follows that for lulr, ,

12ul](2u)mgm(u,)l Max Ig(t,)l
(3r)m[1-12ul/(3r)] l=3r

3164u/31 Max Ig(t, )1 12ulM,
(32r) 21=3

for a proper constant M, which implies (A) and (B) when lulr. Here we have used the
facts, that 132r (Lemma 2(A)), that K(u,) can be analytically continued as a
function of u to (see (2.12)), and that Max21=3lK(t,)l can be bounded by a
constant independent of r and (see Lemma 2(E)).

For lulr, we have 132ul132rl 1, and Lemma 3 implies that

(2.16)

](2u)mgm(u,)l-lg(u,) E (2u)kUk()]<--IK(u,)] + 12ult’M,(2) k

k=O k=O

<132u01 IK(u,)l/ Mk8-k---0

<132uwl’MMax{ 1,lg(u,)]), u, @,

for a proper constant M(_> 1). Once the growth properties of K(u,), as defined by
(2.11), are established for Re u-< r, u and 5 (R)f, the remaining cases of the
lemma will follow directly from (2.16).



1226 JERRY L. FIELDS

For [ulr*, Lemma 2(C) implies that IX-11< 1/2, that $*(X) is bounded by a
proper number M, and hence it follows from (2.11), that we have

2ucothj lul-<r *, u, (R)e.

Lemma 5 then implies (A) and (B), when r<_lul<_r*, u, @. For lul_>r *, the
behaviour of K(u,) is essentially determined by whether

X=X(u ,)--(Y(u j)}-2-{sinh(/j-u) }
-2

sinh

is near 0, or c, e.g., if q is an integer, and

U

then Y( u, )
and X(u,)--

+irq
0

2+ irq
(__ l)q+

As u progresses along , X varies among regions of the form described in Lemma
4, (A)-(D). Since Lemma 5 implies argX and arg(1 -X) are bounded for lul_> r*, u ,
@,, only a finite number of such regions are actually entered. In each of these
regions, Lemma 4 can be used to estimate (X) in terms of X and X- 1. Combining
these estimates with (2.16) and the results of Lemma 5 for Re u_<-r*, we are lead
directly to (A) and (B), which completes the lemma.

LEMMA 7. For 2t bounded,

where B).)(x) is the generalized Bernoulli polynomial defined by

( )eX,_ _)_.tJB).O)(x) itl<2,r"
et- j=o

In particular,

e2(h)-- (27t--2)3 e4()k )- (2)t--2)5(5X--6)
24 2880

Proof. See [3].
This completes the proof of Theorem 2.
COROLLARY 2.1. With the same conditions and notation as Theorem 2,

gn(w)--V/-[(n+X)2w]’(1 + w)-’-Xexp( --2(n +k)j+ T(n +)k,}) },
m--1

T(n+X,)-- X Tk()(n*)-*+ (1), n+k,
k=l

[k/21 [(k-- I)/21

Z
j=o j=o
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2Uaz-2d:-[d, + (3o+2A+ 3)]d, +(o+ 1)(o+A)(o+A+ 1),
6U0:- 3( o + 1)d- (o + 1)[20 2 + o(3, + 1) + 3,] +,(h- 1)(2h- 1),

24U33- 24d %- 8d 24dd_- 1216o + (4+ 9)] d2

+ 1213o+(2h+3)]d?+3121o2+o(28h+a5)+8(h+ 1)(h+ 3)] d
-(o+ 1)(o +h) [13o2 + o(12h+ 25) + 4(2h2+ 6h+ 3)],

8U13-a(2o+3)d2-4(o+ 1)d2- [152+o(12+ 31) + 16(h+ 1)]d
+(o+ 1)(o+,)[5o:+o(12X+ 11)+4(2,+ 1)],

2V,----4V2:--o(o+ 1), 24V33---o(o+ 1)(o+ 3)(o-- 2),
8V)3-o(o+ 1)(2d,-[o2+o(2h+ 1)+2(h+ 1)]), etc.

In particular, T( ) S(l ).
Proof. T(n + ,,) log S(n + h, ), and the rest follows by explicit computation.
COROLLARY 2.2. If in Theorem 2, or Corollary 2.1, one uses the large variable N,

N-- /n(n+2h) or (n+h)-IN2+2,

instead of (n+), one obtains asymptotic expansions of the same general form for
e:("+X)gn(W ), but with (n+. ,) replaced by N, and Sk(l), Tk(t) replaced by S,(), T(),
respectively. In particular

and

N:w -(1%- W ) V+XeZ(n+X)Ign( W ) vTS*( N, ) veT*(N’f),
m--1

S*(N,)- + S,(I)N-k+ -- (9(1),
k--l

m--l

r*(u,l- 2 Z(IN-+ (,
k=l

s()-s,()- T()- T,(),
S() S:() +vX:, T*() T:() + VX:,

x
( Sl(l, r,() r()+ a r().s()-s()+ T -Proof. Note that

((n+h) --N- ,Fo -The rest follows by computation.
The asymptotic expansion of the l,,j(w) comes from the following general result.
PROPOSITION 1. Let

,n(W)_ r(n+2X
1) fo

me-2V(’+X)(sinhy)-2XX(logX)E(v X)dv
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where X= w(sinh I)) -2. Assume that:
(1) n is a large parameter such that Inl + oo, arg n (9(n- ) as n ;
(2) X, o are complex parameters, bounded with respect to n, such that 2Re(,+o)< 1;
(3) w is a complex parameter such that largwl_<2rr-6e, e a small positive number

independent of n, and Iftl_> 5, ft w(n 4- , )2;
(4) k is a integer >_0;
(5) E(v,X) is an analytic and uniformly bounded function of v for

Then I.(w) (([loglftl]), n+ ,
Proof. For largwl_<2rr-6e, choose the real number q such that 21l<r-4e, and

largw- 2ql_<r- 2e. Then the integration contour 0: 0_< v<, can be deformed into,. v-log(t+i+t2 ) t-sinhv-uei’ 0<u<

This contour is shown for 0<2qb<rr in Fig. 7. As v varies along between 0 and , Ivl
is increasing, larg vl is nonincreasing,

2larg vl-< 2lql-< r 4e, larg x] larg w 2q’l<r 2e,

and E( v, X) (9(1), uniformly for vE. Let cross Ivl-1 at 1)--e iO. Making the
change of variable t-sinh v, we can write

F(n+ 1) oei’e_2V(n+,)t_2X_2O(logS)k E(1),X) dr.I"(w)-wF(n+2x) "to 1 -t

FIG 7. v-plane.

The following approximations are valid for t- sinh1)- uei, u>_O. For Ivl_< 1,

51tv-1- 11_<5 [(sinh 1)- 1] < 1,

which implies

whereas, for Ivl 1,

which implies that

Also,

4_<51tv-1_<6, 21arg(tv- )l<r,

12 te 11-[e- 2v[ -< e- 21vlcsq -< e- 2sin2e< 1,

e- sin2sin 2e <_lte-Vl< 1, 2larg( te-V )l< cr.

Ilog x]g -< [larg x] 4- logll + 211oglu ( n + X )11] k

--<[3 loglfl] ’[1 + Iloglu(n + X)II] *,
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and

for e sufficiently small.

I1 +t21 (1 u2)2-+4u2cos2@

_>.l--u2>, O_<u_<2-/2

_> 2u cos_> V/-sin 2e, 2-1/2U,

vsin2e} =V/sin2e,>_ Min -,

(2.17)

Using these estimates, we have

a-[oglall-i.(w)-- (nd_k)1-2x-2 le-2V(n+X)lu-2Ie(x+o)[1 /lloglu(n/X)ll]gdu

We will break ts contour at

u,-Isinh(e )l- sinh2 (cos 0) + sin2(sin 0 ) cos2 0+4-2 sin2 0 2w-l.

Let o-sine>0. On [0,u],

le-2v(n+X)le-2Olv(n+X)le-(5/3)lu(n+X)le-olu(n+X)l,
and on [u, ), lu(n+)1 for n sufficiently large, and

le-V+x[e-l+xl< 1, u u,

l(te-)+xt-t+xle/2lm+xllt-+xI, u.

Thus, if I denotes the argument of the symbol in (2.1 7), we have

Xx- + Iloglxll] kdx )

u du + u-
=(1) asn+X,

which proves the proposition.
Remark 6. Proposition is applicable to the integral

F(n+2x)F(n+1) e_(.+X(sinhe)-xX(logX)de
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where the notation and conditions are the same as in Proposition 1, and

(2.18) F(x,y) e-UX-’)(sinhu)Y-[log(sinhu)]’du, Rex>Rey>0,

THEOREM 3. Let p+ 1, j be positive integers with j<p, n be a large parameter such
that Inl / oo, argn- (9(n-) as n oo, and, ak, bk be complex parameters such that"

(1) they are bounded with respect to n;
(2) b-aj=/= a negative integer, k- 1,. .,p + 2.

Then, for w(n + h)2 ]- o(1) as n oo, and m + an arbitrary positive integer,

F(n+ 1) ’;’.p+3,2 ( 1-n-2h,%,ap,n+bt,+2,a )
m--I

k=O (n+l)k+l--aj
W-- +(9 w(n+k)

Co j

(n+ 2X)-l+aj --l+ajW
(n+ 1) -,. v+3 2

1, +bp+2-aj

+al,-a2,n+2-%,
n+, oo,

where e is a smallpositive number independent of n, and
r(k+ +6p+2-aj)

C,j-- F(k+ +at,-aj)

’)
largwl_<2rc- 6e,

Proof. It follows from (2.18) with r-0 and the Mellin-Barnes integral representa-
tion for ln,j.(w), that for n sufficiently large,

(2.19)
r(.+ ) foOOe_2v n+X)(sinhv)_2XGj(X)dv,I,,j(w)-2V/- F(n+2X)

2Re()+aj) <3, 0<w, X=w(sinhv) -2,

Gj(X)_g.p+3,, ( x aj’ae’1/2--’l-- )."-’p+ 3, p+3 be+2 aj

Since

m--I

)k Ck,j x-k-l+aj
Gj(X)-,=o2 (-1 F(k-a.+-X)F(k-a+2-X)qt-aj’m(X)’

aj re(X)--(--1) m[Tp+3,’ (X"-’p+ 3, p+
1m+aj,ap,

-m+aj,b,+2



MEIJER G-FUNCTIONS 1231

we can rewrite (2.19) in the form

m--I (n+2)--k--l+aj k--l+aj(2.20) ln,j(w)-- (--1)kCk,j W- +R,,,j(n,w),
k=0 (n+ 1)k+ l-aj

F(n+ 1) f0 -2vn+X)(sinhv G,,,(X)dv,Rm’j(n’w)--2 l"(n + 2,)
e )-x

2Re(X+aj) <2m+ 3,

Note that for v near 0, X is large, and that when IX]> 1, largX]_<rr-2e,

Cm,jX-m- +aj

F(m+-a-a,)F(m+2-a-%.)aj,m( g)-(--1)

1,m+ +b,+2-aj
p+3F+2 m+ l+a,--aj,m+{--A--aj,m+2--h--aj

0W.

Alternately, when IX]< 1, largX]_<rr-2e, it follows directly from the Mellin-Barnes
integral for Gj,,,,(X), that Gj,,,,(X) has the convergent series representation,

p+2

aj,m(S)-S-m+ajFo,j,m( S) - X SbkFk,j,m( g) O<lJ<
k=l

where Fo,j,,(X) is a hypergeometric function of the form p+3Fp+2(-X), and the
Fk,j,m(X) are related series, possibly involving positive integer powers, of logX as

"+aE (-X) is themultiplicative factors. For m sufficiently large, say m>_mo, X- o,j,m
dominant term of this series representation as X0. Finally, as the only singular points
of Gj,,(X) are at X--0, and c, we have

aj, (X) ( X-m-I +aj ) uniformly for [arg X]_<r 2e.

By analytic continuation with respect to w, we see that (2.20) is actually valid for
largwl_<2rr- 6e. When Proposition with k-0, is applied to R,,j(n, w), we get

(2.21) R ,j(n,w)-([w(n+X)2] -m-l+a) n+.X oo, m>_mo.

As each of the m terms in (2,20) can be estimated explicitly, the tentative assumption
m>_mo in (2.21) can be dropped, which completes the theorem.

Remark 7. Let m.)(w) denote the first m terms of the asymptotic series for ln,j(w)n,j

as given in Theorem 3. Under the conditions of Theorem 3, we then have

(W)

m,j(W)--([W(l+h)2]--m--l--aJ), n+h c,

Consider the function

P

n(W)-- Ajln,j(w)--(nm>(w)+m(W),
j--I

P P

n(m)(w) X AjI(n,)(W),
j-I

largwl<2r.

m(W) X Ajm,j(W),
j=l
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where the Aj are well-defined constants depending on the parameters ak, bk. Then the
asymptotic expansion of E,(w) follows directly from Theorem 3, i.e.,

P

n(W)--(nm)(W) "1- E aj([w(n’-)2]-m-l-aj)
j=l

n+h, largwl<2r.

For particular limiting configurations of the parameters ak and bk, it may happen that
one or more of the Aj become singular, and in such cases, E,(w) need not have an
asymptotic expansion, in general. However, in special cases such as

F(1 +ap--a)
"4= r(1 +be+-a.)

an asymptotic expansion of E(w) can be found, by taking appropriate limits in the
E(’>(w), and modifying the proof of Theorem 3 to show that m(W) has an ap-
propriate order estimate. The crucial steps of this modified proof would depend on
showing that for appropriate parameters o and k,

P

X AjGj(X)-(9( X(logX)k)
j--I

uniformly for larg X]_<r 2e,

and would make use of Proposition in its full generality. Typically, this limit proce-
dure introduces nonnegative integer powers of log[w(n + X)2 into E(" (w).

Theorems 2 and 3 can be extended by making use of the following analytic
continuation results for the principal branches of g,(w) and the l,(w).

THEOREM 4. Forp+ a positive integer, j,q-- 1,. .,p and k-- 1,...,p+ 2, let
(1) aj aq =/= an integer ( jv q)
(2) b-ayv a negative integer;
(3) n + 2,- + bk v a negative integer;
(4) o---2k-2Y-1/2-2X-b,;:,aj-,+=21bk.

Then the principal branches ofg,(w) and l,,j(w) have the following analytic continuations.
When Iwl> 1,

(A) g,(wei2")=e-i2"("+2X)g,(w);
--i2ra,I " )eirajgn( Weir(B) l,,(wei2") e ,,w)+ ( i2r ).

When 0< Iwl< 1,
(C) g(wei2’) = Y]_ Cjl, j(wei’)+ Dlgn(we-i2’)+ D2gn(W);

2 2a(D) ln,j(we")= ln,’j(W)+ ( i2)e’agn(Wei);
where

--i2bD ei4v D2 ei4v e-i2ay- e
j:l k:l

+

F(b+2-a)F(1-b+2+a)
Formulae (A)-(D) remain true if (i)is r__eplaced by (-i) and the constants C, D are
replaced by their complex conjugates C, D.
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In Iw--11< 1, the principal branch of l,,j(w) is analytic, so that w-1 is only an
apparent singularity. The principal branch of g,(w) has the following analytic continua-

tions. For Iwl> 1, we have

(E)
e- we-

r(n+ m)F(n+2+b,+2)w-"-2x [ n+2+be+2
-F(n+2X)F(2n+2X+ )F(n+2+ae) +2+’ 2n+2A+ 1,n+2A+ae

where the upper (lower) signs are taken for 0 <_ arg w<2,r ( 2 ,r < argw <_ 0). Further-
more, with o+1/2 4: an integer, and the w plane cut from 1 to -c such that argw-
arg(w 1) 0 for < w, we have for Iw 11< 1,

(F) e nWe -e- .e- + w-le-

r(n+l)r(-o-1/2)(w-1)o+l/2s*n(w)+Rn(w),
r(n+2X)

where S*, (w), R,(w) are analytic functions ofw in Iw- 11< 1, with Sn*(1) 1.
Proof. For Iwl> 1, we can assume g(w) and l,,j(w) are defined by the series

expansions (0.1) and (0.2), respectively. As these series can be analytically continued
through an arbitrary range of argw, provided Iwl> 1, (m) and (B) follow from elemen-
tary series manipulations. For 0<lwl< 1, consider the reflection formula identity

r(a-)r(1 a+s ) ei2r(a-s)r(a-)r(1 a+s ) + (-i2 ,r )e"(-)

and the partial fraction identity, y- e-2",

(2r )2eirt(!/2 + 2V)e-i2rs r(a,-s)r(1-a,+s)
r(b+:-s)r(1 -bp+2+ s)

HP+2( i2,rbj
j=l ,,y--e- )

=D,
l_i;=,(y_e_i2,ra,)

P (i2,r)CjyX yei,ra iraj
j=l --e-

1 +D2Y+DlY

p

Y Ce-"’I’(a-s)I’(1-a+s) l+D2e-i2’rS+D,e-i4’s
j=l

Multiply these two identities by

r(.+ 1)F(n+2X+s)F(be+2-s) ),F(n+2,)I’(n+ 1-s)F(ae-s) (wei2’r

and integrate them along a contour L+ which separates the poles of I’(be+2-s) from
those of F(n+2h+s)F(1-ae+s). The first integrated identity leads to (D), and the
second to an expansion of

1
p+ |
+2,p+2 k

W
1-n-2X ae,n+ l I 0be+2

which reduces to (C). For further identities of this form, see Meijer’s paper [8].
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From the series definition in (0.2), it appears that w= is a singularity of ln,j(W ).
However, from the Mellin-Barnes integral for ln,j(W) in (0.2), it follows that l,,,j(w) is
analytic in the sector largwl<2r, which includes the region Iw-11< 1. Thus, w-1 is
only an apparent singularity of l,,,j(w).

Equation (E) follows from the analytic continuation of the series in (0.1), while (F)
follows from some general results on hypergeometric functions. Norlund in his classical
analysis [9] of the hypergeometric equation, y-0,

q q d
}(= II ( 6 +j- ) zjl-[, ( 6 + aj ), 6 z-zj=|

which is satisfied around z- 0 by

q+lFq --flj+flQ
z

and around z o by

’)

aj, j complex parameters,

j=l,...,q,

j--1,.-.,q,

showed that it is possible to choose a basis =(Bj(z): j-1,..-,q} of y-0 in

Iz--11< in such a way that it contains at most one element singular at z-1--say
Bl(Z), while the remaining q- dements of are analytic in Iz- 11< 1. In particular,
for

q q

Oq--1+ flj- as=/= an integer,
j--I j--I

Norlund showed that we can take BI(Z ) to have the form

Ol(Z)--(z-1)%S*(z), S*(1)- 1,

where S*(z) is analytic in Iz- 11< 1. Expressing the solutions around z-o in terms of
the basis , he showed that

(2.22)

1,aj+l--flQ 1) r(aj+l-aQ)r(-oq) oz- (z-l) S*(z)+Rj(z)q+Irq Otj-]-1--aQ z F(aj+ 1--flQ)
aj-- aQ, aj-- flQ =/= a negative integer,

where Rj(z) is a solution of (y-- 0, analytic in Iz-- 11< 1. With the identification

(1,aq+l--flO. 1) -n-2X n+2,+be+2 _1)z-"qq+ Fq aq+ ao. -z --W p+EFp+I 2n+2X+ 1,.n+2)+ap w

z=w, j=q=p+2, aq=n+2,, Olq_l--n

1--aO._z--aP, 1--flo--bp+2, Oq--O+1/2,

(2.22) reduces to (F). Also, this shows g,,(-w) and ln,j(w ) satisfy y=0.
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Remark 8. Forp-0, Theorem 4(F) corresponds to

+_i,a’(n+2X)g ( +i’rr)we-

F(n+ 1)F(n+2X+b)F(n+2X+b2)F(1-2X-b-b2)
I’(n + 2X)F(n + 1-b,)F(n+ 1--bE)

X2F b2+2X+bl
1-w

r(n+ 1)F(- +2+b + bE) wb(w_ 1)l_2X_b,_b2
F(n+2,)

-b2-n+ 1-2,,-b2+n+
2F -b2-b +2-2X

wb2

l-w), Iw-ll<l.

3. A difference equation for g(w) and I.o(w).
THEOREM 5. Forp+ a positive integer, j,q= 1,- .,p and k-- 1,.-.,p+ 2, let
(1) aj aq =/= an integer (j#q);
(2) bk--aj v a negative integer.

Then for m an integer, the functions gn(Wei’2m), l,,j(wei’(2m+ 0), j-- 1," ",p, satisfy the
linear difference equation 3]L, y--O,

p+2 p

6"31L-- jII ef’n(2k+ 1--j, bj) wn(n + 2.-- 2--p )U9 -1 1-I c,,(2X+ 1--j, + aj),
j--1

j=l pj- erPr-1" el, -JY, =Y,-j,

c.(h /x)--
(n+X--1)(n--g) o_n(n+X--1 +ix)

_
2n+X--1 2n+h--1

Moreover, if r,s are integers, and w belongs to the nonempty region

r,s- {w" r Max(- 3- 2r,

2r< arg(1 +weir2s)<2qr-3-2s)< arg w<r Min{ 1-2r,1-2s)}
then the functions l,j(wei’2+ l)),j_ 1,...,p, gn(wei’2), gn(wei’2+2)) form a basis o,
of the difference equation )]Lny,=0, provided g,(wei’2+2)) is gn(wei’-s) analytically
continued along a curve which encloses w--O, but not w 1.

Proof. From the fact that

{ (n+,)s}_(n+h--1)eT"(h’) (- i)-_- (n+ 1)_ (s--/x),

it follows that

(3.1)

L,{ (n+ 2X)s } (n+2X-2-P) p+2

n (s-bj)(n+ 1)_ (n+ 1)_ j=l

--W

P(n+2h--_2.--__p_)+, 1-I (s+ 1--aj).(n+ 1)_,_l j=
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Applying 631L, to the Mellin-Barnes integral representation for gn(weir2m), one obtains

_(-1)P+2(f_f ) F(l+b+2-s)(n+2A-2-p) ir2m)sdS2ri +L F(a,-s)(n+ 1)_, (we

where the contour L is chosen to separate the poles of F(b,+9.-s) from those of
F(n+ 2,+ s). 1 is equal to the sum of the residues between L and 1 + L. But by
inspection, the integrand of I has no poles between L and 1 /L if n is sufficiently large,
so that I=0. The computation for l,j(weir(2m+ l)) is similar.

Thus, the elements of ,,s are solutions of 31L,y.-0, and Theorems 2,3,4 imply
that they are linearly independent as functions of n. Here, we use the fact that if Wei2
is connected to Wby , W=we2,

(We’2")-log{e’"f-+l W}- -(w).

Remark 9. 63IL, can also be written in the form

p+2

6"L,, 2 {Cj(n,,)+wDj(n,,)} S-j,
j=o

Do( n,X ) --Dp+ 2( n,, -O,

where the Cj(n,h), Dj(n,h) are rational functions of n and h. It follows from (3.1) that
with q --p / 2,

q q

n 2
j=l j=0

(s--n)j(s+ n+ 2h--q)q_j
(--n)j(n+2,--q)q-j

p q

(s--n)(s+n+2h--q) IX (s+ 1--aj)-- 2 Dj(n,h)
j--I j--0

(s--n)j(s+ n+ 2X--q)q_j
(--n)j(n+2,--q)q_j

Explicit expressions for the C(n, h), Dj(n, h) can then be deduced from [4, Lemma 2.1
or [7, Vol. II, p. 139].

COROLLARY 5.1. With the same conditions and notation as in Theorem 5, let

b,- bk=/= an integer ( m =# k ) m k ,p + 2.

For Iwl< 1, the functions

fn,k(W)
(n+2h)b

Fp+ ( l’bk-n’bk+n+2’bk+ l-aP )Wbkp+3 2 bk + l_bp+2
-w(n/ 1)-b

k=l,.--,p+2

form a basis o of ’31L,y,- O, for n sufficiently large. For Iwl> 1, the functions
(n +2A)-l+a.

m,,j(w)-- (n+

w-’+a F+ ( 1,-aj+ +bp+2

’+ - -aj+n+2,-aj+2--n--2),-aj+ +a
-1

n + 2,-- +aj a positive integer, j-- 1,.--,p,
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r(.+ 1)F(n+2X+be+z)W-"-2x
g"(w)-F(n+2X)r(2n+2X+ 1)F(n+2X+a,)

n+2,+b,+2
p+2F+ 2n+2,+l,n+2+ae _1)

ho(w)_F(n+l)F(2n+2X)F(n+l-a) F+ (F(n+2X)r(n+ 1-b,+2 )
w p+2 1-2 _1)

2n + 2,, n + aj4 a positive integer, j---- 1,- -,p,

form a basis of 63IL.y O, for n sufficiently large.
Proof. Let the parameter y be defined as in Theorem 4. As

L,(w)_e_,,F(b+ 1-b,+2 ) r(n+ 1)
F(b+ 1--ae) I’(n+2X)

,p+2 ( weirGpl+3,p+3 1-n-2X,ae,bk,n+bk,be+2 ),
it follows as in Theorem 5, that 3L,{ fn,k(w)} 0. Then, from the explicit formulae

(3.2)
p+2 r{ ,kbp+2 bk)g.(w)=

r(ae--bk) f.,k(w),
k=l

2 r( * --bk)be+2 r(bk+ )e k(w),l.,i( weir)--,=, r(a, bk) aj

it follows that the (p + 2) functions in o span the (p + 2)-dimensional space spanned
by r,s in Theorem 5, and are linearly independent as functions of n. Note that (3.2)
can be inverted as follows. From the partial fraction decompositiony-e-i2’s,

i-ip+2 e-i2rbj
j= l,jvk ( Y-- ) P djy

II.__ (y--e--i2raj) =Y+d+j=l y--e--i2raj

it follows that

r(ae-s)r(-ae+s)
F(b+z-S)r(1-b,+2+s)

e--ir(bk--2V) eir(bk--2)
+ ei2,rs

2,r 2r

r(aV- + )e’’r(- r(- +)
+ X a)r(1 a, a1 a1 s) als

j=l r( ,k ,kbe+ %)F(1. be+2+ aj)
Multiplying this identity by

r(n+ 1)r(n+2X+s)r(b+-S)w
r(.+2x)r(.+ 1-s)r(av-s) Iwl< 1,
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and integrating it over a contour L+ which separates the poles of F(be+2-s ) from
those of F(n + 2k+ s)F(1 ae+ s), we deduce that

(3.3) e irb’ I’(bk+l--a, )
r(b+ be+.) f"’k(W)

e-ir(b 2,) e ir(bk-- 2-1,)
+ 2r gn(W)-

297" g"(wei2)"

This formula also serves to analytically extend fn,k(W) beyond Iwl< 1.
For Iwl> 1, we note that

(3.4) l,,,j(we’")- F(n + 2X+ aj.)

I’(1--n--2--aj)e-ir(n+2h)gn(W )

F(1-a+be+2) eir(-l+aj)m (w)+
F(1-a+a,) n,

As F(n+a)F(1-n-a)e-i’" is a periodic function of n whose period is equal to one,
and l.,(wei’), gn(W) are solutions of ]L.y.-0, so is m.,(w) a solution of lL.Yn--O.
TO show that h.(w) is also a solution of "JIL.y. =0, we could represent h.(w) as a
G-function, say

F(n+ 1)F(2n+2X)F(1-2n-2)F(n+ 1-a,)F(-n+a,)
F(n+2,)F(n+ 1-b.+z)F(-n+be+2)

n+ 1,1-n--2h,ael,
be+2

and proceed as in Theorem 5, or expand this G-function representation by the residue
calculus into a linear combination of the f,,k(W). However, the following derivation is
more informative. From (3.2) with Iwl< 1, we have

p+2

(3.5) g,,( wei2t ) E ei2rbk
k--l

’(b*k --bk)\ P+2

F(ae b,) f,,,,(w).

The G-function representation

F(1 +b,-b,+)F(n+ 1)
f",(w)-F(1 +b-ae)F(1 +n-b,)F(bk-n)F(n+2) )

1--n--2"ap’n+ l’bk ),bp+2
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serves to analytically extend f,,k(W) into Iwl> 1, i.e.,

r(1 +b-ae)r(b-n)r(1 +n-b)(3.6) F(1 q-bk-b,+2 ) fn’c(W)

--jl F(aj--a’J)
F(1-a+bk)F(n+2-aj)r(-n-l+a)m"’(w)b, )F(a. ,+

F(2n+2X+ 1)F(-2n-2a)F(n+2a+av)r(1-n-2X-ap)+
r( n + 2X- b*’e+2 ) r(1 n 22 b,+ 2 )

g,(w)

+ r(,+x)r(-n-x)r( +n-a,)F(-n+a,)

Substituting (3.6) into (3.5) we obtain an expansion of g,(wei2’) in terms of . To
identify the connecting constants in this expansion in closed form, we assume Iwl< 1,
and note that from the Mellin-Barnes integral expansion for g,(w), with L-L+,

g(wei2’)-e-i2"g,(w)

F(n+ 1) f,p+2,1 [=(i2r)e-i’F(n+2X ) "-’p+3,p+31 we 1--n--2.,al,,n+l,l--o)bp+2,1- 0

o an arbitrary complex parameter. Choosing o-n + 2X, this reduces to

(3.7) g,(wei2’)--e-i2’("+2X)g,(w)

=(i2r)e_i(.+2x) r(n+l) c+2,0 (we
F(n + 2,) ’-’p+2,p+2

1--n--2,a,,n+ 1,
bp+2

Assume, for the moment, the following analytic continuation result.
LEMMA 8. Let q be a positive integer, aj, bg be complex parameters such that

aj- a, bj- bk an integer ( j4 k), j,k-1,.-.,q,

and the z-plane be cut from - to 0, andfrom to such that argz-arg(1-z)-O for
0<z< 1, and (1 -z)- e-i(z- 1). Then the analytic continuation with respect to z of

z bQ ,=l F(ae-b)
to the ray z > 1, is given by

Zbkq+ lFq

q

e+-i(’+r)G#(z), "r- E (br-ar),
r--I

ae r(a aj)
_,+aj

be j--i F(aj--ao)
z q+lFq +aQ_as

0<z<l,

l<z,

where the upper (lower) sign is taken for the analytic continuation through the upper
(lower) halfplane.
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Analytically continuing (3.7) with respect to w into Iwl> through the upper half
plane, and applying Lemma 8 to the resulting equation, we have for Iwl>

(3.8)

g,(wei2")
r(n+l)

e-i2"tn+2X)g,(w) + (2r)ei’’2v- n)

F(n + 2,)

o,p+2 ( weir 1-n-2’,ae,n+ )X p+2,p+2 bp+2

F(a-a) F(1 +n-a)F(-n+a)m,,j(w)(2)e’"’-"+’ r(ajLj=l

+ e-2,,+2x)+ (2)e2v-x-")
r(2n +2X+ 1)r(-2n-2X)r(n+2X+ae)r(1-n-2X-ae) }

As the connecting constants in (3.8) are periodic functions of n whose period is 1, and

g(w), g(we) and the m,(w) are solutions of y 0, it follows that h(w) is a
solution also. In addition, (3.4) and (3.8) imply that the (p + 2) functions in span
the (p+ 2)-dimensional space spanned by , in Theorem 5 and hence that the
elements of are linearly independent as functions of n.

We now prove Lemma 8. Note that for q= 1, the lemma reduces to the elementa
result

F(al--hi) F(a-b,)

where the upper (lower) sign is taken for the analytic continuation through the upper
(lower) half plane. For q> 1, we proceed as follows. The series definition of G(z) serves
to analytically continue G(z) into Izl<l, largzl<r. Similarly, e+-i"+’)G#(z) can be
analytically continued into Izl> 1, larg(z-1)l<rr. Next, consider the Mellin-Barnes
integral: k= 1,..., q,

(ze-ir)tdt

which is well defined for larg(ze-i’)l<r or 0<argz<2rr. If the contour L0 is deformed
to the right into a contour L+, we obtain from the residue calculus,

(3.9) H,(ze-i’) =F(1-aO’+b’)" ( l’l-ao+b’l )1.,(l_bt2+bk ) (ze--’)bkq+lFq l_bt2+bg
a

Izl< 1, larg(ze-i)l<
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Similarly, if L0 is deformed to the left into a contour L_, we obtain the result

(3.10)
q r(a-a)r( +b-a)H(ze-’")= E
:, F(a-b )

(ze_ir)_l+a ( 1,1 +bQ--aj
q+lFq +aQ--aj 1)

Izl> 1, larg(ze-ir )l< eft.

Thus, the function Hk(ze-i’) serves to analytically continue the series on the right-hand
side of (3.9) through the upper half plane into the region Izl> 1. Moreover, as G(z) can
be written as a linear combination of the Hk(ze-i), (3.10) serves to analytically
continue G(z) through the upper half plane into Izl> 1, i.e.,

(3.11)

q

q+ Fa(1 l+bo-aCj(ze-ir) -l+aj + aQ-- ajj=l 1)
Izl> 1,

where the constants C are given by

[’( aj-aj) q r(b.k- bk)1’(1- b. k-k- bk)q"= r(aj_be ) k__ei"b*r(1--aJ+bk)r(a/--bk)
For an alternate representation of the C, consider, y= e-’,

T(y)= -"**J ] rk
IIqk=, (Y -e-i’b*) k=, Y -e-iz’b*

larg( ze-i’ )l< rr,

Note that

q

=1 (2rri) e’(’+*)r(G-s )r(1 G+ s )

eirr(s+ay+,) r(e-)r(1-e+)
2ri r(ay-s)r(1-a.l+s)

q r(*-,)r(1-*+)
T(O) ei2"b*Tk ei2"{’+a’), Tk= ei’{’-6+aj)

,=,

so that
qF(ai-a/) e-Dr(r+aj, eiZ,bTkF(aj-be) k=,

Substituting this representation of C1 into (3.11) and identifying the resulting series with
the series continuation of e"(+’)G#(z), we readily arrive at Lemma 8. Similarly, to
analytically continue G(z) through the lower half plane, we consider Hk(Ze’), and
proceed as above.



1242 JERRY L. FIELDS

For completeness, we note that if (3.4) is substituted into (3.8), and the resulting
series summed as in the above lemma, we have

(3.12)
P r(a-a/)r(1-aj+ae) r(1 +n aj)ln,j(weir)h,(w)-- 2 e-’""

j:, r(%.-be+z)F(1-aj+be+2)__
e-i2r(n+) F(2n+2X)F(1-2n-2,)F(n+ 1-ae)F(-n+a.) }g.(w)r(n+ 1-be+2)r(-n+be+,.)

e 2 y

2r g"(we: )"

Remark 10. Using (3.3), (3.4) and (3.12), asymptotic expansions for the f,,k(w),
m,,j(w) and h,(w) can be deduced from those for g,(w) and l,,j(w) in Theorems 2 and
3.

Remark 1. Should 2n + 2 5, take on a positive integer value, m say, all the elements
of 0 remain well defined, except for h,(w). A (p + 2)nd linearly independent solution
of 631L y, 0 in Iw > is then given by, 2n + 2 5, m e,

h*(w)-lim 1{ F(l+n-ap)F(-n+ae) }-0 F(1 +n-bp+2)F(-n+bp+2)
g.(w)-eh.(w)

Similarly, one can deal with the other parameter restrictions.

4. The generalized daeobi functions. With the identification

aj- l-aj, j-1,. .,p,

flj-l-bj, j- 1,. .,p+2, tip+2-- or bp+2-O

denote g,,(w), l,,j(w), m,,j(w), etc. by g(w), #ln,j(W), #mn,j(W), etc., respectively. The
generalized Jacobi functions ,(w) are defined by

(4.2) F(/3e+ +1 ) l,p+l (F(ap) 2X) Gp+2’p+2 w

-n,n+2h,ae

1--n--2Xl--ae,n+ ]
0, 1--fie+

Iwl< 1,

where n need not be an integer. If n + is a positive integer, ,(w) is a polynomial.
Restating Theorem 2 and 3, we have the following.
THEOREM 6. For p + a positive integer, j, q-- 1,. ,p and k- 1,2,. ,p + 2, let

n, 2t, %, j be complex parameters such that n is large, Inl--’ / o, argn- (9(n- ) as n o,
7t, aj, flj are bounded with respect to n, and

(- Olq =/= an integer ( j# q)
aj-- flk# a negative integer.
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Also, let the region o be defined by- w"
larg(w)l--<2r--el’lWl-->lNI {lglNI}
larg(1 w)1_<2r- e2, I1 wl-->lNI-(loglNI) +4

where N- n( n + 2, ) or (n + X) /N2 + 9_ and the ej are small positive numbers

(A)

independent of n.
Then for m+ an arbitrary positive integer,

r(+-)

m--1 (aj+ fle+2)w-,-+
(-1)*

,=o (.+.+ 1),(.-. + -2x)(.+-.)+e([w]--+.)

(n+2X)-w--+e3F+2 ( 1,%+ l--tip+2

(n+ 1). aj+n+ 1,aj-n+ 1--2X,%+ 1--ap 1)
(N2w) -’ (1), N largwl_<2 El, j- 1, ,pnO 0O, ’t/"

and there existfunctions T(O) such that
(B)

g(we+-i’) /--[N2w] v(1- w)-V-Xexp( -w-i2(n+))O+-iry+ T#(N, +--0)),
m--I

T#(N,O) 2 T2(O)(iN) -k+ - (5(1), N+c, w@,
k=l

P p+l1-1-lwl
2v-+ E %- flj, o--2,-2,,2-

V/Iw( w)l j=l j---I

V/--- sin O, il- w-- cosO, 2w(1-w) sin 20, 2w- cos 20,
k/2] [(k-- 1)/2]

T2(O)-- X # )k-2jU-2+,k(ct 0 + E
j--0 j--0

Vff_2+,k(cot 20)k-zJ--( 1)gTk*(-- O),

U2 U22, 2Uo 2Uo2 + A2(o + 2X ),
2Ul-- 2UI + k2Ul

2V--4V -o(o+ 1), 24V3:--o(o+ 1)(o+ 3)(o- 2),
8V---o(o+ 1){2dl--[(o+,)(o++ 1)+(X2++2)] ), etc.,

where the Uk_2j, k are defined in Corollary 2.1, and the dj are defined in (1.3) and Remark
1, using the identification in (4.1). Also, irA(N, 0), P(N, O) are defined by

T#( N, +--O ) -A(N, O ) +--iP( N, O ),
then for w (R),

A(I,O) r#(g’o)-{- T#(N’--0)
2

k--l
(--1)kT(O)N-Zk+ - (9(1),
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and

% Olq =/= an integer ( j =/= q ),
ilk-- va a negative integer,

Then for n sufficiently large,

P(N,O)- T#(N’O)-- T#(N’ --0)
2i

m--I

k=0

Proof. Evewtng follows in a straightforward manner from Theorems 2, 3 and
ia. iCorollaries 2.1, 2.2. Note that the fit-hand side of (A) is just e- m,,1(we- )

treated as an asymptotic series for large n. For (B), we initially take w (0, 1), so that
0 (0, /2). Then

By analytic continuation, the relation (we)+(we-)=O continues to hold for all
w @. The rest is by computation.

THEOREM 7. With the notation of Theorem 6, let the parameters %, ilk, h be
independent of the large parameter n, Inl + , argn:(n-) as n , and satisfy the
conditions,

j,q=l,...,p,

=,...,p+.

(A)

If n + is not a positive integer, (A) serves to analytically continue n(w) into Iwl> 1.
For largwl-<2r- e

1)

exp (A ( N, O) } cos(2( n + X )0+ r, P( N, 0) },

wE@, N.
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Combining (B) and (C), we have the asymptotic expansion of ,(w) for w E(R),
N--, o. More restricted versions of (C) are the following.

For [arg(w 1)1_<r 12,

(D) [N’-wlr(w-1)--
X e-i""+A(v,’/2+in)cosh 2(n+,)rl+iP N,-+irl
wE(R), N, cosh2,1-2w-1, 1>0 forarg(w-1)-O.

For larg( we-i’)l-<r- e

(E)
F(/3e+) [N2we-,]v(1 +we-,)-V-XeAtU,*)cosh[2(n+X)q+iP(N, iq)],F( i’l’ ) vr(ae )

wE(R), N o, cosh2q= +2we-, q>0 for argw-r.

Proof. (A) follows from (3.3) with k=p+ 2, and the identification in (4.1). (B) and
(C) follow from Theorem 6. For (D), we note that

cosh1 7r- sinhr/= W- 1,

and that Re(rl ) > 0 for larg(w 1) _<r e2. Similarly, for (E) we have

sinh q,- we-i, coshq i +we-i,
and Req,>0 for larg(we-)l<_r-e. Making use of the fact

ea coshb cosh( a + b) + e-b sinh a,

(D) and (E) follow directly from (C).
Remark 12. The generalized Jacobi polynomials, (w) with n+ 1 a positive in-

teger, were treated from a differential equation viewpoint in [1], and from a generating
function approach using Darboux’s method in [2]. The present treatment is more
general.

5. Asymptotic expansions for g.(e+-i’), and (1). Using the general theory of
hypergeometric functions, it was shown in Theorem 4(F), that the principal branch of
g,(w) has the following behavior near w-e +-:
(5 1) e+--ir(n+2X)gn(we+--ir)--e+--ir(n+2X)g.(e +__i, +(w-- 1)e +ir- )

=r(n+ 1)r(-o- 1/2) (w- 1)+’/2S*(w)+R.(w)r(n+EX)
p p+2

o + -ff 2) + a b an integer,
k=l k=l

Iw- ll< 1, largwl<r, larg(w- 1)l<r,
where S,*(w), R,(w) are analytic in Iw-ll< 1, with S*(1)-1. It can be shown that
when o +1/2 is an integer, similar expansions exist which involve log(w- 1). From these



1246 JERRY L. FIELDS

expansions, it follows that

(5.2) g(e+-i=)-e i(n+2X)R,(1) exists, (1)when Re o+ >0.

For w sinh2, Re5--> 0, the asymptotic expansion of g,(w), as derived in Theorem
2, was based on the integral representation (1.13), which we now write in the unnormal-
ized form,

r(n+ 1) F(-o) fe e-Z(-u)("+X)F(u )d(2u)(5.3) g,(w)-f
F(n+2,) 2ri

o

p p+2

o--- 2X+ a- b an integer,
k=l k--I

F( u ) (sinh ) x- (cosh ) (2 u ) K( u )

[sinh(_u)]-x-2O{(sinhu)[sinh(2_u)] )o$,(X),
u0 0fq(.Re_>0},

where K(u, j), X, *(X) are as in Corollary 1.1, and where E0 is the contour shown in
Figs. 2 and 8. As each of the component, multiple-valued functions in the definition of
F(u,) is well defined by its principal value when u0, (R)Rsee Corollary 1.1,
F(u,) and these component functions remain well defined when they are given a
common analytic continuation with respect to from (R) to 0. In particular, the
behaviour of F(u, 5) for u near 0 follows directly from Lemma 2, where it is shown that
K(u,)- +(u), uO, (R). Note that the parameter o is the same in both (5.1) and
(5.3). Note also, that when we +-i’, -a+ifl+__ir/2, and that the singularities of
[sinh(2/j-u)] coalesce with those of (sinhu), so that the previous analysis of (5.3)
must be modified.

FIG 8. u-surface.
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THEOREM 8. Let p, n,X, aj, bj, o, dj be as in Theorem 1, with the additional restric-
tions that n be a large parameter such that In]- + . argn- @(1) as n- o, and ,, aj, bj
be bounded with respect to n. Then for Re(o+1/2)>0, there exist constants H2k such that

for m + an arbitrary positive integer,

gn( e +- g )

r(n+ 1) p+2,1

F(n-+-2A) vP+2’p+2

1--n-2X,a,,n+

bp+2

F(n+ 1)F(n+2X+b ,+2)e ( n+2X+be+2

I’(n+2X)l-’(2n+2X+ 2n+2h+ 1,n+2X+at,

) -2o-2,H(
m--I

H(n+X)- + Y H,(n+X)-2k+(n+X)-"(9(1), n+X,
k---I

p+2 p

23’--+ bj- .aj, o--2X-2,,
j--I j--I

6H.= 3(2o+ 1)d,-- (o+ 1)(2o+ 1)(2a+ 3X)+X(X-1)(2X-1),
1440H4 360(20+ 1)(2o+ 3)d2

+ 120(2o+ 1)Ix(x-1)(2X-1)-(o+2)(2o+3)(2o+3X+2)]d
+(o+ 1)(o+2)(2o+ 1)(2o+ 3)[80o2+ 8o(30X+7)+ 15X(6X+ 1)]
--40(o + 1)(2a + 1)(2o + 3X)X(X-- 1)(2X-- 1)

+ 4)t()k2- 1)(4)t2- 1)(5)t--6), etc.

Proof. We first prove Theorem 8 under the more restrictive condition

(5.5) 20 v an integer.

In what follows, let a + ifl satisfy the conditions a> 0, 0_</3_< r/2, and let q,(w),
h,,(w) be the functions which result when 0 in (5.3) is replaced by the contours @-, *
in Fig. 8, respectively. Here, - is the contour 0 translated through 2-irr, and the
contour * is a positively oriented loop contour which encloses u=0 and u=2-ir,
but which encloses none of the other singularities of F(u,), i.e., the points u=k+ irq,
k=0, or 2, q an integer. The initial (terminal) straight line segment of * is taken to
coincide with the initial (terminal) straight line segment of - (o), respectively. As
F(u,) is well defined on this terminal straight line segment of 0, the definition of
F(u,) can be extended to *, and hence -, by an analytic continuation with respect
to u along these contours. Finally, as * can be deformed into o+-, without
crossing any singularities of F(u, ), it follows that

h,,(w)-g,,(w)+q,,(w),
(5.6) w-[sinh]2, -a+ifl, 0<a, 0_<fl_<.
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Consider the integral for q,,(w). For u-, we can make the substitution u=2-
irr+v, vEo. By carefully tracing out the variation in argument over E*, we see that
for u E- and v E0,

sinhu= e-%inh(2+ v) sinh(Ze-g’r-- V),
sinh($- u) sinh(+ v ) e"sinh(f.,e-"-v ),
sinh(25 u ) sinh v,

X: { sinh(’-u)}
-2 {sinh(le-i"-v)}

-2

sinh sinh(e-i,,)

X--1= (sinhu)[sinh(2-u)] =e_i2,, [sinh(21e-i"-v)](sinhv)
[sinh(- u)]2 [sinh(e-’-v)]2

e 2(- u)’"+X)F( u,/j) e-i2’’+2x+O)e-2e-’"-V)F( v,e-ir ).
To see that the same branch of *(X) has been used on both sides of (5.7), consider the
variation in argument of X= X(u,l), and X-1 =(X-1)(u,5) as u and/j vary. With
reference to Fig. 8, let j be as above, but small, i.e., s0, and let C be the point on o
where argu=arg/j, while C’ is taken to be the point on - where arg(u-2/j+irr)=
arg(e-ir). Then for u near C on 0, 1( X- 1)(u,/j)[< 1,

argX(u,)0, arg( X- 1)(u, 5) " argu- arg5 O,

so that $*(X(u,)) reduces to ,(X(u,l)), while for u-21-ivt+v near C’ on -,
l( X- 1)( u, )l l( X- 1)( u, e-’ )l< 1,

arg X( u, ) arg X( v, e-i ) , 0,

arg(X-1)(u,) -2r+ arg(X-1)(v,le-i’)
2r+ argv- arg(e-i’) 2r.

From (1.3), we note that for IX- ll< 1, largq<rr,

$(X)-$(1-[--ei2"q(x 1)), q an integer,

so that $ff(X) can be analytically continued outside of larg(X- 1)1< r to an arbitrary
sector of arg(X--1). Thus, the branch of $*(X) obtained by analytically continuing
ff(X) from a neighborhood of C on 0 to a neighborhood of C’ on E-, reduces, by the
monodromy theorem, to just

$*(X(u,))-$(1 +e-i2"(X 1)(v,le-i"))-(X(v,le-i’)).
By analytic continuation with respect to u along -, it follows that the branch of
$*(X(u,)) occurring on the left-hand side of (5.7) agrees with the branch of *(X)
which occurs in the definition of F(v,le-i’) as given by (5.4).

Substituting (5.7) into the integral for q,,(w), and noticing that (5.3) with contour
0, is valid not only for 5 with Re,j_>0, but also for je-’, provided j is sufficiently
small, we can relate the resulting integral to g,,(we-i2’), i.e.,

ei2,,,,+2x+O)q,,( w ) g.([sinh(e-ir )]2) gn( we-i’ )
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By analytic continuation, (5.8) continues to hold even when is not small. In particular,
when a>0 and fl is near r/2 so that Iwl sinh2 a + sinEr> 1, we can use Theorem 4(A)
to write (5.8) in the form

(5.9) qn(w)--e-iZ(n+2x+)gn(we-i2)--e-i2g,(w ), Iwl> 1.

Combining (5.6) and (5.9), we have the functional relationships,

ei,m
-hn(w) Iwl>lh,(w)=[l+e-’2"]g,(w), g,(w)
2cosro

Replacing h(w) by its integral representation, we can write, after some simplification,

go(w)_e,.O4or(+1/2)r(n+ 1) r(-2o) feF(n+2X) 2ri ,e- +X)F(u,t)d(2u),

0<, 0_</_<.

Again carefully tracing out the variation in arguments, as/j--, ir/2 and E*--’Eo,
we see that for u Eo,

sinh(l- u) -o e’/2cosh u, sinh(2- u) -o sinh u,

e-Z(*-U)F( u,) e-i("+2x+O)e 2u(+X(cosh u)-2x-2o (sinh u)2;([cosh u ]-2).
Applying this limit process to (5.10), we deduce the basic results

(5.11) ) --2o--2hg,(ei")-e-i’("+2x)F o+- (n+X) H(n+X),

(5.12) r(.+ 1) r(-2o) fe e2u(n+X)(2u)2K(u)d(2u)F(n+2k) 20ri
o

K(u)-(cshu)-2x( tanhuu )zo([coshu]_2),
Each of the component multiple-valued functions in the definition of K(u) is defined
by its principal value when uE0. From (5.2), it is clear that (5.11) remains valid if
(ir) is replaced by (-ir). Note that H(n+X), as defined by (5.12), is well defined for
all valued of o, including Re(o+ 1/2)-<0, although limiting values need to be taken when
20 is an integer. The asymptotic expansion of H(n+X) follows directly from the
following lemmas.

LEMMA 9. Let X--- (coshu)-2 so that 1-X=(tanhu)z, and let K(u) be as in (5.12).
Then

K(u)_Xx 1-X
(X)

U2

can be analytically continued as a function of u into a neighborhood of u=0, and, in
particular, has the Maclaurin expansion

)2kK(u)=(Eu Uzk, U0--1, lul<1/4.
k=0
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Moreover, ifm + is a positive integer, and
m--I

g(u)-- 2 (2u)2kU2k-l-(2u)2mg2m(U),
k=0

then there exist proper numbers M,s (i.e., nonnegative and independent of n and u), such
that

IK2m( u)l--<Meslul u 0
Proof. Clearly, (coshu)-2x [(tanhu)/u]2 is analytic in lul<r/2, while

ff([coshu]-2) is an analytic function of u in ]tanhuJ_<tanlul<l, or ]ul<r/4. The
remainder of the lemma is proved in the same way Lemma 6 was proved.

LEMMA 10. Let n be as above, and H(n+,) be defined by (5.12). Then for all values
of o, there exist constants H2k such that for m+ a positive integer,

H(n+))-- + n2k(n+))-2kW(n-k-))-2m(9(1), n+)
k--I

The H: here are the same as those in the statement of Theorem 8.
Proof. First, assume that 20 is not an integer. Substituting the finite expansion for

K(u) from Lemma 9 into (5.12), and using the integral preceding (2.8), we have

(5.13) H(n+)_(n+k)x- F(n+ 1)
r(n+2X)

X (20+l)2kU2(n+X)-2k+Hv_m(n+X
k--O

(5 14) Hm(n+X)-(n+X)+1 r(--2o) f0+ u,o )2o+2m2ri
e +x)(2u K2m(u)d(2u ).

Using the estimate for K2m(U) in Lemma 9, together with the change of variable
v- 2u(n + ,), it is easy to see that

(5.15) n2m(n-+-)--(n+X)-2m(1), n+X.
The asymptotic expansion of H(n +) then follows from (5.13), (5.15) and Lemma 7,
with

k

H2- E ej(.)(20 + 1)2_2jU2_2j
j=0

where the e2j(k ) are defined in Lcmma 7. Ts establishes the lcmma when 2o is not an
integer. An alternate representation for H(n+ k) can bc derived as follows. Choose m0
such that Re(2o+2m)>0, when mmo. As K2(u) takes on the same value at
corresponding points on the integration contour in (5.14), e.g., u=xe- and u=xe,
all factors in the integrand of (5.14) are single-valued, except for (2u)2+2m. Taking
account of the branches of this factor, wc can write

(5.16)

n2m(,+X) (n+X)2+1 e-:v+x)(2v):+:mK:(ve") d(2v) m>mo.r(:o+
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This representation of n2m(n+, ) remains well defined when 20 takes on integer
values, although a limiting form of K2,,(ve +-i)/F(2o + 1) has to be taken when 20 is a
negative integer. As the first m terms on the right of (5.13) remain well defined when 20
is an integer, H(n +A) is well defined for all o. Finally, as Lemma 9 remains valid when

(X) is replaced by $(X)/F(2o+ 1) and 20 takes on integer values, the change of
variable x=2v(n+X) in (5.16) leads one immediately to (5.15), again, when m>_mo.
This restriction on m0 can be dropped, by noticing that

(20+ n+Xo,

for k-0, 1,..., m0- 1. This completes the proof of the lemma and the theorem.
Remark 13. If gn(weir) and gn(We-ir) are the functions represented in (5.1), then

(5.17)
On( W ) ei"’+2h)gn ( wei’ ) + e-i’’+2’)gn( we-i )

r(-o-1/2) ’/2S* ( w) + 2[cosr(o- n )] R,( w).=(i2r)eiF(_n)F(n+2X) (w-1)+

Thus, if n + is a positive integer, the singular term in (5.17) vanishes, and Dn(1) is well
defined for all o. In particular,

(5.18) D,(1)--2[cosr(o--n)]R,,(1) if Re +- >0

2[cosro](-1}"R,(1)if n+ is a positive integer.

Remark 14. From (5.1) and (5.11), it follows that

(5.19) ) -2-2,H(.(1)-I" o+ (n+)k)

when Re(o+1/2)>0. As R,(1) and H(n+h) are well defined for all o, and in fact,
depend analytically on o, (5.19) remains valid for all o. The asymptotic expansion of
D,(1) then follows from (5.19) and Lemma 10, for the cases listed in (5.18).

THEOREM 9. Let

--n,n+2),a,, w), Iwl <1, tip+2-1,

where p+ is a positive integer, n,h,%, flj are complex parameters such that n is large,
[nl , arg n (9(n- ) as n , aj, flj are bounded with respect to n, and

aj-- ak# an integer ( j# k )
ilk- 1 =/= a negative integer,

Then (1) exists as a well defined, finite, number, if

(A) Re o+- -Re 2X 27+- >0,

P P+

2V---+ X aj-- X flj,
j=l j=l

or n + is a positive integer,

o- -2X-27,
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and in fact,
p

Ejl.,j(1)+Fgn*(e ) + F2gff(e ),
j=l

in the notation of Theorem 7. Moreoeer,

(C) 2 Ej.Ij. (1)
j-I

1,a+ 1--fie+2
X+3+ %+n+ l,%--n+ l--2X,%+ l--a

as n +) --, , and if
(D) D(1)-Fg(e-i")+F2g* (ei’)

F(o+1/2)(n +?)4+2x H#(n+,),r(o+k-n)r(-o+1/2+n)
then there exists constantsH such that for m + an arbitra positive integer,

m--I

k=l

where the H are the Hzk in Theorem 8, with the identification in (4.1). In particular,
when n + 1 is a positive integer,

r(o+i) (-1)" (-
r( +2v+2a)

w) analytic at wProof. The/,j( are 1, and D(1) is a constant multiple of D,(w)
at w= with the identification (4.1). (B) and (C) follow directly from Theorem 7(A)
and (B), respectively. (D) follows from Theorem 8, (5.18) and (5.19).

Remark 15. Just as in Corolla 2.2, the asymptotic results in Theorem 8 and
Theorem 9 (D) can be rewritten in terms of the large variable N,N2-n(n+ 2), or can
be rewritten in exponentiM form.
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